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Sound waves



Sound waves

Let us assume that the hydrodynamical equations

∂ρ

∂t
+∇ · (ρv) = 0,

ρ
∂v
∂t

+ ρv · ∇v = −∇p + ρg ,

have static solution ρ0 = const. with g = 0.
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Sound waves

Let us search for a small perturbation δρ ≪ ρ0 of the static solution in a

form of ρ = ρ0 + δρ and v = δv , which fullfills the hydrodynamical

equations:
∂(ρ0 + δρ)

∂t
+∇ · ((ρ0 + δρ)δv) = 0,

(ρ0 + δρ)
∂δv
∂t

+ (ρ0 + δρ)δv · ∇δv = −∇(p0 + δp).

Neglecting second-order terms we derive

∂δρ

∂t
+ ρ0∇ · δv = 0,

ρ0
∂δv
∂t

+∇δp = 0.

Derivating the first equation with respect to t, inserting from the second

one and rewritting δp = dp
dρδρ ≡ a2δρ we arrive at the wave equation

∂2δρ

∂t2
− a2∇2δρ = 0.
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The sound speed

The constant in the wave equation is the sound speed:

a =

√

dp

dρ
.

For isothermal perturbations we derive from the perfect gas equation of

state

a =

√

dp

dρ
=

√

(

dp

dρ

)

T

=

√

kT

µmH
,

where µ is the mean molecular weight and mH is the mass of hydrogen

atom. For fully ionized hydrogen µ = 1
2 and a =

√

2kT/(mH).

For adiabatic perturbations we have

a =

√

dp

dρ
=

√

(

dp

dρ

)

S

=

√

κkT

µmH
,

where κ is the specific heat ratio. For fully ionized hydrogen

a =
√

10kT/(5mH).
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Sound waves revisited: acoustic cutoff

Let us again study the sound waves in an atmosphere, but this time the

atmosphere is statified in a homogeneous gravitational field directioned

along the z axis with g as gravity acceleration. Corresponding

hydrodynamical equations are

∂ρ

∂t
+

∂

∂z
(ρv) = 0,

∂v

∂t
+ v

∂v

∂z
= −

1

ρ

∂p

∂z
+ g ,

In an isothermal atmosphere p = a2ρ. The static density distribution

follows the barometric law ρ0 ∼ e−z/H with the density scale-height is

H = a2/g . Again, we shall consider small perturbations of the stationary

solution in the form of ρ = ρ0 + δρ and v = δv . However, this time we

will assume that the wavelength of perturbations can be comparable with

H . Therefore, we shall also take care of vertical derivative of the density.
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Sound waves revisited: the dispersion relation

Assuming for simplicity just the vertical variations gives

δρ̇+ ρ0δv
′ −

ρ0δv

H
= 0,

ρ0δv̇ = −a2δρ′ − gδρ.

Derivating the Euler equation with respect to time and inserting from the

continuity equation (twice) gives

δv̈ = a2δv ′′ + gδv ′.

For g = 0 we recover the ordinary sound waves. Inserting the harmonic

waves δv ∼ e i(ωt−kz) gives the dispersion relation

ω2 − a2k2 + igk = 0.
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Acoustic cutoff frequency

The dispersion relation shall be solved assuming ω ∈ R and k ∈ C.

Setting the imaginary part of the dispersion relation to zero gives

Im(k) =
g

2a2
=

1

2H
.

The real part of the dispersion relation now requires

ω2 − a2Re
2(k)− ω2

a = 0,

where ωa = a/(2H) is the accoustic cutoff frequency. For Earth’s

atmosphere 2π/ωa ≈ 7min. Inserting this in the expression for δv gives

δv ∼ e
z
2H .

Therefore, the velocity perturbation grows with height eventually

steepening into the shock. This contributes to the heating of the upper

atmosphere. Moreover, from the real part of the dispersion relation

follows that waves can propagate vertically only for

ω > ωa.
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Characteristics of differential equations



Characteristic direction

Let us assume that f = f (x , y). Then a linear combination afx + bfy

(where fx = ∂f /∂x) is a directional derivative of f along the direction

dx : dy = a : b. If (x(σ), y(σ)) is a curve parameterized by σ,

xσ : yσ = a : b, then afx + bfy is a directional derivative along the curve.

Let us consider system of 2 equations for two functions u(x , y), v(x , y):

L1 ≡ A11ux + B11uy + A12vx + B12vy + C1 = 0,

L2 ≡ A21ux + B21uy + A22vx + B22vy + C2 = 0.

We ask for a linear combination

L = λ1L1 + λ2L2

so that in the differential expression L the derivatives of u and v combine

to derivatives in the same direction. Such direction is characteristic.
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Characteristic relations

Suppose that the characteristic direction is given by the above ratio

xσ : yσ. Then the condition that u and v are differentiated in L in the

same direction is

λ1A11+λ2A21 : λ1B11+λ2B21 = λ1A12+λ2A22 : λ1B12+λ2B22 = xσ : yσ.

This gives the system of equations for λ1 and λ2

M̂

(

λ1

λ2

)

= 0, where M̂ =

(

A11yσ − B11xσ A21yσ − B21xσ

A12yσ − B12xσ A22yσ − B22xσ

)

leading to characteristic relations. The system has a non-trivial solution if

det M̂ = 0. This gives equation in a form of

ay2
σ − 2bxσyσ + cx2σ = 0.

For ac − b2 > 0, this cannot be satisfied by any direction. Such equations

are called elliptic. For ac − b2 < 0 we have two characteristic directions.

Such systems are called hyperbolic. There are two sets of equations
dy
dx = ξ+ and dy

dx = ξ− defining two sets of characteristics C+ and C−.
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Characteristic relations for 1D flow

For 1D flow ρ = ρ(x , t) ≡ u and v = v(x , t) the corresponding system is

L1 ≡ ρt + vρx + ρvx = 0,

L2 ≡ vt + v vx +
a2

ρ
ρx = 0.

This gives (t ≡ y)

M̂ =

(

vtσ − xσ
a2

ρ tσ

ρtσ vtσ − xσ

)

.

From det M̂ = 0 the characteristic relation is (vtσ − xσ)
2 − a2t2σ = 0, or

(v ± a)tσ = xσ.

The characteristics correspond to sound waves.
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Characteristic relations for 1D flow

The relation between λ1 and λ2 can be derived, e.g., from the first

equation of the system M̂λ = 0

(vtσ − xσ)λ1 +
a2

ρ
tσλ2 = 0,

which, after insterting the characteristic relation, simplifies to

λ1 = ±
a

ρ
λ2.

Therefore, the linear combination of hydrodynamical equations is

L = λ1L1 + λ2L2 =
a

ρ
[±ρt + (a ± v)ρx ] + vt + (v ± a)vx = 0,

where we further selected λ2 = 1. As we can see, ρ and v are

differentiated in the same direction.
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Transformation to ordinary differential equation

Because ρσ = ρttσ + ρxxσ = [ρt + (v ± a)ρx ] tσ from the characteristic

relation, by doing the linear combination we have transformed the original

system of partial differential equations to a system of ordinary differential

equation with new variables α ≡ σ (for + root) and β ≡ σ (for − root)

a

ρ
ρα + vα = 0,

−
a

ρ
ρβ + vβ = 0,
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Domain of dependence

The solution of hydrodynamical equations define two sets of

characteristics

(v ± a)tσ = xσ.

Let us assume that the initial

conditions are given on curve J .

There are two characteristics that go

throught a selected point P . The

line AB intercepted by the two

characteristics is called domain of

dependence of P. This can be

utilized for a numerical integration.
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Range of influence

The solution of hydrodynamical equations define two sets of

characteristics

(v ± a)tσ = xσ.

Let us assume that the initial

conditions are given on curve J .

The range of influence of a point Q

is the totality of points which are

influenced by the initial data at the

point Q. The range of influence of

the point Q consists of all points P

whose domain of dependence

contains Q. The range of influence

of influence is defined by two

characteristic drawn through Q.
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Expansion of a gas: withdrawing piston

Let us study a tube filled with a gas bounded by a piston withdrawing

subsonically.

The piston starts at O and recedes

towards left causing an expansion of

the gas. The gas adjanced to a

piston moves with the same velocity

as the piston. Only one set of

characteristics drawn from piston

propagates into the flow. The flow

in a zone I is not influenced by a

moving piston. The flow in a zone II

is a rarefaction wave.
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Compression of a gas: advancing piston

Let us study a tube filled with a gas bounded by a piston advancing

subsonically.

The piston starts at O and moves

towards righ causing an compression

of the gas. The gas adjanced to a

piston moves with the same velocity

as the piston. Only one set of

characteristics drawn from piston

propagates into the flow. The flow

in a zone I is not influenced by a

moving piston. Intersecting

characteristic form an envelope. The

solution is not unique at the

intersection. This leads to a

formation of a shock wave.
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Characteristics of more than two equations

We consider n differential equations

Li ≡ Aij

∂uj

∂x
+ Bij

∂uj

∂y
+ Cj , i = 1, · · · , n.

We ask for a linear combination

L = λiLi

so that in the differential expression L the derivatives of uj combine to

derivatives in the same direction. This gives the conditions

λiAij : λiBij = xσ : yσ, j = 1, · · · , n,

or

λi (Aijyσ − Bijxσ) = 0, j = 1, · · · , n.

This system has a non-trivial solution if

det |Aijyσ − Bijxσ| = 0.
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Application: Charactersistics including the energy equation

For isentropic 1D flow ρ = ρ(x , t) ≡ u1, v = v(x , t) ≡ u2, and

s = s(x , t) ≡ u3 the corresponding system of equations is

L1 ≡ ρt + vρx + ρvx = 0,

L2 ≡ vt + v vx +
a2

ρ
ρx = 0,

L3 ≡ st + vsx = 0.

M̂ =







vtσ − xσ
a2

ρ tσ 0

ρtσ vtσ − xσ 0

0 0 vtσ − xσ






.

From det M̂ = 0 the first two characteristic relations are the same as

without energy equation

(v ± a)tσ = xσ,

vtσ = xσ.

This corresponds to sound waves propagating at the sound speed and

entropy wave propagating at zero speed (with respect to the flow). 17



Gravity waves



Gravity waves

We will study the propagation of waves in an atmosphere, which is in

hydrostatic equilibrium given by external gravitational field.

We will study the movement of a

blob with density ρ in hydrostatic

equilibrium with outside medium

with density ρ0(ξ). We will assume

the density gradient in the

atmosphere
(

dρ
dz

)

at
and neglect the

heat exchange between the blob and

the atmosphere: the processes are

adiabatic. The equation of motion

including the buoyancy is:

ρ
d2ξ

dt2
= −g(ρ− ρ0).
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Gravity waves

In the equation of motion,

ρ
d2ξ

dt2
= −g(ρ− ρ0),

we shall use the Taylor expansion to derive the buoyancy term,

ρ0(ξ) = ρ0(0) +

(

dρ

dz

)

at

ξ,

ρ(ξ) = ρ(0) +

(

dρ

dz

)

ad

ξ.

Because the blob is initially in equilibrium, ρ0(0) = ρ(0), the equation of

motion
d2ξ

dt2
= −ω2

BVξ

describes an oscillatory motion, so-called gravity waves. The frequency of

oscillations,

ω2
BV =

g

ρ

[(

dρ

dz

)

ad

−

(

dρ

dz

)

at

]

is the Brunt-Väisälä frequency. 19



Gravity waves: the case of ω2
BV > 0

For
(

dρ
dz

)

ad
>
(

dρ
dz

)

at
, i.e., for

∣

∣

∣

(

dρ
dz

)

ad

∣

∣

∣
<
∣

∣

∣

(

dρ
dz

)

at

∣

∣

∣
we have ω2

BV > 0.

The initial perturbation results in oscillations ξ(t) = ξ0e
±i |ωBV|t .

Gravity waves in Earth’s atmosphere:
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Gravity waves: the case of ω2
BV > 0: Earth’s atmosphere
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Gravity waves: the case of ω2
BV > 0: Earth’s atmosphere
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Gravity waves: solar differential rotation

Angular velocity as a function of radius in the Sun from accoustic modes

in heliseismic observations (Turck-Chiéze). The lack of differential

rotation in the radiative zone is due to angular momentum transport by

gravity waves (Charbonnel & Talon 2005).
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Gravity waves: the case of ω2
BV < 0

For
(

dρ
dz

)

ad
<
(

dρ
dz

)

at
, i.e., for

∣

∣

∣

(

dρ
dz

)

ad

∣

∣

∣ >
∣

∣

∣

(

dρ
dz

)

at

∣

∣

∣ we have ω2
BV < 0.

The initial perturbation results in instability ξ(t) = ξ0e
±|ωBV|t .

The instability leads to convection.
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Schwarzschild stability criterion

The stability criterion can be recast in another intuitive form. From the

ideal gas equation of state,
(

dρ

dz

)

at

=
ρ

p

(

dp

dz

)

at

−
ρ

T

(

dT

dz

)

at

.

The convective plumes are in hydrostatic equilibrium with the

sorrounding environment meaning that
(

dp

dz

)

at

≡

(

dp

dz

)

ad

= γ
p

ρ

(

dρ

dz

)

ad

.

Therefore, the stability criterion is

(1− γ)

(

dρ

dz

)

ad

> −
ρ

T

(

dT

dz

)

at

.

From the adiabatic equation follows that (dρ/dz)ad =

= 1/ (γ − 1) ρ/T (dT/dz)ad, which yields
(

dT

dz

)

ad

<

(

dT

dz

)

at

,

which is Schwarzschild stability criterion. 25



Temperature distribution in a convective atmosphere

The convective motions are typically slower than the sound waves

maintaining the hydrostatic equilibrium, therefore one can use

dp

dz
= −ρg

to determine the temperature gradient. The pressure is

p = a2ρ = kTρ/µ, which gives

dT

dr
+

T

ρ

dρ

dr
= −

µg

k
.

The adiabatic equation Tρ1−γ = const. gives

T

ρ

dρ

dr
=

1

γ − 1

dT

dr
,

which yields for the temperature gradient

dT

dr
= −

γ − 1

γ

µg

k
.

This predicts the temperature gradient of −10Kkm−1 for the atmosphere

of our Earth and about 5× 106KR−1
⊙ for the envelope of Sun. 26



Simulation of convection

27



Solar granulation
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Kelvin-Helmholtz & Rayleigh-Taylor



K-H & R-T instabilities: the initial setup

Consider a shear flow with velocity V1 and density ρ1 in the upper half

plane and V2 and ρ2 in the lower half plane. We expect instability would

occur within crossing time scale of the flow over the characteristic length

scale. The surplus kinetic and potential energies proportional to

(V2 − V1)
2 and ρ1 − ρ2 are the energy sources of turbulence.

The hydrodynamical equations are

∂ρ

∂t
+ div(ρv) = 0,

ρ
∂v
∂t

+ρv ·∇v−ρg = −∇p = −a2∇ρ.

We will assume an initial state with

v = (V (y), 0, 0) and ρ = ρ0(y).

V1

V2

y

x

2

1

ρ

ρ

g
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K-H & R-T instabilities: perturbing the initial state

We will assume the perturbed quantities in the form of

v = (V (y) + δṽx , δṽy , 0) and ρ = ρ0(y) + δρ̃, where δṽx, y ≪ V (y) and

δρ̃ ≪ ρ0. The perturbations are assumed to obey harmonical expansion

δṽx,y = δvx,y (y) exp(ikx + iωt),

δρ̃ = δρ(y) exp(ikx + iωt).

Therefore, we shall substitute ∂/∂t → iω and ∇ → (ik , ∂/∂y , 0).

The linearized hydrodynamical equations are

∂ρ

∂t
+ div(ρv) = 0 → ωδρ+ Vkδρ+ ρ0kδvx − iρ0δv

′
y = 0,

ρ
∂vx
∂t

+ρvi
∂vx
∂xi

= −a2
∂ρ

∂x
→ ρ0ωδvx+ρ0Vkδvx−iρ0δvyV

′ = −a2kδρ,

ρ
∂vy
∂t

+ρvi
∂vy
∂xi

= −a2
∂ρ

∂y
−ρg → ρ0ωδvy+ρ0Vkδvy = ia2δρ′+ iδρg ,

where prime (′) denotes d/dy .
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K-H & R-T instabilities: solving for perturbations

Solving the second equation for δvx , inserting to the first one and solving

for δρ, and inserting the final relation to the last equation we derive

(denoting ωd = ω + kV )

ρ0ωdδvy =

[

a2
−ρ0δv

′
yωd + ρ0kV

′δvy

ω2
d − k2a2

]′

+ g
−ρ0δv

′
yωd + ρ0kV

′δvy

ω2
d − k2a2

.

For relatively slow flow (V ≪ a) we can assume a → ∞ (incompresible

flow) and the dispersion relation becomes

(

ρ0ωdδv
′
y − ρ0kV

′δvy
)′
− ρ0ωdk

2δvy = 0.
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K-H & R-T instabilities: back to the original problem

For an assumed velocity and density profile profile

V (y) =

{

V1, for y > 0,

V2, for y < 0,
ρ0(y) =

{

ρ1, for y > 0,

ρ2, for y < 0,

in each half-space. We have the dispersion relation δv ′′
y − k2δvy = 0 that

has the solution (assuming δvy → 0 for y → ∞)

δvy ∼

{

exp(−ky), for y > 0,

exp(ky), for y < 0.

The displacement δy at the boundary should be continuous, consequently

Dδy

Dt
=

(

∂

∂t
+ V

∂

∂x

)

δy = δvy

and therefore δvy/(ω + kV ) shoud be continuous. The solution becomes

δvy ∼

{

(ω + kV1) exp(−ky), for y > 0,

(ω + kV2) exp(ky), for y < 0.
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Kelvin-Helmholtz instability

We assume constant density, no gravitational field, and velocity shear

V (y) =

{

V1, for y > 0,

V2, for y < 0.

From the requirement that the left-hand side of the dispersion relation
(

ρ0ωdδv
′
y − ρ0kV

′δvy
)′

= ρ0ωdk
2δvy

should be continuous at the boundary we have
(

ρ0ωdδv
′
y

)

1
=
(

ρ0ωdδv
′
y

)

2
,

which, after substitution of ωd and δv ′
y gives the dispersion relation

(ω + kV1)
2 + (ω + kV2)

2 = 0.

Solving for ω gives instability for V1 6= V2:

ω = −
1

2
k(V1 + V2)±

1

2
ik(V1 − V2).
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Kelvin-Helmholtz instability: going nonlinear

34



Kelvin-Helmholtz instability: Earth’s atmosphere
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Kelvin-Helmholtz instability: Earth’s atmosphere
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Kelvin-Helmholtz instability: Solar prominence
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Kelvin-Helmholtz instability: Atmosphere of Saturn
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Rayleigh-Taylor instability

We assume zero velocity V (y) and the density

ρ0(y) =

{

ρ1, for y > 0,

ρ2, for y < 0.

From the requirement that the left-hand side of the dispersion relation

(assuming ω ≫ k2a2)

ρ0ω
2δvy + gρ0δv

′
y =

[

a2
−ρ0δv

′
y

ωd

]′

should be continuous at the boundary we have
(

ρ0ω
2δvy + gρ0δv

′
y

)

1
=
(

ρ0ω
2δvy + gρ0δv

′
y

)

2
.

Inserting the solution δvy ∼ exp(±ky) gives the dispersion relation

ω2 = gk
ρ2 − ρ1
ρ2 + ρ1

.

The flow is stable (ω2 > 0) for ρ2 > ρ1, while for ρ2 < ρ1 the

Rayleigh-Taylor instability appears.
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Fingers of Rayleigh-Taylor instability

Figures show the developement of the finger typical for Rayleigh-Taylor

instability. The instability is stabilized by the surface tension for large

wavenumbers (Chandrasekhar). Figure shows also Kelvin-Helmholtz

instabilities on the boundary of finger. 40



Visualisation of the Rayleigh-Taylor instability
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Crab nebula

42



Crab nebula structure due to Rayleigh-Taylor instability

While the supernova nebula becomes flat, the swept-up, accelerating

shell is subject to the Rayleigh–Taylor instability (Kulsrud et al. 1965,

Chevalier & Gull 1975, Blondin & Chevalier 2017).
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