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1. Introduction to neutron stars



Discovery

• Jocelyn Bell in 1967
• 2000 wires as dipole antennas
• Analyzing roles of paper
• Advisor: Anthony Hewish & Martin

Ryle
• Nobel price 1974
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Neutron star

Neutron star properties
• Remnants of supernovae
• Composed of compressed matter,

neutrons
• Very dense ∼ 5× 1017 kg m−3,

> 10natomcore

• Short rotation periods ≲ 1 s
• Radius ∼10 km
• Hot surface (∼105 K)
• M ∼ 1.1–2.1 M∗

• Strong magnetic fields ∼108 T
(1012 G)

• Radio to γ-rays
• Plasma heating, particle acceleration
• Reliability of shown figures
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Neutron stars provide insights into a broad range of various astrophysical
phenomena

Pulsars Magnetars Extreme physical environments

Gravitational waves
X-ray binaries
Microqusars Fast radio bursts
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1. Introduction to neutron stars

Neutron star



Formation
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Formation

• Initial star mass ≳ 8M∗

• Inner core exceeds Chandrasekhar limit
(1.4 M∗)

• Core-collapse supernovae
(Type II, or Type Ib,c)

• Central core collapse into
a compact object (NS or BH)

• Implosion → shock wave
• Outer layers outflow
• Electrons and protons combine

p+ + e− → n+ νe
(reversed β-decay)

• Initial temperature 1011 − 1012 K
drops in few years to 106 K (BB in
X-rays)

• Compact object kicked
(∼100 km s−1)

NS = neutron star; BH = black hole

7



Mass of neutron star

(Latimer & Prakash, 2005) (Ozel & Freire 2016)
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Neutron star inner structure

• Main problem: Equation of state
• Superconductivity and superfluidity of

matter
• Strong frozen magnetic fields
• Two main models (AP4 and MS2),

Many more existing
• Neutrons hold from decay by strong

pressures (otherwise decay in
∼15 minutes)
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Neutron star models

10



Magnetosphere

Toy/book model:

Properties:
• Magnetic dipole
• Higher pole moments under debate
• Inclination between rotation and

magnetic axes
• Light cylinder – RLC = Pc/2π,

RLC ∼ 500R⋆

• Open and closed magnetic fields
• Atmosphere only a fraction of

millimeter thickness
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Gravitation effect – Light deflection

• Bending of radiation from surface
• Effect of spaghettification
• Red shift of light from star surface
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Spin down

• Rotational kinetic energy of star decreases
• Rotation periods increase
• Measuring slow down → amount of energy release
• Spin-down luminosity

Ė =
d(IΩ2/2)

dt
= IΩΩ̇ = 4π2ṖP−3 (1)

I = 1045 g cm−2

Ė ∼ 1025 W (1032 erg s−1)
(Other energy releases neglected)

• Dependence of spin down on period
• Dependence of energy release on period
• Spin down caused by dipole radiation power

Ėrad =
2

3c3
(BsurfaceR

3
⋆ sinα)

(
2π

P

)4

(2)

• α is the dipole inclination angle
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PṖ diagram

Small dots: Radio pulsars
HE: High energy pulsars
AXP: Anomalous X-ray
pulsars
RRAT : Radio transients
XINS: Thermally emitting
isolated neutron stars
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Glitches

• Sudden changes of rotational period
• 1. Changes in structure of star core
• 2. Changes in structure of mg. fields

The mg. field disturbance propagate
along field lines

• More often for young NS

(Lyne et al. 1999) 15



Braking index

• Quantifies the spin down
• Dipole emission

Ėdipole =
2

3c3
|m|2Ω4 sin2 α (3)

• Change of NS rotational frequency

ν̇ = −Kνn (4)

• n is braking index
• Measured as n = νν̈/ν̇2

• Values: 1.4 – 2.9
Estimation of pulsar age

T =
P

(n− 1)Ṗ

[
1−

(
P0

P

)n−1
]

(5)

Characteristic age

τ =
P

2Ṗ
(6)

• Crab: τ = 1240 yr, known: 970
• Born periods P0 = 14− 140 ms

Magnetic fields at surface

B0 =

√
3c3

8π2

I

R6
⋆ sin2 α

PṖ (7)

• B0 ∼ 1012 G (108 T)
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Braking index
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Pulsar death

• As NS period increases, efficiency of
energy conversion decreases

• For large periods, their emission
vanishes

• Can be recycled if in binary
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2. Pulsar Observations



Radio telescopes

GBT

Effelsberg

FAST

Arecibo
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Radio telescopes

MeerCAT

ALMA

VLA
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Telescopes

Chandra

Fermi

Integral

NICER
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Average pulses

(Lorimer & Kramer 2005) – Effelsberg

• PSR B1913+16
separate epochs

• PSR B1237+25
only part of rotation
phase

• PSR B1934+21
1.4 GHz

• Others 430 MHz
• Interpulses,

2 explanations
• Duty cycle
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Individual pulses

PSR B0301+19, Arecibo, Lorimer & Kramer 2005
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Vela pulsar spectrum

(Mignani et al. 2017)
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Crab pulsar

(Hankins & Eilek 2015)
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Dispersion measure

• Signal delay

∆t =
1

c

(∫ d

0

dl

vg

)
−

d

c
(8)

• Group velocity

vg = cN = c

√
1−

(
fp

f

)2

(9)

(N – refractive index, fp – plasma
frequency)

• Signal delay (after expansion of N)

∆t =
e2

2mec

∫ d
0 nedl

f2
= C

DM

f2
(10)

DM =

∫ d

0
nedl (11)
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Faraday rotation

• Difference in phase between left and
right polarization

∆ΨFar(f) =

∫ d

0
(kR(f)− kL(f))dl,

(12)
where

k(f) =
2π

c
f

√
1−

f2
p

f2
∓

f2
pfB

f3
(13)

Then

∆ΨFar(f) =
2e3

m2
ecf

2

∫ d

0
neB∥dl

(14)
∆ΨPPA = ∆ΨFar(f)/2 ≡ RM/f2

(15)

RM =
e3

m2
ecf

2

∫ d

0
neB∥dl (16)

⟨B∥⟩ =
∫ d
0 neB∥dl∫ d
0 nedl

= 1.2µG

(
RM

radm−2

)(
DM

cm−3 pc

)−1
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Submicrosecond pulses

(Hankins & Eilek 2016) – Crab
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Nanoshots

(Hankins et al. 2003) (Hankins & Eilek 2007)
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Brightness temperature Tb

• Black body radiation
dI(ν)

dν
=

2hν3

c2
1

e
hν
kT − 1

(17)

• Temperature

Tb =
hν

kB
ln−1

(
1 +

2hν3

I(ν)c2

)
(18)

• For hν < kT

• Brighness temperature

Tb =
I(ν)c2

2kBν2
(19)
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X-ray observations

NICER (X-ray) + Nançay (1.4 GHz)

(Guillot et al. 2019)
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Gamma rays

Vela

(Kuiper & Hermsen 2015) – Vela

Crab

Vela

(Rudak 2018) – Crab
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3. Physical applications



High precision timing

• Precide measurements of times of
pulse arrivals

• Depends on time resolution and S/N
ratio

• Low variance between individual pulses
• Millisecond pulsars are ideal
• Precision ∼ 100 ns for over > 1 year
• Stability of pulsar internal clock

limited (due to “unknown” slow down
mechanism)

• Cross-check with terrestrial clocks
(Hotan 2005)
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Testing general theory of relativity

Shift of periastron

(Weisberg & Taylor 2005)

Window of opportunity
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Gravitational waves

• Continuous gravitational waves
• Compact binary gravitational waves
• (Stochastic gravitational wave)
• (Burst gravitational waves)

(Lorimer & Kramer 2005)
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Gravitational waves

• Continuous gravitational waves
• Compact binary gravitational waves
• (Stochastic gravitational wave)
• (Burst gravitational waves)

(Haskell & Schwenzer 2021)

36



Merging neutron stars

• Source of gravitational waves
• Might produce short gamma ray

bursts or kilonovae
• Produce a neutron star or a black hole

(Tolman–Oppenheimer–Volkoff limit)
• First detection on 17th August 2017

by gravitational waves, later short
gamma ray burst

• Total mass 2.82 M∗

• It collapsed into a black hole or a
magnetar in milliseconds

• Direct evidence of production of
heavier elements and that neutron star
is composed of neutrons
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Extrasolar planets

(Marcy & Buttler 2000)
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Plasma physics in extreme conditions

• Relativistic temperatures

ρ =
mc2

kBT
≲ 1

• Relativistic particle velocity distributions – e.g. Maxwell–Jüttner
• Magnetic fields 1014 G (ωce ∼ 1020 Hz)
• Particle Lorentz factors γ up to 107, typical 103 (v/c = 0.9999995)
• Large kinetic energy densities
• Huge field energy densities
• Plasma beta parameter β ≪ 1
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4. Magnetospheres of Pulsars



4. Magnetospheres of Pulsars

Physics of the magnetosphere



Pulsar model

•
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Force free magnetosphere

• Force ratio

fEM

fG
=

eE∥R
2
∗

GM∗mp
≈ 109 (20)

• Goldreich–Julian density

ρe = ϵ0∇ ·E = −2ϵ0Ω ·B (21)

• Particle (EB) drift

vE,d =
E ×B

B2
(22)

→ No currents between e− and p+.
And drift along mg. fields (+
stationarity)
For deviation from charge-neutrality
→ currents

• Ideal MHD

vE,d = Ω×r−
B · (Ω× r)

B2
B. (23)

From ideal Ohm’s law

E + v ×B = 0 (24)

Problem between open and closed fields.
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2D magnetospheric simulations

(Chen & Beloborodov 2014) 42



3D magnetospheric simulations

(Philippov et al. 2015)
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Electron-positron production

• Breaking of force–free magnetospheric
models in regions called gaps

• Electric currents do not compensate
plasma co-rotation

∇×B = j + ϵ0µ0
∂E

∂t
(25)

• Electric fields can reach ∼ 1013 V/m
• “Primary particles accelerated”

(107 MeV)
• Curvature emission of γ-photons
• Inverse Compton scattering may occur

γ +B → e+ + e− +B (26)

• Production of “secondary particles”
(102 − 104 MeV)

• Multiplicity factor κ ∼ 102 − 105.

Other electron-positron sources
• γ photons from hot star surface
• photon-photon interactions
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Formation of relativistic beams

(Gurevich et al. 1993)

(Usov 2002, ArXiv)
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Model of pulsar wind

Types of wind:
• Quasi-neutral (MHD) wind of

relativistic particles, currents between
species, large particle density required

• Relativistic charged wind, species
separated, questions about
effectiveness, current only one species

• Large-amplitude low-frequency elmg.
wave in a low density plasma

Focus mainly on propagation effects.

(Petri, 2016)
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Outer magnetosphere

(Cerutti et al. 2020)
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5. Magnetars



Discovery

Soft gamma repeaters (SGRs)
• (Vegnera 11 and 12) detection of hard

X-ray / soft gamma-ray repeater
(SGR 1900+14)

• Softer spectra than gamma ray bursts
(GRBs)

• New class of high energy sources
• 8 s period (SGR 0526-66) suggests a

neutron star, but much larger than
other newly born pulsars (<100 ms)

• Ultrastrong magnetic fields needed for
such decay in 104 years

• Fields provide energy source for large
activity

• Magnetic fields confirmed from
spin-down measurements in 1998

Anomalous X-ray pulsars (AXPs)
• Indipendent theory evolution
• 1980 ”an extraordinary new celestial

X-ray source”
• Pulsations with period ∼3.5 s (Later

7 s)
• Later suggested as a new type of

accretion powered X-ray (neutron
star) binary

(Mazets 1979a,b; Thompson & Duncan 1992,1996)
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Main parameters

• Periods 2–12 s
• Born with periods ∼100 ms → rapid

magnetic breaking
• Large spin-down rates ∼ 10−3 yr−1

• Mg. fields from spind down rates
> 1014 G

• Spin down energy < X-ray luminosity
• X-ray luminosity 1030 − 1035 erg s−1

(2–10 keV)
• Soft X-ray – black body radiation
• Hard X-ray – hardening

• Sometimes observed at other
wavelength (radio to UV)

• Located in galactic plane → young
sources

• Spatial velocities ∼ 200 km s−1

• Some associated with supernova
remnants

(Olausen & Kaspi 2014)
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Activity

Generally vary strongly between magnetars.
Bursts:

• Durations ms – s, typically 100 ms
• Energies 1036 − 1044 erg s−1

• More common during outbursts
Outbursts:

• 10− 103 time increase of X-ray flux
• Energy flux < 1036 erg s−1

• Accompanied by glitches
• Rapid initial decay in minutes – hours
• Slow decay of days – years

(Woods et al. 2004)
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Giant flares

Giant flares
• Three sources detected
• Power 1044 − 1047 erg s−1

Pulsations
• Star pulsations (magnetosphere)
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Mechanism of a burst

(Beloborodov 2013)
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6. Fast radio bursts



Discovery

• First burst detected 24th July 2001 –
Parkes 64-m telescope

• Published by Lorimer et al. 2007
• Debate about “Lorimer burst” or

“peryton”
• Originating from “microwave-ovens”
• Other reported by Petroff in 2013
• Telescope: Parkes, Arecibo, GBT,

ASKAP, CHIME, FAST, STARE2
• Every 6 months “quamtum leap”
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Observed properties 1/2

• Duration of 1 ms → L = ct ∼ 105 − 106 m → compact sources
• Repetition, > 20 repeating sources → can be majority repeating?
• Repetition ms – s → pulsars? – no such source
• Typical repetition after days → binary/precession models?
• Pulse structure complex
• Subpulse down frequency drifts
• DM ∼ 100− 2600, typical 300− 400

• Luminosities 1038 − 1046 erg s−1

• Reduction by a beaming factor
• Luminosity large for pulsars, but low for GRB
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Observed properties 2/2

• Not clear association to SGR
• Brighness temperatures ∼ 1036 K → coherent source
• Detection range 300 MHz – 8 GHz, No LOFAR detection → hard spectral pulses
• Linear polarization > 50 %
• No polarization swing across pulse
• Some FRBs constant polarization angle in all pulses
• Large rotation measures 1− 105 rad m−2

• Isotropic over sky
• Rate ∼ 103 events per day (> 1 mJy)
• Massive galaxies
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Repeating FRB 121102 (z = 0.19)

• DM ∼ 560 pc cm−3

• Establishing
extragalactic/cosmological origin

(Spitler et al. 2016)
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Combines radio and X-ray detection – Galactic magnetar

• CHIME & STARE2
• Soft-gamma-repeater SGR 1935+2154
• During its active phase
• Magnetars are origin of, at least some,

FRBs

(Tavani et al. 2020)
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FRB Effective Isotropic Luminosity

(Nimmo et al. 2022)
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Open Questions

• Are there multiple species?
• Where are they from?
• What creates/produces them?

(Zhang et al. 2018)
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FRB models

• Pulsar-like models
• GRB-like models
• Main energy source is magnetic energy (not spin-down energy)
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List of FRB models (not all)
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List of FRB models (not all)
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List of FRB models (not all)
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Probability of source of FRBs

Observational facts – blue Speculations – grey Speculated multi-messenger – green
(Zhang et al. 2020)
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Conclusions to neutron stars

• Neutron stars, pulsars, millisecond pulsars, magnetars, soft gamma repeaters,
active X-ray pulsars, γ-ray sources, fast radio bursts

• Observational and theoretical approaches
• Large variety and uncertainty in emission processes of electromagnetic waves
• Dynamics of the magnetosphere
• Supergiant pulses and FRBs have same mechanism
• Now is the time of first global magnetopsheric simulations
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