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Preface

This book presents various mathematical aspects of the nonlinear Schréodinger
equation. It is based on the notes of three courses, the first one given at the Federal
University of Rio de Janeiro and at the IMPA in 1989 [55], the second given at the
Federal University of Rio de Janeiro in 1993 [56], and the third one given at the
Courant Institute in 1997.

The nonlinear Schrodinger equation received a great deal of attention from
mathematicians, in particular because of its applications to nonlinear optics. In-
deed, some simplified models lead to certain nonlinear Schrodinger equations. See
Bergé [27] and C. Sulem and P.-L. Sulem [330] for the modelization aspects. Non-
linear Schrodinger equations also arise in quantum field theory, and in particular
in the Hartree-Fock theory. See, for example, Avron, Herbst, and Simon [5, 6,
7], Bialinycki-Birula and Mycielski [31, 30], Combes, Schrader, and Seiler [93],
Eboli and Marques [109], Gogny and Lions [149], Kato {202], Lebowitz, Rose, and
Speer [223], Lieb and Simon [229], Reed and Simon [301], B. Simon [313], and
C. Sulem and P.-L. Sulem [330]. The nonlinear Schrédinger equation is also a good
model dispersive equation, since it is often technically simpler than other dispersive
equations like the wave or KdV.

From the mathematical point of view, Schrédinger’s equation is a delicate prob-
lem, and possesses a mixture of the properties of parabolic and hyperbolic equa-
tions. Particularly useful tools are energy and Strichartz’s estimates. We study in
this book both problems of local nature (local existence of solutions, uniqueness,
regularity, smoothing effect) and problems of global nature (finite-time blowup,
global existence, asymptotic behavior of solutions). The methods presented apply
in principle to a large class of dispersive semilinear equations. On the other hand,
we do not study quasilinear Schrédinger equations (with nonlinearities involving
derivatives of the solution). They require in general the use of specific linear (and
nonlinear) estimates, and most results of global nature are limited to small initial
data.

The book is organized as follows. In Chapter 1, we recall some well-known
properties of functional analysis concerning integration, Sobolev and Besov spa-
ces, elliptic equations, and linear semigroups that we use throughout the text. We
also introduce some useful compactness tools. In Chapter 2, we establish some
fundamental properties of the (linear) Schrédinger equation. The case of the whole
space R is studied in detail. Chapter 3 contains a few partial results of local
existence for the nonlinear Schrédinger equation in a general domain of RY. The
rest of the book is concerned with the case Q = RY. Chapter 4 is devoted to the
study of the local Cauchy problem in various spaces, and in Chapter 5 we study
the regularity properties and the smoothing effects. Chapter 6 is devoted to the
study of global existence and finite-time blowup of solutions. In Chapter 7, we

vii



viii PREFACE

study the asymptotic behavior of solutions in the repulsive case. The main results
are the construction of the scattering operator in a weighted Sobolev space and in
the energy space. In Chapter 8, we study the stability and instability properties of
standing waves in the attractive case. We establish the existence of standing waves,
and in particular of ground states, and we show that ground states are stable or
unstable, depending on the growth of the nonlinearity. Chapter 9 is devoted to
some further results concerning certain nonlinear Schrédinger equations that can
be studied either by the methods used in the previous chapters or else by different
methods.

Bibliographical references are given in the text. In order to be informed of the
latest news, it is advised to have a look at the web page “Local and global well-
posedness for non-linear dispersive and wave equations”! maintained by J. Collian-
der, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. Let us also mention a few
monographs specialized in the nonlinear Schrédinger equation: Bergé [27], Bour-
gain [38], Ginibre [128], Kato {204}, Strauss [326], and Sulem and Sulem [330].

I am grateful to my colleagues who reported misprints (and more serious mis-
takes) in previous versions of these notes, and in particular to P. Bégout, F. Castella,
J. Ginibre, T. Kato, and G. Velo. I thank my friend Jalal Shatah, who invited me to
publish these notes in the Courant Lecture Notes series. Finally, it was a pleasure
to collaborate with Paul Monsour and Reeva Goldsmith in their beautiful editing
work.

lhttp://www.math.ucla.edu/~tao/Dispersive
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= O,u = % = %z - Vu, where r = ||
QX N
= 23- e a—a— for a multi-index o € NV
ox(*  Ox}Y
::Hhu,“.,aNu)
N 82
= Z fx2
=1 1‘

Fourier transform® Fu(¢) = /6”2"ix'5u(z)dx
RN

= F~1 given by Fu(z) = /eQ’TiE'mv(ﬁ)dﬁ
RN

= Fu

=:Ck(QvR)(OrC%(Q7C))

space of continuous functions  — R (or Q§ — C). When £ is bounded,

C(Q) is a Banach space when equipped with the L norm

Banach space of uniformly continuous and bounded functions & — R

(or © — C) equipped with the topology of uniform convergence

Banach space of functions u € Cp, () such that D% € Cp () for

every multi-index a € N¥ such that || < m. The space g”‘u(ﬁ) is

equipped with the norm of W™ ().

closure of D(£2) in L>®(Q)

for 0 < a <1, the Banach space of functions u € {)'}u(ﬁ) such that

ullgme = flullwm= + sup {|z — y|~*|DPu(z) — DPu(y)|} < oo
gi=m

= C(Q), the Fréchet space of C™ functions @ — R (or @ — Q)
compactly supported in €2, equipped with the topology of uniform
convergence of all derivatives on compact subsets of 2

space of distributions on €, i.e., the topological dual of D(Q)

Schwartz space; i.e., the set of all real- or complex-valued C* functions
on RY such that for every nonnegative integer m and every multi-
index «,

pm,a(u) = sup (1 + ixl2)m/2lDau(x)l <.
TeRN

S(RY) is a Fréchet space when equipped with the seminorms Do

space of tempered distributions on R¥; i.e., the topological dual of
S(RM). S/(RV) is a subspace of D'(RY).

With this definition of the Fourier transform, IFlczzy = 1, Flu*v) = FuFv, and
F(D*u) = 2mi)le [T, 259 Fu.

J=1"j
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1 1
conjugate of p € [1,00] given by > + e 1

Banach space of (classes of) measurable functions u : @ — R (or
Q! — C) such that |julr» < oo, with

</|u(:r)|”dx>l/p if p < 00
Q

esssup |u| ifp=o0
Q

luller =

(m € N, 1 < p < oo) Banach space of (classes of) measurable func-
tions u : 2 — R (or € — C) such that D*u € LP() in the sense
of distributions, for every multi-index a with |a] < m. W™P(Q) is
equipped with the norm

lulwme = > | D%l|zs .
laj<m
(m e N, 1 <p< o) closure of D(Q) in W™P(Q)
(m e N, 1 <p<oo) dual of WyP ()
= W™2(Q). H™(Q) is equipped with the equivalent norm
1/2
ol = (X [i0*u@ias)
fa|<m g
H™(Q) is a Hilbert space for the scalar product
(u,v)gm = /Re(u(z)v(m))d:c.
Q

= W5 (9Q)
= W-m2(Q) = (HF"(Q)"

(s € R, 1 < p < co) Banach space of elements u € S'(RY) such that
FU1 + €]%)°/?a] € LP(RY). HSP(RY) is equipped with the norm

fullzzer = |1 F A+ €7 2 20 -

— HS’Q(RN)

(s € R, 1 < p < oo0) homogeneous version of the Sobolev space
Hs,p(RN)

— Hs’2(RN)
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(s € R, 1 < p,q < o) Banach space of elements u € S'(R") such that
lullBs,, < oo with

oC

1/q
(X ele)r)  ifa<os
lullsg, = 17~ @)l +{ \5=1
sup 27| F~ (¢;0) || v if ¢ = oo,
jz1

where F~!(p;u) is the j** dyadic block of the Littlewood-Paley de-
composition of u

(s € R, 1 < p,g < ) homogeneous version of the Besov space
B} ,(RY)

= C(1,X), the Fréchet space of C*™ functions I — X compactly
supported in I, equipped with the topology of uniform convergence of
all derivatives on compact subintervals of I

space of X-valued distributions on I, i.e., the space of linear, con-
tinuous mappings D(I) — X, where X is equipped with the weak
topology

Banach space of uniformly continuous and bounded functions 7 — X,
equipped with the topology of uniform convergence

Banach space of functions u : I — X whose derivatives of order j
belong to Cy (T, X), for all 0 < j < m. Cr,(I,X) is equipped with
the norm of W™ (I, X).

for 0 < o < 1, the Banach space of functions u € CJ, (I, X) such that

b<oo

space of continuous functions I — X. When I is bounded, C(T, X) is
a Banach space with the norm of L*(I, X).

d™u d™u
dt—m(t) ~ gm (s)

luf|cme = fuflwme + sup {]t _ g
s,t€l

Banach space of (classes of) measurable functions u : I — X such that

llullzr < o0, with
1/p
(/ ()% dt> ifp<oo
1

esssup jju(t)|lx ifp=o0
I

lullzr =

Banach space of (classes of ) measurable functions » : I — X such that

j
%;;Ji € LP(I,X) for every 0 < j < m. W™P(I,X) is equipped with
the norm
") i
Il =3 |15,

Jj=1
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except when otherwise specified, the group of isometries on L?(f2)
generated by the skew-adjoint operator ¢4, where A is the Laplacian
with Dirichlet boundary condition on 02



CHAPTER 1

Preliminaries

In this chapter we recall some basic properties of functional analysis, complex
and vector integration, Sobolev spaces, elliptic equations, and linear semigroups
that we use in the next chapters.

1.1. Functional Analysis

See, for example, Brezis [43], Brezis and Cazenave [44], Cazenave and Haraux
[64, 65], Rudin [304], Strauss [320], and Yosida [366].

We recall that if X and Y are two Banach spaces such that X — Y with dense
embedding e, then Y* — X* with embedding e*. Moreover, if X is reflexive, then
the embedding Y* «— X* is dense.

We will use repeatedly the following elementary properties of weak topologies.

(i) Let X — Y be two Banach spaces. Consider z € X and a sequence
(Zp)nen C X. Ifzp, = zin X asn — oo, thenz,, = zin Y as n — oo.

(i) Let X — Y be two Banach spaces. Assume X is reflexive and consider
y € Y and a bounded sequence (zp)pey C X. If 2, — yin Y as n — oo,
theny € X and z, — y in X as n — oo.

(iii) Let X — Y be two Banach spaces and let I be a bounded, open interval of
R. Let u: I — Y be weakly continuous. If X is reflexive and if there exists
a dense subset E of I such that u(t) € X for all t € E and sup{||u(t)| x,t €
E} = K < oo, then u(t) € X forallt € T and u : T — X is weakly
continuous.

(iv) Let X bea uniforlnly convex Banach space; let I be a bounded, open interval
of R; and let u : I — X be weakly continuous. If the function ¢ — ||lu(t)| x
is continuous I — R, then u € C(I, X).

(v) Let_X be a Banach space, let I be a bounded, open interval of R, and let
u : I — X be weakly continuous. If there exists ‘a Banach space B such that
X — B with compact embedding, then u € C(I, B).

We will construct solutions of the nonlinear Schrédinger equation either by a
fixed point argument, or by a compactness technique. For the first method, we will
use Banach’s fixed point theorem and for the second, we will use Proposition 1.1.2
below.

THEOREM 1.1.1. (Banach’s fixed point theorem) Let (X, d) be a complete metric
space and F : X — X. If there exists a constant L < 1 such that d(F(z), F(y)) <
Ld(z,y) for all z,y € X, then F has a unique fized point xo € X: i.e., there exists
a unique o € X such that F(xg) = xo.



2 1. PRELIMINARIES

PROPOSITION 1.1.2. Let X — Y be two Banach spaces and let I be a bounded,
open interval of R. Let (fu)nen be a bounded sequence in C(I1,Y). Assume that
fn(t) € X for all (n,t) € N x I and that sup{||fn(t)|x,(n,t) e Nx I} = K < oo.
Assume further that fp, is uniformly equicontinuous in Y (i.e., Ve > 0,36 > 0,
Vn,s,t E NI X I |ifn(t)— fa(s)lly <€ if |t —s| <6). If X is reflexive, then the
following properties hold:

(i) There exists a function f € C(I,Y) which is weakly continuous I — X and
a subsequence ny such that fn, (t) = f(t) in X as k — oo, for allt € 1.

(ii) If there exists a uniformly convezr Banach space B such that X — B — Y
and if (fa)nen C C(1,B) and || fn, (t)l5 — [IF/@)| 5 as k — oo, uniformly
on I, then also f € C(I,B) and fn, — f in C(I,B) as k — oc.

ProoF. (i) Let (tn)nen be a representation of Q N I. Using the reflexivity of
X and the diagonal procedure, we see easily that there exist a subsequence 7y
and a function f : Q NJ — X such that fy, (t;) = f(¢;) in X (hence in Y) as
k — oo, for all j € N. By the uniform equicontinuity of (fn)nen and the weak
lower semicontinuity of the norm, f can be extended to a function of C(I,Y).
Furthermore, f : T — X is weakly continuous and sup{[|f(t)llx, t € I} < K.
Consider now t € 1. Let (¢;)jen C QNI converge to ¢ and let y' € Y*. We have

KY's Fu (&) = F @)y ¥ S HY's fri(8) = fri (t5))yo v
+ 1Y F(8) = FE Dy [+ 1Y fr (85) — £y ey
Given € > 0, it follows from the uniform equicontinuity that the first and second

terms of the right-hand side are less than €/3 for j large enough. Given such a j,
the third term is less than /3 for k large enough; and so

(2, fun ) = F())y+y| =0 ask — oo,
Thus f,, (t) — f(t) in Y; and so fn, (t) = f(t) in X. Hence (i).
(ii) Note first that f : T — B is weakly continuous. Also, ||fl|p: 71 — Ris
continuous; and so f € C(I, B). It remains to prove that f,, — f in C(I, B). We
argue by contradiction, and we assume there exist a sequenice (t)gen C I and £ > 0
such that || fn, (tk) — f(te)|B = €, for every k € N. We may assume that t, —t e [
as k — oco. It follows from (i) and the uniform continuity that f,, (tx) — f(t)

inY as k — oco. Since (fu)nen is bounded in C(7,B), we obtain as well that
fni (tk) = f(t) in B as k — co. Furthermore,

1 fne @)i5 = IF @I E] < [l fnn )z = £ ENB| + [I1FE)lls ~ £ 5]

Therefore, || frn, (t)lz — | f(t)llB, and so fr, (tx) — f(t) in B as k — oo, which is
a contradiction. O

Finally, we will use some properties of the intersection and sum of Banach
spaces. Consider two Banach spaces X; and X, that are subsets of a Hausdorff
topological vector space X. Let

XlﬂXQZ{ZBEX:IEXl,CEEXQ}

and
X1+X2—_—{.’I,'€X:3$1 € X, E.TIQGXQ,:IL‘:.’IJl—I'-IQ}.
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Set
lzll x:nx, = llzllx, +lzllx, forze XN X,
and

Zlbx+x, = inf{{|zalix, +ll22llx, : 2 =21+ 22} for z€ X, + Xs.

We have the following result (see lemma 2.3.1 and theorem 2.7.1 in Bergh and
Lofstrom [28]).

PropoSITION 1.1.3. (X1 N Xo, || Ix,nx.) and (X1 + Xo, || ||x,+x,) are Banach
spaces. If furthermore X1 N X2 is a dense subset of both Xy and X», then (X; N
Xo)* = X7+ X5 and (X1 + Xo)* = X7 n X3,

1.2. Integration

For real and complex integration, consult Brezis [43], Dunford and Schwar-
tz [108], Rudin {305], and Yosida [366]. For vector integration, see Brezis and Caze-
nave [44], Cazenave and Haraux [64, 65|, Diestel and Uhl {105], Dinculeanu [106],
Dunford and Schwartz [108], J. Simon [314], Yosida [366], and the appendix of
Brezis [42].

Throughout these notes, we consider LP spaces of complex-valued functions.
Q being an open subset of RV, LP(Q) (or LP, when there is no risk of confusion)
denotes the space of (classes of) measurable functions u : @ — C such that Jju|/z» <

oo with 1/p
( / Hu(x)]]pdm> i£pel,o0)
2

esssup [lul| if p = o0.
Q

lullr =

LP(R) is a Banach space and L?(f) is a real Hilbert space when equipped with the
scalar product

Below is a useful result of Strauss [321].

PROPOSITION 1.2.1.  Let Q be an open subset of RN and let1 < p < oo. Consider
u: ) — R and a bounded sequence (unjnen of LP(RY). If up — u a.e. in Q as
n — oo, then u € LP(Q) and up, — u as n — oo in LI(Y'), for every ' C Q of
finite measure and every ¢ € [1,p). In particular, up, — u as n — oo, in LP(Q)
weak if p < 00, and in L*°(Q) weak-* if p = oo.

Consider now an open interval I C R and a Banach space X equipped with
the norm | - ||. A function f : I — X is measurable if there exist a set N C I of
measure 0 and a sequence (fp)nen C Co(l, X) such that

lim fo(t)=f(t) forallteI\N.
We deduce easily from the definition that if f : ] — X is measurable, then ||f|| : I —

R is also measurable. Also, if f : I — X is measurable and if Y is a Banach space
such that X — Y, then f : I — Y is measurable. More generally, if f: 1 — X is
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measurable, Y is a Banach space, and ® : X — Y is continuous, then o f: ] - Y
is measurable.

REMARK 1.2.2. Pettis’ theorem asserts that a function f is measurable if and only
if f is weakly measurable (i.e., for every ' € X*, the function t — (z’, f(t)) x+ x
is measurable I — R) and there exists a set N C I of measure 0 such that f(I\ N)
is separable. One deduces the following properties:

(i) If f: I — X is weakly continuous (i.e., continuous from I to X equipped
with its weak topology), then f is measurable.

(ii) Let (frn)nen be asequence of measurable functions I — X andlet f : I — X.
If fo(t) = f(t) in X asn — oo, for a.a. t € I, then f is measurable.

(iii) Let X — Y be two Banach spaces and let f : I — Y be a measurable
function. If f(¢t) € X for a.a. t € I and if X is reflexive, then f: ] — X is
measurable.

A measurable function f : I — X is integrable if there exists a sequence
(frn)nen C Co(I, X) such that

(1.2.1) Jim [ 176 = £(0)lde = 0.
I

If f: I — X is integrable, then there exists z(f) € X such that for any sequence
(fr)nen C Cc(I, X) satisfying (1.2.1), one has

lim [ fn(t)dt = (f),

n=—00

I

the above limit being for the strong topology of X. The element z(f) is called the
integral of f on I. We write

w(f)=/f=/f=/f(t)dt.
I I

If I = (a,b), we also note
b b
2()= [ 1= [ 1w,

As for real-valued functions, it is convenient to set

/ " foyat = - /ﬂ " (bt

if 3 < . Bochner’s theorem asserts that if f : I — X is measurable, then f is
integrable if and only if || f|] : I — R is integrable. In addition,

H [ s [ < [ sy,
I I

Bochner’s theorem allows one to deal with vector-valued integrable functions like
one deals with real-valued integrable functions. It suffices in general to apply the
usual convergence theorems to ||f]|. For example, one can easily establish the
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following result (the dominated convergence theorem). Let {f,)nen be a sequence
of integrable functions I — X, let g € L*(I), and let f : I — X. Assume that

[1fn (Ol < g(t) foraa.telandallneN
lim f,(t) = f(¢t) fora.a.tel.
TL == OO

It follows that f is integrable and

1/ f(t)dt = lim I/ Fa(t)dt.

For p € [1,00], one denotes by LP(I,X) the set of (classes of) measurable
functions f : I — X such that the function t — | f(t)|| belongs to LP(I). For
f e L?(l,X), one defines

1/p
([1sora)” tp<o
Ifllzea,xy = 7

esssup || f ()| if p = oo.

tel

When there is no risk of confusion, we denote || ||zo(z,x) by || llzo(r) or || ||z or

I llz-

REMARK 1.2.3.  The space LP(I, X) enjoys most of the properties of the space
LP(I) = L?(I,R), with essentially the same proofs. In particular, one obtains easily
the following results:

(i) || llze(z,x) is a norm on the space LP(I,X). L?(I,X) equipped with that
norm is a Banach space. If p < 0o, then D(7, X) is dense in LP(I, X) (apply
the classical procedure by truncation and regularization).

(if) A measurable function f : I — X belongs to LP(I, X) if and only if there
exists a function g € LP(I) such that || f]| < g a.e. on I.

(iii) Suppose f : I — X is measurable. If f € L?(J,X) for all J € I and
if [|fllzes,x) < C for some C independent of J, then f € LP(I,X) and
Ifller,x) < C.

(iv) If f € LP(1, X) and ¢ € LYI) with £ +1 = 1 <1, then ¢of € L™(I,X) and

lefllra.xy < I fllee,x)l@llLacry -

In particular, if f € L?(I,X) and if J is an open subinterval of I, then
fls e LP(J, X).

(v) If f € LP(I,X) and g € LYI,X*) with + + 2 = 1 < 1, and if
h(t) = (g(¢), f(t))x+,x, then

he L™(I)) and ||hllery < W fllzex)lgllnocr,xoy -

(vi) If f € LP(I,X)NLA(1, X) with p < g, then f € L"(I, X) for every r € [p, q|,
and

'~y

- 1 8 1-6
1£llzrz,x) S UANEo(r,x) 1 N Ea(s ) Where T T
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(vii) If |I] < oo and p < g, then
IFllzeaxy < 15 | fllpeg,xy forall f e LI(I,X).

(viii) If Y is a Banach space and if A € £(X,Y), then Af € LP(I,Y) for every
f e L1, X), and |AfllLr1,y) < NAlccxyv)lflize@,x)- In particular, if
X —Yandif f e LP(I,X), then f € LP(I,Y) (let A be the embedding).

(ix) If Y is a Banach space and if A € £L(X,Y), then

I/ Af(t)dtzA( I/ f(t)dt)

for every f € L*(I,X). In particular, if X — Y and if f € L}(I, X), then
the integral of f in the sense of X is also the integral of f in the sense of
Y (let A be the embedding).

(x) IfIisan interval of R, one defines the space L} (I, X) as the set of functions
f: T — X such that f|; € L?(J, X) for all open, bounded intervals J C I.

We end this section by two useful criteria.

\
THEOREM 1.2.4. Le\irs p < 00. Let (frn)nen be a bounded sequence in LP(I,X).
If there exists f : I — X such that for a.a. t € I, fo(t) — f(t) in X as n — oo,
then f € LP(I,X) and || fllze1,x) < iminfn_oo | fnllLr(1,x)-

THEOREM 1.2.5. Consider two Banach spaces X — Y and 1 < p,q < co. Let
(fa)n>o be a bounded sequence in LI(1,Y) and let f : I — Y be such that fn(t) —

f@)inY asn — oo, for a.a. t € I. If (fn)n>o is bounded in LP(I,X) and if X is
reflexive, then f € LP(I XY and || fllze(1,x) < iminfrpoo || frll e, x)-

1.3. Sobolev Spaces

For Sobolev spaces of real- (or complex-) valued functions, see, for example,
Adams [3], Bergh and Lofstrom [28], Brezis [43], Gilbarg and Trudinger [127],
J.-L. Lions [231], Lions and Magenes [232], and Triebel [338]. For vector-valued So-
bolev spaces, see the appendix of Brezis [42], Brezis and Cazenave [44], Cazenave
and Haraux [64, 65|, J.-L. Lions [231], and Lions and Magenes [232].

Consider an open subset £ of RYV. We recall that D(Q) (= D(Q, C)) is equipped
with the topology induced by the family of seminorms dg ,,, where K is a compact
subset of ? and m € N, defined by

dx m(p) = sup Z | D%p( for all ¢ € D(Q?).
z€K

The set of distributions on £, D’'(§2), is the dual space of D(Q). If T € D'(Q2) and
if o € NV is a multi-index, one defines the distribution
ot OEN

per—-2 ... 2 ’
oz? oz TeD(@)

by

(DT, @) = (-1)1*1(T, D¥) for all p € D(Q).
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A function f € L{ () defines a distribution Ty € D’(Q) by
Ty, ) (/f dw) for all ¢ € D(Q).

It is well known that if Ty = T}, then f = g a.e. A distribution 7" € D'(R) is said
to belong to LP(Q) if there exists f € LP(Q) such that T = Ty. In this case, f is
unique.

For m € N and 1 < p < oo, the Sobolev space W™P?(Q) is defined by

W™P(Q) = {u € LP(Q) : D%u € LP(Q) for |a| < m}.
WmP(Q) is a Banach space when equipped with the norm || [lwms = || [[wmr(q)
defined by
lullwrs = 1D%llLoe) -

0<|a|<m
If p < o0, one defines the closed subset Wi™?(Q) of W™P(Q) as the closure in
WmP(Q) of D(Q).
When p = 2, set W™P(Q) = H™(Q) and W"P(Q) = H*(Q) and equip H™(Q)
with the equivalent norm

1/2
”u“Hm(Q)ZHU“Hm:( > / |ID“u(x)|l2d;v) .

0<|al<m

The space H™(R2) (hence HJ*(2)) is then a Hilbert space with the scalar product

(u, V) gm = Z Re | D%u(z)D*v(z)dzx.

0<lalsm g

REMARK 1.3.1. The following properties are well known:

(i) If 1 < p < oo, then the spaces W™P(Q) and WJ*P(Q) are reflexive.

(ii) If (un)nen is a bounded sequence of WP(Q), 1 < p < oo, then (up|u)nen
is a relatively compact subset of L'(w) for every w € Q. In particular,
there exists a subsequence (un, )ren converging a.e. in w. Therefore, one
constructs easily a subsequence of (u,)nen converging a.e. in Q.

(iii) Assume m > 1 and 1 < p < o0. If (Up)nen is a bounded sequence of
W™P(Q), then there exist u € W™P(Q) and a subsequence (un, Jken such
that u,, — u a.e. as k — oo, and

lullwms < Lminf ||u, || .
n—00
If p < 00, then also up, ~ uin W™, If p < 00 and (un)nen © W™(Q),

then u € Wo ().

(iv) Let m > 0 and 1 < p < oo. Consider a bounded sequence (un)nen of
Wm™P(Q)) and assume that there exits u :  — R such that u, — u a.e. as
n — oo. It follows that u € W™?(Q2) and

|l wme < Hminf |juw||lwme .
T OO
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If p < oo, then also up, — uwin W™P. If p < 0o and (un)nen C Wy P (),
then u € WP (Q).

Let F : C — C be a Lipschitz continuous function such that F(0) = 0. We
may consider F as a function R? — R2, so that F'(u) = DF(u) (which
is defined for a.a. u € C) is a 2 x 2 real matrix, hence a linear operator
C — C. Let p € [1,00]. For every u € WHP(Q), F(u) € WP(Q) and
|6;F (u)| < L|0;u| a.e. for every 1 < i < N, where L is the Lipschitz constant
of F. In particular, |VF(u)||z» < L VullLr. If p < 0o and if u € Wy P(9),
then F(u) € Wg'P(Q). If we assume furthermore that F' is C! except at a
finite number of points, then VF(u) = DF(u)Vu a.e. for every u € W1HP(Q)
and the mapping u — F(u) is continous WP(Q) — WLP(Q) for every
p < 00. On these questions, see Marcus and Mizel [237, 238, 239] and the
appendix of Brezis and Cazenave {44].

In particular, if p € [1,00] and u € W1P(Q), then {u| € WP(Q) and
[V|ul| < |Vu| a.e. If p < 0o and u € WyP(Q), then |u] € WyP(€). More-
over, the mapping u — |u| is continuous W1?(Q) — WLP(Q) if p < .
Let F : C — C satisfy F(0) = 0, and assume that there exists a > 0 such
that |F(v) ~ F(u)] < L(jv|* +|u|*)|v—u| for all u,v € C. Let 1 < p,q,r < 00
be such that £ = £+ 1. Let u € LP(Q2) be such that Vu € LY($2). It follows
that |VF(u)| < 2L|u|*|Vu| a.e., thus VF(u) € L™(Q) and [[VF(u)|.r <
Lijul|:1IVu|| e. In particular, if p = a+ 2, then F(u) € WL?'(Q) for every
u € WHP(Q) (respectively, F(u) € Wol’p’ (Q) for every u € W, (), and
IVF)llLr < Llwllgs Vel e

If 1 < p,qg < oo and m, j are nonnegative integers, then D(R") is a dense
subset of W™P(RN) n W74(RN). In particular, Wy"P(RN) = WmP(RN).

We recall below some well-known inequalities and embedding results.

THEOREM 1.3.2. (Poincaré’s inequality) Assume || < co (or Q is bounded in
one direction) and let 1 < p < oo. There exists a constant C' such that

lulle < C||VullLr for every u € W()l’p(Q).

In particular, |Vu| pe(q) s an equivalent norm to ||ullwi.»(q) on Wol”’(Q).

THEOREM 1.3.3. (Sobolev’s embedding theorem) If Q has a Lipschitz continu-
ous boundary, then the following properties hold:

(i)
(i)
(ii)
(iv)

If1<p< N, then WHP(Q) — L(Q) for every q € [p, 'NN—%;]
Ifp= N >1, then WHP(Q) — LI(Q) for every q € [p, o).
Ifp=N =1, then WHP(Q) — LI(Q) for every q € [p, 00].
Ifp> N, then WHP(Q) «— L>().

If Q has a uniformly Lipschitz continuous boundary, then:

(v)

Ifp> N, then WHP(Q) «— C%*(Q0), where a = %.

THEOREM 1.3.4. (Rellich’s compactness theorem) If Q is bounded and has a
Lipschitz continuous boundary, then the following properties hold:
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(i) If 1 <p < N, then the embedding WP(Q) — LI(Q) is compact for every
g€ [p, 7E).
(i) Ifp > N, then the embedding W1P(2) — L>®(Q) is compact.
If we assume further that Q has a uniformly Lipschitz continuous boundary, then:

(i) If p > N, then the embedding W1P(Q) — C%MQ) is compact for every
Xe (0,25).

THEOREM 1.3.5. The conclusions of Theorems 1.3.3 and 1.3.4 remain valid with-
out any smoothness assumption on Q if one replaces WY2(Q) by Wy P(Q) (note
that Q0 still needs to be bounded for the compact embedding).

REMARK 1.3.6. If p= N > 1, then W'P(Q) — LI(Q) for every p < ¢ < oo, but
WLP(Q) o L>°(Q). However, Sobolev’s embedding theorem can be improved by
Trudinger’s inequality. In particular, if N = 2, then for every M < oo, there exist
¢ > 0 and K < oo such that

/(eulul2 ~1) <K

)
for every u € H}(2) with |lul|g: < M (see Adams [3]).

THEOREM 1.3.7. (Gagliardo-Nirenberg’s inequality) Let 1 < p,q,7 < o0 and
let 3, m be two integers, 0 < j < m. If

1 3 1 m (1-a)
p—N+a<T N>+ q

for some a € [j/m,1] (a <1 if r>1and m—j— & = 0), then there exists
C(N,m,j,a,q,7) such that

S 1Dl <€ S ID%uler) ulli® for cvery we DEY).

jo|=7 |a|=m

For 1 < p < co and m € N, one defines W~""?'(Q) as the (topological) dual of
W5*P(Q). One defines H™™(Q) = W~™2(Q), so that H~™(Q) = (H*(Q))*.

REMARK 1.3.8.  Here are some useful properties of the spaces W~ (Q).

(i) From the dense embedding D(€) — W™P(Q), we deduce that W= ()
is a space of distributions on Q. Furthermore, it follows from the dense
embedding Wg™P(Q) — LP(Q) that LP (Q) — W-m#(Q). If p > 1, then
the embedding is dense. In particular, D(Q) is dense in W~™2'(Q).

(ii) Assume that that 1 < ¢ < oo is such that W3P(Q) — LI(Q). It follows
that L9 () — W=m%'(Q). Furthermore, if p,q > 1, then the embedding is
dense.

(ili) Even though H{*(Q2) is a Hilbert space, one generally. does not identify
H=™(Q) with Hi*(€). One rather identifies L?(Q2) with its dual, so that
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H~™(£)) becomes a subspace of D'(Q) containing L%(Q). In particular, if
u € HP*(Q) and v € L*(), then

(u, V) g pr-m = Re/u(w)Tw)dx.

Q

It follows that ||ull3. < [lullag ull g-= for all u € HF* ().

(iv) Like any distribution, an element of H~™((2) can be localized. Indeed, if
T € H™™(£2) and €' is an open subset of {2, then one defines T'|q/ as follows.
Let ¢ € D(Q') and let § € D(Q) be equal to ¢ on O’ and to 0 on O\ . It
follows that

V(o) = (&, T)up),5-m(2)

defines a distribution ¥ € D'(Q'). Since |8z ) < lellmp @), it follows
that ¥ € H~™('), and one sets T|q- = U. It is clear that the operator

. H™™(Q) » H™™(€)
PQ/ .
T TIQ'

is linear and continuous, and is consistent with the usual restriction of func-
tions.

(v) For every multi-index a of length j, D is a bounded operator from H~™(Q)
to H=™3(Q) for every m € N. Since also D® is bounded from H*(Q) to
HF=3(Q) for every k > j, it follows easily that for every k € Z, D* is
bounded from H*(Q) to H*=9(Q).

(vi) In particular, A defines a linear, continuous operator H(Q) — H™'(Q).
Note that for u € H*(£2), the linear form Au € H~}(Q) on H} () is defined
by

(Au,v) = — Re/Vu(:c)Vv(x) dz for v € HY(R).

This is clear for v € D(Q) and follows by density for v € H ().

Consider now an open interval I C R and a Banach space X, equipped with
the norm | ||. We denote by D’(I, X) the space of linear, continuous mappings
D(I) — X, where X is equipped with the weak topology. It is called the space
of X-valued distributions on I. An element f € L] (I, X) defines a distribution
Ty € D'(I,X) by the formula

(Ty,9) /f t)dt for every ¢ € D(I).

One defines the nt? derivative T(™) (or s ) of a distribution 7" by the formula

(" /f

For 1 < p < oo, we denote by WhP(I, X) the set of (classes of) functions
f € LP(I, X) such that f’ € LP(I, X), in the sense of D’(I, X). For f € W'P(I, X),

we set

dt for every ¢ € D(I).

Ifllwrea,xy = Ifllea,xy + 1 e, x) -
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When there is no risk of confusion, we denote || |lw1.0,x) by || lwrs(ny or || flwie.

REMARK 1.3.9. The space W1P(I,X) enjoys many properties of the space
Whp(I) = WLP(I,R), with essentially the same proofs. Here are some of them.

(i) |l llwrr@,x) is 2 norm on the space W?(I,X). The space Wl?(I, X)
equipped with the norm || flw1r(7 x) is a Banach space.

(i) Let f € LP(I,X). If f € WhP(J, X) for all J € I and if ||f'||r(sx) < C
for some C independent of J, then f € W'?(I,X) and || f'||»(1,x) < C.

(iii) If Y is a Banach space and if A € £(X,Y), then for every f € WHP(I, X),
Af e WhP(1,Y), and

NAfllwrrayy <Al vyl llwiea,x) -

In particular, if X — Y and if f € WP(I,X), then f € WHP(1,Y) (let A
be the embedding).

If I is an interval of R, one defines the space I/Vlicp(f ,X) as the set of functions

f:I— X such that f|; € WHP(J, X) for all open, bounded intervals J C I.

THEOREM 1.3.10. If1 <p < oo and f € LP(I,X), then the following properties
are equivalent.

(i) fewbr(l,X).
(ii) There exists g € LP(I,X) such that f(t) = f(s)—i—fst g(o)do for a.a. s,t € I.

(iii) f 4s weakly absolutely continuous (hence weakly differentiable a.e.) and f' (in
the sense of the a.e. weak derivative) is in LP(I, X).

In addition, if f satisfies these properties, then the derivatives of f in the senses
of D'(I,X) and almost everywhere coincide and one may let g = f' in (ii).

REMARK 1.3.11. It follows easily from the above result that
W, X) — Cpu(T, X)
and that if p > 1, then W1P(I, X) «— C%%(T, X) with o = E;-l,

The following result is also quite useful.

PROPOSITION 1.3.12. Assume X is reflexive and let f € LP(I,X). It follows that
f e WhP(I, X) iff there exist ¢ € LP(I) and a set N of measure O such that

/st p(o)do

In this case, || f'llLr1,x) < ll@llzen-

1f@) — )|l < forallt,se I\ N.

REMARK 1.3.13.  Applying Proposition 1.3.12, one can show the following results:

(i) Assume that X is reflexive and let f : I — X be Lipschitz continuous and
bounded. It follows that f € W°(I, X) and || f'|| L= (1,x) < L, where L is
the Lipschitz constant of f.
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(i) Assume that X is reflexive and that 1 < p < 0o. Let (fr)nen be a bounded
sequence of WLHP(I,X) and let f : I — X be such that f,(t) — f(t) in X
asn — oo for a.a. t € I. It follows that f € WYP(I, X) and ||flwrr(z,x) <
liminf, ”f'n.HWl’P(I,X)-

(iii) Assume that X is reflexive, 1 < p < oo, and let f € LP(I,X). If 3K such
that for all J €7 and all |h| <dist(J,dI), ||f(- + k) — f()llzr,x) < KA,
then f € WHP(I,X) and ||f'l|z»(1,x) < K.

PROPOSITION 1.3.14. Let I be a bounded interval of R, let m be a nonnegative
integer, let Q be an open subset of RV, and let (fn)nen be a bounded sequence of
L*(I, Hg (Q)) N Whee (1, H~™(9)).
(i) There exist f € L™(I, H}(Q)) ﬂ_Wl’w(I,H‘m(Q)) and some subsequence
(fa. )ken such that for every t € I, fn, (t) = f(t) in HE(Q) as k — oo.
(i) If || frx ®llzz — 1 f@®)|lL2 as k — oo, uniformly on I, then also fn, — f in
C(I,L*(Q)) as k — 0.
(it) If (fa)nen C C(T, H5 () and || fu, (t) | i — | f(@)llm1 as k — oo, uniformly
on I, then also f € C(I,H}(Q)) and fn, — f in C(I, H}(Q)) as k — oco.

PROOF. Part (i) follows from Proposition 1.1.2(i) applied with X = H}(2) and
Y = H™™(2) and from Remark 1.3.13(ii) (note that (fn)nen is uniformly equicon-
tinuous in Y by Remark 1.3.11). Part (ii) follows from Proposition 1.1.2(ii) applied
with X = H}(Q), Y = H™™(Q), and B = L*(). Part (iii) follows from Proposi-
tion 1.1.2(ii) applied with X = B = H}(Q) and Y = H-™(Q). O

One can define higher-order vector-valued Sobolev spaces as follows: For meN,
set

J
W™k, X) = {fEL”(I,X) : dggf € LP(1,X) for all j € {1,...,m}}.

It is clear that

df

Wm™P(I,X) = {f e WhP(I,X): e WHP(I,X) for all j € {1,. — 1}} :

so that W™U(I,X) < cg;l(T,X) and W™P(I, X) — Cm™ LT, X) with
a= P;—l if p>1.

1.4. Sobolev and Besov Spaces on RY

For more detail, see, for example, Adams [3], Bergh and Lofstrém [28], the ap-
pendix to Ginibre and Velo {140}, Lemarié-Rieusset [225], Shatah and Struwe [312],

and Triebel [337, 338].
It is convenient to consider a function 7 € C®(R”") such that

L 1 g <
(14.1) 10=10 s

and to define the sequence (¢;)jez C S(RV) by

(1.4.2) ¥;(8) :n<§;) —17<2f_1>
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in order to define the Littlewood-Paley decomposition. We see that
supp¢; C {2771 < [¢] < 2711}
and that N
%0 1 ifE£0
> o) = .
oo 0 if&E=0,
where the above sum contains at most two nonzero terms.
Given s € R, one defines
HRY) ={ueS'®RY): (1+]¢*)30 e L2RY)}
and .
lullzre = (1 + 1¢%) @Iz -
It is clear that H*(R") is a Hilbert space and it follows easily from Plancherel’s

formula that the above definitions are consistent with those of Section 1.3. More
generally, one defines

HP(RY) = {ue S'(RY): F(1 + |¢]*) 1] € LP(RV)}
and ]
lullzse = 1F7HQ + €17 2] 2o

for 1 < p < oo and s € R, so that H*P(R") is a Banach space (reflexive if
1<p<oo)

REMARK 1.4.1.  Here are some fundamental properties of the space H*P(R™).
(i) H*?(RN) = H*(R") and H*P(RV) = L?(R") (same norms).
(ii) H*vP(RY) — H*2P(RN) if 5, > so.
(iii) If p < co, then [HSP(RN)][* = H=5# (RN) (see corollary 6.2.8 in [28]).
(iv)

It follows from Mihlin’s multiplier theorem (see theorem 6.1.6 in [28]) that
if m is a nonnegative integer and 1 < p < oo, then W™P(RN) = H™P(RN)
with equivalent norms. By (iii), we also have W™P(RY) = H™P(RY) when
m is a negative integer.

(v) Sobolev’s embedding: HSP(RN) — H*uvP1(RN) if s — N/p = s; — N/p;
and 1 <p < p; <00, 51,82 € R (see theorem 6.5.1 in [28]). In particular, if
1<p<ooand0<s< N/p, then

H*P(RN) < L7 (RV).
Moreover, HSP(RY) — L®(RM) if p > 1 and s > N/p. See remark 2,
p. 206 in [337].
We now define the Besov space B;,Q(RN Yfor 1 <p,g<ocandsecR by
B;,Q(RN) ={ueS'R"): lullgs, < oo},
with ‘
oo 1/q

(Z 287|| 1 -17)||LP(RN))Q> ifg < oo
lullss,, = IF~ (@)l Loy + s=1

sup 2% || F =1 (3 0) || Lo mvy if g =00
i>1
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where the functions 7 and ; satisfy (1.4.1)—(1.4.2). It is understood that if f €
S’(RM) and 1 < p < oo, then ||f||1» is the LP norm of f if f € LP(RY) and is 400
otherwise.

REMARK 1.4.2. Here are some fundamental properties of the space By (RN )

(i) By, (RN ) is independent of the choice of the function 7 satisfying (1.4.1)

and two different choices of 7 yield two equivalent norms.
(ii) Bg,(RY) is a Banach space. Moreover, B; ,(RY) is isomorphic to a closed

P
subspace of £9(N, LP(R")), so that Bj (RM) is reflexive if 1 < p,q < o0.

(i) B (RY) < B(RY) if s1 > sp; and B, (RY) — Bj, (RY) if
1<q1 <g2 <00

(iv) If p,g < oo, then [BS ,(RM)]* = B (RY) (see Corollary 6.2.8 in [28]).

(v) Sobolev’s embedding (see theorem 6.5.1 in [28]): B (RN) «— B3 (RM)

P1,q1
ifs—N/p=s1—N/m andlgpgplgoo,lgng1<oo s1,52 € R.

REMARK 1.4.3. Here are some relations between the spaces H®P(RY) and
B3 (RM) (see theorem 6.4.5 in [28]).

(i) If1 < p <2, then BS ,(RY) — H*P(RY) — B} ,(RV).
(i) If 2 < p < oo, then BS,(RV) — H*P(RN) < B: (RV).
(iii) In particular, BS o(RY) = H*?(RY) = H*(RN).

We now introduce the homogeneous Sobolev spaces H*(RV) and H*?(R") and
the homogeneous Besov space B;EQ(RN ). In fact, they are rather delicate to define,
since they can be considered either as seminormed spaces or as quotient spaces. It
will be sufficient for our purpose to define only the (semi-) norms.

Let n and ¢; satisfy (1.4.1)-(1.4.2) and let 1 < p < co and s € R. Given
u € S'(RY), we set

Zf (I€]*%;3)

j==00

llull oo =

Lr(RN)

if the series S11°° __ F~1(|¢]°¢;1) is convergent in S'(RY) to a function of LP(RY),

j=—00
and [[u|| g..» = 0o otherwise. We define
lullge = llullge.e -

We note that |£]*;@ € S'(RY) so that the definition makes sense. Moreover, if 4
vanishes in a neighborhood of the origin, then [£]°7 € S’(RY), and so ||ull gep =
| F=1(|¢)°@)||z». Finally, we note that [lul|g., = 0 if and only if supp@ = {0}; i.e.,
u is a polynomial.

Next, given s € R and 1 < p,q < oo, we define for u € S'(RM),

+o00 ] 1/q
( ) (283nf-lemnmw))Q) if g < o0

lulg,, = { Si=e
sup 29|77 (457) e if g = o0
J

We again note that HuHB; .= 0 if and only if supp@ = {0}; i.e., © is a polynomial.
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REMARK 1.4.4. Here are some fundamental properties of the semi-norms of
H*P(RM) and B;,Q(RN).

(1) The semi-norms | - ||;7.., and || - | . are independent of the choice of the
P.q

function 7 satisfying (1.4.1) in the sense that two different choices of 71 yield
two equivalent semi-norms.

(ii) If s > 0, then “U“B;,q ~ |lull» + [|ull g (see theorem 6.3.2 in [28]).
(ili) If0 < s <1, then

o0 dt\ /e
(e s bt =)= st &) it < oo

lullg, =~ i<t
B;, s ,
supt™® sup flu(- — y) — u(")|lzr®n) if g = oo.
t>0 fyl<t

There are also similar (though more complicated) formulas for s > 1 (see
theorem 6.3.1 in [28]).

1.5. Elliptic Equations

Consult, for example, Agmon, Douglis, and Nirenberg [4], Brezis [43], Brezis
and Cazenave [44], Gilbarg and Trudinger [127], J.-L. Lions [231], Lions and Ma-
genes [232], and Nirenberg [272].

We recall below some of the results that we will use in the following sections.
In all this section we consider an open subset  C RY. We equip H ~1(Q) with the
dual norm, that is

lullz-» = sup {{u,v),v € Hy(Q), lvll gz = 1} .

We recall that (by Lax-Milgram’s lemma) for every f € H~1(Q), there exists
a unique element u € H}(Q) such that

—Au+u=f in H71(Q).

In addition,
WA e-2 = Nlullmg -

It follows in particular that A — I defines an isometry from Hg(2) onto H ().
By the same method, one shows also that for every A>0 and every f € H~1(Q),
there exists a unique element u € H(Q) such that

—Au+du=f in HY(Q).

Il = llull g3 () defines an equivalent norm on H~1(Q) and Aljullg-1 < ||fllg-1. If
f € L*(Q), then Au € L*(), the equation makes sense in L2({2), and Miullzz@) <
1fllz2@)-

One shows also that if Q has a C* boundary and if f € L?(Q), then u € H2(Q)
and |lu)| gz < C|{f||z2- In particular, —A+7 is an isomorphism from H2(Q)NHE(Q)
onto L?(f2). Concerning LP estimates, we have the following result.

PROPOSITION 1.5.1.  Let A>0, u€ H3(Q), and f € H~1(Q) satisfy —Au+Au = f.
If f € LP(Q) for some p € [1,00), then u € LP(Q) and A|ulr» < || flLr-
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PROOF. Let ¢ : (0,00) — [0,00) be smooth. Assume further that ¢(s) and s¢’(s)
are bounded on (0,00) and that ¢,¢’ > 0. It follows that ¢(|u|)u € H}(Q) for all
H(Q) (see Remark 1.3.1 (v)). Moreover, one easily verifies the following identity.

Re (Va - V(e(lul))) = o((ul)[Vul? + “’f']‘“lR(W)P

In particular, (—Au, ¢(|ul)u)g-1, 52 = 0. Taking the H~! — H! product of the
equation —Au + Au = f with ¢(|u|)u, we deduce that

A / 2 (Jul) < / |l ().
9] Q

If (s) < sP~2 for some p € [1,00), then |ulp(|u]) < ([ul2¢([u|))?%; and so, by
Hélder’s inequality,

(15.1) w [ luPe(ul) < / 117

Q

For p < 2 and £ > 0, let ¢(s) =(e+s)7 By(151)

» / ful2(e + [uf?) / .

Letting ¢ | 0 and applying Fatou’s lemma, we see that u € L? and Ajul|zr < || flizs-
For2<p<ooande>0,let

—2

s2 2
4 =
#() (1 + 682)
It follows from (1.5.1) that

Jul?
MW —_— .
!(1+E|u|2)2;2 Sh/l.ﬂp

Letting ¢ | 0 and applying Fatou’s lemma, we obtain uw€ L? and Aljul|L» <[ f|jzr. U

Next, we recall some convergence results. Given € > 0, we define the operator

Jo on H=1(Q) by
Jou= (I —eA)™ L.

In other words, for every f € H™Y(Q), ue = J.f € H}(S) is the unique solution
of u. — eAu. = f. We deduce from what precedes that ||J. fllx < || fllx whenever
X = H}(Q), L*(Q), H71(), or X = LP(Q) for 1 < p < co. In particular, J. can be
extended by continuity to an operator of £{X) with ||J||z(x) < 1. Furthermore,
we have the following result.

PROPOSITION 1.5.2.  If X is either of the spaces H}(Q), L*(Q), H~*(Q), or LP(Q)
for 1 < p < oo, then:
() (Jofog)x,x+ = (f,Jeg)x,x+ forall f € X, g€ X™.
(i) Jof — fin X ase |0 for every f € X.
(iii) If f. s bounded in X ase | 0, then J.fe —fc =~ 01in X ase | 0.
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ProoF. (i) Let f,g€ D(Q) and let u = J.f, v = J.g. It follows that

<J5fag>X,X* (J f, ) = (U, _€AU+1)>L2
( eAu + uaU>L2 = <f7 J59>L2 = <fa Jsg>X,X"-

(i) follows by density of D(Q?) in X.
(i) By density, we may assume f € D(Q). Let u, = J.f. One easily verifies
that
—f=J(f - -ed)f) =elAf,
and so
llue = flla-1 < ellAfllg-r — 0.
{0

Hence (ii) is proven for X = H~'(Q). Furthermore, u, is bounded in H}(Q2), and
it follows from Remark 1.3.8 (iii) that

1
e = 713 < ljue = fllrs e = fllas < Ce* — o0,

Hence (ii) is proven for X = L?(Q). Finally, one easily verifies that (I — A)u, =
Je(I-A)f. Therefore, from the result for X = H~1(£2), we deduce that (1—A)u, —
(I—A)f in H~1(Q), which implies that ue — u in H} (). Hence (ii) is established
for X = H}(). Finally, let 1 < ¢ < p < r < oo. It follows from Hélder’s inequality

that

a(r=p)
lue = flize < llue — FUFT™ llue - fll’“' =

Note that [ue — fllzr < [Juellzr + || fllrr <
obtain

. Ifp>2 welet g =2 and we

2(r=p})

e = Flee < e = £ (21 £1) 363 —o.

If p < 2, we let r = 2 and we obtain a similar conclusion. This completes the proof
of (ii)

(iii) Let ue = J.f.. We know that u, is bounded in X; and so it suffices to
show that u. — f. — 0 in D'(Q2). Given ¢ € D(Q),

(ue — fe,0)pr,p = (e, AQ) D D -E‘Ig 0.

Hence the result follows. O

Suppose now © = RN. Applying the Fourier transform, we see that u = J. f,
being the solution of u —eAu = f, is given by (1+4en?|€|?)4 = f. In particular, J,
can be extended to an operator '(RY) — S'(RV). We have the following result.

PROPOSITION 1.5.3. Suppose @ = RY and let J. = (I —eA)™! for e > 0.
Gwen any s € R, it follows that J. is a contraction of H*(RY) and that J. €
L(H*(RN), HSF2(RN)) with | Jelloare, me+ey < max{l, (4emw?)~1}.

Proor. Let f € S"(RV)and u = J. f, so that & = (1 —|—467r2|§| )~1f. We see that

[al < |f] and (1 + [E%)[@] < (1+ €)1 + den?[€?)7| ] < max{1, (4en?)~1}f].
The result follows from the definition of H*(R") (see Section 1.4). O
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1.6. Semigroups of Linear Operators

Consult, for example, Brezis [43], Brezis and Cazenave [44], Cazenave and
Haraux [64, 65], Haraux {158}, and Pazy [294].

Let X be a complex Hilbert space with norm ||+ || x and sesquilinear form (-, -)x.
We consider X as a real Hilbert space with the scalar product (z,y)x = Re(z,y)x.

Let A: D(A) C X — X be a C-linear operator. Assume that A is self-adjoint
(so that D(A) is a dense subset of X) and that A < 0 (i.e., (Az,z) < 0 for all
z € D(A)). A generates a self-adjoint semigroup of contractions (S(t));>o on X.
D(A) is a Hilbert space when equipped with the scalar product

(z,9)pay = (Az, Ay)x + (z,9)x

corresponding to the norm Hu||%(A) = || Aull% + ||lu||% and D(A) — X — (D(A))*,
all the embeddings being dense. We denote by X 4 the completion of D(A) for the
norm ||z]|%, = lzll% — (Az,z)x. X4 is also a Hilbert space with the scalar product
defined by (z,y)a = (z,¥)x — (Az,y)x for z,y € D(A). It follows that

D(A) = Xa = X = X} = (D(4))",

all the embeddings being dense. Furthermore, it is easily shown that A can be
extended to a self-adjoint operator A on (D(A))* with domain X. We have
ZiD(A) = A, Z|D(A) S ﬁ(D(A),X), AIXA S ﬁ(XA,Xz), and Z|X € [,(X, (D(A))*)

Since A is self-adjoint, A : D(A) C X — X defined by (iA)z = iAx for
x € D(A) is also C-linear and is skew-adjoint. In particular, 14 generates a group
of isometries (T(t))ier on X. We deduce easily from the skew-adjointness of iA
that

T(t)* =T (~t) foreveryteR.

We know that for every = € D(A), u(t) = F(t)z is the unique solution of the
problem
u € C(R, D(A)) N C}R, X),
id—u-l—Au:O for all t € R,
dt
u(0) = z.

Moreover,
lu(t + h) — u(t)|| < |h|||Az|| for all t,z € R.

Next, it follows easily from the preceding observations that (J(t)):cr can be ex-

tended to a group of isometries (T (t)):er on (D(A))*, which is the group generated
by the skew-adjoint operator iA. T(t) coincides with J(t) on X, and (T(t))ier
restricted to any of the spaces X%, X, X4, D(A) is a group of isometries. For
convenience, we use the same notation for J(t) and T(t). We know that for every

z € X, u(t) = T(t)z is the unique solution of the problem
u e C(R, X) N C(R, (D(4))*),
z% +Au=0 foralltcR,

dt
u(0) = z.
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In addition, the following regularity properties hold:

Ifz € Xa, thenue C(R,X4)NCUR,X%);
if z € D(A), thenue C(R,D(A)NCHR,X).

Concerning the nonhomogeneous problem, we recall that for every z € X and
every f € C([0,T], X) (where T € R), there exists a unique solution of the problem

u € C([0,T], X) nC1([0,T], (D(A))*),

(1.6.1) z(;—? +Au+f=0 foralltel0,T],
u(0) = z.

Indeed, u € C([0,T], X) is a solution of the above problem if and only if u satisfies
t
(1.6.2) u(t) = T(H)z + i / T(t - 5)f(s)ds for all ¢ € [0,T].
0

Formula (1.6.2) is known as Duhamel’s formula. It is well known that if, in addition,
f e wb((0,T),X) or f € L*((0,T), D(A)), then

u € C([0,T], D(A)) N CY([0,T), X) .

REMARK 1.6.1. For every z € (D(A))* and f € LY((0,T),(D(A))*), (1.6.2)
defines a function u € C([0,T], (D(A))*). A natural question to ask is under what
additional conditions u satisfies an equation of the type (1.6.1). Here are some
answers.

(i) If, in addition, z € X and u € WH((0,T), (D(A))*)) or u € L*((0,T), X),
then u satisfies (1.6.2) if and only if u satisfies

u € L'((0,T), X) nWh((0,T), (D(A))*),
du
dt
u(0) = 2.

H

+Au+f=0 ae. on0,T],

(i) f z € X and f € C([0,T],(D(A))*), and if u € CY([0,T), (D(A))*)) or
u € C([0,T], X), then u satisfies (1.6.2) if and only if u satisfies (1.6.1).

(iif) Similarly, if = € X4, f € L*([0,T], X};) and if w € WH1((0,T), X%)) or if
u € LY((0,T), X 4), then u satisfies (1.6.2) if and only if u satisfies

u € LY((0,T), X4) nWL1((0,T), X%),
du
dt
u(0) = z.

i—+Au+ f=0 ae. on[0,T],
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(iv) Let = € X4 and f € C([0,T],X}). If u € C'([0,7],X%)) or if
u € C([0,T], X 4), then u satisfies (1.6.2) if and only if u satisfies
u € C([0,T], Xa)N Cl([O,T],XZ),
zc(ii—z: +Au-+f=0 foralltel0,T),
u(0) = z.
(v) Also, if z € D(A) and f € L*([0,T],X), and if w € WH((0,T), X)) or if
u € LY(0,T), D(A)), then u satisfies (1.6.2) if and only if u satisfies

u € L((0,T), D(A)) nWh((0,T), X),
z(ji—l; +Au+ f=0 ae onl0,7T],
u(0) = z.

(vi) Suppose z € D(A) and f € C([0,7],X). If v € CY[0,T],X)) or
u € C([0,T], D(A)), then u satisfies (1.6.2) if and only if u satisfies
u € C([0,T], D(4)) N C*([0,T], X),
du
dt
u(0) = x.

%

+Au+f=0 foralltel0,T),

1.7. Some Compactness Tools

It is well known that the embedding H!(RY) — L2?(R") is not compact. In
order to pass to the limit in certain problems, we will use some specific tools that
take into account the lack of compactness. The first one is due to W. Strauss [323]
(see also Berestycki and Lions [25]).

PROPOSITION 1.7.1.  Let (un)n>0 C HY(RY) be a bounded sequence of spherically
symmetric functions. If N > 2 or if up(z) s a nonincreasing function of |z| for
every n > 0, then there exist a subsequence (Un, k>0 and u € HY(RY) such that
Un, — u as k — oo in LP(RYN) for every 2 < p < 2N/(N —2) 2 < p < o0 if
N =1).

Proposition 1.7.1 is an immediate consequence of the following two lemmas.

LEMMA 1.7.2.  Let (un)n>0 be a bounded sequence in HX(RY). Suppose un(z) — 0
as |z| — oo, uniformly in n > 0. It follows that there exist a subsequence (Un, )k>0
and v € HYRY) such that u,, — u as k — oo in LP(RY) for every 2 < p <
2 (2<p<ooif N=1).

PrOOF. It follows from Remark 1.3.1(iii) that there exist u € H'(R") and a
subsequence (un, )k>0 such that u,, — u as n — oo in H}(RY). Fix € > 0 and let
R > 0 to be chosen later. Given p as in the statement, we have

ltn, — vllze@ny = lltn, — ullzr(Br) + llun. — ullLe(zi>R))
p—~2

< lun, — ““LP(BR) + lvn, — u”Lg‘:(ﬂz]ZR})”unk - UHL2(IRN)-
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Let 6 > 0. We first fix R large enough so that (by uniform convergence)

-2
lun, — u“LC’C({Ixt>R})“unk —uflz2mnyy <

l\DI(T)

Next, since (un,|B,)k>0 is bounded in H*(Bg), it follows from Rellich’s compact-
ness theorem that un,|p, — ulp, in LP(Bg). Therefore for k large enough we
have

”unk - u”LP(BR) 2

and so ||un, — u|lr@n~) < €. This proves the result. O

LEMMA 1.7.3. Ifu € HYRY) is a radially symmetric function, then

N=i 3 3
(1.7.1) sup |z|77 Ju(z)| < CllullZ: | Vull 7. -
zeRN

If, in addition, u(z) is a nonincreasing function of |z|, then

(1.7.2) sup, ol % ju(a)] < Cllulls .

PROOF. Suppose first u € C°(RY). We have

N lu(r)? = / ds sN1u(s)?)ds < 2/Oo sV lu(s)u'(s)ds,

and (1.7.1) follows from the Cauchy-Schwarz inequality. If u(x) is a nonincreasing
function of |z|, then

fullfz > / lu(z)?|dz > [{|z} < R}|[u(r)[?,
{l=l<R}

proving (1.7.2). The general case then follows by a density argument. ]

The other type of compactness argument we will use does not require radial
symmetry. It is due to P.-L. Lions [235, 236] and is known as the concentration-
compactness method. That method is designed to pass to the limit in variational
problems with lack of compactness. It can be formulated in many ways, but we
describe only the form which we will use (Proposition 1.7.6 below). We begin with
a first lemma concerning the concentration function.

LEMMA 1.7.4. Let u € L*RY) with |lullz = a > 0 and let the concentration
function p(u,-) be defined by

(1.7.3) plu,t) = sup / lu(z)|?dz  fort>0.

€R
Y le-vi<y

(i) p(u,t) is a nondecreasing function of t. p(u,0) = 0, 0 < p(u,t) < a for
t >0, and lim;_, o p(u,t) = a.
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(ii) There exists y(u,t) € RN such that

plut) = / fu(@)|? de.

{lz—y(w,t)i<t}

(iii) If u € L™(RN) for some r > 2, then

lp(u,t) — p(u,s)| < Cllulf?. 1tV - SNILI_Z for all s,t > 0 with C = C(N,r).

PROOF. Property (i) is immediate. Next, given ¢ > 0, there is a sequence
(¥n)nen C RY such that

plu)(t) = nlugo / [u(z)|?>dz > 0.
{]I_yn|<t}

We claim that the sequence (yn)n>o is bounded. Otherwise, there exists a sub-
sequence (yn,);>0 such that {|z — yn,| < ¢} N{lx —yn,| < t} = @ for j # 4,

and so
Jurzy [ @)= too,
RN 320 (o —yn, 1<t}

which is absurd. Therefore, (yn)n>0 has a convergent subsequence, and its limit
y(u,t) satisfies (ii). Finally, consider 0 < s <t < co. We have

) —ptwsl= [ - [l
{Je—y(u,t)i<t} {lz—y(u,s)|<s}
= Juf? + Juf? ~ Jul?
{s<le—y(u,t)I<t} {Jle—y(u,t)|<s} {lz—y(u,s){<s}
< Juf?,
{s<]z—y(u,t)| <t}
by (ii) and the definition of p(u, s). Therefore, by Holder’s inequality,
Ip(u.1) = p(u, )] < flulf s <z -y, )] <1},
and (iii) follows. O

We next study the limit of a sequence of concentration functions.

LEMMA 1.7.5. Let (un)n>o C HY(RN) be such that
7.4) lunllze =a >0,
7.5) sup [[Vupl|r2 < oo,

n>0

and let p(un,t) be defined by (1.7.3). Set

(1.7.6) U= tlim lim inf p(uy, t) .

00 N—00
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Then there erist a subsequence (un,)k>0, a nondecreasing function v(t), and a
sequence ty, — oo with the following properties:

() p(uni,+) — () € [0,a] as k — oo uniformly on bounded sets of [0, 0c).
(i) p=lme oo ¥(t) = limg—oo p(tn,, k) = limy_,c0 P(Uny, t/2).

PRrRoOOF. We deduce from (1.7.6) that there exist t;, — oo such that
(1.7.7) 0= klim p(tn,,tr).

Note that p(un,t) < flun[?. < a. Since HY(RM) — L"(RM) for some r > 2,
it follows from (1.7.4), (1.7.5), and property (iii) of Lemma 1.7.4 that p(up,-) is
uniformly Hélder continuous. Therefore, (i) follows from Ascoli’s theorem (after
renaming the sequence n;). Note that we do not loose property (1.7.7) by passing
to a subsequence. Since p(uy,-) is nondecreasing, it follows from (1.7.7) that

t
(1.7.8) 1imsupp<un,c7 5’“) < limsup p(un,,tx) = i.

k—oo k—o0

Next, for every t > 0,

liminf p(up,,t) > liminf p(u,,t),
k—oo n-—0C

so that, by letting ¢ — oo and using (1.7.6) and (i),

(1.7.9) lm ~(t) > u.

t—oc

Finally, given t > 0, we have t;,/2 >t for k large, so that
%) 2 pluny.t) — )
Py Uny 2 = P\Un,, k_’oo’)’ .
Letting t — 0o, we obtain
1.7.10 lim inf LANN
(1.7.10) iminf p{ un,, 5 | 2 p.
Part (ii) follows from (1.7.8), (1.7.9), and (1.7.10). O

PROPOSITION 1.7.6. Let (up)nen C HY(RYN) satisfy (1.7.4)~(1.7.5), let p(un,t)
be defined by (1.7.3), and let p be defined by (1.7.6). There exists a subsequence
(un, Jk>0 that satisfies the following properties.

(i) If u = a, then there exists a sequence (yx)k>0 C RN and u € HY(RN) such
that upn, (- —yx) = u ask — 00 in LP(RY) forall2 <p< #% (2<p< o0
if N=1).

(if) If p =0, then |lup,lir — 0 ask — oo forall2 <p < 7\,2% (2<p<Looif
N=1).
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(i) There exist (vk)k>0, (Wk)kz0 C H'(RY) such that

(1.7.11) supp vxy Nsuppwi = &,
(1.7.12) vkl + [wi| < |un, |,

(1.7.13) vkl + llwnlig: < Cllung |l
(1.7.14) ok 22 oo M k17 e 2T H

(1.7.15) lilsrgg.}f{/Ivunk’ —/lekIQ /|Vwk|2}
(17.16) [ 1wl = 1o = [ | =,

_)0
forall2§p<—13—]_%(2§p<ooifN=1).

For the proof, we will use the following Sobolev-type inequality.

LEMMA 1.7.7. There exists a constant K such that

(1.7.17) | *7 < Kp(u, t)%( |Vul? + 2 Iu|2>
/ Jrtee ]

for allu € HY(RYN) and all t > 0, where p is defined by (1.7.3).

PROOF. Let (Qj)j>0 be a sequence of open, unit cubes of RN such that
Q;NQk =@ if j #k and ;5 Q; = RY. It follows that

/ ez = 3 [l and i - S Jvu +1uf?)

7=0¢; =0,
We now proceed in two steps.

STEP 1. There exists a constant C independent of j such that

(1.7.18) CZW (C}J/|u|2> (llv |2+|u|2> for all v € HY(Q;).

Indeed, suppose first N > 3. It follows from Sobolev’s embedding that

HUHL%(Q“ < Clullaqy)

and (1.7.18) follows by using Hélder’s inequality. Suppose now N = 2. It follows
from Sobolev’s embedding that

lullzz(@,) < CUIVelLi@y + llullzie)) -

Changing u to |u|? and using the estimate |V |u|?| < 2|u||Vu| together with Holder’s
inequality, we obtain (1.7.18). Suppose now N = 1. Sobolev’s embedding yields

lullee @) < CUIVullLig;y +llullzig,)) -
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Therefore, changing u to |u|?, we deduce as above that

Il (@) < Cllullzz,) (IVullz2,) + lullzzo;)) »

and (1.7.18) follows from Hoélder’s inequality

”ull?:G(Qj) < Hulliz(oj)“U”iw(Qj)-

Finally, the fact that in the above calculations the constant is independent of j
follows from translation invariance.

STEP 2. Proof of (1.7.17). Summing on j the inequality (1.7.18), we obtain

2
N
[ < c(sup / lulz) [19ur +
JEN
RN Q; RN

and (1.7.17) for t = 1 follows easily. The general case of (1.7.17) is obtained by
changing u(z) to u(tz). O

PROOF OF PROPOSITION 1.7.6.  We use the functions v(-) and y(-,-) and the
sequences (un, )k>0 and (tx)r>o constructed in Lemmas 1.7.4 and 1.7.5. Fix T
sufficiently large so that v(T") > a/2 and let y = y(un,,T). By possibly extracting
a subsequence, we may assume that there exists v € H*(R") so that

(1.7.19) Un, (- —yk) = u in HYRM) as k — 0.
‘We now proceed in three steps.

STEP 1. Proof of (i). Suppose p = a. We claim that if u is given by (1.7.19),
then

(1.7.20) lull?2 = a,

from which (i) follows. We now prove the claim (1.7.20). Note that, since the
embedding H1(Bg) — L?(Bg) is compact,

(1.7.21) / lu(z)|? dz = lim tn, (2)|? dz  for every R > 0.
{lei<R) T emwi<h)

On the other hand, it follows from what precedes that p(un,,T) > a/2 for k large.
Fix € < a/2 and let 7 be large enough so that p(un,,7) > a — ¢ for k large. Since

a

2—i—a—.»s>a for k large,

Jutn, |2 + fny |* >
{lz—yx|<T} {lz—y(un,,7)I<7}
we see that {|z—yk| < T}N{|z —y(un,,7)| < 7} # @. In particular, if R = T + 27,
then {|z — y(un,,7)| < 7} C {|lz — yx| < R}, and so
i, |2 > |tn, |> > a—e for k large.

{lz—uyx|<R} {z=y(un, 7)<}
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Applying (1.7.21), we deduce that
lullZ> = lu(z)|*dz 2 a~e.
{lzl<R}

(1.7.20) follows by letting € | 0.

STEP 2. Proof of (ii). Suppose u = 0. It follows from Lemma 1.7.5(ii) that
ptin,,1) — 0 as k — oo, and (ii) follows from (1.7.17).

STEP 3. Proof of (iii). We fix 8, € C°°([0, c0)) such that 0 < 6,9 <1 and

1
o)=1 for0<t<z, 6()=0 fortzz-,
3
p(t)=0 for0<t<z, (t)=1 fort=1,
and we set .
Ukzek’unk, Wk = Prln, ,
where

ek(x) — 0<|1L' _y(ut:Mtk/Q”) , Sok(l') _ QO(I:C —y(ut,:,tk/2)|> ‘

Properties (1.7.11)—(1.7.13) are then immediate. Next,
ti
P(Unka“2‘> = / |unk|2 S /|'Uk[2
{Iw_y(unkvtk/Q)lstk/z} RN
< |unk|2
{lz_y(unk’t‘k/z)lstk}
< [ <t
{lz=y(un, ,tx)|<ti}
so that
(1.7.22) lvkl2: — p
k—oo

by Lemma 1.7.4(ii). Set now zx = un, — vk — Wk, so that in particular |2x| < |un, |-
We have

Izklz < lunk |2
RN {tk/zslz"y(unk’tk/z)lstk}
= |, |2 = [t |
{lz—y(un, tx/2)|<ti} {lz—y(un, te/2) <tk /2}
< |unk|2 - Iunk|2
{lz—y(un, te)|<tr} {lz—y(un, ,tx/2)|<tx/2}

|12
= p(unk7tk) - p<unka E) 3
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so that
(1.7.23) lzkll22 ~— 0
k—o0

by Lemma 1.7.4(ii). We deduce from (1.7.11), (1.7.22), and (1.7.23) that

lwellze — a—u,

k—o00
which proves (1.7.14). Next, one easily verifies that
[ty P = [0kl — [wifP| < Clun, [P~ |24,

and (1.7.15) follows. (Note that z; is bounded in H! and converges to 0 in L2,
hence in L?.) Finally, it follows from an easy calculation that

[Vtn, |2 = [Vug|? — [Vawg)?
= |Vuy, [*(1 - 6% — p?)
— Jen [P(IVO&[® + [Vior|?) — Re(Try Vun, ) - V(62 + ¢3)

C C

2 —z'g|unk|2 - E|Unk||vunk| ’

from which (1.7.16) follows. O



CHAPTER 2

The Linear Schrodinger Equation

This chapter is devoted to the study of some fundamental properties of the
(linear) Schrodinger equation. We study in particular the dispersive properties and
the smoothing effect of the equation in RV.

2.1. Basic Properties

Let © be an open subset of RY (Q does not need to be smooth or bounded).
We define the operator A on L2(Q2) by

D(A) = {u € H3(Q), Au € L*(Q)},
Au = Au for u € D(A).

Evidently, D(4) = H2(Q) N H}(Q) if © is smooth enough. It is well known that
A is self-adjoint and < 0, and so we may apply the results of Section 1.6. Observe
that the space X, is nothing other than Hg(f2). Indeed || - |la = || - ||z, and
D(Q) C D(A), so that H3(Q) C X4. Since also D(A) is a subset of Hj(£2),
we see that X4 C H}(R), and so X4 = H}(Q) with equality of the norms. It
follows that X% = H~1(€2). On the other hand, note that D(A) # H3(f2), and so
D(A)* # H~2(Q). The operator A € L{L%(S2), (D(A))*) is simply defined by

(Au,v)(p(ay)+,D(a) = (u,Av)2 foru e L?*(Q) and v € D(A4).
Let us denote by (J(t))ter the group of isometries generated by ¢4 in any of the
spaces D(A), H}(Q), L3(QY), H™(2), (D(A))*. We have the following result.

PROPOSITION 2.1.1.  Given ¢ € L?(Q), u(t) = T(t)y is the unique solution of the

problem
u € C(R, L*()) N CY(R, (D(4))*),

iug + Au = 0 in (D(A))* for everyt € R,

u(0) = .
Moreover, ||u(t)||zz = ||l¢llL2 for every t € R. If ¢ € HJ(Q), then for every t € R,
u € C(R, Hy(2)) N CHR, H™H(Q)) and [|Vu(t)llze = [Vl L2

REMARK 2.1.2. It follows from Section 1.6 that J(¢)* = J(—t) for every t € R.
On the other hand, with the notation of Proposition 2.1.1, let v(t) = u(—t). We

have
{ v + Av =0,

o0) =7,
and so T(—t)p = T(t)p for every ¢ € L%(Q).

29
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2.2. Fundamental Properties in RV

In this section we consider the case 2 = R™. In this case, J(t) can be expressed
explicitly in Fourier variables. Indeed, let ¢ € S(RY) and let u € C®(R, S(RY))
be defined by

w(d)(€) = e~4™ "t G(e) for allt € R and £ € RV,
We have ifi; — 472|¢|?4 = 0 in R x RY, and so u; + Au = 0 in R x RM. Since
u(0) = ¢, we deduce that u(t) = T(¢). Thus we see that
(22.) FIDe)(E) = e 14 5(¢)
for all p € S(RV), t € R, and £ € RY.

REMARK 2.2.1. Formula (2.2.1) has the following simple applications:

(i) We deduce from formula (2.2.1) that J(-)p € C(R,S(R")) for every ¢ €
S(RY). By duality, I(t) can be extended to S'(RY), and

T()p € C(R,S'(RY))
for every ¢ € S'(RY). It follows in particular that if ¢, — ¢ in S'(RV) and
if t,, — t, then
T(tn)pn — T(t)p in S'(RV).
Indeed, given 6 € S(RV), we have T(—t,)8 — F(—t)8 in S(RY), so that

<7(tn)¢n79>5’,5 = <‘Pn77(_tn)0>8’,$
— <§0,7(_t)9>51’$ = <T(t)<p76>3’,5

n-—>00
by theorem 2.17 of [304].

(ii) It follows from (2.2.1) that [F(T(t)¢)(€)] = |p(€)| for all t € R and € € RV,
In particular, we see that for all s € R and ¢t € R,

1T @ el = llelln .

Since S(RV) is dense in H*(RY) for all s € R, we deduce that for any
s € R, (T(t))ier can be extended to a group of isometries in H*(RY),
which we still denote by (J(¢));er. The generator of (JT(t))ier in HS(RM)
is the operator A; defined by D(A;) = HST3(RY), and A,u = iAu for
u € D(A). It follows easily that if ¢ € H¥(RYN), then u(t) = T(t)y satisfies
U € MNj>o Cj(R, Hs—2% (RN))

(iii) Let I be a bounded, open interval of R with 0 € I. Let s € R, p € H*(RN),
f e LYI,H*(RYN)), and u € C(I, H*(R")). We deduce from (ii) above and
the results of Section 1.6 that u satisfies

w(t) = T+ /O “ot— ) f(s)ds

for t € I if and only if u € Wh1(I, H*~2(R")) and
iug +Au+f=0 fortel,
u(0) = ¢.
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If, in addition, f € C(I, H*~%(R")), then u € C*(I, H*~2(R"N)).

REMARK 2.2.2. Here are some comments on the scaling properties of J(t). Let
¢ € L2(RV), v > 0, and set y(z) = ¢(yz) so that ¥ € L2(RY). It follows that for
all t € R,

(2.2.2) [T@Ol) = [T el(vz) ae.

Indeed, let u(t) = T(t)p and set v(t,x) = u(y%t,yz). Since iu; + Au = 0, it follows
that iv; + Av = 0; and since v(0,z) = ¢(yz) = ¥(z), we see that v(t) = T(t)y.
Similarly, let f € Ll(]R L3(RM)), v > 0, and set g(t,z) = v*f(v*t,yz). If

t
._z/ Tt —s)f(s)ds, v(t):i/ T(t — s)g(s)ds,
0
then for all t € R,
(2.2.3) v(t,z) = u(y’t,yz) a.e.

Indeed, both v and w defined by w(t,z) = u(y?t,yz) are solutions of the equation
iz, + Az + f = 0 with the initial condition 2(0) = 0, so that v = w. These
calculations are justified when ¢ and f are sufficiently smooth (¢ € H?(R") and
f € LY(R, H*(R")), say). Then (2.2.2) and (2.2.3) follow in the general case by a
density argument.

The following well-known result is the fundamental estimate for J(t).
PROPOSITION 2.2.3. Ifp € [2,00] and t # 0, then T(t) maps LP (RN) continu-
ously to LP(RN) and

(224)  ITO@lr@m) < @nlt)VE Dol gry  for all o € P (RY).

The proof of Proposition 2.2.3 relies on the following lemma.

LEMMA 2.2.4. Given t # 0, define the function K; by
N
1 \7 =2
K = |- p N,
() (47rit) e forz e R

It follows that T(t)p = K¢ x ¢; i.e.,
ijr—y 2
(2.2.5) Tt)e(a) = (tnit) ¥ [ T pu)dy
RN
for all t # 0 and all p € S(RV).
PROOF. Since K;(£) = e~ lét the result follows from (2.2.1). i
PROOF OF PROPOSITION 2.2.3. Let ¢ € S(RV). It follows from Lemma 2.2.4

that N
1T (@)l < (dmft])™ 2 fleol| e -
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By density, J(t) € L(LY(RN), L>°(R")) and

wlz

ITO N crrmyy,Loe@ny < (@rft))~2 .

The general case is obtained by interpolation between the cases p = 2 and p = oo
(use the Riesz-Thorin interpolation theorem). O

REMARK 2.2.5. It follows from formula (2.2.5) that

1 z ilx)2 iz, ,-y2
T(t)p(x) = <m> M [ 5 e M iy

In other words, up to a rescaling and to multiplication by a function of modulus 1,
J(t) is nothing but the Fourier transform. More precisely, if we define a multiplier

M; by My(z) = e'l=1*/4t and dilation operator D; by Dyw(zx) = (4mit)~ % w(z/4xit),
then

In particular, estimate (2.2.4) is optimal in the sense that if J(¢) € £(L9, LP), then

necessarily 2 < p < oo and g = p'.
COROLLARY 2.2.6. Ift #0, then
T @)@l < @nlt)™E @] gow  for all p € S'RY),

where s € R and 2 < p < 00. The same estimate holds with the norms of H*P (RM)
and H* (RN replaced by the norms of H?(RN) and H*¥ (RN). Moreover

I1T)els;, < Unlth 2" pllps,  for all p € S'(RY),

where s € Rand 2 < p < o0 and1 < q < oo. The same estimate holds with
the norms of B;,Q(RN) and B;,,q(RN) replaced by the norms of Bf,,q(RN) and
By (RY).

ProoF. Fix t # 0 and let u = T(t)p. Given w € S(RV), it follows from (2.2.1)
that
F wu(t)) = F~H (we™ 76 1)

(2.2.6) -
- ]_-—l(e-élﬂ' il€] tf}-_l(w@)) — ‘.T(t)(]-"l(wg?)) .

In particular, it follows from (2.2.4) that

1_1

I~ wid) | z» < (4rlt)) ™V E TS F " (w)|| e for any 2 < p < 0.

The result follows immediately from the above estimate and the definitions of the
-various Sobolev and Besov norms (see Section 1.4). O
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2.3. Strichartz’s Estimates

Estimate (2.2.4) is remarkable but it is not quite handy for solving the nonlinear
problems, since the L spaces are not stable by J(t). However, we will derive
from (2.2.4) space-time estimates that are essential for solving the nonlinear Schro-
dinger equations. The first estimates of that kind were obtained by Strichartz [327]
as a Fourier restriction theorem. Strichartz’s estimates were generalized by Ginibre
and Velo [136], who gave a remarkable, elementary proof. Strichartz’s estimate for
the nonhomogeneous problem was generalized by Yajima [364] and by Cazenave
and Weissler [68]. Finally, the endpoint estimates were established by Keel and
Tao [210]. We begin by introducing the notion of admissible pair.

DEFINITION 2.3.1. We say that a pair (g, ) is admissible if

2 1 1
3. f_onN[z2-=
a5 2 _y(L-1)
and
2N
(2.3.2) 2<r< 2<r<owif N=1,2<r<oco0if N=2).

N -2

REMARK 2.3.2. If (g,r) is an admissible pair, then 2 < ¢ < co. Note that the

pair (00,2) is always admissible. The pair (2, NQL_V—,Z) is admissible if N > 3.

——

THEOREM 2.3.3.  (Strichartz’s estimates) The following properties hold:
(i) For every ¢ € LE(RY), the function t — T (t) belongs to
LI(R, L"(RM)) N C(R, LE(R™M))

for every admissible pair (g,7). Furthermore, there exists a constant C such
that

(2.3.3) 1T ellzemery < Cllellr:  for every € L*(RY).

(i) Let I be an interval of R (bounded or not), J =1, and to € J. If (7,p) is
an admissible pair and f € L7 (I, L7 (RY)), then for every admissible pair
(g,7), the function

(2.3.4) t— f(t) = /t T(t—s)f(s)ds fortel

to

belongs to LI(I,L"(RN)) N C(J, L>(RN)). Furthermore, there exists a con-
stant C independent of I such that

(235)  @slzoror < Clflliy iy, for every f € L7 (1,17 ®RY)).

»
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REMARK 2.3.4. Theorem 2.3.3 deserves a few comments. One is easily convinced
that property (i) describes a quite remarkable smoothing effect. Indeed for all t € R,
J(t)L? = L?. In particular, given ¢ # 0 and p > 2, there exists a dense subset E,
of L? such that J(t)¢ & LP for every y € E,. However, it follows from property (i )
that for every ¢ € L2, J(t)p € LP for a.a. teRandall2<p< 5 if N > 3.
Note that by the preceding observation, the restriction “for a.a. t € ]R” cannot be
reduced to “for all ¢ # 0” in general.

Concerning property (ii), note that the definition of ®; makes sense. Indeed,
L# — H-' and so f € LY(I',H™!) for every bounded interval I’ C I. In par-
ticular, ®5 € C(I', H™'). Evidently, properties (i) and (ii) give an estimate of the
solution of the nonhomogeneous Schrédinger equation in terms of f and ¢,

iut+Au+f=0
u(0) =

REMARK 2.3.5. The estlmates of Theorem 2.3.3 are called endpoint estimates in
the case r = 225 or p = N L. Note also that an estimate similar to (2.3.3) but

with the space and time integration reversed holds. More precisely,

+o0 yie= 55
(/ (/ |u(t,:c)|2dt> d:z:) < Cll¢llrz  for every ¢ € L*(RY);
RN

—00

that is,
HUHL,@%(RN,H(R)) < CllgllLe
(see Ruiz and Vega [306]).

ProOOF OF THEOREM 2.3.3. We only \give the proof away from the endpoints,
ie., forr,p# 13—1_\’2 The proof in the case r = ]31\!2 or p= 2N2 is more delicate and
the reader is referred to Keel and Tao [210]. Note that we will make an essential use
of the endpoint estimates only in the proof of Propositions 4.2.5, 4.2.7, and 4.2.13.

We divide the proof into five steps, and we first establish property (ii). For
convenience, we assume that J = [0,T") for some T € (0,00) and that tg = 0, the
proof being the same in the general case. It is convenient to define, in the same
way as @, the operators ¥ and ©, (where t € (0,T) is a parameter) by

T
Us(s) = / T(s—t)f(t)dt Vse[0,T)
and
t
{ B4,7(s) :/ T(s—o)f(o)do VYse[0,T).
0
It is clear that both ¥ and ©, are continuous L}, ([0,T), H~!) — C([0,T), H™?).

STEP 1.  For every admissible pair (¢,7), the mappings ®, ¥, and ©, are

continuous L7 ((0,T). L™ (RN)) — L9((0,T),L"(RN)).  We only prove the es-
timate for @, the other ones being obtained similarly. By density, we need only
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consider the case f € C.([0,T),L"). In this case, Proposition 2.2.3 shows that
®; € C([0,T),L7), and that

t T 2
18(0)] < /O it — 5N B () o ds < /0 1t — | % F(3)l| o ds.

It follows from the Riesz potential mequahtles (cf Stein [319], theorem 1, p. 119)
that w——

1@ ¢llLe0,m),Lm) < ClFll Lo (01),27)

where C depends only on g.

STEP 2.  For every admissible pair (g, 7), the mappings ®, ¥, and ©; are con-
tinuous L9 ((0,7), L™ (RV)) — C(I0 TITT7(RN)).  We only prove the estimate
for @, the other ones being obtained similarly. By density, we need only consider
the case f € C¢([0,T),L""). By using the embedding L™ < H~! and applying the
operator (I —eA)™!, one may thus assume that f € C;([0,T), L™ynC([0,T), L?).
It follows that & € C([0,T), L?), and so

250l = ([ 7 - r(s)ds, /Otfru—a)f(o)da)m

/ / t——s ‘J'(t—cr)f(o))deods

- / / ((5), T (5 — 0)f(0)) 12 dords = / (£(5), Op.1(5)) 12 ds,
0 0 0]

where we used the property J(¢)* = J(—t). Applying Holder’s inequality in space,
then in time, and applying Step 1, we deduce that

125132 < 1l oy, 1€usllzacom 2y < CUAIE s o)1y

This proves the result, since t is arbitrary.

StEp 3. For every admissible pair (g,7), ® is continuous L'((0, T), L*(RN)) —
L9((0,T), L™ (RN)). Let f € L*((0,T), L?) and consider ¢ € Cc([0,T), D(R"Y)). W

have
/ " (@ (1), o)) e di = / ' / (TGt ) (5), 01 ds e

// $),T(s — t)p(t)) 2 dtds

- / (£(), Wy (8)) 12 ds,

0
and so, by the Cauchy-Schwartz inequality and Step 2,

T
(2.3.6) {/0 (@s(t), p(t)) L2 dt‘ < iz o), 22) ¥ el Lo (0,7, 22)

< C“f”Ll((O,T),LZ)||90”Lq'((o,T),Lr’) .
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On the other hand, one shows easily by choosing appropriate test functions that
lgllzeco,ry,Lry =

sup{ / (90, 9(0)) 12 dts ¢ € C=((0,T) x RY), nso||Lq:((0,T),L~>=1}

for all g € L*((0,T), L2(RY)). The result follows from (2.3.6) and the above relation
applied with g = ®;.

STEP 4. Proof of (ii). Let (v,p) be an admissible pair. We deduce from
Steps 1 and 2 that ® is continuous L ((0,T), L# (RN)) — L*((0,T), L*(RN)) and
LY ((0,T), L7 (RN)) — LY((0,T), L?(R™)). Consider an admissible pair (g, ) for

which 2 < ¢ < p, and let 6 € [0,1] be such that - - —
\4 1 6 1-0 1 6 1-6
=247 d =247
T op 2 q o0

By applying Hélder’s inequality in space, then in time, we obtain
g _
”‘I)f”Lq((O,T),Lr) < ”‘I)fHLv((o,T),Lp)Hq)fHILooo((o,T),Lz) < C“f“Lv’((o,T),Lp') -

Thus & is continuous LY ((0,T), L* (RN)) — L3((0,T), L™(RN)).

Let now (g,7) be an admissible pair for which p < r, and let u € [0,1] be such
that ) . )

Kk 1 RN
,},/”'1 q and pl—2+ r

By Steps 1 and 3, ® is continuous L4 ((0,T), L™ (RY)) — L9((0,T), L"(R")) and
LY((0,T), L3RN)) — L9((0,T), L"(RY)). By interpolation (see Bergh and Lof-
strém [28], theorem 5.1.2, p. 107), ® is continuous

L?((0,T), L°(R™)) — LI((0,T), L"(RY))
for every pair (o, ¢) such that for some 6 € [0,1],

1_6,1-6 . 1_6 1-6
o 1 q & 5§ 2 o

The result follows by choosing 6 = p.

STEP 5. Proofof (i). The proofis parallel to the proof of (ii), and we describe
only the main steps. Let

Ag(t) = +ooiT(t—s)f(s)ds and T'y= +oo‘.T(—t)f(t)dt.

—00 —o0

One shows (see Step 1) that

Arlizeo,my,zr) < ClFllLe (0,1,

for every admissible pair {g,r). Deduce (see Step 2) that

ITsllze < CUfllze o), »
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from which one obtains that

[ e v~ (v | rovon)

—00 —00

L2

< Cllellre ”"/J“Lq’((o,T)’Lr')
for every ¢ € L2(R™) and ¢ € C.([0,T), D(RY)). Assertion (i) follows (see Step 3).
This completes the proof. O

COROLLARY 2.3.6. Let I = (T,00) for some T > —oo (respectively, I = (=00,T)
for some T' < o) and let J = I. Let (v,p) be an admissible pair, and let f €
LY (I,LF (RN)). It follows that the function

tes Dp(t) = /too T(t —s)f(s)ds (respectively, Qs(t) = /t—oo T(t - s)f(s)ds)

for every t € J, makes sense as the uniform limit in L2(RY), as m — +oo (respec-
tively, as m — —o0), of the functions

Q7 (t) = /;m Tt —s)f(s)ds for everyte J.

In addition for every admissible pair (q,7), ®; € LI(I,L"(RN)) n C(J, LA RN)).
Furthermore, there exists a constant C such that

I®sliacr,ry < C“f”L‘v’(I,LP’) for every f € LV((L L (RN)) .

PrOOF. We consider, for example, the case I = (T, 00). Let j,m be two integers,
T < j < m. For every t € J,

&7 (t) — 23(0)|| 2 = [[T(m — (@) — T4 (®)]| 0 = ]

/m T(m — s)f(s)ds

J

78
By (2.3.5), there exists a constant C(7) such that

127 () — ®F ()2 < ClSfllv ((,o0),L0') -
Thus ®™ is a Cauchy sequence in L*®(I, L?(RV)), and so ®; € C(J, L2(R")) and
(2.3.7) 1®pllLo L2y < ClFll v 1,00y -

Finally, given any admissible pair (g,7), it follows from (2.3.5) that there exists a
constant C such that

(2.3.8) 1% N Lar,Lry < CN Sl 2,10y -
For j €N, j > T, define f; € LY (I, L” (RN)) by
) = {f(t) e
0 ift > j.
Since f; — f in L7 (I, LF (RV)) as j — oo, we deduce from (2.3.7) that
(2.3.9) ®; — ®; in L*(R"Y) uniformlyinte J.
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Note that for m > j, <I>Z‘_ is independent of m. It follows from (2.3.8) that
by, € LY (I,LF (RY)). Furthermore, letting T < j < k, we deduce from (2.3.8)
that

125, = @pillLeq,iry S Clfs = fill v g,y < ClF L oy 1y -
In particular, @y, is a Cauchy sequence in L(I, L"(R")), which possesses a limit
¢ such that, by (2.3.8),

(2-3-10) IW“Lq(I,LT) < C“f”Lv’(I,Lp’) .
Therefore, there exists a subsequence, which we still denote by f;, such that

s, (t) — ¥(t) in L"(RN) for a.a. t € I. Applying (2.3.9), we see that ¥(t) = Qs(t)
a.e. on I, and the result follows from (2.3.10). O

COROLLARY 2.3.7. Ifp e HYRY) andr € (2,2%) (r € (2,00] if N =1), then
|F(t)ollLr — 0 ast — *oo.

PROOF. Let g be such that (g,r) is an admissible pair. It follows from Gagliardo-
Nirenberg’s inequality that there exists C such that for every ¢,s € R,
2 a=2
u(t) = u(s)llLr < Cllu(t) — u(s)l fallu(t) — uls)ll L3 -
Since ¢ € HL(RY), u(t) is bounded in H'(R"), and so
—2

llu(t) — u(s)ll- < Cllu(t) - u(s)l|

Furthermore, by Proposition 2.1.1, u; is bounded in H~}(R"), and so u is glob-
ally Lipschitz continuous R — H~!}(R") (see Theorem 1.3.10). Therefore (see
Remark 1.3.8(iii)), there exists C such that

llu(t) = u(s)lize < CJt — 5|2
and so .
[u(t) = w(s)|z- < Clt — |77 .

In particular, v : R — L"(R") is uniformly continuous. The result now follows
from the property u € LI(R, L™(R")) (Theorem 2.3.3), since ¢ < co. O

REMARK 2.3.8. The estimates of Theorem 2.3.3 (and Corollary 2.3.6) can be
generalized to various spaces involving derivatives. For example, for every m > 0,
we may replace ¢ by D%p in (2.3.3) with |a| = m. Since D*T(t) = T(t)D*, we
deduce that

1TOellLa@wmry < Cllgllam
Similarly, applying (2.3.5) to D f, we see that

1®5llLacrwmry < CNFll (1, wm ety -
Since ) )
TOF A +1EPED)) = FHA+ € EF(T(t)e)]
by (2.2.1), we obtain as well
1TO el Lo memy S Cllelas, N®slla,mery < Clfllv 1,510y -

Using the Littlewood-Paley decomposition, it is easy to establish similar estimates
in Besov spaces. (See Corollary 2.3.9 below.) Such estimates are useful to study the
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nonlinear Schrédinger equation in the fractional order Sobolev space H*(R™); see,
for example, Cazenave and Weissler [70], Kato [206], Pecher [295], and Section 4.9
below.
COROLLARY 2.3.9. Given any s € R, the following properties hold:
(i) If (g,r) is an admissible pair, then there exists a constant C such that
1TC)ellLem,Bs,) < Clielss,
for every ¢ € H*(RY).
(ii) If (g,7) is an admissible pair, then there exists a constant C' such that
1TC)ell Lo, Bi,) = C”‘/’HBs
for every ¢ € S'(RY)

(iit) Let I be an interval of R (bounded or not), let J =1, and letto € J. If (7,p)
and (q,7) are admissible pairs, then there exists a constant C independent
of I such that

B;,Z < o0,

||‘I>f”L°(I,B;‘,2) < C”f“L*r’(I,B;,J)
for every f € L7 (I, Bz,,z(RN)), where @y is defined by (2.3.4).
(iv) With the notation of (iii) above, it follows that
”‘I>f||Lq(I,B<2) = C”f“m I BS, 2)
for some constant C independent of I.

PROOF. We only prove the homogeneous estimates (ii) and (iv), the proofs of (i)
and (iii) being similar. Also, we assume ¢ < oo, the necessary modifications to
treat the case ¢ = oo are obvious. Let n and v; satisfy (1.4.1)—(1.4.2).

STEP 1. Proof of (ii). We set u(t) = J(t)y and we observe that (see (2.2.6))
“(lelvsu) = TOF gl0:9))

and so

g 2
2 q
Ve

2. and p=¢/2 > 1, we obtain

el g 52, ( / (222”“3‘ J(F el

Setting a;(t) = 229 | T (F 1 (1€l*4;@)1%
ol = ([ (Sas)) )’

(R)

< Z lla; (e @)

= 32T E D) oqm iy -

g
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Applying (2.3.3), we deduce that

[N

s — 112
el o, ) < € (Z22 |7 1(1€lsszo)luz> = Cllell;,,
- :
which is the desired estimate.
STEP 2. Proof of (iv). We set u(t) = ®(t) and we observe that (see (2.2.6))

t

29F 7 (elgu(®) = | Tt - )T F el 0 F () ds = @, (8),

to

where

vi(t) = 29F L (|69 F(2)) -

r = / (Zn% qu) )

Arguing as in the proof of (ii) above, we obtain

”u”Lq(I Bs 2) = Z “(I)UJ ”Lq(I Lry -

Therefore,

Applying now (2.3.5), we deduce that

) P
.0 < O sl =€ S ([0

J I

where b;(t) = ||v](t)||2/‘,, and p = 2/4" > 1. It follows that

ol 5 < cH [bstoae
I

e (Z)

<c / 1b5(8)lenczy dt
I

=C/<;llvj(t)|lip')% C”f” (1B, L)

which completes the proof. O

2.4. Strichartz’s Estimates for Nonadmissible Pairs

It is natural to wonder if (2.3.3) or (2.3.5) hold for nonadmissible pairs (g, 1)
and (v, p). Concerning (2.3.3), the answer is no. One sees easily that the con-
dition (2.3.1) is necessary. Indeed, assume (2.3.3) holds for some pair (¢,r) with
¢,7 > 1. Fix 8 € L*(RVY), 8 # 0 and, given v > 0, let ¢(z) = (yz). Setting
w(t) = T(t)6 and u(t) = T(t)yp, it follows from (2.2.2) that u(t,z) = w(y?t, yz), so
‘that (2.3.3) implies that

—2_N _N
Y T lwll e,z < CYT 0]z -
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Since this holds for arbitrary v > 0, we obtain (2.3.1). In particular, we see that
7 > 2 (otherwise ¢ < 0). If N = 2 and (g,r) = (2,0), then the estimate (2.3.3)
is false, even if one replaces L by BMO. (See Montgomery-Smith [252]. Note
that (2.3.3) with (g,7) = (2, 00) holds for radial functions; see Tao [334].) The case
N >3,r>2N/(N —2) is more easily eliminated (see Keel and Tao [210]).

Assume now that (2.3.5) holds for some pairs (g,r) and (v, p). Changing f
to 0% f(0?t,0x) and applying (2.2.3), we obtain by arguing as above the necessary
condition

2 11\ 2 11
n Zon(i oDy 2o NP1y
(2.4.1) - (2 T)+7 .N<2 p) 0

This is clearly satisfied if (g,7) and (v, p) are admissible, but (2.4.1) allows many
more choices. We present here a simple case where (2.3.5) holds for nonadmissible
pairs. This case corresponds to p =r in (2.4.1).

PROPOSITION 2.4.1. Let I be an interval of R (bounded or not), set J = I, let
to € J, and consider @ defined by (2.3.4). Assume2 <r <2N/(N—-2) (2<r <o
if N=1) and let 1 < a,a < oo satisfy

1 1 1 1
4. =+—-=N{|{=—-].
(2.4.2) =+ - ( 5 )
It follows that ®; € Lo(I, L"(RY)) for every f € L& (I, L™ (RY)). Moreover, there
exists a constant C independent of I such that

(2.4.3) ”‘I’f“La(I,Lr) < C“fHL&’(I,Lr’) for every f € L&I(I, L (RN))-

PROOF. By density, we need only prove (2.4.3) for f € C.(I,S(RY)). It follows
from (2.2.4) that

¢

—N(i-1

1270l < [ nle= sy M ED ()
to

and so (2.4.3) is an immediate consequence of the Riesz potential inequalities

(Stein [319], theorem 1, p. 119). O

REMARK 2.4.2. It seems that no necessary and sufficient condition is known for
the validity of (2.3.5). The best available results are obtained in Vilela [353]. (See
Montgomery-Smith [252]. Note that (2.3.3) with (¢,7) = (2, 00) holds for radial
functions; see Tao [334].) The case N > 3, r > 2N /(N —2) is more easily eliminated
(see Keel and Tao [210]).

2.5. Space Decay and Smoothing Effect in RV

We still assume in this section that = R". We have seen in Proposition 2.2.3
and Theorem 2.3.3 that T(t) has a smoothing effect in some L” spaces. On the other
hand, one easily verifies with the formula of Lemma 2.2.4 that for every ¢ € L'(RY)
supported in a compact subset Q of RV, the function (t,z) — T(t)¢(z) is analytic
in (0, +00) x RY. In other words, J(t), being essentially the Fourier transform (see
Remark 2.2.5), maps functions having a nice decay as |z| — oo to smooth functions.
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In this section we establish precise estimates describing this smoothing effect, which
enable us to prove similar results in the nonlinear case. Let us first introduce some

notation. For j € {1,..., N}, let P; be the partial differential operator on RN+
defined by

Oy

(2.5.1) Pju(t,z) = (z; + 2it0;)u(t, z) = zu(t,z) + B (t,z).
j

For a multi-index «, we define the partial differential operator P, on RV *! by
N
(2.5.2) P, =] P
i=1
Furthermore for z € RY, we set
"N
(2.5.3) z =[x
i=1

Consider a smooth function » : RVN*+! — C. An easy calculation shows that

u),

from which we deduce by an obvious recurrence argument that

22 8, lal?
Pju(t,z) = 2ite’l4_|ta—(e_’|—4lt_

z;
1z)2 2|2
(2.5.4) Pau(t,z) = (2it)leleiSE Do (=i v) .
On the other hand, a formal calculation shows that
(2.5.5) [Pa,10; + Al =0,

where [-,-] is the commutator bracket. In other words, if u is a smooth solution
of the linear Schrodinger equation, then so is Pyu. In particular, if we consider
¢ € S(RN) and if we set u(t) = F(t)y, then u, = P,u is a solution of Schrédinger’s
equation. It follows that

(2.5.6) Ua(t) = T(t)ue(0) = T(t)zp;

and s0 ||uallz2 = ||z*¢llr2. By (2.5.4), this implies that

(2.5.7) (@A) | D% (e 5 u )] 2 = lla® el e

By density, we immediately obtain the following result.

PROPOSITION 2.5.1. Let o be a multi-index. Let p € S'(RY) be such that z%¢ €
L2(RN). Ifu(t) = T(t)p € C(R,S'(RY)), then

Do~ yu(t) € C(R\ {0}, L2(RM))

and formula (2.5.7) holds for every t # 0.
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COROLLARY 2.5.2. Let ¢ € L*(RY), and assume that (1 + |z|™)p € L2(RY) for
2

some nonnegative integer m. It follows that e ”‘«Tfu( t) € C(R\ {0}, H™(R")), and
if k is the integer part of m/2, then

we ) CIR\{0}, Hp ¥ (RY)).

foc
0<j<k
In particular, if (1 + |z|™)¢ € L2(RYN) for every nonnegative integer m, then
u e C®(R\ {0} x RY).

——z——

ProoF. The H™ regularity of e * 7 u(t) follows from Proposition 2.5.1. Since

212
et € O®(R \ {0} x RY), we see that u € C(R \ {0}, H[%(R")). The regularity
of the time derivatives follows from the equation. O

REMARK 2.5.3. Formula (2.5.6) means that P, (t)¢ = T(t)(z*p) or alter-
natively, by setting ¢ = T(=t)¢, T(—=t)Pap = z*T(—t)y. In particular, (z +
2itV)T(t) = T(¢)z, or equivalently T(—t)(x + 2itV) = 2T (—t).

COROLLARY 2.5.4. Let ¢ € L?*RYN) be such that |- |p(-) € L*(RYN), and let
u(t) = T(t)e-
(i) The function t — (z + 2itV)u(t, ) belongs to LY(R, L7(RN)) for every ad-
missible pair (g,7).
(i) u € C(R/{0},L"(RN)) for every r € [2,2%] (r € [2,00) if N =2, 7 €
[2,00] if N = 1), and there exists C, depending only on r and N, such that

lu@®)llz- < Clllelize + lzelz2) V37 for every t # 0.

Proor. By (2.5.1) and (2.5.6), (z + 2itV)u(t,x) = T(t)y, where ¢(z) = zp(z),

and so (i) follows from Theorem 2.3.3. Next, let v(t, ) = e‘i'_iiru(t z). By (2.5.6)
and (2.5.7), Vv € C(R/{0}, L3(R")) and

IVo®)lze < Cltl™ oellze -

The result follows from Gagliardo-Nirenberg’s inequality, since |u} = |v]|. O

2.6. Homogeneous Data in RV

In this section we study the action of the Schrédinger group (J(t))ter on homo-
geneous functions. The resulting estimates are useful for constructing self-similar
and asymptotically self-similar solutions of certain nonlinear Schrodinger equations.
They are also useful to describe the possible decay rates of [|T(t)¢| L.

For simplicity, we only consider functions of the form |z|~?, so that the proofs
depend only on explicit calculations with the gamma function and analytic contin-
uation arguments. We refer to [73, 74, 286, 298, 302] for more general results.

We observe that if p € C and 0 < Rep < N, then ¢(z) = |z|™P does not
belong to any space LI(RY). However, 1 € L} (R") and ¢ € S/(R"). Since the
Schrédinger group operates on S'(RY) by Remark 2.2.1(i), it follows that J(¢)¢ is
well defined as a tempered distribution for all £ > 0. In fact, much more can be
said.
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THEOREM 2.6.1. Let (z) = |z|™P withp € C and 0 < Rep < N. It follows that
T(t) € L"(RN) for allt > 0 and all 7 such that

N N
For such r,
(2.6.2) 1T llr =555 T W)l fort> 0.

Moreover, if u(t,z) = T (t)y(z), then u € C®((0,00) x RN).
Before proceeding to the proof, we make some simple observations. Given
A > 0, let D) be the dilation operator
Dyw(z) = NWw(Az).

Dy, is defined on S(RY) and is extended by duality to S'(RY) by

(Dxw, ¥)s'.s = AP~V (w, Dy)si,s
for all w € §'(R") and all ¥ € S(RY). It is immediate that
(2.6.3) | Daw|z- = ARP~F |lwl| L

whenever w € L"(R™). Moreover, it is easy to check, first by applying (2.2.2) for
w € S(RY), then by duality for w € S'(RV), that T(t)w = D,\ﬂ'()\2t)Diw. In

particular, letting A = t-3,

(2.6.4) T(tw = D%T(I)Dﬁw

for all t > 0. Now if ¢ = |z|™P, then Dyt = ¢ for all A > 0. Therefore, it follows
from (2.6.4) that

(2.6.5) Tty = D71:9'(1)1/;.

In view of (2.6.5) and (2.6.3), all the conclusions of Theorem 2.6.1 follow if we show
that

(2.6.6) T(1) € C(RN)
and that
(2.6.7) T(1)y € L'(RY)

for all r satisfying (2.6.1).
We next establish some notation and recall some well-known facts. The gamma
function satisfies the following relation

(2.6.8) ¢ T(z) = / e~ t*m 1 dt,
0
valid for ¢ > 0 and z € C with Rez > 0. Also, if O denotes the domain of the
standard branch of the logarithm; i.e.,
O = {z € C: z is not a negative real number or 0},

then for a fixed complex number p, the function f(z) = 2P = eP!°87 is analytic in
O. Note that if 7 > 0, then (rz)? = rPz? for all z € 0. Also, |rP| = TR¢P if r > 0.
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Another function that plays a central role in the analysis is given by
1
(269) H(y’ a, b) — / eiyr,ra-l(l = ’f')b—l dT‘,
0

where a,b € C with Rea > 0 and Reb > 0, and y € R (or C). Note that H(y;a,b)
is separately analytic as a function of y,a, and b in the domains just specified.

LEMMA 2.6.2. Let ¥(x) = |z|™® with 0 < Rep < N. Fort >0 andz € RV,

z|? -
o1 FOwiE = @ ire) e (S 2 A2,

where the function H is defined by (2.6.9).

PROOF. The basic idea is to express || using the gamma function, then change
variables so that the Gauss kernel

* 2
Go(z) = (4ms)~ Fe '

appears in the integral. It will then be possible to apply the operator e*®. By
formula (2.6.8), if x # 0

| P = F(p/2)_1/ e lolPteE 1 g
0
_r 1 [ =2 ey
=472 (p/2) / e” % sT27  ds
0
=4-%(47r)%r(p/2)-1/ Cylz)sF- 31 ds.
0

This integral, in addition to being absolutely convergent for each z # 0, is an
absolutely convergent Bochner integral in L}*(RY) + Co(R”). In other words,

o
W= 4—%(4w)%r(p/2)—1/ Gy(-)sT~ 5 1ds.
0
Next, we apply the heat semigroup, et for ¢ > 0, which gives (since e!*G, = Gy.s)
eb = 475 (4m) ¥ T (p/2)~? / Goe()sH 5 1ds.

This integral now is absolutely convergent in Co(RY), where pointw1se evaluation
is a bounded linear functional. Making the change of variables r = we see that

paet
for all z ¢ RY

D(p/2)(e2y)() = 4~} (4m) ¥ /G (t‘”)ﬁ%ﬁ%dr

-
(2.6.11) (4t)~% (4mt) ¥ /G =R ) T dr
= (4t)72 /e“'L‘ﬂLr2 1(1—7")t2p;2dr.
0

We next claim that formula (2.6.11) is valid not only for ¢ >0, but for all £t € C
with Ret > 0. Indeed, if n € S(RY), then (e!®%,n) is an analytic function of ¢
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on the open half plane Ret > 0, and continuous on the closed half plane Ret > 0.
Next, if we integrate the right side of (2.6.11) against 7(z) over RY, the result is
also an analytic function of ¢ on the right half plane Ret > 0, continuous at least
on the closed half plane with ¢t = 0 removed. By the identity theorem, these two
functions are equal on the open half plane. By continuity, they are equal also for
t =ir, 7 € R, 7 # 0. Since 7 is an arbitrary Schwartz function, (2.6.11), as an
identity between two tempered distributions, has been proved for all complex t # 0
with Ret > 0. This establishes the proposition. O

COROLLARY 2.6.3. Let ¢(x) = |z|7? with 0 < Rep < N. It follows that T(1)y €
C®(RN) N L®(RN).

LEMMA 2.6.4. Ify>0,Rea >0, and Reb > 0, and if n and m are nonnegative
integers such that

n+2>Rea and m+2>Reb,

then
H(y;a,6) =y > Ci(a,b)e =Ty~
k=0
+1
Cm ,b —a-m—1 m
F Om+a(a, by T(m+2-0b)
oo rl st —a—m~—1
x / / (1-s)™ (—i - —) dse”tmT1-b gy
(2.6.12) o /o Y
+ eWy~? Z Cr (b, a)e'(‘l"‘t;my_k
k=0
: +1
C b iy, —b—-n—1 n
+ n+1( 70‘)6 y F(n+2"a)
0o 1 st —b-n-1
x / / (1-3s)" (z - —) dse t"tl=a g,
0 0 Y
where
r k) T(k -b
(2.6.13) Crla,b) = o+ k) T(k+1—1)

kK T(1-0)

ProoOF. For the moment, we assume that

1]

0<Rea<xl, O0<Reb<«l.
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Using formula (2.6.8) twice, first with ¢ =7, 2 =1 —a, and then withc =1 -7,
z =1 — b, we rewrite formula (2.6.9) as follows:

(1 -a)l(1 -b)H(y;a,b)

a
oo fee] 1

/ / / gWre= T8 g~ (1=")ty=b dr go dt
o Jo Jo

I

i
oo oo 1
/ / W=t gr g—ae—ti—b go gt
o Jo

o0 &) e'iy—s+t -1
/ / 5%t bdsdt
o Jo wW-—s+t

fe.e) o s—a
/ —— et dsdt
o Jo —Wy-—t+s

. loe] [oo] t_b
+e% / / —e %5 % dt ds
zy —s+t
/ / — = dse"'tbdt
—iy — —iy—t+s +
+eW / / e dse~tt%dt.
0 0 1y — t+s

We therefore consider the integral

[o o] s—a,
= d
p(w) /O el
where w € O and 0 < Rea < 1. It is known (by changing variables in the beta

function) that p(1) = I'(1 — a)I'(a). Next, if w is a positive real number, we set
s = wt, and so

(2.6.14)

(2.6.15) p(w) = /oo %'w dt =w™T'(1—-a)l(a), w>0.
0

Since p(w) and w~? = e~*1°%8¥ are both holomorphic in O, (2.6.15) is true for all
w € O. Substituting (2.6.15) back into (2.6.14) with w = iy — ¢, we see that

H(ya,b) = (ll(f)b) /0 iy — t)-2e—tt-b gt

—F(f(i)a) eiy/o (y — t) Pt dt.

The next step is to replace (—iy —)™2 and (iy — t)~° in (2.6.16) by their finite
Taylor formulas around t = 0 with integral remainder terms. If f(¢) = (—iy —¢)™°
and g(t) = (iy — t)7°, then

Pt =a@a+1)---(a+k—1)(—iy—t)" %,
g®t) =bb+1)--- (b+k —1)(—iy —t)~bF

(2.6.16)
+

U |
) (0)ek 4 — g)m fimt1)
z::k 0)t* + /t sy f (s)ds,
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and similarly for g(t), we see that

(k
H(y;a,b) = m_bzf At et

1 =% / / — )™t (g)ds et dt

L®) 4 _9_@ % btk
I ;; 5 /0 e~tmatk gy
+F(I;(f)a)ew me Ot(t s)"g" ) (s)ds e~ dt
and so
H(y;a,b)

_ T(a) <~ala+1)---(a+k-1), .
r(l—b)kz;; Tl (—iy) " *T(k + 1~ b)

[(a) *1
Ta-05)/J, m

/ (t—s)"ala+1)---(a+m)(—iy — s) > ™ tdse tt 0 dt

Il*(fa) ”’Z b(b+1)- (b+k—1)( D1 a)

YO oo g
+I‘(1—a)ey/0 P

¢
x / (t—8)"b(b+1)---(b+n)(iy—s) > " ldse~tt % dt.
0

Furthermore, since y > 0,

/ / (t —8)™(—iy —s)" ™ dse 0 dt =

1 st —a—-m-—1
y‘“”m_lf / 1-sm (—i y) dse temti-b 4y .
0o Jo

and so we obtain the formulation (2.6.12)-(2.6.13).

Formula (2.6.12) has been proved only for y > 0, 0 < Rea < 1, and 0 <
Reb < 1. On the other hand, the right-hand side is an analytic function in a for
0 < Rea < n+ 2, with y > 0 and b such that 0 < Reb < m + 2 fixed, and
also an analytic function in b for 0 < Reb < m + 2, with ¥ > 0 and a such that
0 < Rea < n + 2 fixed. (Recall that 1/T'(z) is an entire function.) It follows
that (2.6.12) holds for all y > 0, and all @,b in the region stated in the lemma. O

PropPoOSITION 2.6.5.  Let Y(z) = |z|™P where 0 < Rep < N. It follows that
T(1)y € L™(RY) for all v satisfying (2.6.1). Moreover, T(1)y(z) is given by the
explicit formula (2.6.17) below for x # 0.
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PRrROOF. We apply the asymptotic expression from Lemma 2.6.4 to formula (2.6.10)

in Lemma 2.6.2 with a = p/2, b= (N —-p)/2, n > R_SE ~ 9, and m > N—-2Reg —9
We see that if z # 0, then

[T(1)¥](z)
. e [|z)2\7F
= p Agla,b)e s { —
ol 2 A ( 1 )

+ (el (2 ot ) G

4 T(m+2—1b)
[es) 1 —a—m-—1
4st
X 1-— dse~tmH1=b gy
(2.6.17) A ( =)
= £ 3" Bt ()
k=0

1_2 —-n—1 ami
+e |93| NP(4)F PB4 (b, a)(' | ) %‘ja_)

oo 1 —b-n-1
4
X / / (1-s)" <z - ii) dse ttnt1-a gt
o Jo |z|

where Cila,b) Tla+k)T(k+1-0)
(a, a+ +1-—
Ag(a,b) = T'(a) = I{a)k! T(1-b)
and
By(b,a) = Cr(ba) T(b+k)T(k+1-a)

I'(a) TFla)k! T(1-a)

By Corollary 2.6.3, T(1)¢ € C®°(RY). Therefore, to determine whether J(1)y) €
L7(RY), it suffices to consider [x| large. Proposition 2.6.5 now follows immediately
from formula (2.6.17). O

PrOOF OF THEOREM 2.6.1.  As observed before, we need only establish prop-
erties (2.6.6) and (2.6.7). They follow from Corollary 2.6.3 and Proposition 2.6.5,
respectively. O

REMARK 2.6.6. Here are some comments on Theorem 2.6.1.

(i) Note that Ag(a,b) = Bo(a,b) = 1. Therefore, the term with slower decay
in (2.6.17) is either of order |z|~? or of order |z|¥~?, depending on p. Thus,
if 7 does not satisfy the condition (2.6.1), then J(1)y ¢ L™(RV). If Rep <
N/2, then J(1)¢ behaves like |z|~? as |z] — oo. If Rep > N/2, then

T(1)y behaves like ceilel’/4|g|=N+P g5 |z| — 0o0. And if Rep = N/2, then

T(1)y behaves like [z|~? + cellol’/4|z|=N+P as |z| — oco. In particular,
|T(1)] ~ |z|~ min{Rer.N=Rep} g5 that the decay is at most |z|~»/2. This
is justified by the fact that J(1)y cannot be in any L? space with ¢ < 2 for
otherwise we would have ¢ € L7,

(ii) The conclusions of Theorem 2.6.1 hold for the more general homogeneous
function ¥(z) = w(z)|z|~? with 0 < Rep < N and w homogeneous of degree
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0 and “sufficiently smooth.” See Cazenave and Weissler [73, 74], Oru [286],
Planchon [298], and Ribaud and Youssfi [302].

(iii) In view of (2.6.5), u(t) = T(t)¢ is a self-similar solution for the group of
transformations ux(t,z) = Au(A%,Az). This can also be seen indepen-
dently by observing that ¢ is homogeneous of degree —p.

COROLLARY 2.6.7.  Let ¢(z) = [z|™P with 0 < Rep < N. Suppose ¢ € L} _(RY)
satisfies o — 1 € L™ (RN) for some

2.6.18) 7 > min N N
(2:6. Rep' N ~Rep |’

It follows that
(26.19) R |T() (0 - W)l <t F T |l — gl — 0 ast — co.

In particular,

Rep
2

wlz

(2.6.20) t "IIT@elr = ITM)Y)r ast — co.

Proor. By (2.2.4),

NG
1T (e = ¥)ll- <1t o =l -
Hence (2.6.19) follows by using the assumption (2.6.18). The result (2.6.20) now
follows from (2.6.19), (2.6.18), and (2.6.2). O
REMARK 2.6.8. In view of (2.6.2) and (2.6.20), we can determine the possible
decay rates as t — oo of ||T(t)p||zr for 2 < r < oc.

(i) The decay rate (as t — oo) given by (2.2.4) is optimal, since
(2.6.21) hm mft ||f]'( YellLr >0

for every ¢ € S'(RV), ¢ # 0, with the convention that l#|lr = +oo if
¥ & L". (See Strauss [322] and Kato [205].) Indeed, let ¢ € S(RY), ¢ # 0,
and set u(t) = F(t)p. It is easy to check that v defined by

N ilzi? 1 z
t,x t"ze % - =
v(t,z) = (t,t)

for t > 0 is also a solution of Schrédinger’s equation in S’'(R¥). By duality,
the same holds for ¢ € S'(RV). In particular, v(t) = T(t)y for some
¥ € S'(RY). Now, assuming by contradiction that

—2)
tn 7 | T()ellr — 0 for some t, — oo,

we deduce, setting s, = 1 /tn, that

1T (sl =tn T [T a)olr — 0 as 7 — co.
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In particular, T(s,)% — 0 in S'(RY). By Remark 2.2.1(i), we conclude that
¥ = 0, thus ¢ = 0, which proves the claim. Note also that the maximal
decay rate is indeed achieved if ¢ € L (RN).

(if) Let 0 < v < -I—V(—;;i) If p(x) = |m|‘2”‘%, we deduce from (2.6.2) that

1T (t)ellLr =~ t7". Thus all decay rates slower that the maximal decay
N(r—2

t="52 are achieved for some ¢ € S'(RY).

(iii) L?(R™) being of particular importance for Schrédinger’s equation, and even
more for its nonlinear versions, one may wonder what are the decay rates
achieved for initial values in LZ(RM). To see this, let 0 < v < y(;T—z)
and ¥(z) = |x|‘2”“£". Consider ¢ € C®(RN) with ¢(z) = ¥(z) for |z]
large. Since ¢ — ¢ has compact support and the singularity |z|=2~ ¥, we
see that ¢ — ¢ € L7 "(RN). Thus |T(t)p|lz- =~ t™%. Next, ¢ € LQ(RN) for
v > I—V—%T:-Z—). In particular, all possible decay rates between the maximal

N(r-2) _NG-2) . .
decay t~— 2 and ¢t~ &  are achieved by L? solutions. On the other
hand, the lower limit MT—” is optimal (in fact it is not even achieved), at
least for r < 2N/(N —2) (r < 00 if N =1, 7 < oo if N = 2). Indeed, it
follows from Strichartz’s estimate that for such r’s,

17

o s 0, grgay S Ol
so that
hm 1nft |[iT(t)<p||Lr =0.

2.7. Comments

As we will see in Chapter 4, Theorem 2.3.3 is an essential tool for the study
of the nonlinear Schrédinger equation in RY. Therefore, it is natural to ask if
Theorem 2.3.3 can be generalized to a wider class of equations. In fact, a careful
analysis of the proof shows that it uses only two properties. The first one is the
identity J(t)* = T(—t), which is valid for every skew-adjoint generator. The second
one is the estimate (2.2.4), which itself follows from Lemma 2.2.4. Therefore, such
an inequality holds whenever J(¢) has a kernel K(t) whose L*°-norm behaves like
lt|=% (at least near 0). In particular, we have the following result (see Keel and

Tao [210] for more general results).

THEOREM 2.7.1. Let A be a self-adjoint, < 0 operator on X = L?(Q). Assume
that there exists tg > 0 such that for everyt € ( t0,0) U (0,20), T(t) = €4 maps
LY(Q) to L*®(Q), with a norm less than Klt[__ The following properties hold:

(i) For every ¢ € L2?(R), the function t — T(t)p belongs to L (R,L™())
for every admissible pair (q,7) with ¢ > 2, and there exists a constant C,
depending only on K and ¢, such that

1TO@l oty o) <c<1;T> lollze

for every ¢ € LA(RY) and every T > 0.
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(i) Let 0 < |T| < oo. If (v,p) is an admissible pair with v > 2 and
f e LY((0,T),L” (), then for every admissible pair (g,7) with ¢ > 2,
the function

t— Op(t) = /0 Tt - s)f(s)ds

belongs to L1((0,T),L"(Q)). Furthermore, there exists a constant C, de-
pending only on K, v, and q, such that

1
1+T]\?
" ) ”f”L“/’((O,T),LP')

for every f € LY ((0,T), L7 (Q)). In addition, ®; € C([0,T), L2()).

@11l Lao,1),07) < C(

PROOF. Repeating the proof of Theorem 2.3.3, one shows that estimates (i)
and (ii) hold for T' = ty. In particular, assuming ¢ < oo,

/0 T @)el%, dt < Cllg],

It follows that for every positive integer k,

(k+1)to
/k 1Tl dt < CIT (Kto)e|Lz < CllglLa .

to
In particular, .
to
[ 1ol d < il

—kto
Hence (i) is established. One proves (ii) by a similar argument. O

In view of Theorem 2.7.1, it is interesting to know when e satisfies esti-
mate (2.2.4) (for possibly small times). In the next remarks, we collect some results
in that direction.

REMARK 2.7.2. Estimate (2.2.4) does not hold in a bounded domain @ ¢ RV
for any p > 2. The reason is that in this case, L%(Q) — L (Q), and so if such an
estimate held, then I = J(¢)T(—t) would map

L3(Q) — L3(Q) — LF (Q) — LP(Q) .

This is absurd, since this would mean that L?(Q2) — LP(Q). However, note that
estimate (2.2.4) might hold if, for example, 2 is the complement of a star-shaped
domain. Unfortunately, such a result is apparently unknown (see Hayashi [160]).
On the other hand, estimate (2.2.4) (hence those of Theorem 2.3.3) hold in certain
cones of RY. For example, they hold if = RY. To see this, consider ¢ € D(RY),
and let @ be defined by

E(:L‘l,...,lin) =

(p(xlv"'axn) lf.’L'n>O
_‘p(xla sy '—xn) if Ty < 0.

It follows that $ € D(RY). Let © = T(t), where T(t) is the group of isometries
generated by iA in RY. One easily verifies, by uniqueness, that 'ﬂimg = T(t)p,

where J(¢) is the group of isometries generated by iA in ]Rf . This proves the result,
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by Proposition 2.2.3 and density. This applies in particular to the case where 2 C R
is a half-line. One can repeat this argument and obtain the estimate (2.2.4) when
Q is a cone of RN of a certain type. For example, (2.2.4) holds when Q C R? is
defined by Q = {pe®® : p > 0,0 < 6 < 7/2™} for some nonnegative integer m.

REMARK 2.7.3. The estimates of Theorem 2.3.3 fail in a bounded domain Q C
RY. In the case where Q is a cube of RY there are, however, substitutes to these
estimates that can be used to solve the Cauchy problem for the nonlinear equation.
(In fact, this holds in the more general case of periodic boundary conditions.) On
these questions, see Bourgain [35, 38].

REMARK 2.7.4. Estimate (2.2.4) holds when one replaces the Laplacian by a more
general pseudodifferential operator on RY (see Balabane (11, 12], and Balabane and
Emami Rad [13, 14]).

REMARK 2.7.5. We note that the results of this chapter have been stated for
the equation iu; + Au = 0. It is clear that similar results hold for the equation
ius + aAu = 0, where a € R, a # 0, which is equivalent by an obvious scaling.

REMARK 2.7.6. Consider the operator A = A —V, where V : RY — R is a
given potential. If the negative part of V is not too large, then A defines a self-
adjoint operator on L2(R") (see for example, Kato [202]). If V is small enough in
L'NL*, then it follows from a perturbation method that J(t) = e*4 satisfies (2.2.4)
(see Schonbek [308]). More general cases are considered in Journé, Soffer, and
Sogge [200].

If V € C°(R") is nonnegative and if D®V € L°(R") for all |a| > 2 (the model
case is V(z) = |z|?), then also T(t) = e'*4 satisfies (2.2.4) (see Fujiwara [115, 116],
A. Weinstein [355], Zelditch [368], and Oh {277, 278}).

On the other hand, such estimates do not hold in general for several reasons.
First of all, A may have eigenvalues. Therefore, if X is an eigenvalue of A and
if ¢ is a corresponding eigenvector, then T(t)p = ey, and so T(t)¢ does not
decay as |t| — co. But there is a more subtle reason that prevents estimate (2.2.4)
from holding. Even if one removes the eigenvectors, that is, if one works in the
supplement (in L?) of the space spanned by the eigenvectors, then a resonance
effect can occur, even for short range (i.e., localized) potentials. The reader should
consult on that subject the very interesting papers of Rauch {300], Jensen and
Kato [197], and Murata [253].

REMARK 2.7.7. Estimates of the form (2.2.4) hold for the Schrédinger equation
with an external magnetic potential. See Chapter 9.

REMARK 2.7.8. In addition to the smoothing effects of Sections 2.3 and 2.5, a
third kind of smoothing effect was discovered. It says that for every ¢ € L2(RY),

then u(t) = JT(t)¢ belongs to Hllo/f(]RN for a.a. £ € K. 1t was discovered inde-
penJently by COnSTAnTtIT B Saut |94, 95, Sjolin [315], and Vega [351]. See also
Ben Artzi and Devinatz [21], Ben Artzi and Klainerman [22], and Kato and Ya-

jima {207] for further developments, as well as Kenig, Ponce, and Vega [211] for a
related smoothing effect. A typical result in this direction is the following (see Ben
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Artzi and Klainerman [22] for a rather simple proof): There exists a constant C
such that for every ¢ € L3(RY), u(t) = T(t)y satisfies

+o0 1 9 5
_ <
/_ / : I:16[2|Pu(t,:r)| dzdt < Cllgllzz,
RN

Where P = (I — A)!/4 is the pseudodifferential operator defined by Pu(¢) = (1 +
472|€|2)1/45(€). One can obtain similar estimates for the nonhomogeneous problem.
More precisely, if f € L%([0,T], L*(R")), then for every bounded open set B ¢ RY
u € L*([0,T),H/?(B)) (see Constantin and Saut [94, 95]). Therefore, there is
locally a gain of half a derivative. As a matter of fact, if one is willing to reverse
the time and space integrations, then the gain is one derivative. More precisely, if
{Qa}aczn is a family of disjoint open cubes of size R such that RV = Usezn Qo
then (see Kenig, Ponce, and Vega [212])

aseuZpN<//+oo|Vutx|dtdx> <CR Y (// tx|dtd:c>

a€ZN

See also Ruiz and Vega [306] for related estimates. Similar estimates hold for
A = A -V, under appropriate assumptions on the potential V' (see Constantin
and Saut [95]). Estimates of the above type are essential for solving the Cauchy
problem for quasi-linear Schrédinger equations (i.e., with nonlinearities containing
derivatives of u). See the comments and references in Section 9.5.
gty

REMARK 2.7.9. Strichartz’s estimates similar to those of Theorem 2.3.3 hold
in certain exterior domains @ C RY under the geometric assumption that € is
nontrapping. See Burq, Gérard, and Tzvetkov [47].

REMARK 2.7.10.  Strichartz’s estimates similar to those of Theorem 2.3.3 hold
for the Schrodinger equation on certain nonflat manifolds. See Burq, Gérard, and
Tzvetkov [49].



CHAPTER 3

The Cauchy Problem in a General Domain

In this chapter we consider a class of nonlinear Schréodinger equations in a
general domain Q@ C RY. In the case Q = RY, the Strichartz estimates are an
essential tool for the study of the Cauchy problem. In the case of a general domain
Q) ¢ RY, Strichartz’s estimates do not hold and fewer results are known. Our goal
is to obtain, using energy techniques, a rather general existence result of solutions
in the energy space, which can be adapted to many situations where local existence
in that space is known. There is a wide literature on this subject. The study of the
Cauchy problem in the energy space was initiated by Ginibre and Velo [133, 132]
for local nonlinearities, and by Ginibre and Velo [134] for nonlocal nonlinearities of
Hartree type.

In Section 3.1, we introduce various notions of solutions and in Section 3.2 some
typical examples of nonlinearities to which we will apply our results. In Section 3.3,
we prove our main local existence result and in Section 3.3, we establish some global
existence results via energy estimates. In Sections 3.5 and 3.6, we apply the results
of Sections 3.3 and 3.4 to the nonlinear Schrédinger equation in some subdomains
of R and R2. The results of Section 3.3 will also be applied in Chapter 9 to some
generalizations.

3.1. The Notion of Solution

In this section we make precise various notions of solution that we will use
throughout the text. Let  C RY and, given a nonlinearity g, consider the initial
value problem

iug + Au+g(u) =0
(3.1.1) ulon =0
u(0) = ¢.

In order to motivate our definitions, we first consider the model case of the pure
power nonlinearity g(u) = Alu|*u with A € R and o > 0; i.e., consider the model
equation

tug + Au+ Au/*u =0
(3.1.2) ulog =0
u(0) = p.
55
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We first observe that, multiplying the equation by %, integrating over Q, and taking
the imaginary part, we obtain formally the conservation of charge

d 2
(3.1.3) E/|u(t,x)] dz=0.
Q

Therefore, the L? norm of the solution is constant. Next, multiplying the equa-
tion by %, integrating over (2, and taking the real part, we obtain formally the
conservation of energy

(3.1.4) :tE( (t)) =0,
where the energy E is defined by
Bw) = [{F90@P - S .
Q

Finally, multiplying the equation by V7, integrating over (), and taking the real
part, we obtain formally the conservation of momentum

(3.1.5) ad—t Im/u(t, z)Vu(t,z)dz = 0
)

When N =1 and o = 2, equation (3.1.2) is completely integrable and there are
infinitely many conservation laws. When o = 4/N and © = RY, there is the
pseudoconformal conservation law (see Section 7.2). In general, however, the only
known conservation laws for (3.1.2) are (3.1.3), (3.1.4), and (3.1.5). Since (3.1.5)
does not involve any positive quantity, only (3.1.3) and (3.1.4) can possibly provide
useful estimates of the solutions.

The above conservation laws suggest two possible “energy spaces,” namely,
L?(9) associated with (3.1.3), and Hj () associated with (3.1.4). The point in
working in an energy space is that, if there is a “good” local existence result, then
the global existence of solutions follows from @ priori estimates. These in general
follow from the conservation of energy under some relevant assumptions on the
nonlinearity.

We will study the local Cauchy problem in L? in Chapter 4. For the moment, we
restrict our attention to solutions in H}(f2), and we make the following definition.

DEFINITION 3.1.1. Consider g € C(H(R2), H~1(Q)), » € H}(Q) and an interval
I30.

(i) A weak H}-solution u of (3.1.1) on I is a function
u € LI, Hy (@) nWH™(1, H1(Q))

such that ius + Au+ g(u) =0 in H™Y(Q) for a.a. t € I and u(0) = ¢.
(ii) A strong H}-solution u of (3.1.1) on I is a function

u € C(I,Hé(Q)) N Cl(I,H_l(Q))
such that fuy + Au+ g(u) =0 in H=1(Q) for allt € I and u(0) =
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REMARK 3.1.2. Here are some comments on Definition 3.1.1.

(i) The boundary condition u|sn =0 is included in the assumption u(t) € Hg ().

(i) If uw € Lo(I, H3(Q)) n Whe(I, H~1(Q)), then v € C(I, L*()) so that the
condition u(0) = ¢ makes sense.

(i) Let u € L®(I, H§(Q)). If g(u) € L™, H~*(N)) (which is automati-
cally the case if g : H3(Q) — H~'(€) is bounded on bounded sets), then
Au + g(u) € L®(I, H~1(Q)). Therefore, if u satisfies tu; + Au + g(u) =0
in the sense of distributions, then u € Wh°°(I, H=1(Q)). In addition, if
u € C(I, H}(Q)) satisfies tus + Au + g(u) = 0 in the sense of distributions,
then v € CY(I, H~1()).

(iv) We gave the definitions of weak and strong Hgj-solutions of the Cauchy
problem at ¢ = 0, i.e., with the initial condition «(0) = ¢. Of course, given
any to € R, one can give similar definitions for the Cauchy problem at t = {o,
i.e., with the initial condition u(tp) = ¢.

On applying the results of Section 1.6, we deduce the following property.

PROPOSITION 3.1.3. (DUHAMEL’S FORMULA)  Let I be an interval such that
0el;let ge C(H}Q),HRQ)) and ¢ € H(Q). If g is bounded on bounded sets
and v € L®(I, H}()), then u is a weak H}-solution of (3.1.1) on I if and only if

(3.1.6) u(t) =T(t)p+1 /Ot T(t— s)g(u(s))ds foraa. tel.

A function v € C(I, H}(R)) is a strong H}-solution of (3.1.1) on I if and only if
it satisfies (3.1.6) for allt € I.

We now introduce the notion of uniqueness in H1.

DEFINITION 3.1.4. Conmsider ¢ € C(H}(Q),H 1(2)). We say that there is
uniqueness in H' for problem (3.1.1) if, given any ¢ € Hg(Q) and any interval
1 3 0, it follows that any two weak Hj-solutions of (3.1.1) on I coincide.

Finally, we introduce the notion of local well-posedness for problem (3.1.1).

DEFINITION 3.1.5. Consider g € C(H3(2), H71(Q)). We say that the initial-
value problem (3.1.1) is locally well posed in H}(f2) if the following properties
hold:

(i) There is uniqueness in H' for the problem (3.1.1).
(ii) For every ¢ € HE(), there exists a strong Hg-solution of (3.1.1) which is
defined on a maximal interval (—Tmin, Tmax), With Tax = Tmax(¥) € (0, 00]
and Tmin = Tmin(p) € (0, OO]
(iii) There is the blowup alternative: If Thax < 0o, then limyrr, . u(®)|la =
+co (respectively, if Tinin < 00, then we have limq)_7, .. [|w(t)|| 3 = +00).
(iv) The solution depends continuously on the initial value; i.e., if ¢ el 4 in

H}(Q) and if I C (—Tmin(®), Tmax(¢)) is a closed interval, then the maximal
solution u,, of (3.1.1) with the initial condition u,(0) = ¢, is defined on T

for n large enough and satisfies u, — u in C(I, H}()).
n—oo
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REMARK 3.1.6. Here are some comments on Definition 3.1.5.

(i) The property that (—Tiin, Tmax) is the maximum interval of existence means
that if 7 5 0 is an interval such that there exists a strong HJ-solution
of (3.1.1) on I, then I C (—Trin, Tmax)-

(i) If Thax < oo (respectively, T, < o0), then by the blowup alternative
limrm,,,, [w(t)llgr = +oo (respectively, limy| 1, [lu(t)|| g1 = 4+00). In this
case, the solution u is said to blow up at Tiax (respectively, —Tiin). If
Tmax = 00 (respectively, Tmin = 00), the solution is said to be positively
(respectively, negatively) global. Note that in this case the blowup alterna-
tive does not say anything about the possible boundedness of ||u(t)|| g1 as
t — oo.

(iif) Note that the continuous dependence property implies that the functions
Timax and Tpin are lower semicontinuous H (Q2) — (0, 00].

(iv) There are various notions of well-posedness in the literature. We adopted a
quite strong notion of well-posedness by requiring uniqueness, the blowup
alternative, and continuous dependence.

3.2. Some Typical Nonlinearities

In this section, we introduce various classical models of nonlinearities.

ExamMPLE 3.2.1. The external potential. Consider a real-valued potential
V : Q — R. Assume that

(3.2.1) Ve LP(Q)
with

N
(3.2.2) p=>1, p>—2—.

Let g be defined by

(3.2.3) g(u) =Vu
for all measurable u : @ — C, and G be defined by
1
(3.2.4) G = / V(@) |u(z)[? dx
Q

for all measurable u :  — C such that V|u|? € L(£)). We have the following
result.

PROPOSITION 3.2.2. Let V satisfy (3.2.1) and (3.2.2), let g and G be defined
by (3.2.3) and (3.2.4), respectively, and set
2
(3.2.5) r= ;:"Ll .
The following properties hold:
(i) G € CYH}(Q),R), g € C(HLQ),H1(Q)), and G' = g.
i) 2<r< £ (2<r<ocoif N=1).
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(iii) g € C(L™(Q), L™ () and llg(u)ll < IViizellullzr for all u € LT(Q).

(iv) Img(u)@ = 0 a.e. in Q for all u € H5(Q).
PROOF. Part (ii) follows from (3.2.2) and (3.2.5). (iii) is a consequence of (ii)
and Hélder’s inequality. In particular, H}(Q) < L"(§2) and L7 () — H-Y(Q) by
Sobolev’s embedding theorem, which implies that g € C(H}(Q), H~1(Q)). Next,
it follows from Hélder’s inequality that 2||G(ul| < [[V|lze|lul%., so that G is well
defined on H} (). Furthermore,

1
Gl +0) = G(w) (o), o)1,y = 5 [ VIoP
Q
for all u,v € H}(Q), and one deduces easily that G € C1(H}(Q),R) and G’ = g.
Hence (i) is established. Finally, (iv) follows from the fact that V is real valued. [l

REMARK 3.2.3. Let V be a real-valued potential, V € LP(Q) + L>®(Q). If p
satisfies (3.2.2), then we may write V = V; + V;, where V) satisfies (3.2.2) and V5
satisfies (3.2.2) with p replaced by co. In particular, we may apply Proposition 3.2.2
to both V; and V.

EXAMPLE 3.2.4. 'The local nonlinearity. Consider a function f : @ xR — R such
that f(x,u) is measurable in z and continuous in u. Let F : @ x R — R be defined
by

(3.2.6) F(z,u) = /u f(z,8)ds forallu>0.
0

Assume that
(3.2.7) f(z,0)=0 foraa ze€,

and that for every K > 0 there exists L(K) < oo such that

(3.2.8) |f(z,u) = f(z,v)] £ L(K)|u — |
for a.a. £ € Q and all u,v such that |u|, |v] < K. Assume further that
L € C(]0,00)) ifN=1
(3.2.9) 4
L(t) <Ct®* with0< a < ifN>2.
N-2
Extend f to the complex plane by setting
(3.2.10) Fla,u) = I_ZT F(z,Ju) for allu € Cyu 0.
Finally, set
(3.2.11) g(u)(x) = f(z,u(z)) ae. in
for all measurable u :  — C, and
(3.2.12) Glu) = / F(z, [u(z)))dz
Q
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for all measurable u : Q@ — C such that F(-,u(-)) € L}(Q2). We have the following
result.

PROPOSITION 3.2.5. Let f satisfy (3.2.7), (3.2.8), and (3.2.9); let g and G be
defined by (3.2.10), (3.2.11), (3.2.6), and (3.2.12), and set
2 ifN=1
(3.2.13) r=
a+2 ifN>2
The following properties hold:
(i) G e CUHYQ),R), g€ C(HI(Q), HH()) and G’ = g.
(i) If N >2, then 2 <r < 255,
(iti) g € C(L"(Q), L™ ().
(iv) For all M > 0, there exists C(M) < oo such that ||g(u) — g(v)||,~ <
C(M)|lu—v|lzr for all u,v € H{(Q) with ||ul| g, |v||g < M.
(v) Img(u)z =0 a.e. in Q for all u € HA(R).

PROOF. (v) is an immediate consequence of (3.2.10). Let now K > 0, and let
u,v € C be such that |u|,|v| < K. Suppose for definiteness that |u| > |v|. It follows
from (3.2.7), (3.2.8), and (3.2.10) that

(3.2.14) F(@0)] < L],
On the other hand, we deduce from (3.2.10) that
lul [ol(f(z,u) = f(=,v)) = u|[f(=, [ul) — f(z, |v])]
+ [u(lv] = Jul + lul(v ~ v)]f (=, |v])
and so
lul [l | (2, u) = f(z,0)] < Jul fo] 1f (2, Ju]) — f(=, [v])] + 2lu] [u — o] | f(z, |v])|
< 3luf Pl L(K)u - o],
where we used (3.2.8) and (3.2.14) in the last inequality. Therefore, replacing L{K)
by 3L(K), we have
(3.2.15) |f(z,u) = f(z,v)] < L(K)|u — 0]
for all u,v € C such that |u|, |v] < K.

We first consider the case N > 2. (ii) follows from (3.2.9) and (3.2.13). In par-
ticular, H}(Q) — L"(2) by Sobolev’s embedding theorem. Therefore, by (3.2.15),
(3.2.9), and Hélder’s inequality,

lg(u) = gl < C(llullgr + llullg-)llu — vllz- .
Hence (iii) and (iv) are proven. Next, it follows from (3.2.7), (3.2.8), and (3.2.6)
that

(3.2.16) [f(z,w)] < Clul™™",  [F(z, |u)| < Clul”,
so that G is well defined on H}(2). We now deduce from (3.2.6) and (3.2.16) that

lutv|
|G(u +v) G(u]—l//I ’ flz,s)dsdz <C/]v| lul + o))"




3.2. SOME TYPICAL NONLINEARITIES 61

so that G € C(HA(R),R). Fix now u,v € H}(Q). Given 0 < t <1, (3.2.16) implies
that

%[F(x,u +tv) — F(z,u) — t Re(f(z, WD) < Clol(jul + o)™ € L}Q).
Since clearly
%[F(m,u +tv) — F(z,u) — t Re(f(z, u)T)] Ty 0,

it follows from the dominated convergence theorem that

G+ 1) — Gla) — (9(u),0) -1 3] = 0.

Therefore, G is gateaux differentiable and G’ = g. Since g € C(H(Q2), H~1()),
(i) follows.
We finally consider the case N = 1. Since H}(Q) — L*(Q), we deduce
from (3.2.15) that, after possibly modifying the function L,
lf(xau) - f(:L‘,’U)I < L(M)lu - 'U|

for all u,v € H(9) such that [ju||z1,||vljz1 < M. The rest of the proof is then an
obvious modification of the argument used in the case N > 2. O

REMARK 3.2.6. A typical f to which we may apply Proposition 3.2.5 is f(u) =
lul*u with 0 < a < 2% (0< a < oo if N =1).

REMARK 3.2.7. Let g(u) = f(-,u(-)), where f satisfies (3.2.7) and (3.2.8) with

L(t) € C([0,00)) ifN=1
(3.2.17) 4
L(t)SC(l+t°‘)withO§a<N if N >2.
If N > 2, define the functions f; and f; by
flz,u) H0<u<l
fl(x7u) = .
flz,1) fuzx1
and
fals ) 0 ifo0<u<l1
T,U) =
’ flz,uw) — f(x,1) ifu>1.

We have f = f1 + f2, and fi and f> both satisfy (3.2.7). Furthermore, one easily
verifies that f; satisfies (3.2.8) and (3.2.9) with « replaced by 0 and that f> satis-
fies (3.2.8) and (3.2.9) with o as in (3.2.17). In particular, we can write g = g1 + g2
where both g; and go satisfy the assumptions of Proposition 3.2.5.

EXAMPLE 3.2.8. The Hartree nonlinearity in RY. Let @ = RN and consider a
real-valued potential W : R — R. Assume that

(3.2.18) W e LP(RY)
for some

N
(3.2.19) p>1, p>1,
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and

(3.2.20) W is even.
Let g be defined by

(3.2.21) g(u) = (W |u>)u

for all measurable u : RN — R such that W « |u|? is measurable, and let G be
defined by

(3.2.22) Glu) = % / (W 5 [uf?) (2) [u(z)[? dz
RN

for all measurable u : RY — R such that (W  |u|?)(z)|u(z)|? is integrable. We
have the following result.

PROPOSITION 3.2.9. Let W satisfy (3.2.18), (3.2.19), and (3.2.20), and let g and
G be defined by (3.2.21) and (3.2.22), respectively. Set

4p

(3.2.23) reo g

Then the following properties hold:
(i) Ge CYHYRY),R), g€ C(H}RY), H-Y(R"N)), and G' = g.
() 2<r<#5 (2<r<ooif N=1).
(ili) g € C(L"(RY), L7 (RV)).

(iv) For all M > 0, there exists C(M) < oo such that ||g(u) — g(v)|,~ <
C(M)||u— vz~ for all u,v € HY(RN) with ||ul|pr, |Jv]lz- < M.

(v) Img(u)i =0 a.e. in RN for all u € RV,

PROOF. Part (ii) follows from (3.2.19) and (3.2.23). Next, we deduce from
(3.2.19), (3.2.23), and Holder and Young’s inequalities that

(W (wo)wll g <IWlze ull o o] - flw] - -

Statements (iii) and (iv) follow easily. On the other hand, we deduce in particular
from (ii) that H*(RV) — L™(RV) and L™ (RVY) — H~1(RN) by Sobolev’s embed-
ding theorem, which implies that g € C(H'(RN), H~1(RYN)). It also follows from
Hoélder and Young’s inequalities that '

(3.2.24) /(W* (uo))wz < Wlizellull e ol - llwll - [ 2] -,
RN
so that G is well defined H!(R™) — R. Since W is even, we see that

[ sop =R[<W*w>w.

RN
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Therefore,
G(u+v) — G(u) — (9(u), v)g-1,13 =
oy [ [ul® + Jvf? - _ _
(W * |v]9) T + Re(u?) | + [ (W % Re(u?)) Re(u?) .
RN RN
Applying now (3.2.24), we obtain
|G(u +v) = G(u) = (9(w), ) p-1,m3] < CIW|z» (lullZ- + IWIZ-) I0IIZ-

and so G € CY{H'(R"),R) and G’ = g. This proves (i). Assertion (v) follows from
the fact that W is real valued. |

REMARK 3.2.10. Let W be an even, real-valued potential, W € LP(Q2) + L*°(Q2).
If p satisfies (3.2.19), then we may write W = Wi 4+ Ws, where W satisfies (3.2.19)
and W, satisfies (3.2.19) with p replaced by co. In particular, we may apply Propo-
sition 3.2.9 to both W; and Ws.

ExaMPLE 3.2.11. Let
g(w) = Vu+ f(,u(-) + (W * [u[})u,
where V, f, and W are as follows:

e V is a real-valued potential, V € LP(RM) + L*®(RY) for some p > 1,
p> N/2.

e f: RN xR — R is measurable in z € RY and continuous in u € R and
satisfies (3.2.7), (3.2.8), and (3.2.17). f is extended to RY x C by (3.2.10).

e W is an even, real-valued potential; W € LI(RY)+ L®(R™) for some ¢ > 1,
g > N/4.

Applying Remarks 3.2.3, 3.2.7, and 3.2.10, we see that we may write
g=g1+-+gs,
where each of the g;’s satisfies the following conditions:
(i) g; = G for some G; € C*(H'(RV),R),
(i) g; € C(L™s(RN), L3 (RY)),
(iii) for every M < oo, there exists C(M) < oo such that |g;(v) — gj(u)HLT; <
C(M)||v — ull g for all u,v € HY(RY) such that |jullm + ||v||g < M,
(iv) Im(g;(u)@) =0 a.e. in RY for every u € H*(RY)

for some r; € [2, 25) (r5,p; € [2,00] if N =1).
3.3. Local Existence in the Energy Space

We begin with an abstract result for which we use the notation introduced in
Section 1.6.

THEOREM 3.3.1. Let X be a complex Hilbert space with the real scalar product
(-,-)x. Let A be a C-linear, self-adjoint, < O operator on X with domain D(A).
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Let X4 be the completion of D(A) for the norm ||z|l%, = lz|% — (Az,2)x, X} =
(Xa)*, and A be the extension of A to (D(A))*. Finally, let T(t) be the group
of isometries generated on (D(A))*, X4, X, Xa, or D(A) by the skew-adjoint
operator iA. Assume that g : X — X is Lipschitz continuous on bounded sets of
X and that there exists G € C'(X4,R) such that G'(z) = g(z) for all z € Xa4.
Assume further that

(3.3.1) (9(z),ix)x =0 foralze X.

Forxz e X4, set
1 1
(3.3.2) E(z) = §(H$H§<A —llzl%) - G(=) = —5{4z,2)x — G(2)

so that E € CY(X4,R) and E'(z) = —Az—g(z) € X}, for everyz € X 4. It follows
that, for every x € X, there exists a unique solution u of the problem

u € C(R, X)NC(R, (D(A))),

d _
(3.3.3) id—"t‘ +Au+g(u)=0 foralltcR,
u(0) = z.

In addition, the following properties hold:

(i) llu®)llx = ||lz||x for everyt € R (conservation of charge).
(ii) Ifz € X4, thenu € C(R,X4)NCYR, X}) and E(u(t)) = E(z) for every
t € R (conservation of energy).
(iii) If z € D(A), then also u € C(R, D(4)) N C(R, X).
PROOF. We proceed in five steps.

STEP 1. It is well known that for every z € X, there exists a unique, maximal
solution u € C((T1,T3), X) of (3.3.3), 71 < 0 < T». u is maximal in the sense that
if |T3| < oo (for i = 1,2), then |ju(t)[x — oo as t — T;. In addition, if z € D(A),
then u € C((T1,T2), D(A))NC*((T1,T3), X). Furthermore, u depends continuously
on z in X, uniformly on compact subsets of the maximal existence interval. This
follows essentially from Segal [309] (see Cazenave and Haraux [64, 65], Brezis and
Cazenave [44], and Pazy [294]).

STEP 2.  Assume z € D(A), and take the scalar product of the equation with
iu. We obtain that

(ug, u)x = (fuyg, tu)x = —(Au,u)x — (g(u),iu)x .

The first term of the right-hand side vanishes by self-adjointness, and the second
by (3.3.1). Therefore,

d
S (e = 2w w)x = 0.
Hence the conservation of charge follows. Multiplying the equation by u;, we obtain
0 = (tug, ur)x = (—Au,u)x — (g(u),us)x -

Therefore,

(3.3.4) %E(u(t)) =0.
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This establishes the conservation of energy.

STEP 3. By Step 2 and continuous dependence, we obtain conservation
of charge when = € X. Therefore [lu(t)||x is uniformly bounded on the maximal
existence interval, and so the solution exists on (—o0, 00). Hence (i) and (iii) follow.

STEP 4. Let z € X4, and let z,, € D(A) converge to z in X4 as n — co. We
denote by u, the solution of (3.3.3) with initial value z,. By (i), un is bounded in
L*(R, X), and so G(uy) is uniformly bounded. We deduce from the conservation
of energy (3.3.4) that uy, is bounded in L*°(R, X 4), and from the equation that
(un): is bounded in L(R, X%). On the other hand, it follows from continuous
dependence that for every t € R, un(t) — u(t) as n — oo, strongly in X, hence
weakly in X 4. Therefore, u € L®(R, X ) N Wh°(R, X}) and E(u(t)) < E(z) for
every t € R.

STEP 5. Let t € R, let y = u(t), and let v be the solution of (3.3.3) with
initial value y. We deduce from Step 4 that E(v(—t)) < E(y). On the other hand,
v(—t) = z by uniqueness so that E(u(t)) = E(z) for every t € R. Hence there
is conservation of energy. In particular, the function ¢ — [lu(t)||%, is continuous.
Since u : R — X4 is weakly continuous, we obtain u € C(R,X4), and so u €
C*(R, X%) by the equation. Hence (ii) is proven. d

REMARK 3.3.2. Note that the assumption (3.3.1) is only needed to ensure con-
servation of charge, which implies that all solutions of (3.3.3) are global. Without
that assumption, we would have a local version of Theorem 3.3.1 (without the
conservation of charge).

Theorem 3.3.1 is not applicable in general for solving the local Cauchy prob-
lem in the energy space for the nonlinear Schrodinger equation (3.1.1) for “large”
nonlinearities. Indeed, we must take X = L?(f2), and so we need g to be locally
Lipschitz continuous on L2(2). If g is of the form g(u)(z) = f(u(z)) for some func-
tion f : C — C, then f needs to be globally Lipschitz continuous, and in particular
sublinear. Thus, we need to improve Theorem 3.3.1 under weaker assumptions on g.

We now use the notation of Chapter 2. In particular, Q is an open subset of
RN, A is the Laplacian with Dirichlet boundary conditions, and so X = L?(Q),
X4 = H}(Q), and X3 = H™1(92). We want to go as far as possible under fairly
general assumptions on g. The main results of this section are Theorems 3.3.5
and 3.3.9. In Theorem 3.3.5, we show the existence of local weak H(} solutions. In
Theorem 3.3.9, we show the local well-posedness of the Cauchy problem in H{ (),
provided we have the “a priori” information that solutions are unique. The reason
we proceed that way is that in order to apply Theorem 3.3.9, we will only need to
show uniqueness, and the known techniques for proving uniqueness depend heavily
on the the type of nonlinearity and on geometric properties of 2.

‘We make the following assumption on the nonlinearity g:

(3.3.5) g=G' for some G € C'(Hj(),R).

In particular, g € C(H}(Q), H™*(R)). We assume that there exist r,p € [2, 25%5)

(r,p € [2,00] if N = 1) such that

(3.3.6) g € C(HHQ),L” ()
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and such that for every M < oo there exists C(M) < oo such that
(3.3.7) lg(v) = g(u)ll o < C(M)|lv —uf -

for all u,v € Hg(Q) such that [|ullg: + [|v]| 2 < M. Finally, we assume that, for
every u € H}(Q),

(3.3.8) Im(g(u)T) =0 a.e.in .
We define the energy F by

(3.3.9) E(u) = %/IVulzdx — G(u) for every u € H}(Q),
Q

so that £ € C'(Hg(Q),R) and E'(u) = —~Au — g(u) for every u € HL(Q).

REMARK 3.3.3.  Assumptions (3.3.5)-(3.3.8) deserve some comments. The energy
space being here Hg(9), it is natural to require that g : H}(Q) — H-1(Q), as
the Laplacian does. The assumption that g is the gradient of some functional G is
stronger. It allows us to define the energy, and the conservation of energy is essential
in our proof of local existence. Note that most of the classical examples from
theoretical physics possess this property. However, in the case of local nonlinearities
in @ = RY, local existence can be proved without conservation of energy (see
Kato [203, 204, 205, 206] and Chapter 4). Assumptions (3.3.6) require that g is
slightly better than a mapping Hg(Q2) — H~1(), and assumption (3.3.7) is a type
of local Lipschitz condition. Finally, assumption (3.3.8) implies the conservation of
charge. It is essential for our proof, but may be replaced by other hypotheses on g
with different proofs (see Kato [203, 204, 205, 206], and Cazenave and Weissler [68]).

REMARK 3.3.4.  Note that all the nonlinearities introduced in Section 3.2 satisfy
the assumptions (3.3.5)—(3.3.8).

We begin with the following result.

THEOREM 3.3.5. Let g = g1 + -+ + gk, where each of the g;’s satisfies the as-
sumptions (3.3.5)~(3.3.8) for some exponents rj,p;. Set G = Gy +--- + Gy and
E = FEy +---+ Eg. For every M > 0, there exists T(M) > 0 with the follow-
ing property. For every ¢ € HL(Y) such that ||pllgr < M, there erists a weak
H§-solution u of (3.1.1) on I = (=T(M),T(M)). In addition,

(3.3.10) lull Lo ((~r(an),reanyy 1y < 2M .
Furthermore,

(3.3.11) lu@lzz = ez,
(3.3.12) E(u(t)) < E(p),

forallt e (-T(M),T(M)).

Before proceeding to the proof of the proposition, we establish two elementary
lemmas.
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LEMMA 3.3.6. Let I C R be an interval. It follows that for every u €
L=(I, H3 () N Whe (I, H™H(Q)),

lu(t) = u(s)l|L2) < Clt — 5|t foralls,tel,

where C = max{||ul|poe 1,51y, 1% Loe (1,5-1) }-

PrROOF. The result is a consequence of Remark 1.3.11 applied with X = H~1(Q)
and p = oo, and of the inequality ||v]|3, < lvller-1lvll gz (see Remark 1.3.8(iii)). O

LEMMA 3.3.7. Ifg satisfies (3.3.5)~(3.3.8), then, after possibly modifying the func-
tion C(M),

(3.3.13) lg(v) — g(w)ll < C(M)|lv—ul|ie,
(3.3.14) IG(v) = G(u)| < C(M)|lv = ul},

for every u,v € HL(Q) such that |ull g + vz < M, witha=1-N(3 - 1) and
b=1-N(3-1).

o

ProOF. (3.3.13) follows from (3.3.7) and from Gagliardo-Nirenberg’s inequality
lwliz- < Cllwllz* llwllz

(3.3.14) follows from the identity
' d
G(v) — Gu) = / —G(sv+ (1 —s)u)ds
o ds

= /l<g(sv + (1= 8)u),v—u)po 1o ds
0

and the inequality
—b
lwllze < Cllwljslwllzs -

|

PrROOF OF THEOREM 3.3.5. We give the proof in the case where g satis-
fies (3.3.5)—(3.3.8). The proof in the case g = g; + - -+ + gx is trivially adapted.

The proof proceeds in three steps. We first approximate g by a family of
nicer nonlinearities for which we may apply Theorem 3.3.1 in order to construct
approximate solutions. Next, we obtain uniform estimates on the approximate
solutions by using the conservation laws. Finally, we use these estimates to pass to
the limit in the approximate equation.

Note that the proof of Theorem 3.3.5 requires at some stage a regularization
procedure. Indeed, construction of solutions could be made, under appropriate
assumptions on g and in the case {2 = R¥, by a fixed point argument (see Kato [203,
204, 205, 206], Cazenave and Weissler [70]). However, the energy inequality (3.3.12)
is obtained, at least formally, by taking the scalar product of the equation with tu,.
Note that for a solution with values in H}(Q), u; is only in H~1({), and so one
cannot multiply the equation by u;. Hence the necessity of the regularization.

Now, in principle, we have the choice on the type of regularization. For a given
type of nonlinearity, a natural regularization appears, but which is of a different
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nature according to the nonlinearity. For example, for a local nonlinearity (Exam-
ple 3.2.4), the most appropriate thing to do would be to truncate f for large values
of u. For a linear potential (Example 3.2.1), it would be natural to truncate the
potential; and for a Hartree type nonlinearity (Example 3.2.8) it would be natural
to use the convolution with a sequence of mollifiers. Since we want a proof that
applies to these different nonlinearities, and that works as well when Q = RN or
when € is bounded, we find it convenient to regularize the nonlinearity by applying
(I —eA)™1,

We obtain estimates on the approximate solutions by using the conservation
of energy for the approximate problem. For that purpose, we need g to be the
gradient of some functional G (assumption (3.3.5)).

As usual, the difficulty is to pass to the limit in the nonlinearity. The crux is
that for the limiting problem there is conservation of charge (Lemma 3.3.8). Note
that there is necessarily a little bit of technicality at that point. Indeed, we make a
local assumption on g (assumption (3.3.8)), we apply a global regularization, and
eventually we recover a local property at the limit. This seems rather unnatural,
but there does not seem to be any obvious way of avoiding that difficulty.

From now on, we consider ¢ € H}(Q2) and we set M = ||| 1.

STEP 1. Construction of approximate solutions. Given a positive integer m,

let
1 ~1
Jm = (I — —A) .
m

In other words for every f € H=Y(Q), J,,f € H}(Q) is the unique solution of the

equation
1 _ i 1
u——aAu—f in H7*(Q).

We summarize below the main properties of the self-adjoint operator J,, (see Sec-
tion 1.5).

(3.3.15) 1Tl car-1,m3) < m,
(3.3.16) | Jmllczr,zry <1 for1 < p < oco.

Moreover, if X is any of the spaces H} (), L2(Q), or H~1(£2), then

(3.3.17) Nmllex,x) <1,
(3.3.18) Jpu — wuwin X for all u € X,
m—o0

(3.3.19)  if sup |lum|x < o0, then J,upm — Uy — 0in X as m — .
m

We define
gm(u) = Jm(9(Jmu)) and Gp(u) = G(Jnu) for every u € H&(Q) .

It is clear from (3.3.15) that the above definitions make sense. It is easy to verify
by using (3.3.15) and (3.3.7) that g, is Lipschitz continuous on bounded sets of
L?(), and by (3.3.15) and (3.3.5) that G,, € C*(H}(Q),R) and G!, = g. In
addition, we deduce easily from (3.3.8) that, for every u € L%(Q),

(gm(w),iu)r2 = (9(Jmu), iJmu)r2 = 0.
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Therefore, we may apply Theorem 3.3.1. Hence there exists a sequence (u™)meN
of functions of C(R, H}(Q)) N CHR, H~1(Q)) such that

™ + Au™ + gp(u™) =0
(3.3.20) { wm(0) = .
Furthermore,
(3.3.21) lu™ (@)l 2 = lleell 2
and
(3.3.22) %/[Vum(tﬂ?dx - G(u™(t)) = %/|th|2dz — Gm(p)
0 Q
for all t € R.

STEP 2. Estimates on the sequence u™. We denote by C(M) various con-
stants depending only on M. Let

(3.3.23) Om =sup {7 > 0: |[u™(t)|g: <2M on (-7,7)}.
Note that, by (3.3.17) and (3.3.16),

(3.3.24) gm satisfies (3.3.6) and (3.3.7) uniformly in m € N.
Therefore, by (3.3.20),

(3.3.25) sup 1l Los (=m0, 2i-1) < C(M) .

1t follows from (3.3.23), (3.3.25), and Lemma 3.3.6 that
(3.3.26) [u™(t) — u™(s)||2 < C(M)|t — 5| for all s,t € (—Opm, bm) -
Applying (3.3.21), (3.3.22), (3.3.24), (3.3.14), (3.3.23), and (3.3.26), we obtain
u™ O < llelzz + Vel + 2|Gm(u™ () — Gm(e)]

< llelzn +Cc@Dj
for all t € (—0m, 0m). If we define T(M) by

(3.3.27)

then
lw™ Lo ((-T,1),11) < 2M
for T = min{T(M), 6.}, by (3.3.27). This implies that T(M) < 6,,, and so

(3.3.28) ™| Lo (-7 (a), m 000y, 11y < 2M
and by (3.3.25),
(3.3.29) luz*l Loe ((~T a0y, (0, H-1) < C(M).

STEP 3. Passage to the limit. By applying (3.3.28), (3.3.29), and Proposi-
tion 1.3.14, we deduce that there exist

u € L®((~=T(M),T(M)), Hg(Q)) n WH((=T (M), T(M)), H}(2))
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and a subsequence, which we still denote by (u™), such that, for all t €
[-T(M), T(M)],

(3.3.30) u™(t) = u(t) in H3(Q) as m — .

In addition, by (3.3.28), (3.3.29), Lemma 3.3.6, (3.3.24), and (3.3.14), g, (u™) is
bounded in C%%((-T(M), T(M)), L* (€2)). Therefore, we deduce from Proposi-
tion 1.1.2 that there exist a subsequence, which we still denote by (g, (u™)), and
f € CO%((-T(M), T(M)), L (Q)) such that, for all t € [-T(M), T(M)],

(3.3.31) gm(u™(t)) = F(t) in LF () as m — oo.

On the other hand, it follows from (3.3.20) that for every w € H(Q) and for every
¢ € D(—T(M)7T(M))7

T(M)
/ [—(ium, w)H_lyHé #'(t) + (Au™ + gm(u™), w>H—l’Hé ¢(t)]dt =0.
-T(M)

Applying (3.3.30), (3.3.31), and the dominated convergence theorem, we deduce
easily that

T(M)
[ ) sy 810) + (B fr) s g 6(0) e = 0.
~T(M)

This implies that u satisfies

(3.3.32)
u(0) = o,

where the first equation holds for a.a. ¢t € (—T'(M),T(M)). Now the crux of the
proof is the following result.

{iut+Au+f=O,

LEMMA 3.3.8. For allt € (=T (M), T(M)), Im(f(t)u(t)) =0 a.e. on Q.

Proor. It suffices to show that for every bounded subset B of (2,

<f(t)|Bviu(t)|B>Lp’(B)’Lp(B) =0.

To see this, we omit the time dependence and we write

(i) 1o iy o) = (F = I (™) 1) + (T (Frut™) — g(Tut™), i)
+ {g(Jmu™),i(u ~ u™)) + (g(Jmu™), i(u™ — Jnu™))
+ (g(Jmu™), iJmu™)
-— a+b+ct+d+e.
m—co

Note first that J,,g(Jmt™) = gm(u™) = f in L° (€2), hence in LP'(B). Therefore,
a = 0. Next, observe that g(J,,u™) is bounded in L* (). It follows from (3.3.19)
and (3.3.16) that Jmg(Jmu™) — g(Jmu™) — 0 in H~1(), hence in L? (B). There-
fore, b = 0. Since u™ — u in H}(Q), we have u™ — u in L?(B). Since g(J,u™)
is bounded in L? (B), we deduce that ¢ = 0. By (3.3.19), u™ — Jpu™ converges
weakly to 0 in H}(£2). It follows that u™ — J,,u™ — 0 in L?(B). Since g(J,u™)
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is bounded in L* (B), we obtain d = 0. Finally, e = 0 by (3.3.8), and the result
follows. O]

END OF THE PROOF OF THEOREM 3.3.5. Taking the H~! — H} duality product
of the first equation in (3.3.32) with iu, we find

Ed.i”u(t)”gg =0 forall t € (~T(M),T(M))

and so

(3.3.33) lu(®)lize = lleliz2 -

It follows from (3.3.21), (3.3.33), and Proposition 1.3.14(ii) that

(3.3.34) u™ —u  in C([-T(M), T(M)],L*(Q)).

Applying (3.3.28), (3.3.34), and Gagliardo-Nirenberg’s inequality, we deduce that
(3.3.35) u™ —u in C([-T(M),T(M)], LP())

for every 2 < p < 2. It follows easily from (3.3.7), (3.3.16), (3.3.18), and (3.3.35)
that

gm(u™(8)) = 9(u(t)) = Im[(9(Imum(t)) — g(Jmu(t))]
+ Im[g(Tmu(t)) — g(u(t))] + Jmg(u(t)) — g(u(?))
—% 0
in LF(Q) for all t € (=T(M),T(M)). Therefore, f = g(u) and so u satis-
fies (3.1.1). (3.3.10) follows from (3.3.28) and (3.3.11) from (3.3.33). It remains to
prove (3.3.12). This is a consequence of (3.3.22), the weak lower semicontinuity of
the Hl-norm, and the fact that G,,(u™(t)) — G(u(t)) as m — oo. This completes
the proof. O

We now show that the initial-value problem (3.1.1) is locally well posed in
HL(Q), provided we have the a priori information that weak H} solutions are
unique.

THEOREM 3.3.9. Let g = g1+ - -+gi where each of the g; ’s satisfies (3.3.5)—(3.3.8)
for some exponents r;, pj; and set G = Gy + -+ Gy and E = Ey + -+ + E.
Assume, in addition, that there is uniqueness for the problem (3.1.1). It follows
that (3.1.1) is locally well posed in H{(SY), and that there is conservation of charge
and energy; i.e.,

luze = llellL:  and E(u(t)) = E(p)
for all t € (—Timin, Tmax), where u is the solution of (3.1.1) with the initial value
¢ € Hy().
ProorF. The proof proceeds in three steps. We first show that the solution u given

by Theorem 3.3.5 belongs to
C((-T(M),T(M)), H5()) N CH((-T(M),T(M)), H(Q)),
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and that there is conservation of energy. Next, we consider the maximal solutions
and show that Tiin and Timax satisfy the blowup alternative. Finally, we establish
continuous dependence.

STEP 1. Regularity. Let I be an interval and let
uwe L®(I,Hg(Q)) nWhe(1, H7Y(Q))

satisfy 4uy +Au+g(u) = 0 for a.a. t € I. We claim that u satisfies both conservation
of charge and energy, and that

U € C(I,H&(Q)) nCc(I, H Q).
To see this, consider
M = sup{|ju(t)||g1, t € I},

and let us first show that ||u(t)|| ;2 and E(u(t)) are constant on every interval J C I
of length at most T'(M), where T(M) is given by Theorem 3.3.5. Indeed, let J be
as above and let 0,7 € J. Let ¢ = u(o) and let v be the solution of (3.1.1) given
by Theorem 3.3.5. v(- — o) is defined on J and, by uniqueness, v(- — o) = u(-) on
J. Applying (3.3.11) and (3.3.12), we deduce in particular that

(3.3.36) (T2 = llu(o)l2,  E(u(r)) < E(u(0)).

Let now ¢ = u(7) and let w be the solution of (3.1.1) given by Theorem 3.3.5.
w(- — 1) is defined on J and, by uniqueness, w(- — 7) = u(-) on J. From (3.3.12),
we deduce in particular that

E(u(0)) < E(u(7)).

Comparing with (3.3.36), we see that both ||u(t)||z2 and E(u(t)) are constant on
J. Since J is arbitrary, we have

(3.3.37) Nu(t)lire = llu(s)llez, E(u(t)) = E(u(s)) for all s,t € I.

Furthermore, note that by Lemma 3.3.6, u € C%/2(T, L?(f2)), and so the function
t — G(u(t)) is continuous I — R by Lemma 3.3.7. In view of (3.3.37), this implies
that ||u(t)]| g is continuous I — R. Therefore, u € C(I, H}()), and, by the
equation, u € CY(I, H~1(Q)).

STEP 2. Maximality. Consider ¢ € H}(Q) and let
Tmax () = sup{T > 0 : there exists a solution of (3.1.1) on [0, 7]},
Tmin(p) = sup{T > 0 : there exists a solution of (3.1.1) on [-T,0]}.
It follows from Step 1 and the uniqueness property that there exists a solution
u € C((~Tmin» Tmax)s H (2)) N CH{((—Timin, Tmax), H~H(R))

of (3.1.1). Suppose now that Tiax < 00, and assume that there exist M < oo and
a sequence t; T Tmax such that |ju(t;)||z: < M. Let k be such that tx + T(M) >
Tmax(). By Theorem 3.3.5 and Step 1, and starting from u(ty), one can extend u
up to t + T(M), which contradicts maximality. Therefore,

”u(t)”H1 — 00 ast ] Tiax-



3.3. LOCAL EXISTENCE IN THE ENERGY SPACE 73

One shows by the same argument that if Tiin(p) < 0o, then
lu(@)lz — o ast | —Thmin -

Therefore, so far we have established the existence of a maximal solution, the
blowup alternative, and the conservation of charge and energy.

STEP 3. Continuous dependence. Suppose @, — ¢ in Hi(Q) and let
M = 2sup{||lu®)||g : t € [-T1,T2]}.

Since ||gmllgr < M for m large enough, [—T(M),T(M)] C (~Tmin(#)s Tmax(¥))-
Thus u., is bounded in

L ((—T(M), T(M)), Hy () nWHS((=T(M), T(M)), H(Q)).

Applying the argument of Step 3 of the proof of Theorem 3.3.5, we obtain that
U — uin C([-T(M), T(M)], L*(2)). By Lemma 3.3.7 and conservation of energy,
this implies that ||um, || g1 converges to ||ul| g1 uniformly on [-T'(M), T(M)]. Apply-
ing Proposition 1.3.14(iii), we deduce that u,, — u in C([-T(M), T(M)], Hy(Q)).
Since T(M) depends only on M, we may repeat this argument to cover the interval
[~T4,T>]. This completes the proof. 0

REMARK 3.3.10. By Theorem 3.3.9, if g is a finite sum of terms g;, where each
of the g;’s satisfies the assumptions (3.3.5)~(3.3.8) for some exponents r;, p;, then
problem (3.1.1) is well posed in H}(f) provided there is uniqueness. Unfortu-
nately, the techniques that are used to prove uniqueness depend on the problem
(see the following sections). However, we give below a general sufficient condition
for uniqueness.

COROLLARY 3.3.11. Let G € C1(H(Q),R) and let g = G'. Assume that g(0) €
L%(Q) and that there exists C(M) for every M such that

(3.3.38) lg(v) — g(u)llz> < C(M)|lv — ul|re

for allu,v € H(Q) such that ||u g1 +|jv|| g1 < M. Assume further that Im g(u)@ =
0 a.e. for every u € HY(Q). It follows that the conclusions of Theorem 3.3.9 hold.

PRrROOF. We need only show uniqueness. Let I be an interval containing 0, let

¢ € HAQ), and let ug,us € L®(I, H}(Q)) N Wh(I, H=1(£2)) be two solutions
of (3.1.1). It follows from Remark 1.6.1(iii) that

t
ug(t) —ui(t) = z/ T(t — s)(g(ua(s)) — g{ui(s)))ds forallt e I.
0
Therefore, there exists a constant C such that
t
fuz(t) — wa(®)lire < C/ lluz(s) — ui(s)|r2 ds,
0
and the result follows from Gronwall’s lemma. O

REMARK 3.3.12. Theorem 3.3.9 (and also Corollary 3.3.11) is stated for one
equation, but the method applies as well for systems of the same form. More
precisely, consider an integer g > 1 and set H3 = (H(Q)*, H~! = (H~1(Q))~,
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and LP = (LP(Q))*. Let (au)1<e<p, (Be)1<e<, be two families of real numbers such
that oy # 0 and B, # 0 for every 1 < £ < p. Set AU = (a1Auy,...,a,Au,) for
U= (u,...,u,) € H, and BU = (Brug, ..., Buuy) for every U € C*. Suppose
g = g1+ -+ gk, where each of the g;’s satisfies the assumptions (3.3.5)~(3.3.8) for
some exponents 7, pj, but with H(Q), H~1(Q), LP(Q) replaced by H}, H™!, LP.
It follows that the conclusions of Theorem 3.3.5 and, under uniqueness assumption,
those of Theorem 3.3.9 hold for the system

U(0) = &,

where ® is a given initial value in H}.

REMARK 3.3.13.  Let g be as in Theorem 3.3.9. Consider ¢ € Hg (), and let u be
the maximal solution of (3.1.1). Let 4™ be the approximate solutions constructed
in Step 1 of the proof of Theorem 3.3.5. Following the argument of the proof of
Theorem 3.3.9, one shows easily that u™ — u in C([S,T], H}(Q)) as m — oo for
every interval [S, T} C (—Tmin, Tmax)-

3.4. Energy Estimates and Global Existence

Given g as in Theorem 3.3.5, there exists a local weak H}-solution of the
problem (3.1.1) for every initial value ¢ € HJ(Q2). In this section we use the
conservation of charge (3.3.11) and the energy inequality (3.3.12) to show that,
under appropriate assumptions on the nonlinearity g, there exists a global solution
of (3.1.1) for some (or every) initial value ¢ € H}(Q). Our first result is the
following.

THEOREM 3.4.1. Let g be as in Theorem 3.3.5. Assume further that there exist
A>0,C(A) >0, and € € (0,1) such that

1—
2

for all u € HF(Q) such that |juflpz < A. If ¢ € H}(Q) satisfies |lpllz: < A4,
then there exists a (global) weak H§-solution u of (3.1.1) on R. In addition, u €
L®(R,H§(Q)) and u satisfies the conservation of charge (3.3.11) and the energy
inequality (3.3.12) for allt € R.

(3.4.1) Glu) < —=jul%n + C(A)

PROOF. Let I 3 0 be an interval of R. Consider a weak H-solution u of (3.1.1)
on I. Assume that u satisfies the conservation of charge (3.3.11) and the energy
inequality (3.3.12) for all t € I. Since

()3 = Bu(®) - 26((®) + fu(®) |2,
we deduce from (3.3.11) and (3.3.12) that
lu®) I < llelin —2G(9) +2G(u(t)) forallte .
Assuming ||¢||z2 < A, we deduce from (3.4.1) that

lu@ 1 < llellin —26(0) + (1 = )llu@®)lFn +2C(l¢lze)
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and so
(3.42) )z < = [||<PIIH1 - 2G(p) +2C(|lpllz2)] foralltel.

We observe that the right-hand side of (3.4.2) depends on the initial value ¢ but
neither on ¢t nor on the weak Hg-solution u.
We now proceed as follows. Let ¢ € H}(Q) satisfy ||p|l2 < A and set

- %\/Mgp ~ 2G(p) + 2C([l¢ll 12) -

Since in particular ||¢||z: < M, it follows from Theorem 3.3.5 that there exists a
weak Hj-solution u of (3.1.1) on [0, T'(M)] which satisfies (3.3.11) and (3.3.12) for
all t € [0,T(M)]. We deduce in particular from (3.4.2) that |u(T(M))||g < M.
Setting ¢ = u(T(M)), we may apply again Theorem 3.3.5 and we see that there
exists a weak H}-solution % of (3.1.1) (with the initial value @) on [0, T(M)] which
satisfies (3.3.11) and (3.3.12) for all t € [0,T(M)]. We now “glue” v and u by
defining the function u(t) on [0,2T(M)] as

u(t) { u(t) if 0 <t<T(M)

(3-4.3) u(t—T(M)) if0<T(M)<t<2T(M).

It is clear that u defined by (3.4.3) is a weak H}-solution of (3.1.1) on [0,27(M)].
Moreover,

lu(@)lize = lu(t — T(M))l|z = I8llz2 = [lu(T(M))]l L2 = ll¢llz2

and
B(u(t)) = E(u(t — T(M))) < B(§) = E(u(T(M))) < E(p)

for T(M) < t < 2T(M). We deduce that u satlsﬁes (3.3.11) and (3.3.12) for all
t € [0,2T(M)]. In particular, we deduce from (3.4.2) that [|u(2T(M))|| g < M. We
can then repeat the above argument and construct a weak Hg-solution u of (3.1.1)
on [0,00) which satisfies (3.3.11) and (3.3.12) for all ¢ > 0. We also can argue
similarly for ¢t < 0, so that we obtain a weak H}-solution u of (3.1.1) on R which
satisfies (3.3.11) and (3.3.12) for all ¢ € R. Finally, we deduce from (3.4.2) that
Supyeg |[u(t)|| g2 < oo, which completes the proof. O

The following corollary is an immediate consequence of Theorem 3.4.1.

COROLLARY 3.4.2. Let g be as in Theorem 3.3.5. Assume further that for every
A > 0, there exist C(A) > 0 and € € (0,1) such that (3.4.1) holds. It follows that
for every ¢ € H}(R), there exists a (global) weak H{-solution u of (3.1.1) on R.
In addition, v € L®(R, H}(?)) and u satisfies the conservation of charge (3.3.11)
and the energy inequality (3.3.12) for allt € R.

Corollary 3.4.2 provides a sufficient condition on the nonlinearity so that for
all initial values ¢ € H}(S2), there exists a global weak H}-solution of (3.1.1). We
next show that, under a different type of assumption on g, there exists a global
weak H}-solution of (3.1.1) for all sufficiently small initial data ¢ € H(£). Our
result is the following.
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THEOREM 3.4.3.  Let g be as in Theorem 3.3.5. Assume further that G(0) = 0 and
that there exist € > 0 and a nonnegative function § € C([0,¢),R*) with §(0) = 0
such that

2

for all w € HF(Q) such that |[u]|z1 < €. It follows that there exists § > 0 such that
for every ¢ € H}(Q) with ||o||g1 < 8, there exists a (global) weak H}-solution u
of (3.1.1) on R. In addition, ||u||pg m1) < € and u satisfies the conservation of
charge (3.3.11) and the energy inequality (3.3.12) for allt € R.

(3.4.4) G(u) < —=ull%s + 8(lullz2)

PROOF. Let I 0 be an interval of R. Consider a weak H}-solution u of (3.1.1)
on I. Assume that u satisfies the conservation of charge (3.3.11) and the energy
inequality (3.3.12) for all ¢ € I. Assume that |[u(t)||g:1 < € on some interval J C I
with 0 € J. It follows from (3.3.11), (3.3.12), and (3.4.4) that (see the proof
of (3.4.2))

lu@llE < i‘[llwll%n —2G(p) +20(||¢llz2)] forall t € J.

Note that the right-hand side of (3.4.5) is a continuous function of ¢ (in Hg(Q)),
which vanishes for ¢ = 0, and so there exists 0 < § < ¢/2 such that

1 e | '
E[“‘P”%{l = 2G(p) + 20(J|ellL2)] < T if lollg <0

Therefore, if we assume that [[pllg1 < 6, we deduce that

(3.4.5) lu®lla < 2
on every interval J C I, J 2 0 on which ||u(t)|| <e.

We now proceed as follows. Let ¢ € HJ(Q) satisfy ||jp||g1 < & with § > 0
as above. Since in particular ||¢]|g < £/2, it follows from Theorem 3.3.5 that
there exists a weak Hg-solution u of (3.1.1) on [0,T(e/2)] which satisfies (3.3.11)
and (3.3.12) for all t € [0,T'(e/2)] and such that, |[ul|pe<((o,7(/2)),11) < & We de-
duce in particular from (3.4.5) that ||u(T(e/2)){| g < £/2. Setting @ = u(T(¢/2)),
we again apply Theorem 3.3.5. We see that there exists a weak H}-solution 4
of (3.1.1) (with the initial value ¢) on [0, T(e/2)] which satisfies (3.3.11)—(3.3.12)
for all t € [0,T(e/2)] and such that [|a]| g ((0,7¢/2)), 1) < €. We now “glue” u
and u by defining the function u(t) for 0 <t¢ < 2T'(¢/2) by (3.4.3). It follows that
u defined by (3.4.3) is a weak Hj-solution of (3.1.1) on [0,2T(c/2)] which satis-
fies (3.3.11) and (3.3.12) for all t € [0,27(/2)]. (See the proof of Theorem 3.4.1.)
Moreover, [[u|lge((0,27(c/2)),51) < €. In particular, we deduce from (3.4.2) that
llull Lo ((0,27(e /2)), 1) < €/2. We can then repeat the above argument and construct
a weak Hg-solution u of (3.1.1) on [0, 00), then on R, which satisfies the conclusions
of the theorem. |

REMARK 3.4.4. The assumption (3.4.4) is very similar in form to the assump-
tion (3.4.1). The major difference is that (3.4.4) is assumed only for small ||u| g.
If g is a local nonlinearity, then (3.4.4) corresponds to a condition on g near 0,
while (3.4.1) corresponds to a condition on g for large u.
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3.5. The Nonlinear Schrédinger Equation in One Dimension

In this section we assume that the dimension N = 1. Without loss of generality,
we may also assume that € is connected. Therefore, Q is either R, or a half line,
or a bounded interval. The case Q is either R or half line falls into the scope of
Theorem 4.3.1 or Remark 4.3.2. Therefore, the local Cauchy problem in Hg(Q2) is
well posed, for example, for the type of nonlinearities considered in Corollary 4.3.3.
On the other hand, if € is a bounded interval, we know (Remark 2.7.2) that esti-
mate (2.2.4) does not hold. However, one can obtain a fairly general result for local
nonlinearities by using the embedding H§ () — L*(€).

THEOREM 3.5.1. If g(u) = f(-,u(-)) as in Ezample 3.24 (with N = 1), then
the initial-value problem (3.1.1) is locally well posed in H}(S2). Moreover, there is
conservation of charge and energy; i.e.,

lu@®)llz: = llellze  and E(u(t)) = E(p)
for allt € (=Timins Timax), where u is the solution of (3.1.1) with the initial value
¢ € Hs ().

PROOF. It follows from Proposition 3.2.5 that g satisfies (3.3.38), and the result
follows from Corollary 3.3.11. ‘ O

COROLLARY 3.5.2. Let g be as in Theorem 3.5.1. If
F(z,u) < C(1+ |ul®)|u|?> for some § < 4,

then for every ¢ € HA(Q), the mazimal strong H}-solution of (3.1.1) is global and
uniformly bounded in H'. If § = 4, the same conclusion holds provided | o2 is
small enough.

PROOF. We have G(u) < Cllul|2. + CHuHi’f{fz. Using Gagliardo-Nirenberg’s in-
equality, we deduce that

s s
G(u) < Cllulfa + Cllull s lull7z* -
If § < 4, then it follows from the inequality ab < ea” + C(€)b” that
1
G(u) < sllullfn + Cllullze) -
The result then follows from Corollary 3.4.2. If § = 4, then
G(u) < Cllullze llull?n + C(llulize),

and the result follows from Theorem 3.4.1. 0

COROLLARY 3.5.3. Let g be as in Theorem 3.5.1. It follows that there exists § > 0
such that, for every ¢ € HL(Q) with ||¢||gr < 6, the mazimal strong H-solution
of (3.1.1) is global and uniformly bounded in H'.

PROOF. There exists a constant K such that if |ullgx < 1, then [lullz~ < K.
Therefore,

G(u) < C(K)|ull32,
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and the result follows from Theorem 3.4.3. d

REMARK 3.5.4. In particular, one may apply Theorem 3.5.1 to the case
g(u) = Vu 4+ AMu|*u, where V is a real-valued potential V ¢ L*=(Q), A € R,
and 0 < a < oo. Solutions with initial value of small H* norm are global by
Corollary 3.5.3. If A < 0 or if a < 4, then, for every initial value in HL(Q), the
corresponding solution of (3.1.1) is global, as follows from Corollary 3.5.2.

REMARK 3.5.5. Like Theorem 3.3.9, Theorem 3.5.1 is stated for one equation,
but the method applies as well for systems of the same form (see Remark 3.3.12).

3.6. The Nonlinear Schrédinger Equation in Two Dimensions

In this section we assume that the dimension N = 2. Note that H(Q) +
L*>(9), and so one may not apply the method of Section 3.5. However, one still
can do something by using the fact that Hj(f) is “almost” embedded in L (£2),
or more precisely by using Trudinger’s inequality (Remark 1.3.6).

We have the following result, due to Vladimirov (see Vladimirov [354], Ogawa
[273], and Ogawa and Ozawa [274]).

THEOREM 3.6.1. Let §) be an open subset of R? and let g be as in Remark 3.2.7
with a < 2. It follows that the initial-value problem (3.1.1) is locally well posed in
H}(2). Moreover, there is conservation of charge and energy; i.e.,

lu@®llzz = llellzz  and  E(u(t)) = E(p)

for all t € (—Trin, Tmax), where u is the solution of (3.1.1) with the initial value
¢ € HY(Q).

ProoF. By Theorem 3.3.9 and Proposition 3.2.5, we need only show uniqueness.
Furthermore, since this is a local property, we need only establish it for possibly
small intervals (see Step 2 of the proof of Theorem 4.6.1 below). Let I be an interval
containing 0, and let u,v € L®(I, H}) N W*(I, H=1) be two solutions of (3.1.1).
Setting w = v — u, we have
iwy + Aw + g(v) — g(u) = 0.
On multiplying the above equation in the H~! — H} duality by iw, it follows that
1d _
5 70Ol =Im [ (6(u(0) - glett))u o
Q
Therefore, if we define the function h € L°(I, H}(Q)) by
h(t) = |u(t)| + jv(t)] forallte I,

then

1d )
55”“’(0“1}

< c/(1 + h(s)?)|w(s)2 da
Q

Integrating the above inequality between 0 and ¢t € I, we obtain

UEOMWW+!MWW@VMPS

(3.6.1) lw(t)|2. < 2C
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Consider any number p € (2,00). We deduce from Holder’s inequality that

3 apa
/h2|w|2d:c=/(h”|w| V2wl 5 de < (/h”!w|2da:> ol
Q Q Q
) - 2p—4
< ([ wwaa) il 7
Q

Note first that w(t) is bounded in Hg (), hence in L*(£2). Furthermore, h(t) is also
bounded in H}(§2). Therefore (Remark 1.3.6), there exist two positive constants
K, p such that

(3.6.2)

(3.6.3) / (e’ _1dr < K.
Q

It follows from (3.6.2), (3.6.3), and the elementary inequality
P
2p p) u,z'2
P < | = e -1
<N ( )
that

—4

2 2 1 2p_4
/h lw|®dx < CpK?|lw||;;  for some constant C.
Q
Since K7 <1+ K, we deduce that

[ #luf? o < Cplwll
Let now ¢(t) = |lw||2.. Applying the above inequality and (3.6.1), we obtain
3(t) <C'/ s) + pp(s) ® )dsl
Note that ¢ is bounded, so that ¢(t) < pgb(t)’% for p large enough. Therefore,
s)ﬂ;—2 ds

(3.6.4) Pty < C for all t € I.

%) = [ () as.

It follows from (3.6.4) that ®,(t) < Cp|®,(t)P=2/P| for all t € I. Integrating this
inequality yields |®,(¢)| < (2C|t|)P/2. Therefore, if 2C|T| < 1, we obtain

hprgl£f ®,(T)=0,

T
/ d(s)ds =0
0

Thus w = 0 on [T, T)]. This gives the result. a

Let now

which implies that
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COROLLARY 3.6.2.  Let §2 be an open subset of R? and let g be as in Theorem 3.6.1.
If llollL2 is small enough, then the mazimal strong H} -solution of (3.1.1) given by
Theorem 3.6.1 is global and uniformly bounded in H'. If

F(z,u) <C(1+ [u)|uf> for some § < 2,

then the same conclusion holds for every ¢ € H}(Q).

PROOF. The assumption on g immediately yields F(z,u) < C(1+]u|?)|u|?, so that
Gu)<C ||u||%2 +C |]u|[4L‘l Using Gagliardo-Nirenberg’s inequality, we deduce that
G(u) < Cllull22 + CllullF: lull2.. Global existence for small data in L? then follows
from Theorem 3.4.1. Assuming now F(z,u) < C(1 + |u|®)|u|? for some § < 2, we
obtain by arguing as above that G(u) < Cllu|2. + C|[u[|%: ||ull2.. Applying the
inequality ab < ea” 4+ C(e)b” we deduce that G(u) < 3ul?: + C(|lullz2)- The
result then follows from Corollary 3.4.2. O

REMARK 3.6.3. A global existence result for H? solutions (i.e., solutions with
values in H?(Q2) N Hg(£2)) was obtained by Brezis and Gallouét [45].

REMARK 3.6.4. In particular, one may apply Theorem 3.6.1 to the case g(u) =
Vu+ Mu|%u, where V' is a real-valued potential V € L®(Q), A€ R, and 0 < o < 2.
In addition, global existence for initial values with small L? norm follows from
Corollary 3.6.2. Furthermore, if A < 0 or @ < 2, then for every initial value in
H}(S), the corresponding solution of (3.1.1) is global. This follows again from
Corollary 3.6.2.

REMARK 3.6.5. Like Theorem 3.3.9, Theorem 3.6.1 is stated for one equation,
but the method applies as well for systems of the same form (see Remark 3.3.12).

3.7. Comments

Theorem 3.3.9 admits a generalization in the setting of Theorem 3.3.1. More
precisely, with the notation of Theorem 3.3.1, consider a C-linear, self-adjoint < 0
operator A on X = L?(f). Assume that

2N
N-2°

(3.7.1) Xa—=ILP(Q?) forall2<p<

Assume further that for every
2N 2N

Ni2 <ps N3’
(I —eA)~! is continuous LP(£2) — LP(Q) for all € > 0, and
(3.7.2) sup {{[(I — €A) Yo 1oy : € > 0} < .
Consider a function g € C{X 4, X%) such that
(3.7.3) g=G" for some G € C'(X4,R),

and assume that there exist 7, p € [2, ﬁ—g) (ryp € [2,00] if N =1) such that

(3.7.4) g€ C(Xa, LF ()
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and such that for every M > 0, there exists C(M) < oo such that
(3.7.5) flg(v) — gl < C(M)llv —uliLr
for every u,v € X4 such that [jullx, + lv[x, < M. (Or, more generally, assume

g = g1+ + gk, where each g; satisfies the above assumptions for some 75, p;.)
Finally, assume that for every u € Xa,

(3.7.6) Im(g(u)z) =0 a.e.on Q,

and let E be defined by (3.3.2).
We consider the problem

(3.7.7) { g + Au+ g(u) =0

uw(0) =z

for a given z € X 4. We have the following result.

THEOREM 3.7.1. Let A and g be as above. Assume, in addition, that there is
uniqueness for the problem (3.7.7). It follows that the initial value problem (3.7.7) is
locally well posed in X 4. Moreover, there is conservation of charge and energy; i.e.,

lu®liz: = llzllzz  and E(u(t)) = E(z)

foradllt € (—Tm{n, Tmax), Where u is the solution of (3.7.7) with the initial valﬁe T €
X 4. (Here, the notions of uniqueness and local well-posedness are as in Section 3.1).

ProoF. The proof is an adaptation of the proof of Theorem 3.3.9. We only point
out the modifications that are not absolutely trivial. Lemma 3.3.6 is easily adapted
with the duality inequality [lull% < |lullx,llullxs. The proof of Lemma 3.3.7 is
adapted as follows. Consider 2 <p < ¢ < 1\?% By Hoélder’s inequality and (3.7.1),
there exists a € (0,1) such that

lullzr < llulallullzz® < lulléllullzz®

and the rest of the proof is unchanged. To adapt the proof of Theorem 3.3.5,
we need inequalities of the type (3.3.15)-(3.3.16). They follow easily from the
self-adjointness of A, except for (3.3.16), which follows from (3.7.2). The rest
of the proof, including Lemma 3.3.8, is unchanged except that one has to apply
Proposition 1.1.2 instead of Proposition 1.3.14. a

REMARK 3.7.2. Corollary 3.3.11 is easily adapted to the above situation.

REMARK 3.7.3. Like Theorem 3.3.9 (see Remark 3.3.12), Theorem 3.7.1 is stated
for one equation, but the method applies as well for systems of the same form. More
precisely, considering an integer x > 1, one may assume that A is a self-adjoint
operator on (L2(Q))* and replace everywhere L?(Q) by (LP(2))*. It follows that
the conclusions of Theorem 3.7.1 remain valid.

REMARK 3.7.4. Using Strichartz-type estimates (see Remark 2.7.3), it is possible
to solve the local (or global) initial value problem for certain nonlinear Schrédinger
equations in a cube of RY with periodic boundary conditions. See Bourgain [34,
35, 37, 38} and Kenig, Ponce, and Vega [214].
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REMARK 3.7.5.  For g(u) = —|u|?u in the unit disc of R2, it was shown that the
initial value problem is ill-posed in H*(Q2) for s < 1/3. More precisely, given T > 0
and a bounded subset B of H*(Q), the map ¢ € BNH}(Q) — u € C([0, T, H:(Q))
is not uniformly continuous. See Burq, Gérard, and Tzvetkov [48, 50]. Note that
the case of a disc is therefore different from the case of a square; see Bourgain [38].

REMARK 3.7.6. Nonlinear Schréodinger equations are sometimes considered in
exterior domains. When N =1, or when N = 2 and under some growth condition
on the nonlinearity, local (or global) existence follows from the results of Sections 3.5
and 3.6. In some other cases, one can still obtain global solutions for small initial
data and study their asymptotic behavior. See, for example, Chen (78], Esteban
and Strauss [111], Hayashi [164, 165], M. Tsutsumi (339], Y. Tsutsumi [340], and
Yao [365]. Recently, by using a family of Strichartz estimates (see Remark 2.7.9),
it was shown that in the exterior of a nontrapping obstacle in RY, there is local
well-posedness in H} () if & < 2/(N —2) and in L*(Q) if a < 2/N when the
nonlinearity is, for example, g(u) = Alu|*u. See Burq, Gérard, and Tzvetkov [47].

REMARK 3.7.7.  Using a family of Strichartz estimates (see Remark 2.7.10), it is
possible to solve the local (or global) Cauchy problem for certain nonlinear Schré-
dinger equations on nonflat manifolds. See Burq, Gérard, and Tzvetkov [46, 49].



CHAPTER 4

The Local Cauchy Problem

4.1. Outline

In this chapter we study the local Cauchy problem in the case €2 = RN. There-
fore, we consider the problem

411) { iug + Au+ g(u) =0,

u(0) = .

We note that if I 3 0 is an interval and g € C(H*(RY), H~}(R")) is bounded on
bounded sets, then u € L®(I, H}(9)) is a solution of equation (4.1.1) on I if and
only if u satisfies the integral equation

(4.1.2) u(t) =T(t)p +1 /t T(t —s)g(u(s))ds foraa. tel
0

(see Proposition 3.1.3). A special case of (4.1.1) is the pure power nonlinearity
g(u) = Nu|®u with A € C and a > 0. (4.1.1) then takes the form

tug + Au+ Alul®u =0,

(4.1.3)
©u(0) = .

We observe that if o < 4/(N —2) (a < o0 if N = 1,2), then u € L>(I, H}(Q)) is

a solution of equation (4.1.3) on I if and only if u satisfies the integral equation

(4.1.4) u(t) = T(t)o + 1A /t T(t - s)jul®u(s)ds foraa.tel.
0

Of course, the results of Chapter 3 apply in particular to the problem (4.1.1). The
essential particularity of the case & = RY is that we may use Strichartz’s estimates.
They are the main tool for obtaining uniqueness results. They also can be used
for showing existence results in various spaces by fixed-point arguments or other
methods.

In Section 4.2 we establish various uniqueness properties based on Strichartz’s
estimates. In Section 4.3 we apply the results of Chapter 3 combined with those
of Section 4.2. In Section 4.4 we apply a fixed-point argument of Kato to derive
existence results. They apply in particular to nonlinearities for which there is
neither conservation of charge nor conservation of energy, so that the results of
Chapter 3 do not apply. Section 4.5 is devoted to a critical case in H!(R™).

The next sections are devoted to existence results in spaces different from
the energy space H'(R"): L2(R") (Sections 4.6 and 4.7), H?>(R") (Section 4.8),
H*(RV) for s < N/2 (Section 4.9), and H™(R"Y) for m > N/2 (Section 4.10).

83
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Section 4.11 is devoted to a nonautonomous Schrédinger equation that is de-
rived from (4.1.1) by the pseudoconformal transformation. We will use that equa-
tion in Section 7.5.

Finally, we observe that the results of this chapter are stated for one equation,
but similar results obviously hold for systems of the same form. See Remark 3.3.12
for an appropriate setting.

4.2. Strichartz’s Estimates and Uniqueness

As we have seen in Section 3.3, uniqueness is a key property for the local well-
posedness of the initial-value problem (4.1.1). In the present case where @ = RV,
Strichartz’s estimates are a powerful tool to establish uniqueness. We note that
most of the results of this section are due to Kato [206]. We begin with the model
case of the pure power nonlinearity; i.e., we consider the problem (4.1.3). We
note that if o < 4/(N - 2) (o < o0 if N = 1,2), then g(u) = A|u|%u satisfies
g € C(H'(RN), H"1(R")) so that we may consider weak H!-solutions of (4.1.3).
It turns out that they are unique, as the following result shows.

PROPOSITION 4.2.1. Assume A € Cand 0 < a < 4/(N-2) (0 < a < oo if
N =1,2). If o € H(RY) and uy,up are two weak H'-solutions of (4.1.3) on
some interval I 3 0, then u; = usg.

PRrOOF. We may assume without loss of generality that I is a bounded interval.
It follows from (4.1.4) that

(4.2.1) (w1 —u2)(t) = i/\/0 T(t — ) (Jur]|*ur — |u2|®u2) (s)ds .

Since
[lu1]%u1 — Juz|*uz| < C(jwa|* + [ua|®)|ur — usa|,

we deduce from Holder’s inequality that, setting r = o + 2,
([l *ur = Jue|®usl| ;. < C(luallfr + lluzll$) lur — uallLr .

Let now ¢ = 4r/N(r — 2) so that (g,r) is an admissible pair. Applying Hélder’s
inequality in time, we deduce that if J is an interval such that 0 € J C I, then

(42.2) |||y — luzlauanqI(J,Lr/) <
CluallZoe (g,Lry + lu2llfee (g,y) lur = w2llpor g,y -
It follows from (4.2.1), (4.2.2), and Strichartz’s estimate that

(4.2.3) lur = w2llzeqsrry < C(flurllFee gLy + M2l o (s0m) w1 — vl o (g 1) -
Since HY(RV) — L"(R™) and |I| < oo, (4.2.3) yields

llur = uzllzaqsrry < Cllur — uallper (1

for some constant C' independent of J. The result now follows by applying Lem-
ma 4.2.2 below with k =1, ¢1(¢) = |Ju1(t) — ua(t)||lz+, a1 = ¢’, and by = q. O
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LEMMA 4.2.2. Let I 0 be an interval. Let 1 < a; < b; < o0 and ¢; € Lb%(I),
for 1 < j <k. If there exists a constant C > 0 such that

k k
(4.2.4) Y Hillzes gy < C D lslines oy
i=1 i=1
for every interval J such that0 € J C I, then ¢; =--- = ¢, =0 a.e. onl.

PRrROOF. We first consider the case I = [0, T] for some 0 < T < co. Suppose that
$1 = -+ = ¢ = 0 a.e. on some interval (0,7) with 0 < 7 < T. Letting J = [0, 1]
with 7 < t < T, it follows from (4.2.4) and Hélder’s inequality that

J=1

k k k
a1
> 15ll s ry SO D NS5llies iy S C D (=1 1l L85 0,1y -
j=1 j=1

Therefore, if we let t — 7 be sufficiently small so that

C mex (t— )%

~1
o<1,
1<5<k

we deduce that {|@1|Le:(o,e) T + [kl Lok 0,6y = 0- We now let

k
(4.2.5) g = sup {o <t<T;Y 650l 50 = o} :

j=1

We deduce from what precedes that § > 0 (starting with 7 = 0). If § < T', then we
let 7 = 8 and we deduce that ¢ = --- = ¢ = 0 a.e. on (0,0 + ¢) for some € > 0,
which contradicts (4.2.5). Thus § = T which shows the desired conclusion. The
case I = [~T,0] is treated similarly (by changing ¢ to —t). In the general case, we
apply the above results to all T' > 0 such that [0,T] C I, then to all T > 0 such
that [~T,0] C I, and we deduce that ¢; = --- = ¢ = 0 a.e. on I. a

Proposition 4.2.1 can be extended to more general nonlinearities. In particular,
we have the following result.

PROPOSITION 4.2.3. Consider g1,...,gx € C(H*RY)), H"}(RN)) and let
g=g1+ "+ gk

Assume that each of the g;’s satisfies the assumption (3.3.7) for some exponents
Ti,pj € [2,2N/(N —2)) (r5,p; € [2,00] if N = 1); i.e., there exists C; such that

(4.2.6) llg; (@) — g; () oy < Ci(M)Ju—vllzs

for all u,v € HY(RN) such that |[ul s, [[v]lm: < M. If o € HY(RY) and uy,uz are
two weak H!-solutions of (4.1.1) on some interval I > 0, then u; = us.

Proposition 4.2.3 is a consequence of the following simple lemma.
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LEMMA 4.2.4. Let I > 0 be an interval and k > 1 be an integer. For every
1 <j <k, let (g5,r5) and (v;,p;) be admissible pairs and f; € L7 (I,Lp3(RN)).
Finally, set

k t
(4.2.7) w(t) =iZ /0 T(t - s)fi(s)ds

for allt € I (so that w € L%(I,L"(RY)) for all 1 < j < k by Strichartz’s
estimates). If for every 1 < 5 < k there exist 1 < a; < g; and a constant C; such
that

(4.2.8) ”fj”L";(J,L"}) < Cillwllzes (g,275)

for all bounded intervals J such that 0 € J C I, then w = 0.

PRrROOF. Letting
i
w;(t) = i/ T(t —s)fi(s)ds
0

and applying k times Strichartz’s estimate, we see that there exists a constant K. i
such that

k
Z Nw;ll ae (g mey < K|l £51l
=1
for all bounded intervals J such that 0 € J C I. It follows from (4.2.7) that there
exists a constant C such that

k k
> lewllzes ey < CZI il s 2%
J:

’ 7
LY (J,L"3)

i=1
for all bounded intervals J such that 0 € J C I. Applying (4.2.8) we deduce that
k k
D o lMwllze 27y < C S Chlwllpes g,y »
j=1 j=1
and the result follows from Lemma 4.2.2. ‘ O

PROOF OF PROPOSITION 4.2.3.  Let uy,up € L®°(I, HY)nWhH(I, H~') be two
solutions of (4.1.1). By (4.1.2),

k t
u(t) — ua(t) = 'LZ/O T(t — s)[g;(ui(s)) — g;(uz(s))lds for a.a. t €.
j=1

The result follows from Lemma 4.2.4 applied with w = u; —ug, f; = g;(u1) —g;(u2),
and (’yj)lsjsk and (Qj)lstk deﬁned by

1 1 2 1
ea(3t) w on(id).
Vi 2 p; 4 2

so that (g;,7;) and (v;,p;) are admissible pairs. (4.2.8) is indeed satisfied with
a;j = v; since by (4.2.6)

3 " ! < ’
“fj ”ij (J‘Lﬂj) — C“w”L’Yj (J,Lrj) ’
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and 7} < 2 < gj. O

We note that the technique of proof of Proposition 4.2.1 does not work in the
limiting case a = 4/(N —2), N > 3. Indeed, we would be lead to apply Lemma 4.2.2
with a; = by, in which case the conclusion of the lemma is clearly false. In fact,
we do not know if the conclusion of Proposition 4.2.1 holds in the limiting case
a = 4/(N — 2). A slight modification of the method of proof, however, shows
uniqueness of strong H L_solutions. More precisely, we have the following result.

PROPOSITION 4.2.5. Assume N > 3. Let A € C and o = 4/(N —-2). Ifp €
HY(RY) and uy,uq are two strong H!-solutions of (4.1.3) on some interval I > 0,
then u1 = us.

ProoF. We may assume without loss of generality that I = [0,T] for some 0 <
T < co. Given M > 0, set

4 4
= 1wy uat>my (Jua | T2 g — fug| T ug)
4 _ 4 _
I = Lun sl <y (Jua| T2 ur — Jug| T2 up)

so that \
4
| M2 uy — [ug| TTug = far + fM.
One easily verifies that there exists C independent of M such that
4
fml £ CMT-2|u; — ug
wzs) { ] fus — ual, 4
Y] < CLjusfual> My (Jun | + [u2]) ¥=7 |ug — ug|.

In order to show that u; = ug, we use the endpoint Strichartz’s estimate. We have

(w2 — u2)(t) = iA /0 Tt - 5)(far + FM)ds,

so that forevery 0 <7 < T,

flur — ual + llur — w2l Lo 0,7),22) <

(4.2.10) PO ET) C .,
(el omesy + 150 2 L) -

Using (4.2.9), we see that
4
(4.2.11) Il o,r),L2) £ CMT=2|lug — ua||L1(0,r),L2)
and that
M <
170 o ) =

(4.2.12)
Ol s iuat>ary Qual + {2l o o llun —wall , -

Finally, we observe that |ui| + |uz| € C([0,T],H*(RY)), so that we have
2N
lu| + |ug] € C([0,T], L¥=2 (RY)). It follows easily by dominated convergence that

(4.2.13) 1 (s |+ uat> a3 (e | + Juz]) | 0.

L= ((0,7),L¥¥%) Mmoo
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Applying (4.2.13) we see that, by choosing M large enough, we can absorb the
right-hand side of (4.2.12) by the left-hand side of (4.2.10). Therefore, we deduce
from (4.2.10)—(4.2.12) that there exists C such that

llur — w2l Le=((0,r),L2) < Cllur — uzll3(0.7),2)

for every 0 < 7 < T, and the result follows from Lemma 4.2.2. O

REMARK 4.2.6. Note that it is precisely for showing (4.2.13) that we use the
assumption that u; and ug are strong H'-solutions. For weak H _sotutions, we
only know that [ui] + |uz| € L*((0,T), H'(R")), which does not imply (4.2.13).

Proposition 4.2.5 can be extended to more general nonlinearities. We will not
study the general case. Note, however, that an immediate adaptation of the proof
of Proposition 4.2.5 yields the following result concerning local nonlinearities.

PROPOSITION 4.2.7.  Assume N > 3. Let g € C(C,C) with g(0) = 0 satisfy
19(21) — 9(22)] < C(1+ 21|77 + |22 72 ) |21 — 25

forall 21,29 € C. If o € H'(RY) and uy,uz are two strong H'-solutions of (4.1.1)
on some interval I 50, then uy = us.

We will construct in the following sections solutions of (4.1.1) that are not H1-
solutions, and we now study uniqueness of such solutions. We begin with a lemma
about the equivalence of (4.1.1) and (4.1.2) for such solutions.

LEMMA 4.2.8. Let I > 0 be an interval, let s,0 € R, and let g : H*(RN) —
H(RN) be continuous and bounded on bounded sets. If u € L (I, H*(RV)), then
both equations (4.1.1) and (4.1.2) make sense in H*(RN) for y = min{s — 2,0}.
Moreover, u satisfies equation (4.1.1) for a.a. t € I if and only if u satisfies the
integral equation (4.1.2) for a.a. t € I.

PROOF. Let u € L°(I, H*(RY)). Since A € L(H*(RN), H~2(RV)), we see that
Au € L™(I,H*"%(R")). Moreover, g(u) is measurable I — H?(R") because
g € C(H*(R"),H°(R")), and bounded because g is bounded on bounded sets,
and so g(u) € L*(I,H°(R")). Thus we see that both equations make sense in
H*(RM). Since (T(t)):er is a group of isometries on H#(RY), the equivalence
between the two then follows from the results of Section 1.6. O

According to the above lemma, under appropriate assumptions on g, we can
address the question of uniqueness of solutions of (4.1.1) in L%°(I, H*(RN)). We
have the following result, which is an easy application of Lemma 4.2.4.

PROPOSITION 4.2.9. Consider s > 0. Let

(4.2.14) g1s--, gk € C(HS(RN)), H°(RM))  be bounded on bounded sets,

for some 0 € R, and let g = g1 + --- + gx. Assume that there exist exponents
i P € [2,2N/(N —2)) (rj,p; € [2,00] if N = 1) and functions C; € C([0,c0))
such that

(4.2.15) 195(u) = g5 ()| o5 < Ci(M)l|u— vl s,
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for all u,v € HS(RN) such that ||ul| g, |v]as < M. Let o € H*(RY) and u1,up €
L°(I,H*(RN)) be two solutions of (4.1.1) on some interval I 5 0. If

k
(4.2.16) up —up € [ | L% (I, L7 (RY)),
i=1

where g; is such that (gj,7;5) is an admissible pair, then uy = us.

REMARK 4.2.10. The assumptions (4.2.14), (4.2.15), and (4.2.16) deserve some
comments. (4.2.14) ensures that equation (4.1.1) makes sense for a function u €
Le(I,H*(RY)). (See Lemma 4.1.8.) Assumption (4.2.15) is a Lipschitz condition
for the g;’s on bounded sets of H? (RN). 1t is rather natural, since a Lipschitz
condition of some sort is necessary for a uniqueness property. Finally, (4.2.16) is a
regularity assumption on the difference of the solutions u; and uz. In practice, it
is verified by requiring that H*(R"Y) — L7 (RV) for all j’s, so that both u; and
ug belong to the prescribed space and in particular the difference u; — ua. Note,
however, that (4.2.16) is in principle weaker than assuming that both u; and up
belong to the prescribed space. For example, for the Navier-Stokes equation, the
difference of two solutions has a better regularity in certain spaces than each of the
solutions (see, e.g., [225]). However, it seems that no one could use such a property
for the Schrédinger equation to take advantage of the fact that (4.2.16) concerns the
difference of two solutions (see Furioli and Terraneo [120] for interesting comments
on this problem).

PrOOF OF PROPOSITION 4.2.9.  The proof is identical to the proof of Proposi-
tion 4.2.3. O

REMARK 4.2.11. Given s > 0, we apply Proposition 4.2.9 to the model case
g(u) = A|u|*u where o > 0 and XA € C. There are three conditions to be checked,
namely (4.2.14), (4.2.15), and (4.2.16). We note that, since g is a single power, we
do not need to decompose g = g1 + -+ + gk.

We investigate the condition (4.2.14). Suppose first s > N/2, so that
Hs(RN) — LP(RV) for every 2 < p < oo. It follows easily that (4.2.14) is sat-
isfied with ¢ = 0. Suppose now s < N/2, so that H$(RN) — LP(RY) for every
2 < p < 2N/(N — 2s). We deduce essily that if (N — 2s)(a +1) < 2N, then

g € C(H*(RY), Lv=55@70 (RV)) .

Condition (4.2.14) is then satisfied, for example, with o < —N/2. If, on the other
hand, (N — 2s)(a + 1) < 2N, then g(u) (which is a measurable function) need not
be locally integrable, so that g does not map H®(R”) into any space of the type
H?(RY). Therefore, we see that (4.2.14) is satisfied if and only if

N(a-1)

(In particular, there is no condition if o < 1.)
We next investigate the condition (4.2.16). As observed in Remark 4.2.10,
we require that H*(R"N) — L"(RY), where r is as in (4.2.15). This is obviously
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satisfied if s > N/2. If s < N/2, then we need

2N
N —2s°

We now turn to the condition (4.2.15) and we first study the case s > N /2 by
using the inequality

(4.2.18) 2<r<

lg(w) = 9(0)lw < Ol sy + ol sy )l = vl

We note that H*(RY) — LP(RV) for all 2 < p < oo, so we see that (4.2.15) is
satisfied with p = r for all » > 2 sufficiently close to 2.

We then study the case s < N/2, so that H*(RY) — LP(RY) for every
2 <p<2N/(N —2s), and we use the inequality

llg(w) — gl < C(Iullzs + llvligs) 1w = vllz-,

where 1 < p < 0o satisfies
lo} 1 1

) p T

We begin with the case V = 1. Since the admissible values of p are 2 < p < oo
and the admissible values of r are (by (4.2.18)) 2 < r < 2/(1 — 2s), we see
that the admissible values of p are 2a/(1 + 2s) < p < oo. Of course, we want
H*(RY) < LP(RM), and this is compatible with the above restriction provided
2/(1 - 2s) > 2a/(1 + 2s). We note that this is exactly (since s < 1/2) the con-
dition (4.2.17). We now assume N > 2 and we begin by assuming s > 1. In this
case (4.2.18) is not a further restriction on r, so that the admissible values of r and
pare 2 <r1,p < 2N/(N - 2). Thus the admissible values of p are Na/2 < p < .
We want H*(RV) — LP(R"), and this is compatible with the above restriction pro-
vided 2N/(N —2s) > Na/2,ie., a < 4/(N —2s). If s < 1, then we have the further
restriction (4.2.18) on r, so that the admissible values of p are Na/(1+5) < p < oco.
We want H*(RY) — LP(R™), and this is compatible with the above restriction pro-
vided 2N/(N — 2s) > Na/(1 + s), i.e., a < (2 + 2s)/(N — 2s).

In conclusion, we see that if s > N/2 there is always uniqueness in
Le(I,H*(RN)). If s < N/2 and N = 1, then there is uniqueness as soon as
the equation makes sense, i.e., as soon as (4.2.17) holds, that is

N +2s
< .
a_N—2s

(4.2.19)

If s < N/2 and N > 2, then there is uniqueness provided the equation makes sense,
i.e., provided (4.2.19) holds, but under the additional assumption

min{4, 2 + 2s}

(4.2.20) TR

REMARK 4.2.12. Suppose g € C(C,C) satisfies g(0) = 0 and
l9(21) = g(22)] < C(1+ |21]* + |22]%) |21 — 2o

for some o > 0. It follows that the conclusions of Remark 4.2.11 hold. More
precisely, there is uniqueness in L®(I, H*(R")) provided s > N /2, or provided
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s < N/2, (4.2.19), and, if N > 2, (4.2.20). To see this, we decompose g = g1 + g2,
where g,(0) = g2(0) = 0, g1 is globally Lipschitz, and g, satisfies

lg2(z1) — g2(22)] < C(lz1]® + |22|%)|21 — 22].

(See Section 3.2.) We may apply Proposition 4.2.9, since g» is handled with exactly
the argument of Remark 4.2.11 and g; clearly satisfies (4.2.15) with r; = p; = 2.

We now state an analogue of Proposition 4.2.7 in the case of H* solutions.

PROPOSITION 4.2.13. Assume N > 3 and 1 < s < N/2. Let g € C(C,C) with
g(0) = 0 satisfy

lg(z1) — 9(22)] < C(1+ 21| + |2 75 ) |21 — 24

for all z1,z0 € C. Ifp € H*(RY) and u1,us are two solutions of (4.1.1) in the
class C(I, H*(RN)) for some interval I 50, then uy = us.

PROOF. Since N > 3 and s > 1, (4.2.17) is satisfied. This implies that equa-
tion (4.1.1) makes sense for a function u € C(I,H*(R")) (see Remarks 4.2.11
and 4.2.12). The proof is similar to the proof of Proposition 4.2.7. Note that we
use the same admissible pairs (00,2) and (2,2N/(N — 2)), and that we use the

property u € C(I, L%(RN)), so that
L us ot ey Gl + uaDll i) =0 88 M — 00,
0O

REMARK 4.2.14. The observations of Remarks 4.2.11 and 4.2.12 and Proposi-
tion 4.2.13 are part of the work of Kato [206]. In the single power case, we observe
that when N = 1 or when s > N/2 there is always uniqueness in L®(I, H*(RM))
as soon as the equation makes sense. When N > 2 and 0 < s < N/2, there are
some cases where the equation makes sense; but uniqueness is not a consequence
of Remark 4.2.11, namely when

min{4, 2 + 2s} << N+2s‘
N —2s - T N-2s

In fact, we will see in Section 4.9 that when a < 4/(N — 2s), one can construct H?
solutions, while for o > 4/(IN — 2s) the existence problem is open. Even if one is
willing to consider the restriction a < 4/(N — 2s) as essential, there still are cases
when uniqueness in L®(I, H*(R")) does not follow from Remark 4.2.11, namely
when N >2,0<s<1and

24 2s 4

e < < .
N_2: %> N_2s

This has been an open problem since the work of Kato [206] but there was a recent
breakthrough by Furioli and Terraneo {120] who were able to fill part of the gap by
using in particular negative order Besov spaces.
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4.3. Local Existence in H'(RY)
Consider g1,...,g9x € C(HYRN)), H~Y(RY)) and let
g=g1+ -+ gk

Assume that each of the g;’s satisfies the assumptions (3.3.5)~(3.3.8) for some
exponents 7;, p;. Let

G=Gy+- -+ Gy,
and set

E(u) = % / [Vu(z)|? dz ~ G(u)
RN

for u € H'(RN). We will apply the results of Section 3.3 to establish the following
result.

THEOREM 4.3.1. If g is as above, then the initial-value problem (4.1.1) is locally
well posed in H'(RN). Furthermore, there is conservation of charge and energy;
i.e.,

lu@®liz = llollzz,  E(u(t)) = E(p),
for all t € (—=Tmin, Tmax), where u is the solution of (4.1.1) with the instial value
v € HY(RM).

Proor. By Theorem 3.3.9 we need only show uniqueness, which follows from
Proposition 4.2.3. O

REMARK 4.3.2. Note that the only ingredient that we used for proving unique-
ness (in Proposition 4.2.3) is Strichartz’s estimate. In particular, it follows from
Remark 2.7.7 that Theorem 4.3.1 still holds if one replaces R by Rf , or by certain
cones of RY.

We now give some applications of Theorem 4.3.1 to the nonlinearities intro-
duced in Section 3.2.

COROLLARY 4.3.3.  Let g(u) = Vu+f(-,u(-))+(Wx|u|?)u be as in Ezample 3.2.11.

Set
1

/ IVul? dz — G(u),
RN
where

6w = [ {FVE@EF + Fau) + {07 « i) @u)P fas.
RN

It follows that the initial-value problem (4.1.1) is locally well posed in H(RM).
Moreover, there is conservation of charge and energy, i.e.,

lu)lizz = llellzz,,  E(u(?) = E(p),

for all t € (—Tmin, Tmax), where u is the solution of (4.1.1) with the initial value
v € HY(RY).

ProoF. Apply Theorem 4.3.1 (see Example 3.2.11). ]
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COROLLARY 4.3.4. Let gu) = Aulu with A € R and 0 < a < #‘;—5
(0<a<oif N=1). Set
E(u)=%/|Vu]2da:—G(u),
]RN

! A
B(u) = §/|Vu|2d:z—a—+2—/|u1°‘+2dx.
RN RN

It follows that the initial-value problem (4.1.3) is locally well posed in H'(RY).
Moreover, there is conservation of charge and energy; i.e.,

u)lze = llelle,  E(u(t)) = E(p)

for all t € (=Tmin, Tmax), where u is the solution of (4.1.3) with the initial value
@ € HY(RV).

where

4.4. Kato’s Method

If g(u) = Mu|*u with Im X # 0, then we may not apply Theorem 3.3.9 because
g satisfies neither (3.3.5) nor (3.3.8). T. Kato [203] introduced a method, based
on a fixed point argument and Strichartz’s estimates, by which one can solve the
problem (4.1.1) for g as above. Besides, that method provides a simple, direct proof
of the local well-posedness result for a certain class of nonlinearities. We begin with
a typical result based on the fixed point method (see [203, 204] and Theorem 4.4.6
below for more general results).

Let f € C(C,C) satisfy

(4.4.1) f(0)=0

and

(4.4.2) |[f(u) = f(v)| < L(K)|u — v]

for all u,v € C such that |ul, |v| < K, with

(4.4.3) { 28 Zg(([f:j‘)*)) with 0 < o < 735 iix ; ;
Set

(4.4.4) g(u)(z) = flu(z))

for all measurable u : RN — C and a.a. z € RV,

THEOREM 4.4.1. Let f € C(C,C) satisfy (4.4.1)—(4.4.3) and let g be defined
by (4.4.4). If f (considered as a function R? — R?) is of class C', then the
initial-value problem (4.1.1) is locally well posed in H'(RM).

REMARK 4.4.2. Since we assume neither (3.3.5) nor (3.3.8), we cannot expect
conservation of charge and energy. If, in addition to the hypotheses of Theo-
rem 4.4.1, we assume (3.3.5) (respectively, (3.3.8)), then there is conservation of
energy (respectively, conservation of charge). See [203, 204] and Theorem 4.4.6
below.
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PROOF OF THEOREM 4.4.1.  We consider the case N > 2, the proof in the case
N =1 being easily adapted. Let § € C2°(C,R) be such that 8(z) = 1 for |z] < 1.
Setting

fi(w)

f2(u)

O(u)f(u),
(1= 0(u))f(u),

I

i

one easily verifies that
[f1(w) — f1(v)] < Clu — o],
| f2(u) = f2(v)] < C(Jul® + [v]*)|u ~ o],
where o is given by (4.4.3). Set g¢(u)(z) = fo(u(z)) for £ =1,2 and let

(4.4.5)

r=oa+2.
Using (4.4.5), we deduce from Hoélder’s inequality that
llgr(w) = g1(v)llz2 < Cllu~v| 2,
lg2(u) = g2l < Cllullfr + [lollE) lu — v]e-
and from Remark 1.3.1(vii) that
IVg1(w)liz: < ClIVullLe,
Vg2l < Cllullz-[|Vullz- .

(4.4.6)

(4.4.7)

We now proceed in three steps.

STEP 1. Local existence. Fix M,T > 0, to be chosen later, and let g be such
that (g,r) is an admissible pair. Consider the set

E={ueL>((-T,T),H'®R")) n LI((-T,T), W' " (R"));

(4.4.8)
lullLo((-1.1), 81y < M, Jullpo((-7,7), w1y < M}

equipped with the distance

(449) d(u, U) = “U - U”L"((—T,T),L") -+ ”'LL - U”L‘”((—T,T),Lz)-

We claim that (F,d) is a complete metric space. Indeed, we need only show that
E is closed in LI((—T,T),L"(RY)). Consider (un)n>0 C E such that u, — u
in LI((—T,T),L"(RY)). In particular, there exists a subsequence, which we still

denote by (u)n>0, such that u,(t) — u(t) in L™(RY) for a.a. t € (=T, T). Applying
Theorem 1.2.5 twice, we deduce that

u € L®((-T,T), H'(RY)) n L((-T, T), W' (RY))

and that o
lull 2o -7y, 10y < Hminf [fun] Lo (-1, 1) < M,

lullLe (- w1y < lﬂgf NunllLo(-7,1y,Ww1ry < M
and sou € E.

Consider now u € E. Since g; is continuous L?(RVN) — L2(RY), it fol-
lows that gi(u) : (=T,T) — L%*RY) is measurable, and we deduce easily that
g1(u) € L®((=T,T), L*RY)). Similarly, since g is continuous L™ (R™)— L™ (RN),
we see that gy(u) € LI((~T,T),L" (RY)). Using inequalities (4.4.6) and (4.4.7)
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and Remark 1.2.2(iii), we deduce the following: g1(u) € L®((-T,T), H'(RY)),
g2(u) € Lq((_T’ T)’ Wl,'r‘ (RN))v

g1 ()l o (=119, 8Y) < Clwllpoe ((-1,1),51) 5

g2 (@)l a¢—,my,wrmy < ClullZoe (—1, 1) 20y 1@l Loy w1y 5
and
llg1(u) — g1 (W)l Loe ((-1,1),22) < Cllu = vllLoo((~T,1),L2) 5
llg2(u) — g2(”)“Lq((-T,T),LT’) <
CllullGoo -1y, 17y + 0o (1), L)) 18 =Vl La-7),L7) -
Using the embedding HY(RM) «— L"(RM) and Hélder’s inequality in time, we
deduce from the above estimates that
(04.10) a0l (s Hlg2@ll o (rry iy < C(T+TF) (MM
and
(4411) lg1(w) — g1 (V)| L1 ((-7,1),22) + l|g2(u) - gz(v)Hqu(( -1, ) <
C(T+T°« )(1 + M*)d(u,v).

Given ¢ € HY(RY) and u € E, let H(u) be defined by

t
(4.4.12) wa0=TMw+{/3ﬁ—$MM@M&
0
1t follows from (4.4.10) and Strichartz’s estimates that
(4.4.13) H(u) € C([-T,T), H*RM)) n LY((-T, T), Wt (RN)),
and

gy POl mm i + IO rm ) <
Cliell i +C(T+T )(1+Ma)M
Also, we deduce from (4.4.11) that
(4.4.15) () ~ K@)l 2= (-1imy,L2) + [H(w) = H)l|za(-.),20) <
C(T + T ) (1 + M®)d(u,v).

Finally, note that

g—4q 2 4—(N-2a
179 1SN "7 5.
qq’ q 2N(a +2) >0

We now proceed as follows. Given ¢ € H}(RY), we set
M= —H@llyl
and we choose T' small enough so that

C(T+ T )0+M%

l\DI»—-
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Note that T' depends on ¢ only through [l¢|/g:. It then follows from (4.4.14)
and (4.4.15) that

IH )| oo (~7,1),81) + IH @] o (=19, w11y < M ;

i.e., H(u) € E and
d(H(u), H(v)) < %d(u,v).

In particular, H is a strict contraction on E. By Banach’s fixed-point theorem,
H has a unique fixed point u € FE; i.e., u satisfies (4.1.2). By (4.4.13), H(u) €
C([-T,T],H'(R"N)), and so u € C([-T,T), H(RM)). Applying Proposition 3.1.3,
we deduce that u is a strong H'-solution of (4.1.1) on [T, T].

STEP 2. Uniqueness and the blowup alternative. Uniqueness follows from
Proposition 4.2.3. We then proceed as in the proof of Theorem 3.3.9: using unique-
ness, we define the maximal solution; and since the solution u of Step 1 is con-
structed on an interval depending on |[¢||z:, we deduce the blowup alternative.

Step 3. Continuous dependence. Let ¢ € HY(RM); consider (¢n)n>o0 C
HY(RM) such that ¢, — ¢ in H(R") as n — oo; and let u, be the maximal
solution of (4.1.1) corresponding to the initial value ¢,,. We claim that there exists
T > 0 depending on ||¢| g1 such that u, is defined on [-T,T] for n large enough
and u, — u in C([-T, T}, H}(R")) as n — cc. The result follows by iterating this
property in order to cover any compact subset of (—Tinin, Trax)-

We now prove the claim. Since ||@,||g1 < 2|l¢||g2 for n sufficiently large, we
deduce from Step 1 that there exists T" = T'(|j|| 1) such that u and u,, are defined
on [~T,T] for n > ng and

(4.4.16) ullLoo (=71, 51) + 8UP [|Uun|lpoo (1,1, 81) < Cllola -

n>ng

Note that un(t) — u(t) = T(t)(on — ) + H(un)(t) — H(u)(t). Therefore, apply-
ing (4.4.15) we obtain

lun — wll Lo (=7,7),L2) + Un — W]l La(=T,1),L7)
< Cllon — @llm

+ C(T+ T ) (llun — wllpoe((orm,L2) + ltin — Wl Loq=ry.L7)) »

where C depends on ||| g1. By choosing T' possibly smaller, but still depending
on ||¢|| g1, we may assume that C(T" + Tgﬁ_) <1/2 and we conclude that

(4.417)  |lun — ullpee((-1,7),L2) + {lun — ullzo(-1,7),L7) £ 2C|l0n — @llmn-

Note that V commutes with J(¢), and so

Vu(t) =T (t)Ve +1i /t Tt — s)Vg(u)ds .
0
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A similar identity holds for u,. We now use the assumption f € C1(R?,R?), which
implies that Vg(u) = f'(u)Vu. Therefore, we may write

V(un —u)(t) =T(E)V (up —u) +1 /t Tt~ 8)f'(un)V(up — u)ds
0

+i/0 T(t - 8)(f'(un) — f'(u))Vuds.

Note that fi and fo are also C!, so that f/ = f{ + fj. Therefore, arguing as in
Step 1 and using (4.4.16), we obtain the estimate

IV (un — U)“L&((—T,T)L% +IV(un - U)“Lq((—T,T),Lr)
< Clllen = ¢l an
a=g’
+ T+ T ) (IV(tn = wllLe(-1,1),L2) + IV (Un = w)| La((-T,1),L7))
+ H (f{(un) - f{(u))vullLl((_T’T)’Lz)
+ “(fé(un) - fé(u))vu“Lq'((_T’T)’Lr’)] ’

where C depends on |¢||g:. By choosing T possibly smaller, but still depending
on |||z, we deduce that

|V (un = w)llL=~7,1),L2) + IV (Un = )| La(-1,7),27)
< Clllen = @l + I(f1(un) — f1(w))Vull g1 ((-1,1),12)
+ 1 (F3(un) = Fo(w)Vull Lo (1), 1)) -
Therefore, if we show that

(f1(un) = f1(w)VullL1((-7.1),12)

4.4.18

( ) + 1(f2(un) = f2(u))Vull Lo (-17),7) 20,
we obtain that

(4.4.19) IV (un = w)llzoe ((-1,70,L5) + IV (Un = W)llLo(-1,1),Lr) —2 0,

which, combined with (4.4.17), yields the desired convergence. We prove (4.4.18)
by contradiction, and we assume that there exist € > 0, and a subsequence, which
we still denote by (un)n>0 such that

I(f1(un) = f1())VullL1(-1,7),22)

+ 1(falun) = f2(w) VUl Lo (), 0y 2 €
By using (4.4.17) and by possibly extracting a subsequence, we may assume that
Un — u a.e. on (=T,T) x RY and that there exists w € LI((~T,T),L"(RY))

such that |u,| < w a.e. on (=T, T) x RY. In particular, (f](un) — fi(v))Vu and
(f5(un) — f3(u))Vu both converge to 0 a.e. on (=T, T) x R". Since

|(fi(un) — fi(w)) V| < C|Vu| € LY(-T,T), L*(RY)),

(4.4.20)

and
(f3(un) — FH(w)Vul < C(Junl® + |ul*)|Vy|
< C(fw|* + |ul*)|Vu| € LY ((-T,T), L™ (R")),
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we obtain from the dominated convergence a contradiction with (4.4.20). g

REMARK 4.4.3. It follows follows easily from (4.4.10) and Strichartz’s estimates
that
u€ Ly ((_Tmimeax)v Wl’p(RN))

loc
for every admissible pair (v, p).

REMARK 4.4.4. (4.4.19) and (4.4.17) imply that the solution depends continu-
ously on the initial value not only in C(I, H}(R")) but also in LI(I, WL (RN))
(and more generally in LY(I, Wh?(RN)), where (7, p) is any admissible pair).

REMARK 4.4.5. Let f € C(C,C) satisfy (4.4.1)-(4.4.3) (i.e., f is as in Theo-
rem 4.4.1 except that we do not assume that f is C'). Since we used the C!
assumption only at the end of Step 3 of the proof of Theorem 4.4.1, there is local
existence and the blowup alternative. The full statement of continuous dependence
might fail. However, there is a weaker form of continuous dependence. First, with
the notation of Step 3, u, is defined on an interval [-T,T] for n large, with T
depending on ||¢||z1. Also, we still have estimates (4.4.16) and (4.4.17). Using
Gagliardo-Nirenberg’s inequality and a covering argument, we deduce that u, — u
in C([-T,T), LP(R")) for all 2 < p < 2N/(N — 2).

The method of proof of Theorem 4.4.1 can be applied to more general non-
linearities. More precisely, let g € C(HY(RY), H~}(R")) and suppose that there
exists 2<r,p <2N/(N —2) (2<r,p< o0 if N =1) such that

(4.4.21) lig(u) = g(v)llLr < C(M)[Ju—vllz-
for all u,v € H*(R") such that ||u||z1, ||v||z+ < M. Suppose further that
(4.4.22) lg(w)llyr.er < CMYL + [lullws.r)

for all w € HY(RN) N WLT(RYN) such that |ju|/; < M.

THEOREM 4.4.6. Let g = g1 + -+ + gk, where each of the g;’s satisfies (4.4.21)—
(4.4.22) for some exponents r;,p;. For every ¢ € HY(RN), there exists a unique,
strong H'-solution u of (4.1.1), defined on a mazimal time interval (—Timin, Tmax)-
Moreover,

u € Lige((~Timin, Tmax), W (R™))
for every admissible pair (a,b). In addition, the following properties hold:

(i) There is the blowup alternative; i.e., [u(t)llgr — o0 as t | Tmax if
Tmax <00 and ast | —Tiin o Tmin < 00.

(ii) u depends continuously on ¢ in the following sense: There exists T > 0
depending on |l¢|lm: such that if ¢, — ¢ in HY(RY) and if u, is the
corresponding solution of (4.1.1), then uy, is defined on [—T,T) for n large
enough and u, — u in C([-T,T), LP(RY)) for all 2 < p < 2N/(N - 2).

(iii) If (g(w),iw)g-1 g1 = 0 for all w € HY(RYN), then there is conservation of
charge; i.e., [[u(t)llLz = |l¢llL2 for all t € (—Timin, Tmax)-

(iv) If each of the g;’s satisfies (3.3.5), then there is conservation of energy; i.e.,
E(u(t)) = E(yp) for allt € (—Tmin, Tmax), where E is defined by (3.3.9) with
G=Gi++Gk
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PROOF. We set

T =max{r1, ..., ks Pls-- > Pk} >
and we consider the corresponding admissible pair (g,r). Given M,T > 0 to be
chosen later, we consider the complete metric space (E, d) defined by (4.4.8)~(4.4.9).
We now proceed in three steps.

STEP 1. Existence, uniqueness, regularity, the blowup alternative, and con-
tinuous dependence. We first claim that if ¢ € H'(RY), then the mapping H
defined by (4.4.12) is a strict contraction on E for appropriate choices of M and T.

Given 1 < j < k, we consider g;,7; such that (¢;,7;) and (75, p;) are admissible
pairs. It follows from Hélder’s inequality that

2(1‘—1'2') r(rz<—2)
fwlyres < lwll > ol
so that
2(r—-r;) (r;—2)

il gos (- mry,wirsy S Wl g orimy, 1@l Lo <y, wamy -

In particular, if v € E, then u € L% ((-T,T), Wb7s (RN)) forall 1 < j <k and
2r=-r;) r(‘r‘i—Z)

(4.4.23) ”u”qu((_T’T)’Wl,rj) < MTED M= = M.

Next, it follows from (4.4.21)—(4.4.22) that g; is continuous H}(R") — LA (RM).
We deduce that if v € E, then g;(u) : (-T,T) — LF (R¥V) is measurable, and
it follows easily that g;(u) € L*((-T, T),L”9 (RM)). Applying Remark 1.2.2(iii)
and (4.4.22)—(4.4.23), we conclude that g;(u) € L% ((-T,T), WL (RN)) and

a L
“gj(u)”L"j((-T,T),Wl’p;) < Cu(T% + llull gos (- wrms)) < Cu (T + M),

where Cps depends on M. It follows that
(4.4.24) 16500 g gy iy < ot (T 4 MYT %
Applying now Strichartz’s inequalities, we deduce from (4.4.24) that if 7' < 1, then
H(uw) € LY(~T,T), W-"(RM)) n C([-T, T], H*R"))
and
IRl La-1,my, w1y + IR Lo -1y, 1) < Kol + KCp(1+ M)T?

where

/
0 = min % 7’ >0.
1<k g5
We now choose M, T so that M > 2K| ¢||m: and KCp(1 + M)T? < M and we
see that H(u) € E for all u € E. (Note that T depends on ¢ through |[p||f1.)
Applying now (4.4.21), it is not difficult to show by similar estimates that, by
possibly choosing 7" smaller (but still depending on |l¢||g1),

(4.4.25) d(H(u), H(v)) < = d(u,v)

™|
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for all u,v € E. So 'H has a fixed point u € E. This proves the existence part.
Uniqueness follows from Proposition 4.2.3. The L .((~Tmin, Tmax), WP (RY)) reg-
ularity follows from (4.4.24) and Strichartz’s estimates. The blowup alternative is
proved as in Theorem 4.4.1 and continuous dependence as in Remark 4.4.5.

STEP 2. Property (iii). Since equation (4.1.1) makes sense in H~1(R") for
a.8. t € (—Tmin, Tmax), We may multiply it (in the H~1-H! duality) by su, and we
obtain

(ut,’u,)H-xJp = (—Au, ’iu)H-ng + (g(u),iU)H—l’Hl =0.
Since u € LS. ((—Tmin, Tmax), H*(RY)) and u; € L((~Timin> Tmax ), HHRN)),

loc loc
we deduce that

d
E”u(t)”%ﬂ = 2(utau)H_l,Hl = 07
and the result follows.

STEP 3. Property (iv). We first assume that ¢ € H2(R"). Given ¢ > 0, we
set I, = (I —eA)~2. The reader is referred to Propositions 1.5.2 and 1.5.3 for all
the relevant properties of I.. We define

9ie(w) = Ieg;(Icw)
for 1 < j <kand we H{(RY), and we set

k
Ge = Zgj,s and Ge(w) = G(I.w).
j=1

We observe that the g; .’s satisfy the same estimates as the g;’s, uniformly in ¢ > 0
and that

(4.4.26) 9. =G..

We denote by u. the solutions of (4.1.1) with g replaced by g.. It follows from
the estimates of Step 1 that there exists T = T'(||¢| 1) such that u. is defined on
[-T,T] and

(4.4.27) sup Nue®la < M = Mlelm).

>0

Since u is continuous [-T,T] — HY(RY) so is I.u.. Therefore, g(I.u.) is con-
tinuous [—7,T] — H~1(R"), thus g.(uc) is continuous [-T,T] — H?(R"). Since
@ € H*(RV), we deduce that

ue € C([-T,T), H*RM)) n CY([-T, T}, LARN)).
Therefore, we may take the L? scalar product of the equation with
Oue € C([-T,T], L2 RN))
and obtain
(10pue, 10:te ) 2 + (Ate, Opuie) 12 + (ge(ue), Ostte) 2 = 0.
Using (4.4.26), we deduce that
%{% [ 1vup- Ge<ue)} =0,

RN
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so that

(4.4.28) /lwei —G(u) = /|w[ — Ga(p)

for all t € [-T,T]. We claim that, after possibly choosing T' smaller (but still
depending on []m),

(4.4.29) Ue T U

in C([-T, T}, LP(RN)) for all 2 < p < 2N/(N — 2). Indeed for every j we write
9je(tte) = 95(u) = gje(ue) = gj.e(u) + Le(g; (Lew) — g5 (w)) + (I — D)g;(u)
and we deduce that, with the notation of Step 1,
g5, (ue) — 95 (U)HLW;((—T,T),L”;')
< 1gje(ue) — gj,e(u)”Lw;((_T V.17

+ llgi(Tew) — g5 (Wl + (L =

L .7(( -T,T),L J) )gj(u)||Lw;((_T’T),Lp;) .
Since g;(u) € L ((=T,T), L (RY)), we have
I(Ze = Dg; (W)l -

Next, since I,u — w in C([-T,T], H(R")), we deduce from (4.4.21) that

(=TT 10

lgs (Tew) = 95l oy 17y T35 ©

We also deduce from (4.4.21) applied to g; . and (4.4.27) that (see the estimates of
Step 1)

195 (ue) = ge(l 1 gy 1oty S CT Ntte —ullLo -1,y -
Using the above estimates and Strichartz’s inequalities, we conclude that
llue — wllLoo((~1,1),22) + lue = tllLo-1.1),L7) < @e + CT lue — vl La((-1,1),L7)
with a. — 0 as £ | 0. By choosing T sufficiently small, we deduce that
[lue — ullpoo((-1,1),22) =0 ase 0,

and (4.4.29) follows by applying (4.4.27) and Gagliardo-Nirenberg’s inequality.
Next, we deduce easily from (4.4.21)—(4.4.22) that (see the proof of (3.3.14))

(4.4.30) IG(u) = G(v)] < C(M)([lu — vz + [lu—v]z-)
for all u,v € HY(R") such that ||ul g, ||v||g1 < M. In particular,
(4.4.31) |Ge(p) = G(@) < Cllilep = pllz + e — i) -2 0.

Similarly, one shows using (4.4.29) and (4.4.30) that

(4.4.32) |Gelue) — G(u)] TS 0
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for all -T'<t <T. We now let € | 0 in (4.4.28). Since
IVU®llze < liminf [ Fun (6)]12.

we deduce by using (4.4.31) and (4.4.32) that
(4.4.33) E(u(t)) < E(p)

forall -T<t<T.

We now consider ¢ € HY(RY). We approximate ¢ in H! (RN) by a sequence
(¢n)n>1 € H*(RY), and we denote by u, the corresponding solutions of (4.1.1).
We note that u,, satisfies (4.4.33). Letting n — oo, using continuous dependence
(property (ii)) and the argument just above, we deduce that u satisfies (4.4.33).
This means that E(u(t)) has a local maximum at t = 0. The same property
applied after replacing ¢ by u(tp), where tg € (~Tpmin, Tmax) is arbitrary, implies
that E(u(t)) has a local maximum at ¢ = ¢;. Since E(u(t)) is a continuous function
of ¢, it must be constant. This completes the proof. a

COROLLARY 4.4.7. Let g be as in Theorem 4.4.6. If each of the g;’s satis-
fies (3.3.5), then the initial-value problem (4.1.1) is locally well posed in H*(RN).

ProoF. By Theorem 4.4.6, we need only prove the continuous dependence; i.e.,
that if ¢, — ¢ in H'(RV) and if u, and u are the corresponding solutions
of (4.1.1), then for every interval [—S,T] C (~Tmin(¢), Tmax(¢)), ¥n — u in
C([-8,T),H'(RY)). We claim that there exists 7 > 0 depending on |j¢||z: such
that u,, is defined on [T, T'] for n large enough and u,, — u in C([~T, T}, H*(R"))
as n — 0o. The result follows by iterating this property in order to cover any com-
pact subset of (—Tiin, Tmax).- We now prove the claim. By Theorem 4.4.6(i1), we
know that there exists 7' > 0 depending on [|¢|| g1 such that u,, is defined on [T, T
for n large enough and up, — v in C([-T, T}, LP(R")) forall 2 < p < 2N/(N—2). It
follows that (see (4.4.27)) G(un) — G(u) in C([-T,T]). By conservation of energy,
VunliLz — |[Vu| L2 in C([-T,T]), so that (see Proposition 1.3.14) Vu,, — Vu in
C([-T,T], L*(RY)). This completes the proof. ‘ O

REMARK 4.4.8. We may apply Theorem 4.4.6 to the case
9(u) = Vu+ f(u()) + (W ju*)u,

where V,VV € L°(RY) + L®°(R") for some § > 1,6 > N/2, f is as in The-
orem 4.4.1 (for example, f(z) = Alz|z with A € C and (N — 2)a < 4), and
W e L°(RV) + L>(RY) for some ¢ > 1, ¢ > N/4. This follows easily from the
estimates of Section 3.2. Note that in this case, even though the assumptions of
Corollary 4.4.7 are possibly not satisfied, the initial-value problem (4.1.1) is, how-
ever, locally well-posed in H!(R"). We need only prove the continuous dependence,
and this follows from the argument used in Step 3 of the proof of Theorem 4.4.1.
The term V[V (un, — u) + (W x {un|?)un — (W x |u|?)u] is easily estimated by using
the formula

VVu+ (W * |ul®)u] =
VVu+ VVu+ (W * |u>)Vu + (W x uVa)u + (W * Vui)u

together with Hoélder and Young’s inequalities. Note, in addition, that there is
conservation of charge provided V' and W are real valued and Im(f(z)z) = 0 for
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all z € C. Moreover, there is conservation of energy provided V' and W are real
valued, W is even, and f(z) = 26(|z|)/|2| for all z # 0 with 6 : (0,00) — R.

4.5. A Critical Case in H'(R")

In this section we assume N > 3. If we consider the model case g(u) = A|u|*u
with A € R and a > 0, then it follows from Corollary 4.3.4 that the initial-value
problem (4.1.3) is locally well posed in H}(RV) if o < 4/(N ~2). lf a > 4/(N -2),
then g does not map H LRN) — H-Y(RY), so we may consider the problem out
of the reach of our method. (See Section 9.4 for some partial results in that case.)
In the limiting case a = 4/(N — 2), g € C(H*(RM), H~1(R")), the energy is well
defined on H!(R"), and the various notions of H'-solutions make sense. On the
other hand, the methods we presented do not apply at several steps. However,
since this is a borderline case, we may think that an appropriate refinement of the
method will yield some local well-posedness result. This is indeed the case, and
below is such a result. (See Cazenave and Weissler (69].)

THEOREM 4.5.1. Assume N > 3. Let g(u) = A]u[wi—zu with A € R. For every
o € HY(RY), there exists a unique strong H'-solution u of (4.1.3) defined on the
mazimal interval (—Tiins Tmax) With 0 < Trax, Tmin < 00. Moreover, the following
properties hold:

(i) There is conservation of charge and energy.

(i) u € LY (~Tmin; Tmax), WLP(RN)) for every admissible pair (g,7).

(iif) If Tmax < 0o (respectively, Tmin < o0), then ||Vu|lLa(0,Tmax),L7) = +©
(respectively, | VullLa((=Tmg,0),L7) = +00) for every admissible pair (g,7)
with 2 <r < N.

(iv) u depends continuously on ¢ as follows. The functions Tmaxs Tmin are lower
semicontinuous H'(RN) — (0,00]. Moreover, if pn — ¢ in HY(RY) and if
Uy, 18 the mazimal solution of (4.1.3) with the initial value p,, then u, — u
in LP((—8,T), HY(RN)) for every p < oo and every interval [~S,T] C
(—Tmim Tmax) .

REMARK 4.5.2. Here are some comments on Theorem 4.5.1.

(i) We do not know whether there is uniqueness in the sense of Definition 3.1.4,
i.e., uniqueness of weak H!'-solutions. In our proof of uniqueness, it is
essential that we consider strong H!-solutions.

(ii) We do not know whether the usual blowup alternative holds (i.e., the blowup
of ||u(t)||g:)- In particular, we cannot deduce global existence results from
the a priori estimates of |lu(t)||z: that follow from the conservation laws
when A < 0.

(iii) The statement of continuous dependence is weaker than usual, since un, — u
in LP((—S,T), H*(RN)) for every p < 0o, but possibly not for p = co. In the
case A < 0, then there is also convergence for p = oo; see Remark 4.5.4(iii).

There are at least two methods for proving the existence part in Theorem 4.5.1.
One can use a variation of Kato’s method. This provides a simple proof, but it is
then delicate to establish the conservation of energy. Instead, one can truncate
the nonlinearity ¢ and obtain solutions of the truncated problem for which there is
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conservation of energy. Next, one uses the Strichartz estimates to pass to the limit.
This is the method we follow here.
We begin by introducing the truncated problem. Given n € N, let

g(u) if jul <n
451 () = .
( ) 9n (1) { AnT=Zy  if |u| > n.

In particular, g, : C — C is globally Lipschitz. Set

8
(4.5.2) Cnls) = / gn(0)do,
0
so that [Gn(s)| < Cns? for all s > 0, and let E,, € CY(H'(RV),R) be defined by
1
(4.5.3) Bn(u) = / Vul? - / Gn(w)
RN RN

for all w € H'(R"). Given T > 0 and u : [0,7] — H'(R"), define H,(u) by

(45.4) Ha(w)(t) = T(t)p + i /0 Tt - )gn(u(s))ds

for 0 <t <T. H is defined similarly, by replacing g, by g in (4.5.4). Finally, let
2N? _ 2N
NZoN+4 TTN-9

so that (7, p) is an admissible pair. We will use the following lemma.

(4.5.5) p=

LeEMMA 4.5.3. If(q,r) is any admissible pair, then
Hn(w) = Ha(v)llLe(o,1),2m) <
4
C(IVullzroy.20) + VUl L (0,10, 22)) T2 1t = ] L (0,7), 1) »

Nt2
(4.5.7) [IVHn (Wl Lo(o,7),27) < CIT() Vol Lago,1),L7) + cnvuuﬁgm,w :
Hn(w) = H(u)llLe(0,7),27) <

(4.5.6))

(4.5.8) N2 4 ST N:(—A’;.’N;)«l
_ . »
CT= n NNVl oo,y Loy 1l Los (0.1, 111 »

for some constant C' independent of n, T, and .

ProoF. It is clear that [g,(u) — g,(v)] < C(|u|7V4?f + |v|7V"1—-2)|u — v} for some
constant C independent of n. Therefore,

llgn(u) — gn(v)“m'((o,T),Lp’)

4

<c(Jlul + ol )Tl = vl oy

LY((0,T),L¥=7) LY((0,T),LF=2)
by Holder’s inequality in space, then in time. Since HwIIL Ja < O Vuwlre by
Sobolev’s inequality, (4.5.6) follows by applying Strichartz’s estimate. (4.5.7) is
proved similarly, by using the inequality |Vgn,(u)| < Clu|7=2 |Vu|. Next,

lgn(u) — g(u)] < Clul ™= |Ljjysnyul-
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We deduce that

4
(4.5.9)  llgn(w) = 9l 1~ (0,1), L") < C“VU”mo,T),LP)||1{|u|>n}u||Lv((o,T),Ln) .

Finally,

4 Mot 4 N2-2N+4
(4.5.10)  |Lgusnyullze < n"mﬂullw < On~FED |[uf| TV
(4.5.8) follows from (4.5.9), (4.5.10), and Holder’s inequality in time. O

Proor OoF THEOREM 4.5.1.  We consider only positive times, the problem for
t < 0 being treated by the same method. We proceed in six steps.

STEP 1. Uniqueness. This follows from Proposition 4.2.5.

STEP 2. Approximate solutions. Since g,, defined by (4.5.1) is globally Lip-
schitz C — C, there exists a unique, global solution u,, € C([0,00), H*(R")) of the
problem

(4.5.11) un (t) = Hn(u)(t)
for all t > 0. Moreover, there is conservation of charge and energy,
(4.5.12) lun(@®llz2 = llellLe,  En(un(t)) = En(e)

for all ¢t > 0. See, for example, Corollary 4.3.3 and Corollary 6.1.2 below. Further-
more, it follows from Remark 4.4.3 or Theorem 4.4.6 that

(4.5.13) un € L9((0,T), WhT(RM))

for every admissible pair (g, r) and every T > 0. Consider now any admissible pair
(g,7) and any T > 0. We deduce from (4.5.13), (4.5.11), and (4.5.7) that

N42
(4.5.14) IVanllLeqo,r),Lry S 1TVl Lao,r),zm) + ClVunll [5G0 1,10 -

Similarly, we deduce from (4.5.6) that

(4.5.15)  unllzaqom),Lm) < Cliellez + Cnvun“z}_(z(o,j‘),Lp)”unHL”f((O,T),LP) :
Finally, given ¢ > n, we may write
U — ue = [Hn(un) — Hn(ue)] + [Hn(ue) — H(ue)] + [H(ue) — He(ue)]
and we deduce from (4.5.6) and (4.5.8) that
llun — uell zago,1).27)

4
(4.5.16) < C(IVunll v (0,19, L0y + Vel Lro,m),10)) T2
N-2 ___4 Nz'Qf 4
(lhen = vellzoimy ey + T8 0™ 7= fug | TG 1)) -

Note that the constant C in (4.5.14), (4.5.15), and (4.5.16) may depend on the
admissible pair (g, ), but is independent of n, £, and T

STEP 3. Passage to the limit. We will solve the equation (4.1.4) (which is
equivalent to (4.1.3)), by letting n — oo in (4.5.11). Consider K larger than the
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constant C appearing in (4.5.14), (4.5.15), and (4.5.16) for the particular choice of
the admissible pair (g,7) = (7, p). Fix § > 0 small enough so that

(4.5.17) K457 < %

We claim that if 0 < T° < 0o is such that

(4.5.18) TGVl Lrom,Ley <6,
then

(4.5.19) SUp | Vun (07 10y < 26
and

(4.5.20) sup llunll o 0,1y, wrry < 00

for every admissible pair (g,r). (Note that, given ¢ € H(RY), (4.5.18) is satisfied
if T > 0 is sufficiently small. Indeed, T(-)Vy € L7((0, c0), L?(R")) by Strichartz’s
estimate, so that by dominated convergence |J(-)Vyl|lzv(o,1),2r) = 0 as T | 0.)
Set 6n(t) = || Vunl|Lv(0,1),Lr)- It follows from (4.5.14) that for every 0 <t < T,

On(t) < 6 + CO,(t) V53 |
If 6,(t) = 26 for some t € [0,77], then
25 < 6+ C(26)7% < 26,

by (4.5.17), which is absurd. Since 6, is a continuous function with 8,(0) = 0,
we conclude that 6,(¢) < 20 for all t € [0,T), which proves (4.5.19). Applying
now (4.5.14) for any admissible pair (g, r), we find that

(4.5.21) Sup || V|| La((0,1),Lr) < 00.
n>0
Applying (4.5.15) with (g,7) = (v, p) and using (4.5.17) and (4.5.19), we obtain

1
l4nllzrom),20) < Cliellzz + Sliunllzrom),Ley »

and so ||un || Lv((0,7),20) < 2C||¢|lz2- We then apply (4.5.15) for any admissible pair
(g,7) and we deduce that

(4.5.22) sup |[unllLe(o,1),L7) < 0.
n>0
(4.5.20) now follows from (4.5.21) and (4.5.22). We now deduce from (4.5.19),

from (4.5.20) applied with (g,7) = (c0,2), and from (4.5.16) applied with (g,r) =
(7, p), that

1 N—2 ___4
llun = wellzr om0y < 5 (lun = vellLr(0,0),10) + CT7FF 07 T3

forall £>nand for all 0 < 7 < T, 7 < 0o. (Note that we used again (4.5.17).)
It follows that (un)n>0 is a Cauchy sequence in LY((0,7), L?(R")). Applying
again (4.5.16), but with an arbitrary admissible pair (g, 7), we conclude that (v, )n>0
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is a Cauchy sequence in LI((0,7), L"(R")). If we denote by u its limit, then for
every admissible pair (g,7), u € LI((0,T), WL (RV)) by (4.5.20) and

(4.5.23) Un — U

in L9((0,7),L"(RN)) for all 0 < 7 < T, 7 < co. By using Lemma 4.5.3 we may
let n — oo in (4.5.11), and we obtain that u satisfies (4.1.4) for all 0 < ¢t < T,
t < 0o. Since g(u) € L ((0,T), Wh#' (RV)), we deduce from Strichartz’s estimate
that u € C([0,7), H*(R")) for every 0 < 7 < T, 7 < cc. In particular, u is a strong
H'-solution of (4.1.3) by Proposition 3.1.3.

STEP 4. The conservation laws. We deduce from the conservation of mass
for u, (see (4.5.12)) and from (4.5.23) applied with (g,7) = (00,2) that [[u(t)| L2
ll¢llLz. We now show the conservation of energy. Applying (4.5.23) with (q,r)
(00,2) and using (4.5.20), we deduce easily that u, — uin L((0, 7), L% (RM)) for
every 7 < 0o, T < T, and every ¢ < oo. In particular, there exists a subsequence,
which we still denote by (n)n>0, such that u,(t) — u(t) in L%(RN) fora.a. te
(0,T). Tt follows that Gn(un) — G(u) in L}(R") for a.a. t € (0,T). Using the
conservation of energy for u, and the lower semicontinuity of the gradient term,
we deduce that E(u(t)) < E(yp) for a.a. t € (0,T), hence for all t € (0,T) by
continuity of u(t) in H'(R"). Considering the reverse equation, one shows the
converse inequality.

STEP 5. The blowup alternative. By uniqueness, we may consider the max-
imal solution, defined on the interval [0, T}, ). We show the blowup alternative by
contradiction, so we assume that Tp.x < co and u € L"((O Tax), WET(RM)) for
some admissible pair (g,r) with 2 <r < N. Let b € (2, 22 2 be defined by

and let a be such that (a,b) is an admissible pair. Since |Vg(u)| < C|u[ﬁ|Vul,
one easily verifies by using the Sobolev inequality ||u||L Q= < C||Vul|L- that

A
(4.5.24) g(ull Lo (5,9, w10y < CUVUl L7 (s 0y, L Nl Lo (5,00, 920) 5

with C independent of 0 < s <t < Tj,.x- Since

(4.5.25) u(s+7) =T (T)uls) + z/ T(r — o)g9(u(s + 0))do,
0

we deduce from Strichartz’s estimate that

[l Lo (s, w18y < Clluls)llmn + ClVull fote o, 2my 12l Lo (s, w18) 5
with C independent of 0 € s €t < Tihax- Fix s close enough to Tiax so that
C’HVuHLq (5. Tma)s L) S 1/2. It follows that
wllLa s ey, wrey < 2CHu(s)]

for all s < t < Tmax, and so u € L%((s, Trax), WY*(RY)). Therefore, u €
L2((0, Tinax), WH?(RY)) and, applying again (4.5.24), we conclude that g(u) €
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L% ((0, Tmax), WY (RN)), so that u € LY((0, Tmax), WH?(RN)) by Strichartz’s es-
timate. We finally deduce from (4.5.25) and Lemma 4.5.3 that

e
1Tl 27 (0, Tmax—1). W) S Nl L7t Tona) Wr0) + CHUll L Gt D) W0) 2

where C is independent of ¢ € [0, Tjyax]. Therefore, we may choose t close enough to
Tmax 50 that [|T(-)u(t) || L~ ((0,Tmax~1),wre) < 6 with & given by (4.5.17). Therefore,
there exists € > 0 such that [|[T(-)u(t)||v((0, Twax+e—t),wiey < 8. We deduce from
Step 3 that the solution u can be extended to the interval [0, Tmax + €], which
contradicts the maximality.

STEP 6. Continuous dependence. Fix 0 < T < Tpax and let § > 0 sat-
isfy (4.5.17). Since u € C([0,T], H{(R")), Upc;criu(t)} is a compact set of
HY(RN). Therefore, it follows from Strichartz’s estimate that there exists 7 > 0
such that

g
(4.5.26) sup_[[TC)u(®)lzr(omwiey < 3 -
0<t<T

Suppose now ¢, — ¢ in HY(RN). It follows in particular from (4.5.26) and
Strichartz’s estimate that |T(:)nllzv((0,7),w1.ry < & for n large enough. There-
fore, by Step 3, the solution u, of (4.1.3) with the initial value ¢, exists on [0, 7]
and ||Vun|lLv(0,m),0r) < 26. Arguing as in Step 4, we deduce that u, — u in
L9((0,7), L"(RM)) and that u, is in a bounded subset of LI((0,7), Wb (RY)) for
every admissible pair (g,r). Therefore (see (4.5.6)},

(4.5.27) ‘ Up — U

in C([0,7], L>(RN)). Choosing r > 2 arbitrarily close to 2, so that ¢ < oo is
arbitrarily large, and applying Gagliardo-Nirenberg’s inequality, we obtain that
u, — u in LI((0, T),L%(RN)) for every g < oo. Since E(u,(t)) = E(pyn) —
E(p) = FE(u(t)), we see that | Vuy||r2 — ||Vuf|12 in L9(0, ) for every ¢ < co. On
the other hand, since u,, is bounded in C([0, 7], H*(R")), we deduce from (4.5.27)
that u,(t) = u(t) in H*(RY) for every t € [0, 7). Using the L? convergence of the
norm, one concludes easily that u, — u in L9((0,7), H}(R")) for every ¢ < oo.
In particular, there exists (tn)n>0 C [7/2,7] such that |ju,(tn) — u(tn)|lgr — 0.
Repeating the above argument (using (4.5.26) and (4.5.27)), we deduce that u,
exists on [0,37/2] for n large enough and that u, — u in L9((0,37/2), H}(RM)) for
every ¢ < oo. We may now iterate the same process to cover the interval [0,7]. O

REMARK 4.5.4. Here are some further comments on Theorem 4.5.1.

(i) If ||Vl L2 is small enough, then we may take T = oo in Step 3 of the proof
of Theorem 4.5.1. Indeed, ||T(-)Vo| Lvg,Lry < C||Ve|12. Therefore, the
solution is global in that case, i.e., Tjax = Tinin = 00.

(ii) It is clear from Step 5 of the proof of Theorem 4.5.1 that the blowup al-
ternative can be improved, in the sense that if Ty, < oo, then for every

admissible pair (g,r) with 2 < 7 < N, “u”Lq((o,T,,.ax),LWN—Lr) = oo. In ad-
dition, using the same type of estimates as in the proof of uniqueness (see

Step 1), one can show that if Tiy.¢ < 0o, then

Hm lim |ju

M
t1Tmax Moo “L

< (T 1 722) 700
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where uM = ul{jy|>p3- In fact, the limit is not only positive, but bounded
from below by a positive number 1ndependent of the solution. This indicates
a concentration phenomenon in L% (RM).

(iii) In the case A < 0,.the continuous dependence statement (iv) can be im-
proved. More precisely, u, — u in C([~S,T], H'(R")) for every interval
[-S,T) C (—Tmins Tmax)- In other words, there is the usual continuous de-
pendence property. The proof is in fact simpler. We have u,(t) — wu(t)
strongly in L2(RY), weakly in HY(R"), and E(un(t)) — E(u(t)) for all

€ [0,7]. Since A < 0, both terms in the energy are lower semicontinuous

so that indeed “Un(t)”Lﬁ_N—z — Hu(t)]]L% and ||Vun(t)||zz — [[Vu(t)|L2-
Thus u,(t) — u(t) strongly in H*(R") and one concludes as above.

(iv) In the case A < 0, one would expect that the solution is global for every
initial value. This is only known if we assume further that ||[V¢| 12 is small
(see (i) above) or if ¢ is spherically symmetric (see Bourgain [39]).

( 4.6. L? Solutions )

In this section we construct solutions of some nonlinear Schrédinger equations
for initial data in L2(R"). Such results were first obtained by Y. Tsutsumi [343]
(see also Cazenave and Weissler [69, 70] and Kato [204]). We assume that

(4.6.1) g: LA RMYN L™ (RN) — L7 (RV)
for some
(4.6.2) TE {2, %) (r € [2,00] if N =1).

Furthermore, we assume that there exists a > 0 such that, for every M > 0, there
exists K (M) < oo such that

(4.6.3) lg(v) = gl < K(M)(Hullz- + vlz-)llv — ull-

for all u,v € L2 (RN )N L"(RY) such that |jul|zz, ||[v]|z2 < M. We have the following
result.

THEOREM 4.6.1. Assume (4.6.1)~(4.6.3) and set

2 1 1
, -n(i-)
1,.‘,‘— 1. . aq r

so that (q, T) is an admigszble) pair. If o +2 < g, then for every ¢ € L*(RYN), there
exist Trmax, Tmin € (0,00] and a unique, mazimal solution u € C((—Timin, Tmax),
LZ(RN))ﬂL]oc((—Tmin,Tmax), L™ (R™)) of problem (4.1.1). Moreover, the following
properties hold:

(i) (Blowup alternative) If Tiax < 00 (respectively, if Tymin < o), then
lu(t)llze — oo ast T Tmax (respectively, ast | —Tmin)-
(i) u € L ((—Tmin, Tmax), LP(RY)) for every admissible pair (v, p).
(iii) v depends continuously on ¢ in the following sense: The mappings ¢ +—
Tnin, Tmax are lower semicontinuous L2(RY) — (0, oo]. If on — ¢ in
L*(RY) and if u, denotes the solution of (4.1.1) with the initial value o,
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then up, — u in LY((=S,T),LP(RN)) for every admissible pair (v,p) and
every —Tmin < =5 <0< T < Thax-

(iv) If (g(w),iw)pw - =0 for allw € L2 RN) N LT (RN), then Tmin = Tmax =
. +o00 and |lu(t)||L2 = ll¢llL2 for allt € R.

REMARK 4.6.2. Consider v as in Theorem 4.6.1; ie., u € C((—=Tmin; Tmax)s
LYRN)) N LY ((=Trmins Tmax), L"(RY)). It follows that Au € C((~Tmin, Tmax),

loc

—2(pN a4 o (RN : r (RN
H—2R"Y)) and g(u) € L&t ((—Tmins Tmax), L™ (RY)) by (4.6.3). Since L™ (RY)

loc

< H2(RV), we see that Au + g(u) € L3 ((~Tumin, Tonax), H-2(RV)).” It fol-

loc

lows that equation (4.1.1) makes sense in D’((—Trin, Tmax), H~2(RY)). In partic-
.
ular, uy € L% ((—Trins Tmax), H2(R")) and (4.1.1) makes sense in H~2(RY) for

loc

a.a. t € (=T hin, Tmax)-

For the proof of Theorem 4.6.1, we will use the following lemma.

LEMMA 4.6.3. Let g satisfy (4.6.1)<(4.6.3) and let I be an open interval of R. If .
u is measurable both as a function I — L%(RY) and as a function I — L™(RY),
then g(u) is measurable I — L™ (RY).

PROOF. Note that for a.a. t € I, u(t) € L2(RV) N L"(RY), so that g(u(t)) €
L™ (RY) is well defined. Consider a function ¢ € D(RY) such that ¢(z) = 1 for
lz| < 1 and set wn(z) = ¢(z/n) for n > 1 and z € RY. Using the dominated
convergence theorem, we see that p,u(t) — u(t) in L2(RY) and in L™(RY) as
n — oo for a.a. t € I. In particular, g(@nu) — g(u) in L™ (RN) as n — oo for
a.a. t € I. Therefore, we need only show that for any given n > 1, g(vnu) is
measurable I — L™ (RV). To see this, we observe that, since u is measurable
I — L7(RY), there exists a sequence (ux)r>0 C C(I,L"(RY)) such that ug(t) —
u(t) in L"(RV) as k — oo for a.a. t € I. Since pnux(t) is supported in a fixed
compact subset of K, C RY and L"(K,) — L%*(K,), it follows that @nuy is
continuous I — L2(RN) n L"(RV), and so g(pnus) is continuous I — L (RN).
Since ppux — @ru a8k — oo in L(RY), hence in L2(R¥) N L™(RVN) for a.a. t € I,
we have g(onur) — 9(pnu) in L™ (RN) for a.a. t € I. So g{pnu) is measurable
I — L™ (RV), which completes the proof. O

Proor oF THEOREM 4.6.1.  For the existence part, we use a fixed point argu-
ment as in Section 4.4. For the conservation of charge, we need a regularization
process. We proceed in five steps.
Q o X
StEP 1. Existence. Fix T, M > 0 and set
o) E = {u e L®((~T,T), L*(R™)) N L9((~T, T), L (RM));
- lullzes (-7,7),L2) + lullLo((-77),Lr) < M}

It follows that E is a complete metric space when equipped with the distance
(4.6.5) d(u,v) = |lu ~ vl Lo (11),22) + v = V] Le((=1,1),L7)-

Consider u € E. It follows from Lemma 4.6.1 that g(u) : I — L™ (RV) is measur-
able. Moreover, we deduce from (4.6.1) and (4.6.3) that for a.a. t € (-T,T),

gL < gl + K(M)llu)lg -
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Therefore, by Hélder’s inequality in time,

e
]]g(u)||Lq/(_T,T),Lr') < CT9(|g(0)] . + CK(M)|jul z?;ix)q'((_q" T),L7)

q(+)

1
< CT7 [|g(0)|| v + CT K(M)lullgf .o s

and so
1
(4.6.6) gL (-r,1),L7y < CT [|9(0)|| 1~ + CT
Similarly, one shows that for u,v € E,
g—(a+2) o -
(4.6.7) Ng(uw) — 9l Lo ((=1,1),0ry S CT ¢ K(M)M*d(u,v). ’1 A
Applying (4.6.6), (4.6.7), and Strichartz’s estimate, we see that

SRR (MMt

Cu)(t) = i /0 T(t - )g(u(s))ds

is well defined, that G(u) € C([-T,T], L3(R™)) n LY((-T,T), L*(R")) for every
admissible pair (v, p), and that

9= (u+)

(4.68) 1GWlz3((-r1),L7) < CT7 [lg(0 )|1L~+CT E(M)MeH,

(4.6.9) 1G(u) ~ G| Lv((-7,1), Lﬂ)<CT K(M)M*d(u,v).

Given ¢ € L%(RY), set now H(u)(t) = T(t)p + G(u)(t). We deduce from (4.6.8)
and Strichartz’s estimate that for every u € E,

I H | Lo ((~1,7),L2) + I H(W|Le((-7,7),L7) <
2
Cliglzs + CT? g(0)]| . + CT* =55 K(M)M®+!
Choosing M = 2C||]| L2, we see that if T is sufficiently small (depending on ||p]|L2),

H(u) € E for all u € E. Moreover, we deduce from (4.6.9) and Strichartz’s estimate
that, by possibly choosing T" smaller (but still depending on ||¢| 2),

d(H(w), H)) < =d(u,v)

N

for all u,v € E. Thus H has a unique fixed point u € E. Note that g(u) €
LY ((-T, T) L (RN)) — Lq ((=T,T), H }(RY)). It follows (see Section 1.6) that
u € C(-T,T),H-'(RV))'n Wb 1(( T,T), H3(R")) and u satisfies (4.1.1) in
Ii:&RN ) for a.a. t € (=T, T). This proves local existence.

STEP 2. Uniqueness. We first note that uniqueness is a local property, so
that we need only establish it on possibly small intervals. To see this, we argue
for positive_mes, the argument for negative times being the same. Suppose we
know that if u,v € C([0,T], L2(RN)) n LI((0,T), L™ (RN)) are any two solutions
of (4.1.1), then v = v on (0, 7) for 0 < 7 < T sufficiently small. We may then define
0<6<Thy

=sup{0<7<T;u=von (0,7)}.
It follows that u = v on [0,68]. If § = T, uniqueness follows, so we assume by
contradiction that 8§ < T. We see that u;(-) = u(f + ) and v1(:) = v(8 + ) are
two solutions of (4.1.1) with ¢ replaced by u(8) = v(8) on the interval (0,7 — 8).
By uniqueness for small time, we deduce that u; = v; on some interval [0,¢] with
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0 < &€ < T — 0. This means that u = v on [0, + €], contradicting the definition

of 6.
We now show uniqueness for small time. The proof of (4.6.9) indeed shows that

g—!a+2
1G(w) — GW)llzar,Ly < CHIT« K(flullpeo(r,22) + vl Lo (r,L2))
x (lullpocr,oy + WvllLaqr,zm)) *Nu = vl Laqr,Lry -

Since G(u) — G(v) = u — v, we deduce that if |I| is sufficiently small; i.e., if T is
sufficiently small, then

1
lu = vllLaqz,Lry < 5”“ ~VllLe(r,L7)

ie,u=vonl.

STEP 3. The blowup alternative and continuous dependence. Arguing as in
the proof of Theorem 3.3.9, we define the maximal solution by using the uniqueness
property; and since T depends on |j¢|| 72, we deduce the blowup alternative. Next,
using again (4.6.9), we deduce easily that, if ¢, € L?(RV) and if u,v are the
corresponding solutions of (4.1.1), then for some T depending on [l¢|izz2, ||¢]lL2,

d(u,v) < Cllp — ¢l L. W (property (iii)) follows easily (see
)

the proof of Theorem 3.3.9

STEP 4. Proof of property (ii). Let I > 0 be a bounded interval and let
u e Lo°(I, LA(RY)) N LI, L"(RN)) be a solution of (4.1.1). We need to show that
u € LY(I,LP(RY)) for every admissible pair (¢,r). We note that the argument of
proof of (4.6.6) shows that

g=(a+2)
o+ O T2 K (.ol S5 1 -

||g(u)||Lq’((1,Lr’) < ClI|7 {|g(0)]

In particular, g(u) € L9 (I, L” (R™)) and the result follows from Strichartz’s esti-
mates.

STEP 5. Proof of property (iv). Fix ¢ > 0 and let J. = (] —A)~!. (The
reader is referred to Proposition 1.5.2 and 1.5.3 for all the relevant properties of
Je.) We define the nonlinearity g. by

9e(w) = Jeg(Jew))

for all w € L?*(RN). We observe that Jow € HY(RN) ¢ L3(RM) n L"(R¥) so
that g(Jew) € L™ (RY). Since L™ (RN) — H-Y(RY), we have g.(u) € H'(RN).
Moreover, since J. is a contraction*in L”(RN }forall 1 < p < o0, we see that g.
satisfies the assumption (4.6.3) uniformly in £ > 0. Moregver,

(ge(w),1w) 2 = (ge(w)aiw)Lr',Lr = (Q(Jew),iJew)Lr',Lr =0.

We now proceed as follows. Consider ¢ € H!(RY) and let u be the corresponding
solution of (4.1.1). Let u. be the solutions of (4.1.1) with g replaced by g.. Since g,
satisfies the assumption (4.6.3) uniformly in ¢ > 0, we deduce from the estimates
of Step 1 that u. is defined on some interval [T, 7] with T independent of ¢ >
0. Since g(Jeue) € LY (=T, T), L™ (RVN)) (see the estimates of Step 1), it follows
that ge(ue) € L*((~T,T), H*(R")). This implies that u. € C([-T,T], H1(RY)).
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Therefore, we may take the H~! — H! duality product of equation (4.1.1) (with g
replaced by g.) by iu., and we obtain

1d

'Q‘E”us(t)”%? = ”(Ausv'éus)H~1,H1 - (ge(ue)aiue)H—l,Hl =0,
so that
(4.6.10) lue(®)llLz = llell L2
for |t| < T. We claim that, after possibly choosing T" smaller,
(4.6.11) Ue o U

in L®((~T,T), L*(RV)). Indeed, we write
ge(ue) — g(u) = ge(ue) — ge(u) + Je(g(Jeu) — g(u)) + (Je — I)g(u),
and we deduce that
lge (ue) — gl Lo (=1 1), 7)
< Nlge(ue) = ge(Wli Lo’ (-1,7),27)
+ lg(Jew) — g(u)“Lq’((—T,T),Lr’) + [1(Je = I)Q(“)“Lq’((—T,T),Lr’) .
Since g(u) € LY (=T, T), L" (RV)), we have

|(Je = Do)l ()27 3 0-

Next, since Jou — u in LI((=T,T), L"(R")), we deduce from (4.6.7) that

lo(Jew) = 9(u) o (77,87 =3 O-

We also deduce from (4.6.7) (applied to g.) that

g~ (a+2})
lge(ue) = ge (Wl e (-1,7),07) SCT 7 |ue — uflLe(-1,1),17) -

Using the above estimates and Strichartz’s inequalities, we conclude that

lue — ull oo ((—,1),22) + lltie — vllLa(-1,7),27)
g—(o+2)
<ac+CT 7 |ue — ullpa-r,m).L7) 5

with a. — 0 as ¢ | 0. Choosing T sufficiently small, we obtain the claim (4.6.11).
We then deduce from (4.6.10) and (4.6.11) that ||u(t)|lzz = |||l for |t| < T.
Replacing ¢ by u(to) for any to € (—Tmax, Tmin), We obtain that |ju(t)| L2 is locally
constant, hence constant. Finally, in the general case ¢ € L?(R"), we approximate
@ in L2(RN) by (¢n)n>0 C HY(RY) and we use the continuous dependence to obtain
the conservation of charge. Global existence follows from the blowup alternative. [J

THEOREM 4.6.4. Let g = g1 + - + gk, where each of the g;’s satisfies (4.6.1)-
(4.6.3) for some exponents Tj,ay. Set

2
2 _y(io1),
q; 2 1

and letr = max{ry,...,rx} andq = min{q1,...,qx}. If24+0; < g; forj=1,...,k,
then all the conclusions of Theorem 4.6.1 hold.



114 4. THE LOCAL CAUCHY PROBLEM

ProoFr. Fix M > 0 and consider (E,d) defined by (4.6.4)-(4.6.5). We see (cf. the
proof of (4.4.23)) that

2(r=r;) (;=2)
) s

lwllze (~1m),L7) < Wl g ( my, Loy 1wl o<y, oy -
In particular, |lullpe(-rr,L75) < M for all u € E and ||u ~ v||ge -1,7,075) <
d(u,v) for all u,v € E. We deduce (see the proof of (4.6.6)-(4.6.7)) that
< 75 —(e;+2)
“gj(u)“Lq;(—T,T),Lr;) <CT % ||g; ()|, +CT™ % K;(M)M®i+t,

g;—(a;+2)

s A B S .
lgs (@) = 95 gy 73y SCT = KG(M)M® d(u,0).

It follows that .
Gi(u)(t) =i /0 Tt — 5)g; (u(s))ds

is well defined, that G;(uv) € C([-T,T],L*(R™)) n LY(~T,T), LP(R"N)) for every
admissible pair (v, p), and that

L] qz'—(02'+2) )
1G; WL (-1),0) S CT % |lg;(0)|| e + CT ™ % Kj(M)M+!,
4;—(aj+2)

1G;(w) — Gi(Wlr(-my),e) SCT % K;(M)M®i d(u,v).

Given ¢ € L2(RY), set now H(u)(t) = T(t)p+G1(u)(t) +- - -+ Ge(u)(t). We deduce
that for every u € F,

IHW) Lo (—7,),22) + I1H(W) || e (-,1),27) <

k 1 gj=(e;+2)
s LT .
Cliglizz +C D> (T g (O)lpw + T 5 K;(M)Me+Y).

j=1

Choosing M = 2C||p|| 2, we see that if T is sufficiently small (depending on ||¢||z2),
H(u) € E for all u € E. Similarly, one shows that, by possibly choosing T' smaller
(but still depending on |l¢l[z2), d(H(u), H(v)) < d(u,v)/2 for all u,v € E. Thus
‘H has a unique fixed point u € E. The rest of the proof of Theorem 4.6.1 is easily
adapted. O

Let us now give an example, of application of Theorem 4.6.4. Consider V €
L¥(RN) + L®(RY) for some 6 > 1, 6 > N/2 and W € L°(RV) + L>(R") for some
oc>1,0>N/2 Let f: R¥ x C — C be measurable in z € RY and continuous in
z € C. Suppose that f(z,0) =0 for all z € R and that

f(x,21) = F(@,22)| < C(1+ |2a] + [22])° 21 — 2
for some 0 < 3 < 4/N. Set .
9(u) = Vu+ f(u()) + (W jul*)u.
We have the following result.
COROLLARY 4.6.5. If g is as above, then the conclusions of Theorem 4.6.4 hold.

‘Moreover, if V and W are real valued and if f(x,2)Z € R for all z € C and
z € RY, then there is conservation of charge and all solutions are global.
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Proor. Welet V = V;+ Vs with V3 € LS(RY) and V3 € L¥(RN), W = Wy + W,
with Wy € L°(RN) and Wa € L®(R"). We need only show that each of the terms
Viu, Vau, f(-,u(-)), (Wi |u|?)u and (Wy * |u|?)u satisfies the assumptions of The-
orem 4.6.4. It is immediate that Viu (respectively, Vou) satisfies the assumptions
with K(M) = C, a = 0, and v = 26/(6 — 1) (respectively, r = 2). Applying
Holder’s and Young’s inequalities, one easily verifies that (W, |u|?)u (respectively,
(Wo x Ju|?)u) satisfy the assumptions with K (M) = M?, a =0, and r = 20/(0 — 1)
(respectively, 7 = 2). Finally, one may write f(x,2) = fi(x,2) + fa(z, 2), where fi
is Lipschitz continuous in z, uniformly in z, and

|fa(@, 21) = fa(z, 22)| < C(|21]° + |22|®)|21 — 22

for a.a. z € RY and all 21,22 € C. One easily verifies that f;(-,u(-)) (respectively,
f2(-,u(-))) satisfies the assumptions with K(M) = C and with a = 0 and r = 2
(respectively, a = 8 and r = 5+ 2). O

4.7. A Critical Case in L2(R")

If we consider the model case g(u) = Aju]®u with A € C and a > 0, it follows
from Corollary 4.6.5 that the initial-value problem (4.1.3) is locally well posed (in
an appropriate sense) in L21RN L if o < 4/N. In the limiting case o = 4/N, the
method we presented does not apply at several steps. However, an appropriate
refinement of this method yields local well-posedness, and below is a typical result.
(See Cazenave and Weissler [69].) :

THEOREM 4.7.1. Let g(u) = AMu|®u with A € C and o = 4/N. For every
¢ € L*RY), there exist Tmax, Tmin € (0,00] and a unique, mazimal solution
u € C((—Tmin, Tmax), 2RM)NLET2((~ Tinin, Tmax), LET2(RY)) of (4.1.3). More-

over, the following properties hold:

(i) (Blowup alternative.) If Tax < oo (respectively, Tmin < 00), then
1l Lo ((0, Tinax), L) = 00 (respectively, ||ul| La((~Tuim,0),L7) = 00) for every ad-
missible pair (g,7) withr > a+ 2.

(i) u € LY . ((—Tmin, Tmax)> L™(RM)) for every admissible pair (q,T).

(iii) If, in addition, p € H'(RY), thenu € C((=Tmin, Tmax), HY(RM)).

(iv) (Conservation of charge.) If A € R, then ||u(t)|lzz = |l@llrz for all t €
(—Tmim Tmax)-

(v) (Continuous dependence.) The mappings ¢ + Tin, Tmax are lower-semi-
continuous L2(RN) — (0,00]. If on — ¢ in L2 (RYN) and if u, denotes the
corresponding solutions of (4.1.3), then u, — u in LI(I,L7(RY)) for every
interval I € (—Tmin, Tmax) and every admissible pair (q,7).

REMARK 4.7.2. Arguing as in Remark 4.6.2, we see that if u is as in Theo-
rem 4.7.1, then equation (4.1.3) makes sense in H~%(R%) for a.a. t € (—Tin, Tmax)-

PRrROOF OF THEOREM 4.7.1.  Consider an interval I C R with 0 € I and let u,v €
Lot2(], L*t2(RN)). It follows from the estimate

lul®u = fv|*v] < (@ + 1)(lul® + [v[*)|u — o]
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and Holder’s inequality that

a _ o o o <
(4.7.1) Ihefe =A%l st 2, =
(@ + V) (|[ullFaraqr,patey + [0l Fars (s, poray) lu = vl Lata(r,Losz) -

Setting

60 = [ T~ (o) u(s)is,
it follows from (4.7.1) and Strichar(t):z’s estimates that

G(u) € CI, LA RM))n LI(I, L™ (RM))
for every admissible pair (g,r), and that
(4.7.2) 19 zogr,ery < CNUIZH L) pasay

and
1G(u) = G()llLar,zry <

(4.7.3)
C(“u“%a+2(1,m+2) + ”v“%“+2(1,L°+2)) lu = vl|pa+a(r,La+2)

for some constant C independent of I. We now proceed in four steps.

STEP 1. There exists § > 0 such that if ¢ € L2(R") satisfies
(4.7.4) NT()ellpata(r,potzy <6

for some interval I C R containing 0, then there exists a unique solution u €
C(I,L*(RN)) n Lat2(I, Lo+t2(RN)) of (4.1.3). In addition, u € LI(I, L"(RV)) for
any admissible pair (g,7). Moreover, if ¢,9 € L*(R") both satisfy (4.7.4) and if
u, v denote the corresponding solutions of (4.1.3), then

(4.7.5) Hu - 'U”LW(I,LQ) + ||u - 'U”La+2(I’La+2) < K“(p - ¢I|L2

for some constant K independent of T', u, and v.
Indeed, fix § > 0, to be chosen later, and let ¢ € L?*(R") satisfy (4.7.4).
Counsider the set

E = {u e LI, L°P*RY)); lull La+a(1,1o+2) < 26},

so that (E,d) is a complete metric space with d(u,v) = [[u — v||fe+2(s,La+2). For
u € E, set

H@)() = T(t)p + ir /0 Tt — 8)[u(s)[*u(s)ds

for t € I. It follows easily from (4.7.2), (4.7.3), and (4.7.4) that if § is small enough
(independently of ¢ and I), then H is a strict contraction on E. Thus H has a
fixed point u, which is the unique solution of (4.1.3) in E.

Applying (4.7.2) and Strichartz’s estimates, we see that u € C(I, L2(RM)) n
L(I,L"(RY)) for every admissible pair (g,7). (4.7.5) follows easily from (4.7.3)
and Strichartz’s estimates.

We now show uniqueness (without any smallness assumption). Let I 3 0 and
consider two solutions u,v € Le+2(I, L**?(RN)) of (4.1.3). Uniqueness being a
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local property, we need only show that if 0 € J C I with |J| sufficiently small, then
u=v on J (see Step 2 of the proof of Theorem 4.6.1). We note that

(4.7.6) ull farz(s,La+zy + IVl Fova(ypasey = 0 as|J]]O.
It follows from (4.7.3) that
lu — vliLatz(ypa+zy <
C(llullfatrz(g,posay + 10| Tara(s Lara)) lu = vl|Latz(s Loty -
We deduce from (4.7.6) that if |J] is sufficiently small, then
C(llullgotzg,pot+2y + VI Tave (g patey) < 1,
and we conclude that ||u — v|[ze+2(1e+2) =0, i.e., u = v on J.

STEP 2. For u as in Step 1, we show that if ¢ € HY(RY), then u €
C(I,H*(RYN)). It follows from Corollary 4.3.4 that (4.1.3) has a solution v €
C((~Tin> Tmax), H*(RY)). This v is in particular an L? solution, so that by
uniqueness ¢ and v coincide as long as they are both defined. Therefore, we need
only show that I C (—Tiin, Tmax). Assuming I = (a,b), suppose b > Tax. Since
the equation (4.1.3) is invariant by space translations and since the gradient is the
limit of the finite differences quotient, we deduce easily from (4.7.5) that

VUl Lo ((0,Tmax),22) < ClIV@llL2 s

which contradicts the blowup alternative for the H! solutions. Thus Tjnax > b and
one shows by the same argument that a > —Tpy.

STEP 3. For u as in Step 1, we show that there is conservation of charge.
Indeed, let ¢, — @ in LZRY), with ¢, € HY(RY). It follows from Strichartz’s
estimates that for n large enough, ¢, satisfies (4.7.4), so that by (4.7.5), up, — u
in C(I, L*(RYN)), where uy, is the solution associated to ¢,,. On the other hand, we
deduce from Step 2 that u, is an H' solution, so that ||u,(t)|l> = ||@nllz2 for all
t € I. Passing to the limit as n — oo, we obtain |Ju(t)||z2 = ||¢||L> for all t € I.

STEP 4. Let ¢ € LERY). Since T(-)p € L*t2(R, L*+2(R™)) by Strichartz’s
estimates, we have ||J(:)@llpet2((—1,1),10+2) — 0 as T | 0. Therefore, (4.7.4) is
satisfied for T small enough, and we can apply Step 1 to construct a unique local
solution. Using uniqueness, we define the maximal solution © € C({(—Tmin, Tmax),
L?*(RY)) (as in the proof of Theorem 3.3.9). It remains to establish the blowup
alternative and the continuous dependence. We argue for positive times, the ar-
gument for negative times being the same. We show the blowup alternative by
contradiction. Suppose that Tmax < co and that ||u]|Le-r2((0,Tpe),Lo+2) < 00. Let
0 <t <t+5< Thax- It follows that

T(s)u(t) = ult + s) — 1A /s T(s —o)|u(t + o)|%u(t + o)do .
0

By (4.7.2), there exists C such that

1T Cu)ll Lot (0. Tmax—t),Lo+2) <

leall o2 (e Ty E+2) + CllUll Eda (1 ). 0+2)
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Therefore for t close enough to Thax,

]
ITCu)l Lova (o, Tmax—0),Lo42) < 5 -

By Step 1, u can be extended after Tp,,«, which is a contradiction. This shows that

lull La+2((0,Timax), La+2) = 00

Let now (g,7) be an admissible pair such that r > o + 2. It follows from Hoélder’s
inequality that for any T' < Tinax,

1- 1—
||UHL°+2((O,T),L°+2) < “u”lLLoc((o‘T),Iﬂ)”u[|Lq€L(o,T),Lv-) < H(p“lzzllu“Lq&(),T),Lr)7

with p = (%% Letting T' T Tinax, we obtain [|ull La((0,Tmax),L7) = OO

Finally, we show the continuous dependence. Consider T' < Tpax. Since
u € C([0,T], L%2(R")), it follows from Strichartz’s estimates and an obvious com-
pactness argument that there exists 7 > 0 such that

0
ITCY®)leszqo,m, e < 3

for all t € [0, T], where d is as in (4.7.4). Fix an integer n such that T < nr, let K >
1 be the constant in (4.7.5), and let M be such that || T(-)v|| La+2(g,Le+2)y < Mjv| 2.
Let ¢ > 0 be small enough so that MK™ 1z < §/2. We claim that if ||o—v|z2 < ¢,
then Tmax () > T and [lu—vllc(o,11,L2) + l|u— vl La+2((0,1), Lo+2) < NE™ |l ~ ]| L2,
where v is the solution corresponding to the initial value ¢. Indeed, if ||p—v||12 < g,
then

1T (¥l La+2(0,1/m),Lo+2) S NT()@llLeatz((0,1/n),Lo+2)

+ 1T (e = )l Lot (0,7/m),La+2)
< g + Me < §.
Therefore, it follows from Step 1 that Tp,ax(¥)) > T'/n and that

lu — vllcqo,r/n),L2) + 1w — vl Lat20,7/n),La+2) < Kl — |12 .

In particular, ||[u{(T/n) — v(T/n)||z: < Ke. The claim follows by iterating this
argument n times. This completes the proof. ]

REMARK 4.7.3. The blowup alternative in Theorem 4.7.1 is not very handy, since
it does not concern the L? norm of u. In fact, despite of the conservation of charge
when A € R, Thin and Thax can be finite in some cases. For example, assume A > 0
and let o € H'(R") be such that | - |¢(-) € L2(R") and E(p) < 0. It follows from
Theorem 6.5.4 below that u blows up in H! for both ¢t > 0 and t < 0. Therefore,
Tinax < 00 and Tin < 00, by Theorem 4.7.1(iii).

REMARK 4.7.4. We conjecture that if A < 0, then Tpin = Tmax = 0o for all
@ € L*(RY). However, we only have the following partial result. Assume A < 0,
and suppose that ¢ € L?(RY) is such that z¢(z) € L3*(RY). It follows that
Tmax = Tmin = oo and, in addition, v € LI(R,L"(R")) for every admissible
pair (g,7). Indeed, consider a sequence (¢n)n>0 C H'(RY), with ¢, il 2

in L*(RM) and zy,(z) bounded in L#(R¥). The corresponding solutions satisfy
u, € C(R,H'(R")) and | - |u, € C(R,L*(RY)) (see Lemma 6.5.2 below), and
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from the pseudoconformal conservation law (see Theorem 7.2.1 below), we see
that llun(t)Hzﬁ2 < Ct~2 for all t € R. By continuous dependence, this implies
that Hu(t)[lgj'f2 < Ct?foraate (—Thmins Tmax)- In particular, we see that if
Tmax < 00, then u € L*T2((0, Tyax), L2T2(RY)), which contradicts the blowup
alternative (note that u € L**2((0,7),Lo+2(RN)) for all 0 < T < Tiax). We
see as well that Tiin = 00. In addition, it is clear that the above estimate implies
that u € Lo*+2(R, L**+2(RY)). The estimate for an arbitrary admissible pair follows
easily from Strichartz’s estimates.

REMARK 4.7.5. There exists 7 > 0 such that if
(4.7.7) 1TC)eliLa+aw,Latay <7,

then Tiin = Tmax = 00. Moreover, u € LI(R, L"(RY)) for every admissible pair
(¢g,7). This follows easily from Step 1 of the proof of Theorem 4.7.1 (see in par-
ticular (4.7.4)). However, this conclusion does not hold in general for large data.
Indeed, if A > 0, there exist nontrivial solutions (standing waves) of the form
u(t,z) = e™té(x), with ¢ € HY(RV), ¢ # 0 (see Section 7.2). These solutions
obviously do not belong to LI(R,L"(RY)) if ¢ < oo. On the other hand, by
Strichartz’s estimates, (4.7.7) is satisfied if {j¢|/r2 < p for ¢ small enough.

4.8. H? Solutions

In this section we construct H? solutions by a fixed-point argument, and we
follow the proof of Kato [203, 204]. See also Y. Tsutsumi [340]. We note that
obtaining H? estimates by differentiating twice the equation in space would re-
quire that the nonlinearity is sufficiently smooth (see Section 4.9 below). Instead,
we differentiate the equation once in time, and then deduce H? estimates by the
equation.

Let g : H*(RV) — L%*R"™). Assume there exist 0 < s < 2and 2 < 7,p <
2N/(N -2) (2 <r,p<ooif N =1) such that

(4.8.1) g € C(H*(RN), L*(R")) is bounded on bounded sets
and
(4.8.2) llg(u) = g()l| L < LIM)|lu — vz~

for all u,v € H*(RM) such that ||lu||g:, ||v]m: < M.

THEOREM 4.8.1. Let g = g1 + --- + gk, where each of the g;’s satisfies the con-
ditions (4.8.1)—(4.8.2) for some exponent s;,r;, p; and some function L;j(M). For
every ¢ € H2(RY), there exist Timax, Tmin > 0 and a unique, mazimal solution
% € C((=Tmin, Tmax)s H2RY)) N CH{(=Tmins Tmax), L2(RY)) of (4.1.1). Moreover,
the following properties hold:

(i) ue I/V]i,g((_Tminmiax)a L™ (RM)) for every admissible pair (g,T).
(ii)) (Blowup alternative) If Tyax < oo (respectively, Thin < 00), then
lu(t)||gg2 — 0o as t T Tmax (respectively, ast | —Tiin).

(iii) v depends continuously on o in the following sense. There exists T >
0 depending on ||p||gz such that if ¢, — ¢ in HXRY) and if u, is
the corresponding solution of (4.1.1), then u, is defined on [-T,T] for
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n large enough and |[up||pe((—1,1),H?) iS5 bounded. Moreover u, — u in
C(-T,T), H*(RY)) asn — oo for all 0 < s < 2.

(iv) If (g(w),iw)r2 = 0 for allw € HX(RY), then there is conservation of charge;
i.e., “u(t)”L2 = ”(»OHL2 for allt € (_Tmimeax)'

(v) If for every j there exists G; € C*(H*(RN),R) such that g; = G, then there
is conservation of energy; i.e., E(u(t)) = E(p) for allt € (—Tmin, Tmax),
where E is defined by (3.3.9) with G =Gy + -+ - + Gg.

For the proof of Theorem 4.8.1 we will use the following lemmas.

LEMMA 4.8.2. Let ¢ € H*RYN) and set v(t) = T(t)g. It follows that v €
C(R, H*(RN)) and ||v||pe<w,m2) < ll@llaz. Moreover, if (q,7) is any admissible
pair, then v € CY(R, L2(RN)) n WII(R, L"(RY)) and there erists C independent
of ¢ such that |v[lwre®,Lr) < Cllollm2-

PRrROOF. The result follows from Strichartz’s estimates and the identity vy = iAv =
1T (t)Aep. O

LEMMA 4.8.3. Let g satisfy (4.8.1). It follows that g(u) € L*®°(J,L*(RN)) for
every interval J C R and every u € L®(J, H*(RY)). Moreover, there ezists a
continuous function K : (0,00) — (0,00) such that

(4.8.3) lg(w)ll Lo (s,22) < K (M)
for every u € L®(J, H*(RN)) with ||u|| Lo 5,510y < M.

Proor. This is an immediate consequence of (4.8.1). O

LEMMA 4.8.4. Let g satisfy (4.8.1)-(4.8.2). Let q and v be such that (g,7) and
(v, p) are admissible pairs. It follows that %g(u) € LY (J,LF (RN)). Moreover,

< LM)|luell v 5,17y »

d
(4.8.4) ” —g{u)
A=l gney

and in particular
11

< LM77 3 ugll Loqs,Lry
LY (J,L°")

(4.8.5) “%g(u)

for every interval J C R and every u € L*=(J, H*(RN)) with uy € LI(JL"(RY))
and ||u||Lco(J,Hs) < M.

PROOF. (4.8.4) is a consequence of (4.8.2) and Proposition 1.3.12 (applied to
f(@®) = g(u(t)) — g(u(to)), where to € J is fixed). O

LEMMA 4.8.5. Let J 2 0 be a bounded interval, let (v, p) be an admissible pair,
and consider f € L®(J, L2(RY)) such that f, € L (J,LP (RY)). If

v(t) = i/otiT(t —s)f(s)ds forallte J,
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then v € L®(J, HX(RY)) n CY(J, L2(RN)) n Whe(J, LY(RN)) for every admissible
pair (a,b), and

(4.8.6) lvlle(s,zey £ ClfllraL2y
(4.8.7) lvell e,y < CNFONIz2 + Cllfell v (g,20y »
(4.8.8) |Av] Lo (g,22y < N fllzoe(a,22) + ClIF(0)]| L2

+ Cllfellpv (g,Ley »
where C is independent of J and f. If, in addition, f € C(J,L?(RY)), then
v e C(J, H*(RN)).

PRrOOF. Since L? (RV) — H-YRY), we see that f € Whi(J,H }(RN)) —
C(J, H-Y(RM)). It follows that

w(t) = i /O T(s)f(t — s)ds = T (£) F(0) + /0 () fult — )ds

— T F(0) + i /0 T(t — 5)fi(s)ds.

(The above formula is trivial if f € C(J, H~}(R")) and follows by density for
f e Wh(J, H-Y(R")).) The result is then a consequence of Strichartz’s estimates.
Note that we use the equation iv; + Av + f = 0 to obtain (4.8.8) and the H?
regularity. O

Proor OF THEOREM 4.8.1. We first note that by Lemma 4.2.8, the prob-
lems (4.1.1) and (4.1.2) are equivalent. We then proceed in four steps.

STEP 1. Local existence. We construct local solutions by a fixed-point ar-

gument. We set
s = max{s1,..., Sk} < 2,

r=max{ri, ..., Tk, Ply-- Pk},
and we consider the corresponding admissible pair (g,r). Given M,T > 0 to be

chosen later, we set I = (—T1,T) and we consider
(4.89) E = {ue L®, H*R")) nWh(1, L3 (RY)) n Whe(I, L (RV));
o u(0) = @ and |Jullpee (1, 5%) + lullwree ,22) + Il wra,Lry < M}

It follows that (F,d) is a complete metric space, where the distance d is defined by
(4.8.10) d(u,v) = llu = vl|zeq,2) + llu = vllLaqg,ry -

(This is established by the argument of Step 1 of the proof of Theorem 4.4.1, using
Remark 1.3.13(ii) in addition to Theorem 1.2.5.) Moreover, E # @ since u(t) = ¢
clearly belongs to £. We now consider H defined by

H(u)(t) = T(t)p + G(u)(t),
where
Glu)(t) = i /0 Tt~ )g(u(s))ds

for all w € E and all t € I. Since g(u) € L>°(I, L(R")) by Lemma 4.8.3, it follows
that G(u) € C(I, L2(R")) is well defined.
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We first note that by (4.8.3),
(4.8.11) lg; ()l Loc g,L2) < K (M)

for every u € E (with K = max{Kj,... Ki}). Next, given 1 < j < k, we consider
g;,7; such that (g;,7;) and (v;,p;) are admissible pairs. It follows from Holder’s
inequality that

2(1‘—1‘_,-) r(r —-2)
T {r—2) (r-2)
[lwl| Las (1,L7i) < ”wl|LJ<>o(1,L2)||w||Lq(1 Ly -

In particular, if u € E, then u € Wh% (I, L™ (RV)) for all 1 < j < k and

2{r—-r;) r(r;—2)

(4.8.12) flullyres .oy S M0 IM D =M.

Therefore, we deduce from (4.8.5) and (4.8.12) that

(4.8.13) “gt-

7 ! -
L7 (1,L°3)

with F(M) = M max{L1(M),...,Lx(M)}. Applying now Lemma 4.8.5 to each
of the g;’s, we conclude that G(u) € L®(I, H3(RN)) n Whe(I, L5(RN)) for every
admissible pair (a, b) and every u € E. Moreover, it follows from (4.8.6) and (4.8.11)
that

(48.14) 1G ()| (1,12 < CoTK(M)

for some Cp independent of M and T. Similarly, it follows from (4.8.6), (4.8.7),
(4.8.11), and (4.8.13) that, by possibly choosing Cy larger,

G () llwr.eer,L2y + 1G(u )kuu Ly <

k
(4.8.15) Co<TK +ZH9_7 M2z +F(M)ZT1—?;-"—J'> ‘
=1

Also, it follows from (4.8.8), (4.8.14), (4.8.11), and (4.8.13) that, by possibly choos-
ing Cy larger,

NG ()l Lo (1,m2) <

k
(4:8.16) oo( 1+ DK + Z los(@lza + FON YT HF )

with C independent of M and T. Applying now Lemma 4.8.2, we deduce from
(4.8.14)—(4.8.16) that, by possibly choosing Cj larger,

(4.8.17) IH(@)l| Lo (1,2) < Co(TK(M) + [l@llar2),

IH(u)llwrez,22) + 1 H@)lwra,1my <
k

k
SR ool + Y- ol + TRGH) + PO YT 5 ),

j=1 j=1
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and
NH ()l oo (r,2) <
k
ey (T # 3 Il + 1+ KON + PO 757,
J=1 J=1
We now let

M = 400 Il + S laste iz )
j=1
It follows from (4.8.18) that, by choosing T sufficiently small,

H(ullwro(r,22) + [H@) lwraqr,ory < -

Next, using (4.8.17), (4.8.19), and the elementary interpolation estimate

(4.8.20) lulle < Juldaliul 3,

we see that, by choosing T possibly smaller,

IHlpe a0y < 5 -
It follows that H : E — E. A similar, though simpler, argument shows that,
after choosing T possibly smaller, H is a strict contraction on (E,d). Therefore,
‘H has a fixed point u € E, which is a solution of (4.1.1). It remains to show
that v € C(I, H*(RY)) N CY(I,L*(RYN)) and that u € W1e(I, L(RY)) for every
admissible pair (a,b). This follows from Lemmas 4.8.2 and 4.8.5. The only point
which is not immediate is that g(u) € C(I,L?*(R")). To see this, we observe
that u € C(I, L3(RY)). Moreover, by (4.8.19), u € L*®(I, H*(R")). Applying the
inequality (4.8.20), we deduce that u € C(I, H*(R")), so that g(u) € C(I, L*(R"))
by (4.8.1).

STEP 2. Uniqueness, the blowup alternative, and continuous dependence.
Uniqueness follows from Proposition 4.2.9. For the blowup alternative, we pro-
ceed as in the proof of Theorem 3.3.9: using uniqueness, we define the maximal
solution; and since the solution u of Step 1 is constructed on an interval depending
on ||p||f2 (as is easily verified), we deduce the blowup alternative. Arguing as in
Remark 4.4.5, we see that there is boundedness in L= ((~T,T), H*(R")) and con-
tinuous dependence in L®((—~T,T), L*(R")) for some T > 0 depending on ||¢|| g2.
Applying (4.8.20), we deduce the continuous dependence in L®((~T,T), H*(R"))
for every s < 2.

STEP 3. Property (iv). Since equation (4.1.1) makes sense in L2(R) for all
t € (—=Tmin, Tmax), we may multiply it (in the L? scalar product) by iu, and we
obtain
(ug,u)re = (—Au,tu)r2 + (g(u),iu)2 = 0.
Therefore,
SO = 2w, w)s-s s =0,

and the result follows.
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STEP 4. Property (v). Since equation (4.1.1) makes sense in L2(RY) for all
t € (=Tmin> Tmax), we may multiply it (in the L? scalar product) by u;, and we
obtain

(fug, ut)r2 = (—Au,ug) 2 + (9(u), ue) 12 -

Since (ius,ut)r2 = 0, we deduce that f—tE(u(t)) = 0 and the result follows. Note
that the identity P
L6 = (g(u), vz
holds in principle for u € CY((—Tiin, Tmax), H*(RY)). However, it is equivalent to

G(u(t)) = G(u(0)) + /Ot(g(u(s)),ut(s))Lz ds for all t € (—Tmin; Tmax)-

This last identity is easily established for u as in the statement by an obvious
density argument. This completes the proof. ol

We now give an application of Theorem 4.8.1 in a model case.

COROLLARY 4.8.6. Let V € L*(RY) 4+ L®(RY) for some § > 1, § > N/2 and
W e L°(RN) + L®(RYN) for some ¢ > 1, 0 > N/6. Let f € C(C,C) satisfy
f(0) =0 and

[f(u) = F()] < L(jul + [v]) | — vf
for all u,v € C with L € C([0,00),R) if N <3 and L(t) < C(1 +t*) with a > 0
and (N —4)a < 4 if N > 4. Finally, set

9(u) = Vu+ f(u(-)) + (W * [ul*)u.

It follows that all the conclusions of Theorem 4.8.1 hold. If, in addition, f €
C*(C,C) (in the real sense), there is continuous dependence in a stronger sense
as follows. The mappings ¢ — Tumin, Tmax are lower semicontinuous H*(RN) —
(0,00]. If o — ¢ in HXRYN) and if u, denotes the solution of (4.1.1) with the
initial value oy, then u, — u in C([-S, T, H*(RN)) and in WH9((=S,T), L"(R"))
for every admissible pair (¢,7) and every —Tyin < =5 < 0 < T < Thax-

Proor. The fact that g satisfies the assumptions of Theorem 4.8.1 follows easily
from the estimates of Section 3.2. The stronger continuous dependence property
when f is C! is proved by the argument used in Step 3 of the proof of Theorem 4.4.1,
except that we differentiate the equation in time instead of space. Doing so we first
obtain continuous dependence in W19(I, L™(R¥)) for every admissible pair (g,r),
then in C(I, H*(R")) by the equation. Note that the term &;[V (uy, — u) + (W x
[tr|?)ttr, — (Wk|u|?)u] is easily estimated by using the formula 8, [V u+(W*|u|?)u] =
VOuu+ (W x|ul?)0pu+ (W *ud,T)u + (W % 8,uti)u together with Holder and Young’s
inequalities. 0

REMARK 4.8.7. Here are some comments on Corollary 4.8.6.

(i) If g is in Corollary 4.8.6, then there is conservation of charge provided V
and W are real valued and Im(f(2)Z) =0 for all z € C.

(ii) If g is in Corollary 4.8.6, then there is conservation of energy provided V
and W are real valued, W is even and f(2) = z6(|z|)/|z| for all z # 0 with
6:(0,00) = R.
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(ili) Corollary 4.8.6 applies in particular to the case g(u) = Au|*u with A € C,
a >0, and (N —4)a < 4. A similar result holds in the H? “critical” case
N > 5and a = 4/(N — 4); see Cazenave and Weissler [70], theorem 1.4.

4.9. H?® Solutions, s < N/2

In this section we study the existence of solutions of the nonlinear Schrédin-
ger equation (4.1.1) in the Sobolev space H*(R™) for s > 0. (We note that the
cases s = 0, s = 1, and s = 2 have been studied in the preceding sections.) In
principle, a local existence result can be established by a fixed point argument by
using Strichartz’s estimates in the Sobolev spaces H*"(R™) (see Remark 2.3.8)
along with estimates of ||g(u)||g+.~. This is the program carried out by Kato [206]
and it makes use of a delicate estimate of ||g(u)||g- (Lemma A3 in [206]). Here,
we rather use the Besov space Bf)z(RN ) as an auxiliary space because estimates
of |lg(u)llBs, are much simpler to obtain (see Cazenave and Weissler [70]). We
also note that, regardless of the auxiliary space, the case s > 1 tends to be more
complicated as it requires more regularity of the nonlinearity. Thus we restrict
ourselves to s € (0,1) and we comment on the case s > 1 at the end of the section.
Also, consider the case s < N/2 (we comment on the limiting case s = N/2 at the
end of the section). When s > N/2, the embedding H*(R") — L®(R") allows a
simpler treatment of the equation (provided the nonlinearity is sufficiently smooth,
though); see Section 4.10 below. Note that if we consider a nonlinearity of the form
g(u) = Alu/®u, then the results of this section provide local existence in H*(R")
under the condition a < 4/(N — 2s) (and, also, a regularity assumption). Thus,
in principle, any power & > 0 can be handled in the H* framework with s < N/2.
Furthermore, and for the sake of simplicity, we only consider local nonlinearities.
The first result of this section is the following.

THEOREM 4.9.1. Let 0 < s < min{l,N/2}. Let g € C(C,C), and assume that
g(0) = 0 and that there exists

4
<
(4.9.1) 0<Lax< N %
such that
(4.9.2) lg(u) — g(v)] L CQA + |[u|* + v[*)lu —v| for all u,v € C.
Let (v, p) be the admissible pair defined by
_ N(a+2) _ 4a+2)
(4.93) P="N¥sa® T alN=2s)"

Given ¢ € H3(RY), there exist Trax, Tmin € (0,00] and a unique, mazimal solu-
tion u € C((—Tmin,Tmax),Hs(RN)) N LK)C((—Tmin,Tmax), ;,Z(RN)) of the prob-

lem (4.1.1). Moreover, the following properties hold:
(i) v € L _((—Tmin, Tmax), f’z(RN)) for every admissible pair (g,r).

loc
(ii) (Blowup alternative) If Tmax < oo (respectively, if Tmin < 00), then
lw(®)|lgrs — 00 ast T Tmax (respectively, ast | —Tmin)-
(iif) u depends continuously on ¢ in the following sense. There exists 0 < T <
Timax, Tmin such that if o, — ¢ in H*(RN) and if u,, denotes the solution
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of (4.1.1) with the initial value ¢p, then 0 < T < Thax(¥n)s Tmin(en) for
all sufficiently large n and uy, is bounded in L((-T,T), ﬁ,z(RN )) for any
admissible pair (q,). Moreover, up, — u in LI((-=T,T),L"(RY)) as n —
0. In particular, u, — u in C([~T,T], H*~¢(RYN)) for all e > 0.

REMARK 4.9.2. We decompose g = g1 + g2 where g1(0) = ¢2(0) = 0, g; is globally
Lipschitz C — C, and

(4.9.9) l92(21) = 92(22)| < C1z1]® + | 22]*)|21 — 22]

for all 21,21 € C (see Section 3.2). Let now I 5.0 be a bounded interval and let
u € L®(I,H*(RN)) N LY(I, BS 5(RY)). In particular, u € L®(I,L?(R")) so that
g1(u) € L™(I, L*(R")). Next, we note that p > 2 so that B;’L,(RN) — Hs°(RM).
Since 2s < N, we see sp < N, and it follows that

(4.9.5) 52(RY) — LP(RM)

for all p <p < Np/(N —sp) = N(a+2}/(N — 2s). Using (4.9.4) we easily deduce
that go(u) € LY(I, LP(R™N)) for all

p N(o+2)
w1 T 505

In particular, we see that go(u) € LY(I, L# (RN)). Since L? (RN) — H=°(RY) for
o = a(N—2s)/2(a+2), we deduce that go(u) € LY(I, H=?(RY)). Therefore, g(u) €
LY(I,H?(R")), so that equation (4.1.1) makes sense. Moreover, we see that
equation (4.1.1) is equivalent to (4.1.2) and that (4.1.2) makes sense in H~°(R").

REMARK 4.9.3. In Theorem 4.9.1, uniqueness is stated in C(I, H*(R"Y)) n
L7(I,B5,(RN)). If, in addition to (4.9.1), we assume a < (N + 2s)/(N — 2s),
then equation (4.1.1) makes sense for any u € L®(I, H*(R")), without assum-
ing that u belongs to the auxiliary space L7(I, B (R")). Assuming, in addition,
a<{1+28)/(1-28)if N=1ora<(2+2s)/(N~2s)if N> 2, we know that
there is uniqueness in L®(I, H*(R")) (see Section 4.2, especially Remark 4.2.12
for these properties). In this case, we deduce in particular from Theorem 4.9.1 that
if w e L®(I, H*(R")) is a solution of equation (4.1.1), then L4(I, Bf,(R")) for
every admissible pair (g, 7).

For the proof of Theorem 4.9.1, we will use the following nonlinear estimates
in Besov spaces.

PROPOSITION 4.9.4. Let g € C(C,C). Assume that g(0) = 0 and that there exists
a > 0 such that

(4.9.6) lg(u) — g(v)] L C(lul* + [v|*)|lu —v| for all u,v € C.
Let0<s<1,1<¢g<00,1<p<r<oo. Ifo=apr/(r—p), then
(4.9.7) lglig, , < Cllullzellullg,

and

(4.9.8) lg()lis;, < Cllulz- llull5;

™q
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for all u € Bﬁ,q(RN). Here, we use the convention that |ullLe = (fn lul)z for
O<o<l.

Proor. It follows from Holder’s inequality that

(4.9.9) lul*vllze < |lullge llvliz- -

Since |g(u)| < C|u|**? by (4.9.6), we deduce that

(4.9.10) lg(w)llr < Cllullzellullz-.

Moreover, if y € RY, then it follows from (4.9.6) and (4.9.9) that
lg(w)(- —¥) = 9(w)(llze < Cllullge flu- —y) — u()llz-.

Therefore, the inequality (4.9.7) follows from Remark 1.4.4(iii). Inequality (4.9.8)
follows from (4.9.7), (4.9.10), and Remark 1.4.4(ii). O

PROPOSITION 4.9.5. Letg € C(C,C). Assume that g(0) = 0 and that g is globally
Lipschitz continuous. Let 0 <s < 1,1 <r,q < oo. It follows that

(4.9.11) lg(ulig,, < Cllull g, ,
and |
(4.9.12) lg(lls:, < Cllulls;,

for allu € Bﬁ,q(RN).
Proor. The proof is similar to the proof of Proposition 4.9.4. O

PROOF OF THEOREM 4.9.1. We only consider positive times, the study of neg-
ative times being similar. We recall that (4.1.1) is equivalent to (4.1.2) by Re-
mark 4.9.2. Decomposing ¢ = g¢; + g2 as in Remark 4.9.2, we write the equa-
tion (4.1.2) in the form

u="Hu),

where
H{u)(t) = T(t)p + G(u)(?)

and

Gw)(E) =i [ T(t = s)a(u(s))ds
t t
= z/ F(t — s)g1(u(s))ds + z/ T(t — s)g2(u(s))ds.
0 0

We mostly use a fixed point argument, and we begin with some useful estimates.
We observe that by (4.9.12) with r = ¢ = 2,

(4.9.13) lgr(w)|lzrs < Clluflggs  for all u € HS(RN).
Moreover, it follows from (4.9.8) with p = p/, r = p, and ¢ = 2 that

lg2(w)liB:, , < Cllullz%gg lulls;, -
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N(a+2)

Since B; (RN) — L7¥=2 (RN) by (4.9.5), we deduce that

(4.9.14) lg2()llB:, , <
for all u € BS 5(RY). Next, it is clear that

(4.9.15) lg1(u) — g1 (V)22 < Cllu = vl|z2,

and it follows easily from (4.9.4), Holder’s inequality, and (4.9.5) that
(4.9.16) lg2(w) = g2(0)ll Lo < C(llullB: , + Ivll%: ) llu— vl

We now proceed in five steps.

STEP 1. Uniqueness. Let I = (0,7) with T' > 0 and consider two solutions
u,v € L®(I, H*(RM))n L (I, B;,Z(RN)) of (4.1.2). We deduce from (4.9.15) that

(4.9.17) llg1(w) — g1(V)l|1(r,L2) < Cllu ~vllL1(z,L2)-
Next, it follows from (4.9.16) that

llg2(u) — g2(V)ll L 1,10y <

C(II“”Z“’(I,B;’Z) + ||U||%v(1,B;,2)) flu—vllzeq ey,

(4.9.18)

where
1 _4-aN=-25) 1
p 4 Y
so that p < 7. Therefore, we deduce from Lemma 4.2.4 that © = v.
STEP 2. Proof of property (i). Let I = (0,7) with T > 0 and consider a
solution u € L (I, H*(RM))NL (I, B;,Z(RN)) of (4.1.2). We deduce from (4.9.13),
(4.9.14), and Holder’s inequality in time that

(4.9.19) lg1(@)llzr 2,y < CT|ullpoe (2, 10)
and
a(N 2s
(4.9.20) o2l 1,35, ) < OT =57 ullgt 5. -

We now apply the Strichartz estimates in Besov spaces (Remark 2.3.8 and Corol-
lary 2.3.9) and we deduce from (4.9.19)-(4.9.20) that if (g,7) is any admissible
pair, then u = H(u) € L(I, Bﬁ’Q(RN)) NC([0,T), H*(RY)) and that there exists a
constant C independent of I such that

( ) 1M (u)llLaq,Bs,) <
4.9.21 smatn-ag
Clielms + CTullLer,iey + CT— = |lullgTr5s s

and property (i) follows.
STEP 3. Existence. We apply a fixed point argument in the set
E={ue L™, H*R")) N L7(I,B; ,(RY));

(4.9.22)
lullzeer, ) < M and |Jullpv(r,ps,) < M},
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where I = (0,T) and M,T > 0 are to be chosen later. (E,d) is a complete metric
space, where the distance d is defined by

d(u,v) = |lu = vl pe(r,22) + | = V|| L (1,10) -

(See Step 1 of the proof of Theorem 4.4.1.) It follows from (4.9.21)-(4.9.22) that
there exists a constant Cp independent of T such that

1TC)ellLee ey + 1TC)elira,Bs ) < Collelas

(4.9.23 ama(N 20
Gl e,y F NG a (1,85 ,) S Co(T+HT— 5 M*)M

for all ¢ € H*(R") and u € E. Therefore, if we let

(4.9.24) M = 2Co|l¢la-
and we then choose T sufficiently small so that

4—a —2s 1
(4.9.25) Co(T + T M) < =,

it follows that H : E — E. Next, we deduce from (4.9.17)—(4.9.18) that
llg1(w) — g1(W)ll22z,22) < CTNlu — | poo(r,L2)

and
4—a(N~-2s
lg2(u) — g2() v (ory.10y SCT % M|t — v pr(0,7),20)
for all u,v € E. Applying Strichartz’s estimates, it follows that there exists a

constant Cq such that

(4.9.26)  d(H(u), H(v)) < C(T + T2 M*)d(u,v) for all u,v € E.

Choosing now T possibly smaller so that

(4.9.27) Co(T + T2 ey < 1,
we see that H is a strict contraction on E, and thus has a unique fixed point which
is a solution of (4.1.2) on I.

STEP 4. The maximal solution and the blowup alternative. We proceed as in
the proof of Theorem 3.3.9: using uniqueness, we define the maximal solution; and
since the local solution is constructed by the fixed point argument on an interval
depending on ||p||g- (by (4.9.24)—(4.9.27)), we deduce the blowup alternative.

STEP 5. Continuous dependence. This is an easy consequence of the esti-
mates of Step 3 above. Indeed, let ¢, — ¢ in H*(RY) and set M = 4C; where
Cy is as in (4.9.23). Since |¢n||rs < 2|@|lg: for n > ng sufficiently large, we see
that M > 2Col|¢nlla- for n > ng. It follows easily that if T = T'(||¢||s+) satis-
fies (4.9.25)-(4.9.27), then the solutions u,, constructed by the argument of Step 3
all belong to the same set E (defined by (4.9.22) with T = T'(|l¢||#+)) for n > ne.
Estimate (4.9.26) (together with Strichartz’s estimates for the term J(-)y,) im-
plies that d{un,u) < Cllon — @llre + (1/2)d(un, u), Le., d(un, u) < 2C||pn ~ || L2-
It follows that u, — u in L®(I, L*RN)) n L7(I,L°(R")) and a further use of
Strichartz’s estimates shows the convergence in LI(I, L™(R¥)) for every admissible
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pair (g, 7). Finally, the convergence in L®(I, H*~¢(R")) follows from the conver-
gence in L®(I, L*(R")), the boundedness in L>(I, H*(R")), and the elementary

interpolation estimate |ju||ge-e < ||7.L||;—,;—||u||£2 ]

REMARK 4.9.6. Here are some further comments on Theorem 4.9.1 and its proof.

(i) The choice of the admissible pair (v, p) given by (4.9.3) is (partially) arbi-
trary. It is not difficult to see that other choices are possible. The present
choice leads to relatively simple calculations and is also a valid choice for
the case s > 1 and for the critical case o = 4/(IN — 25s) (see below).

(ii) If |g(u) — g(v)| < C(|u|* + |v|*)|u — v|, one can do the fixed point argument
in the set E = {u € L7(I, B3 ,(RM)); lull (1,82 ;) < M}, with the distance
d defined by d(u,v) = [[u — v||z~(1,¢)-

(iii) It is not difficult to show that one can replace the set E defined by (4.9.22)
by the following set

E' = {ue L®(, H*[RY))nL(I, B ,(RV));
llull poc 7,674y < M and lullpvr,s: ) < M}.

2) =
This requires two modifications in the proof. One needs the Sobolev inequal-
. . /
ity |lu]]LN(¢i+§) < C’Hul]Bs,2 (see [28]). One also needs to show that (E’,d)
is complete. This amounts to showing a property of the type if u, — u
in L7(I,L°(RY)) and |lu,|| LB, S M, then w € L7(I, B:,)(RY)) and
[l Lv(I,Bs,) S M. This follows easily by using Theorem 1.2.5 together with
o,
the expression of ||ul| . R in terms of the Littlewood-Paley decomposition.
'Y

(iv) Note that the continuous dependence statement is weaker than usual. In
particular, we do not know if the mappings ¢ ~ Tpnin(¢), Tmax(¢) are lower
semicontinuous H*(RY) — (0,00]. We do not know either if we can let
g = 0, i.e., if continuous dependence holds in L= ((-T, T), H*(R")). On the
other hand, note that the proof does not fully use the assumption ¢, — ¢
in H*(R"): it uses exactly that ||wn|ms < 2|l@|lg- for n large and that
Yn — @ in L2(RN).

Below is an analogue of Theorem 4.9.1 for the “critical case” o = 4/(N — 2s).

THEOREM 4.9.7. Let 0 < s < min{l,N/2}. Let g € C(C,C) with g(0) = 0
satisfy (4.9.2) with
4

N -2s’

and let (v, p) be the admissible pair defined by (4.9.3). For every ¢ € H*(RYN), there
exist Tmaxs Imin € (0,00] and a unique, mazimal solution u of the problem (4.1.1)
in C((~Tmin, Tmax), HSRM)) N Lz)c((—Tmin,Tmax),B;,Q(RN)). Moreover, the fol-
lowing properties hold:

(1) u € LY .((~Tmin» Tmax), BEo(RN)) for every admissible pair (g,T).

loc

a =

(i) If Timax < 00, them ||ul| Loe ((0,Trnae), H*) + 1%l L7((0,Tinan) B3 ) = 00 A similar
statement holds if Tiin < 00.

(iil) u depends continuously on ¢ in the sense of Theorem 4.9.1(iii).
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PRrOOF. We use the same notation and follow the same steps as in the proof of
Theorem 4.9.1.

STEP 1. Uniqueness. Let I = (0,7) with T > 0 and consider two solutions
u,v € LI, H*(RN)) N L7(I, B ,(R")) of (4.1.2). Uniqueness being a local prop-
erty, we need only show that v = v if T is sufficiently small (see Step 2 of the proof
of Theorem 4.6.1). We observe that (4.9.18) becomes

(4.9.28) llg2(uw)—g2(V)| L' (1,20") C(”UH%w(I,B;,z)+|1’U”?,~/(1,B;,2))“U—UHLV(I,LP) .

Using (4.9.17), (4.9.28), and Strichartz’s estimates, we deduce that there exists C
independent of T such that

lu —vll Lo (r,22) + lv = V[l Lv(r,L0) <
CTllu = vlzew,L2) + C(Iullfvir,bs ) + 10122252 Ml = Vllzaia,ze) -

Since ”U“L"(I,Bf,,z) — 0 as T' | 0 and similarly for v, we see that if T > 0 is small
enough, then

1
fu = vl|poeqz,L2y + lu = vliza 00y < §(||u = llpeer, L2y + = vl L (r,L0))

so that u = v.

STEP 2. Proof of property (i). It suffices to show that if I 3 0 is a bounded
interval and v € L=(I, H*(RN)) n L'(I, B: ,(RY)) is a solution of (4.1.1), then
ue L1, BﬁyZ(RN )N C(I, H*(RY)) for every admissible pair (g, 7). This is proved
as in Step 2 of the proof of Theorem 4.9.1.

STEP 3. Existence. We apply a fixed point argument in the set E defined by

E={ue L=, H*RY))NL(I,B;,(RY));

(4.9.29)
lullzes(z,m+) < My and |lullzv(1,8; ,) < Ma},

 where I = (0,T) and My, M3, T > 0 are to be chosen later. (E,d) is a complete

metric space, where the distance d is defined by
d(u,v) = |lu = vl|ge(z,02) + lu — || Lz, L0y -
(See Step 1 of the proof of Theorem 4.4.1.) The proof of (4.9.21) yields
IH @)l Lo(r,B2 ;) < CINTC)ella,Bs,) + CTull Lo 1,55y + C'HUHZ?,L(II,B;YZ) .

In particular, given any u € E,

(4.9.30) I H W)l Lo 1,5y < Collellas + CoT My + CoMg+!
and
(4.9.31) IH @ 1,85 ,) < CollTC)ellLr,Bs,) + CoT My + CoMst

for some constant Cp independent of T. Similarly, one shows (see the proof

of (4.9.26)) that there exists a constant C; independent of T" such that

(4.9.32) |H(u) = H()llL(1,22) + IH(u) = H() |2~ (1,L0) < C1(T + M5)d(u,v)
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for all u,v € I. We now choose T', My, M as follows. We first let
M = 3Coll¢llH-,

then we choose My > 0 sufficiently small so that

M
CoMg*! < Collpllm-, CoMg™ <=2, Mg < %
Finally, we choose T' > 0 sufficiently small so that
Mo

CoTMy < Collgllar, GoTMy < =2, OIT <7,
and M
CollTC)elliLrr,Bs ) < Tz

(This last condition can be achieved because v < oo, thus | T(-)¢|| L~ ((0,1),B3,) | O
as T | 0.) We then deduce from (4.9.30)-(4.9.31) that ||H(w)| Lo (7,r+) < M1 and
IHlLv.B;,) < Mz, e, H: E — E. Furthermore, we deduce from (4.9.32)
that H is a strict contraction on F, and thus has a unique fixed point which is a
solution of (4.1.2) on I.

STEP 4. The maximal solution and the blowup alternative. Using unique-
ness, we define the maximal solution (as in the proof of Theorem 3.3.9). Assume
Tmax < 00. If ||u|l poc ((0,Tmax), H?) + I|u|lL~,((o,me),B;’2) < 00, then we deduce from
Step 2 that u € C([0, Trnax], H*(RY)). By Step 3, we then can construct a solution v
of (4.1.2), with ¢ replaced by u(Tnax), on some interval [0,¢] with € > 0. It follows
that u defined on [0, Tmax+¢] by (t) = u(t) for 0 < t < Tinax and U(t) = v(t —Tmax)
for Tmax <t < Tmax + € is a solution of (4.1.2) on [0, Tjyax + €]. This contradicts

the definition of Trmax. Thus |jul| Loe (0, 7). B¢) + ||u||L“f((0,Tmax),B,§,2) = o0

SteEP 5. Continuous dependence. This is done as in the proof of Theo-
rem 4.9.1, Step 5. O

REMARK 4.9.8. The observations of Remark 4.9.6 apply as well to Theorem 4.9.7
and its proof. We now focus in particular on the case where |g(u) —g(v)| < C(Ju|*+
[v]*)|u — v|. Then one can do the fixed point argument in the set £ = {u €
L1, B;)Q(RN)); ||u|]L.,(I’B;!2) < M3}, with the distance d defined by d(u,v) =
lu — v||L~(1,L0) (see Remark 4.9.6(ii) and (iii)). In this case, instead of (4.9.31)-
(4.9.32), one obtains

”H(U)HLW(I,B;J) < CO”‘:T(')SD“L‘Y(I’BZJ) + C'OJVIQ+1
and
[H(w) = H(W)llLv(z,20) £ C1M*d(u,v) .
Since IIT(')GPHU(R,B; ,) S Cligl g, we obtain by letting I = R
1”@ L, 55 ,) < Callellge + CoM
[H(u) = H)l| v ® 20y < C1M*d(u,v).

Therefore, if we first choose M > 0 small enough so that CoM°*t! < M/2 and
C1M® < 1/2 and then assume that |¢]| ;. is sufficiently small so that Cs||p|| . <
M/2, we see that H is a strict contraction on E. In this case, we obtain (under
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the assumption that |l¢| ;. is small) a global solution u of (4.1.1). Moreover, this
solution belongs (by construction) to L*(R, H*(RM)) N L7(R, B;’Q(RN )). See [70]
for details.

We now comment on the case s > 1. The restriction s < 1 in Theorems 4.9.1
and 4.9.7 is motivated only by the nonlinear estimates of Propositions 4.9.4 and
4.9.5. The rest of the proof is not subject to the condition s < 1. It turns out
that estimates of the type (4.9.8) for s > 1 are true but require more regularity as-
sumptions on g. The corresponding existence results of H* solutions therefore hold
provided g is sufficiently smooth. See Cazenave and Weissler [70] and Kato [206].
See also Pecher [295], where the author uses time derivatives to obtain H® solu-
tions with minimal regularity assumptions on the nonlinearity. For completeness,
we state below two typical results.

THEOREM 4.9.9. Assume N >3 and1 < s < N/2. Let g{u) = Mu|*u with A € C
and
0<ax<

N -2s’
If o is not an even integer, suppose further that

(4.9.33) 5] < a.

Given ¢ € H*(RVN), there ezist Tmax, Imin € (0,00] and a unique, mazimal solu-
tion u € C((—=Tmin> Tmax), H*(RY)) of problem (4.1.1). Moreover, the following
properties hold:

(i) w € LL ((=Tmin>Tmax)s ﬁ’z(RN)) for every admissible pair (g,7).
(ii) (Blowup alternative) If Tmax < oo (respectively, if Tmin < 00), then
lu(®)|gs — o0 ast T Tmax (respectively, ast | —Tmin).

(iii) u depends continuously on ¢ in the sense of Theorem 4.9.1(iii).

PROOF. We refer to Cazenave and Weissler [70]. Note that uniqueness of H*
solutions follows from Remark 4.2.12. O

THEOREM 4.9.10. Assume N > 3. Let 1 < s < N/2 and g(u) = Au| ™% u with
X € C. If o is not an even integer, suppose further that (4.9.33) holds. It follows
that for every ¢ € H3(RY), there ezist 0 < Tax, Tmin < 00 and a unique, mazimal
solution u € C((—Timin, Tmax)s HS(RY)) of problem (4.1.1). Moreover, the following
properties hold:

(i) u € Ll ((~Tmins Tmax); Bﬁ’z(RN)) for every admissible pair (q,r).
(i) If Tmax < 00, then {[ull 17((0,Tmex), By ,) = 00, where (7, p) is the admissible
pair defined by (4.9.3). A similar statement holds if Tyin < 0.

(iii) u depends continuously on ¢ in the sense of Theorem 4.9.1(iii).
Proor. We refer to Cazenave and Weissler {70]. Note that uniqueness of H*®
solutions follows from Proposition 4.2.13. O

REMARK 4.9.11. Here are some comments on the assumption (4.9.33) in Theo-
rems 4.9.9 and 4.9.10.
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(i) The fact that assumption (4.9.33) is not needed when « is an even integer
is essentially due to the fact that g € C°°(C,C) (in the real sense) in that
case. See Cazenave and Weissler {70} and Kato [206].

(i) In the framework of Theorem 4.9.9, Pecher [295] has improved assump-
tion (4.9.33) by using time derivatives in the construction of the solution.
More precisely, (4.9.33) is not needed if N = 3,4, or, more generally, if
s < 2. If 2 < s < 4, then it can be replaced by the weaker condition
s < o+ 2; and if s > 4, then it can be replaced by the weaker condition
s<a-+3.

REMARK 4.9.12. In the limiting case s = N/2, the embedding H¥ (RN) —
LP(RN) for all 2 < p < oo makes it possible to obtain local existence for (suffi-
ciently regular) nonlinearities with arbitrary polynomial growth. See Kato [206].
In particular, there is local existence in the model case g(u) = AMu|®u for any & > 0
such that [s] < a. Using Trudinger’s inequality, one can also consider nonlinearities
of exponential growth. See Nakamura and Ozawa [256).

4.10. H™ Solutions, m > N/2

In this section we study the local existence of “smooth” solutions in H™(R)
for m > N/2. In principle, one can consider arbitrary real m (see Kato [206]), but
we will only consider integers. The estimates are then simpler. The main point in
considering m > N/2 is that H™(RY) — L*®(RY). The consequence is that we
need regularity of the nonlinearity but we do not need any control on its growth.
We follow the method of Ginibre and Velo [135] and for simplicity, we only consider
local nonlinearities. The main result is the following.

THEOREM 4.10.1. Let m > N/2 be an integer and let g € C™(C,C) (in the real
sense) satisfy g(0) = 0. For every ¢ € H™RY), there exist Tmax, Tmin > 0 and
a unique, maximal solution u € C((—Twmin, Tmax), H™(RY)) of (4.1.1). Moreover,
the following properties hold:

(i) (Blowup alternative) If Tmax < oo (respectively, Tmin < 00), then
lu(@)|[gm — 00 as t T Tmax (respectively, as t | —Tmin). Moreover,
limsup ||[u(t)||pe = 00 ast T Tmax (respectively, ast | —Tmin).

(ii) u depends continuously on ¢ in the following sense. The functions Tmax and
Tmin are lower semicontinuous H™(RM) — (0, 00]. Moreover, if ¢, — ¢ in
H™(RY) and if up, is the mazimal solution of (4.1.1) with the initial value
On, then u, — u in L®((=S,T), H™(RN)) for every p < oo and every
interval [—S,T] C (=Tmin, Tmax)-

(iii) If (g(w),iw)zz = O for all w € H™(RY), then there is conservation of
charge; i.e., ||[u(t)|lLz = |l¢llze for allt € (=Tmin, Tmax)-

(iv) If there exists G € C*(H™(RVN),R) such that g = G’, then there is conser-
vation of energy; i.€., E(u(t)) = E(p) for all t € (~Tinin, Tmax), where E is
defined by (3.3.9).

The proof of Theorem 4.10.1 relies on the following technical lemma.

LEMMA 4.10.2. Let m > N/2 be an integer and let g € C™(C,C) satisfy g(0) =
0. It follows that the mapping u — g(u) is continuous and bounded H™(RN) —
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H™(RY). More precisely, given any M > 0, there exists C(M) such that

(4.10.1) lg(llam < C(M)|ullgm,

(4.10.2) llg(u) — g()ll2 < C(M)|lu —v|| Lz,

for all u,v € H™(RY) such that ||ul|L=,||v]|Le < M. Moreover,

(4.103) lgtw) = 9@l < OO [lu = vz + ens(fu = vl 22)]

for all u,v € H™(RN) such that ||ullgm, |v]|g= < M, where ep(s) = 0 as s | 0.

ProOOF. Let M > 0 and let
(4.10.4) K(M)= sup |g'(w)]+ -+ 9" (u)] < oo.
Jul<M

It follows that, if |u|, |v| £ M, then

(4.10.5) lg(u) — g(v)| < K(M)|u —v|
and in particular

(4.10.6) lg(u)] < K(M)|u|.

Consider now u € C®(RY). Given a multi-index a with |a| = m, it is not difficult
to show that D%*g(u) is a sum of terms of the form ‘

k
(4.10.7) 9® ) [] D%,
i=1
where k is an integer, k € {1,...,|a|} and the B;’s are multi-indices such that

o =0+ -+ B and |G;] > 1. Let p; = 2m/|B;], so that

k11
273

It follows from Holder’s inequality that
k

H DFiy

j=1

k
< H 1 D% ul| r; .
L2 j=1

On the other hand, it follows from Gagliardo-Nirenberg’s inequality that

' JEJ_‘ 1_Iﬂ'l
| DPsuf|es < Cllull g lullie™

and so

< Clfull = llulF=" -

k
H DFiy
j=1 L2
Applying now (4.10.7) and (4.10.4), we deduce that
1D%g(u)llz> < CK(M)||uflzrm .
Finally, we deduce from (4.10.6) that
llg(w)llz: < K(M)ljulz2,
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so that (4.10.1) follows from the two estimates above.

Let now u € H™(R") with ||ju|~ < M and let (Un)n>0 € CX(RYN) satisfy
un — u in H™(RY). Since H™(RY) — L®(R™), we see that |[up||z« < 2M and
lunll = < 2|jul|g= for n large. In particular, we deduce from (4.10.1), which we
already established for u,,, that

(4.10.8) lg(un)llam < 2C2M)|lullgm for n large.

In particular, (g(un))n>0 is bounded in H™. Since g(u,) — g(u) in L2(RV)
by (4.10.5), it follows that g(un) — g(u) in H™(RY). Applying (4.10.8), we de-
duce (4.10.1) (with C(M) replaced by 2C(2M)). Inequality (4.10.2) is an immediate
consequence of (4.10.5).

We finally prove (4.10.3). First note that, given u € H™(R") and (un)n>0 C
C>(RM) as above, we may assume (after possibly extracting a subsequence) that
D®up — D*u a.e. for all |a| < m. Thus we see that formula (4.10.7) holds a.e. for
every u € H™(R"). Let now M > 0 and u,v € H™(RN) with |ju|| gm, |v]|g= < M.
Given a multi-index o with || = m, we deduce that D*[g(u) — g(v)] is a sum of
terms of the form

k k

g% (w) H DPiy — gt (y) H DFiy
j=1 i=1

where k and the §;’s are as in (4.10.7). Each of the above terms can itself be

decomposed as a sum of terms where the first one is

k
(4.10.9) (9™ (u) — ¢ (v)] H DPiy,

j=1
The other ones have the form
k

g® @) [ DPiw;,

=1

where all the w;’s are equal to u or v, except one which is equal to u — v. Let now
p; = 2m/|B;|. We see that

where the last inequality follows from the embeddings H™(RN) < L*°(RM) and
H™RN) — LPi(RN). If k < m — 1, then g*) is Lipschitz on bounded sets, so that
the terms in (4.10.9) are estimated as above by C(M)|lu — v||g=. It remains to
estimate the terms (4.10.9) when k = m. This last term is estimated as above by

(4.10.10) g™ () = g™ (W)l < lfu]| Fm

k k
o [ 0% < 1a®Olex [TID% sl < OO~
j=1 L j=1

Since g™ is continuous, hence uniformly continuous on bounded sets, and

lullgm, |vllam < M, we see that ||g™ (u) — g™ (v)[|pe < dnm(flu — v||L=), with
N 2m—-N

6m(s) — 0 as s | 0. Since [lu —v||~ < Cllu —v||Ffllu — v|| 7™ , we may replace

Opm(llu — vljze) by dar(jlu — vl|z2), so that (4.10.3) now follows from (4.10.10). [

PROOF OF THEOREM 4.10.1. We first note that by Lemmas 4.2.8 and 4.10.2,
problems (4.1.1) and (4.1.2) are equivalent. We then proceed in four steps.
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STeEP 1. Existence. We construct solutions by a fixed-point argument. Given
M, T > 0 to be chosen later, we set I = (—=T,T") and we consider
E={ue L H™R")) : [lullpoe (1, 5m) < M} .
It follows that (£, d) is a complete metric space, where the distance d is defined by
d(u,v) = flu = v|lee,L2) -

(This is established by the argument of Step 1 of the proof of Theorem 4.4.1.) We
now consider H defined by

H(u)(t) = T (D)o + ) (t).
where .
Glu)(t) =i / Tt — s)g(u(s))ds

for all u € E and all t € I. We note that if u € L®(I, H™(RY)), then g(u) €
L>*(I, H™(R")) by Lemma 4.10.2, so that G(u) € C(I, H™(R")). Since T (t) is an
isometry on H™(R™), it follows from (4.10.3) that for every u € E and t € I,

IH(w) = < llellam + Tllgw)llreg,mm) < llellam + TC(M)M .
Furthermore, it follows from (4.10.2) that, if u,v € E, then
H(u)(t) — H@) ()l S TC(M)|lu — vl|pe<(r,z2) -

Therefore, we see that if

)

N} =

(4.10.11) M =2|pllg= and TC(M) <

then H is a strict contraction of (F,d) and thus has a fixed-point which is a solution
of (4.1.3), hence of (4.1.1).

STEP 2. Uniqueness, the maximal solution, and the blowup alternative. We
get uniqueness from Proposition 4.2.9. We then proceed as in the proof of Theo-
rem 3.3.9: using uniqueness, we define the maximal solution; and since the local
solution is constructed by the fixed point argument on an interval depending on
lelg= (by (4.10.11)), we deduce the blowup alternative on |u(t)||g=. We then
show that if Tmax < 00, then limsup ||u(t)||z = 00 as t T Tinax- Indeed, suppose
by contradiction that lim sup ||u(t)||L< < 0o. Since u € C([0, Tmax), H™(RY)) and
H™(RN) — L®(RY), it follows that

M= sup Ju(t)re <.
0<t<Tmax

Applying now (4.10.1), we deduce from (4.1.2) that

@l < il + C(M) / lu(s) |z ds

Applying Gronwall’s lemma, we obtain that |[u(t)||g= < |@|gmeTmexCM) for all
0 < t < Tiax, which contradicts the blowup of ||u(t)||g= at Tmax.

STEP 3. Continuous dependence. Let ¢ € H™(R") and consider (¢n)n>0 C
H™(R") such that ¢, — ¢ in H®(R") as n — oco. Let u, be the maximal solution
of (4.1.1) corresponding to the initial value ¢,. We claim that there exists T' > 0
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depending on |¢|lg= such that u, is defined on [-T,T] for n large enough and
Un, — u in C([-T,T], H™(RY)) as n — oc. The result follows by iterating this
property in order to cover any compact subset of (—Tinin, Tmax)-

We now prove the claim. Since ||@n||g= < 2|/@||g= for n sufficiently large, we
deduce from the estimates of Step 1 that there exists T = T'(||¢||g=) such that u
and u,, are defined on [-T,T] for n > ng and

(4.10.12) lull oo ((-7,),1m) + 8UP [[unll Lo ((-1,7),Hm) < 4llllam -
n>ng
Note that un(t) — u(t) = T(t)(¢n — ¢) + G(un)(t) — G(u)(t). Therefore, it follows

from (4.10.2), (4.10.12) and the embedding H™(R") < L*(R¥) that there exists
C such that

/0 lu(s) = un(s)| = ds

for all t € (—T,T). We then deduce from Gronwall’s lemma, that
(4.10.13) lu(t) = wn(®)llz2 < ll = @nllz2e™ — 0.

u(t) = un(®)llz> <l = @nllLe +C

We then deduce from (4.10.3) and (4.10.13) that there exists C and &, | 0 such
that

t

() = Ol < &+ o = gl +C| [ us) = un()am ds

for all t € (—T,T). The claim now follows from Gronwall’s lemma.

STEP 4. The conservation laws. Note that the case m = 1 has already been
studied (Theorem 4.4.6 and Remark 4.4.8), so that we may assume m > 2. The
conservation laws (properties (iii) and (iv)) then follow by multiplying the equation
by % and T;, respectively. See Steps 3 and 4 of the proof of Theorem 4.8.1. O

REMARK 4.10.3. Let g(u) = Alu|*u with @ > 0 and A € C. If a is an even
integer, then g € C°(C,C). Therefore, we may apply Theorem 4.10.1 for any
m > N/2. If o is an odd integer, then g € C™(C, C) only for m < [a], so that we
may apply Theorem 4.10.1 only in the case [a] > N/2 and for N/2 < m < [a]. If
« is not an integer, then g € C™(C,C) only for m < [a] + 1, so that we may apply
Theorem 4.10.1 only in the case [a] +1 > N/2 and for N/2 <m < [a] + 1.

4.11. Cauchy Problem for a Nonautonomous Schrédinger Equation

In this section we study the Cauchy problem for equation (7.5.5) below, starting
from any point ¢ € [0,1]. In fact, we consider the more general Cauchy problem
(see [72])

(4.11.1) {ivt + Av + h(t)|v]*v = 0

v(0) =9,
where h € L}, (R,R). We study the equation (4.11.1) in the equivalent form

(4112) o(t) = T+ /0 (¢ — $)h(s)[o(s) *u(s)ds.

We have the following existence and uniqueness result.
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THEOREM 4.11.1. Assume 0 < a < 4/(N-2) (0 < a < o0 if N = 1).
Let § = 4/[d-a(N—-2)] @ =14 N =16 >1and (2-a)f <1 if
N = 2), and consider a real-valued function h € L§ (R,R). It follows that
for every ¥ € HY(RY), there exist Tmax, Tmin > 0 and o unique, mazimal solu-
tion v € C((—Tmin, Tmax)7H1(RN)) n I/I/'l:;ce((_Tmim Tmax)aH—l(RN)) of equation
(4.11.2). The solution v is mazximal in the sense that if Tyax < 0o (respectively,
Trin < 00), then [Ju(t)|lgr — 00 ast T Tmax (respectively, t | —Tmin). In addition,

the solution v has the following properties:
(1) If Tmax < 0o, then liminfyrr,  {lv(E)lI 5 17l Lot Ta } > O-
(ii) If Thnin < 00, then lim inftl—Tmin{”U(t)“%II”h‘“L"(—Tmin,t)} > 0.
(il)) v € LL ((~Tmin> Tmax), WET(RY)) for every admissible pair (g,7).

(iv) There exists § > 0, depending only on N, o, and 8 such that if

1% / Ih(s)|? ds < 5,

-7

then [—7,7] € (=Tmin» Tmax) ond [|0||pe((=r,r),wiry < K|[Yllgr for every
admissible pair (q,7), where K depends only on' N, a, 6, and q. In addition,
if 3 is another initial value satisfying the above condition and if v' is the
corresponding solution of (4.11.2), then ||v—v||poo((=r,7),22) < K|[9=1'||L2-

(V) If‘ ) |1/) € L2(RN)7 then l : I'U € C(("Tmin,Tmax)7L2(RN))'
ProorF. We apply the method of Section 4.4. We suppose first that N > 3, then

we indicate the modifications needed to handie the cases N = 2 and N = 1. Let
2* = 2N/(N — 2) and define r by

2
(4.11.3) 1-2=2

oo
Since (N — 2)a < 4, we have 2 < r < 2*. Therefore, there exists ¢ such that (g,r)
is an admissible pair. A simple calculation shows that

(4.11.4) qi - % + é
By Strichartz’s estimates, there exists K such that
1T Yl Lo ® 1) + 1T )Pl Lo wrry < K[| an
for every ¥ € HY(RM). Given M > 0 and 0 < T3, T» such that T} + T, > 0, let
E = {ve L®((-T1,T2), H{(RN)) N LI((-T1, Tz), WH"(RM)),
[0l Low (-3, 12, 80) + W0l Laq(=11, 1), w1y < (K +1)M} .

Endowed with the metric d(u,v) = [[v — u|lpe((~1y,13),L7), (E,d) is a complete
metric space. Given v € E, it follows from (4.11.3), (4.11.4), and Sobolev’s and
Hélder’s inequalities that hjv|*v € L9 ((=Ty,Tz), WL (RV)) and that

”hlvlaUHLq'((—T1,Tg),err')
(4.11.5) < C”h“L“’(—Tl,Tg)“'U“zoc((_T1 ,T2),L2*)“'U“Lq((—TuTz),W‘”)
< Cilihllpo(~1y,1p) (B + 1)0T1MHL
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Furthermore, given u, v € E, one has as well
lA(lv|*v — lulau)“Lq'((-—Tl,Tg),L") <
(4.11.6) Cllhllzo(~1,m0) (W0 E oo (=13 1), 20
Full e (-1, ) 1 = vl Lo 1), L7) »
and so
(4.11.7) ||h(fv]®v = Jul*u)ll o’ (73, 13), 27y < CallBllzo -7y, 1) (K +1)*M*d(u,v) .
Given v € E and ¥ € H'(RY) such that ||3|| g1 < M, let H(v) be defined by

Hw)(@) =Tty +i/0t T(t — s)h(s)lv|®v(s)ds forte (-11,T3).

It follows from Strichartz’s estimates and (4.11.5) that
H(v) € O([-Th, T2], H'(RY)) N LI((-T1, T), W' (RY))
and

IH@) 2o (-7, 010) + WHO Lo (=127, w27) <
KM + C3(K + 1)* M Mk po 1y 1) -

Therefore, if T7 + T3 is small enough so that
Cs(K + 1)t M||Alpo(—1y,my) S 1,
then H(v) € E. Furthermore, Strichartz’s estimates and (4.11.7) imply that
d(H(v), H(u)) < Co(K + 1)*M*||h|lgo(—1, 1p)d(u, v) -
Consequently, if 77 + T3 is small enough so that

o 1
(4.11.8) EiM®|hligo-my,my) < 5

where K; = (K + 1)**'max{Cj3, C4}, then H is Lipschitz continuous E — E with
Lipschitz constant 1/2. Therefore, H has a unique fixed point v € E, which satisfies
equation (4.11.2). In addition, the first part of property (iv) follows from (4.11.8),
(4.11.5), and Strichartz’s estimates, and the second part from Strichartz’s esti-
mates. Uniqueness in the class C([-Th, T3], H'(RY)) follows from (4.11.6) and
Strichartz’s estimates. (Note that uniqueness is a local property and needs only be
established for T3 + T small enough; see Step 2 of the proof of Theorem 4.6.1.)
Now, by uniqueness, v can be extended to a maximal interval (—Timin, Tmax), and
property (iii) follows from property (iv). Suppose that Timax < co. Applying the
above local existence result to v(t), t < Tmax With 73 = 0, we see from (4.11.8)
that if

1
Killv@ g 1l Lo ¢, Tmae) < 3
then v can be continued up to and beyond T,.x, which is a contradiction. Therefore,

o 1
Eillv@En Al o 1) > 55

which proves property (i). Property (ii) is proved by the same argument. Finally,
since v satisfies equation (4.11.1) in LY ((=Tmin, Tmax)s H 1(RY)) and A is real
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valued, property (v) is proved by standard arguments. For example, multiply the
above equation by |z|2e~%1°7, take the imaginary part and integrate over R", then
let £ | O (see Lemma 6.5.2 below).

If N = 2, the proof is the same as in the case N > 3, except that we set r = 26
and use the embedding H(R?) — LP(R?) with p = a8/(6 — 1).

If N =1, the argument is slightly simpler. We let

E = {ve L®((~T1,T2), H'(R)) : V]l 1= (-1 1), 81y < 2M }

equipped with the metric d(u,v) = ||v — u| e (—7y,73),12), and use the embedding
HY(R) — L*®(R). O

We now study the continuous dependence of the solutions on the initial value.
The result is the following.

THEOREM 4.11.2. Under the assumptions of Theorem 4.11.1, suppose there exists
0; > 0 such that h € L% (R). The solution v of (4.11.2) given by Theorem 4.11.1

loc
depends continuously on ¢ in the following way.

(i) The mappings ¥ +— Tnax and Y +— Tnin are lower semicontinuous
HY(RY) — (0, 00].
(i) If Y — o in HY(RN) and if v, denotes the solution of (4.11.2) with
[ md®.
initial value Y, then v, — v in C([-T1,Tz], HY(RY)) for any interval
[—T1,T5) C (=Tmin, Tmax)- If, in addition, |- | — |- [ in L2(RY), then
|“|vn =] |vin C([T],TQ],L2(RN)).

PROOF. We apply the method of Section 4.4. We proceed in two steps.

STEP 1. We show that for every M > 0, there exists 7 > 0 such that if
¥ € H'(RY) satisfies ||[¢|lg: < M, then [-7,7] C (=Tmin, Tmax), and v has the
following continuity properties.

(a) If ||[¥lla: < M, ¥n el ¥ in HY(RY), and if v, denotes the solution
of (4.11.2) with initial value ¥, then v, — v in C([—7, 7], HY(RN)).

(b) If, in addition, | - [¢, — |- |¢ in L*(RN) as n — oo, then |- |v, — |- v in
c([-r,7), L*(RN)) as n — oo.

We only prove the result in the case N > 3 (see the proof of Theorem 4.11.1
for the necessary modifications in the cases N = 1,2). Given M > 0, we choose 7
so that the inequality in property (iv) of Theorem 4.11.1 is met whenever ||¢| g1 <
M. In particular, if ||¢||g2 < M, then [—7,7] C (~Tmin,Tmax)- Next, observe
that 1/8 > (4 — aN)/4, and so we may assume without loss of generality that
1/61 > (4 — aN)/4. Therefore, if we define o by

1_2/7_1
g N 6, )’

then 2 < ag < 2N/(N — 2). Let now p be defined by
' 2 1

1-2==2

p o
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Since ¢ > N/2, we see that 2 < p < 2N/(N —2). Finally, let v be such that
(7, p) is an admissible pair. It follows easily from Hélder’s inequality that for every
—o<a<b<oo,

b 1/6
(4.11.9) lhwzll v ((a,b), L0y < </ |h(s)|* Hw(s)Hila) 2l 27 ((a.8). L) -

Consider now v such that ||¢||g: < M, and let ¢, be as in (a). Let v,v, be the
corresponding solutions of (4.11.2). We deduce from Strichartz’s estimates that
there exists C, depending only on 7 such that

v~ vallLs (=), wrey + [0 = nllLoo((=r,r),H1) <

ClliYy = tnllm + 1A(01% = [on|* V)l L (= ey, e -
On the other hand, a straightforward calculation shows that
(4.11.11) IV(|[v]%v = |vn|%n)| < Clua|¥|Vu — V| + ¢(v,vn)| VY|,

where C depends on a, and the function ¢(z,y) is bounded by C(|z|* + |y|®) and
satisfies ¢(z,y) — 0. Therefore, applying (4.11.9), (4.11.10), and (4.11.11), we get
y—z

(4.11.10)

o — vpllLv(=r,7),wiey + llv = 'UnHL°°((—T,‘r),H1)
S§(7H©b-—-@an1{1
(4.11.12) + 1Bl Lor (=7, Nonl Lo ((=rim), Loy [0 — Vnll Ly (=), W20

b 1/61
o [P ) ol nman:

Note that by property (iv) of Theorem 4.11.1, vy, is bounded in H L(RN), hence in
L2e(RY), with the bound for ¢t € [~7,7], depending only on ||¢,| g1, hence (for
large values of n) only on M. Also, the bound on ||v||;v((=r,7),w1.) depends only
on M. Therefore, it follows from (4.11.12) that

v = vnllL(—rm),wrey + [0 = VallLoe (=70, 10)
< Cll¢ = ¥l + Cllbl|os (—rmy 10 = Ol (= rir) W)

+ C(/ab Ih(s)]‘%”qs(v,vn)”%g)1/61 |

where the constant C depends only on M. Therefore, if we consider 7 possibly
smaller so that C||A]|Le:(—rr) < 1/2 (note that 7 still depends on M), we have

lv = vnllLr((=rr),wiey + 1V = Vnll Lo (= r,m), 1) <
b . 1/61
i =l + ([ W@ I )
a

Therefore, property (a) follows, provided we show that

(/ab|h(s>|‘-"l||¢(v,vn)”gxa) —o.

By the dominated convergence theorem, it suffices to verify that

lo(v,vp)llLe — 0 forallt e [-7,7].
n—oo
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To see this, we argue by contradiction. We assume that there exist ¢ and a sub-
sequence, which we still denote by v,(t) such that ||¢(v(t),vn(t))||Le > u > 0.
Note that v,(t) — v(¢) in L2(RY) and v,(t) is bounded in H'(RY) by prop-
erty (iv) of Theorem 4.11.1. Therefore, by Sobolev’s and Hélder’s inequalities,
vn(t) — v(t) in L*(RYN). It follows that there exist a subsequence, which we still
denote by v, (t), and a function f € L*°(R") such that v, (t) — v(t) a.e. in RY and
lun(t)] < f a.e. in RN, Applying the dominated convergence theorem, we deduce
that [j¢(v(t), vn(t))|lLe — O, which is a contradiction. Hence property (a) is proven.

Property (b) follows from property (a). (See Corollary 6.5.3 below.)

STEP 2. Let ¢ € HY(R"), let v be the maximal solution of (4.11.2) given
by Theorem 4.11.1, and let [=T1, T3] C (—Tmin, Tmax)- Set

M=2 sup (),
-~ <t<Ty

and consider 7 > 0 given by Step 1. By applying Step 1 m times, where (m —1)7 <

T1+T, < mr, we see that if |[y—1[ g1 is small enough, then the solution of (4.11.2)

with initial value ¥ exists on [-T1,T»). Property (i) follows. Property (ii) follows
easily from the same argument. D

4.12. Comments

The results of this chapter are mostly based on the Strichartz estimates. Thus
we may expect that the results of the previous sections have a counterpart for the
abstract equation

{iut+Au+g(u)=0

(4.12.1) “(0) =z

whenever T(t) = e®*4 satisfies Strichartz-type estimates. Theorem 2.7.1 gives a
sufficient condition for such estimates, which we recall below. Let Q be a domain
of RY and let X = L?(Q). Let A be a C-linear, self-adjoint < 0 operator on X
with domain D(A). Let X, be the completion of D(A) for the norm ||z|%, =
lzll% — (Az,z)x, X% = (Xa)*, and A be the extension of A to (D(A))*. Finally,
let I(¢) be the group of isometries generated on (D(A))*, X%, X, X4, or D(A) by
the skew-adjoint operator {A. If, in addition,

(412.2) 1T ell= < CtIF il for all p € D(Q),
then J(t) satisfies the Strichartz estimates (see Theorem 2.7.1). As a first applica-

tion, we have the following analogue of Theorem 4.3.1.

THEOREM 4.12.1. Let A be as in the statement of Theorem 3.7.1, and assume
that T(t) = €4 satisfies estimate (4.12.2). Let g € C(Xa,X}%), and assume that
there exist g1,...,9x € C(Xa,X}) such that

g=g1+-+gk,

where each of the g;’s satisfies the assumptions (3.7.3)~(3.7.6) for some exponents
T4, p5. Finally, let
G=G1+ - +Gg,
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and set E(v) = (1/2)(|Jvll%, —llvl%) =G () for allv € Xa. It follows that the initial
value problem (4.12.1) ‘is locally well posed in X 4. Moreover, there is conservation
of charge and energy; i.e.,

lu@)llze = llzllz, E(u(t)) = E(z), for allt € (—Tmin, Tmax),

where u is the solution of (4.12.1) with the initial value x € X 4. (Here, the notion
of local well-posedness is as in Section 3.1).

ProOF. By Theorem 3.7.1, we need only show uniqueness. This is proved like
Proposition 4.2.3 by using the Strichartz estimates of Theorem 2.7.1. O

REMARK 4.12.2.  If we assume further that for every A > 0, there exist ¢(4) > 0
and K(A) < oo such that

6w < K(4)+ 22D 3

for all u € H}() such that ||ullz2 < A, then all solutions given by Theorem 3.7.1
or Theorem 4.12.1 are global (see Section 3.4).

We now give an analogue of Theorem 4.8.1. Most objects used in the statement
and proof of Theorem 4.8.1 have an cobvious analogue in the abstract setting. It is
clear that A should be replaced by A and H?(R") by D(A). As for the analogue
of H*(RV) with 0 < s < 2, it is clear from the proof of Theorem 4.8.1 that the
essential property we need is the interpolation estimate (4.8.20). In fact, we do not
fully use (4.8.20), we only need an estimate of the type ||ullg: < €]lull g2 + Cellul|L2-
Thus we may assume that there exists a space D(A) — Y — X such that for every
€ > 0 there exists a constant C. with

(4.12.3) fluly <ellullpay + |lullx for all u € D(A).

Taking Y = D(A?%) is a possible choice. Depending on the applications, good
choices may also be an LP space or even an H® space. Following the proof of
Theorem 4.8.1, it is not difficult to establish the following result.

THEOREM 4.12.3. Let A be as in the statement of Theorem 3.7.1, and assume that
T(t) = e satisfies estimate (4.12.2). Assume there exists a Banach space D(A) —
Y — X such that for every € > 0 there exists a constant C. for which (4.12.3)
holds. Let g = g1 + - -- + gx with g; : D(A) — X, and assume there exist exponents
2 <rjp; <2N/(N—-2) (2 <rj,p; < oo if N=1) such that g; € C(Y,X) is
bounded on bounded sets and

llgs () = g5 ()l oy < L(M)llw—vl|zrs

for all u,v € D{A) such that ||u||y, ||v]ly < M. For every x € D(A), there exist
Tmax; Tmin > 0 and a unigue, mazimal solution u € C({(—Tmin,Tmax); D{4)) N
CY((=Tmin> Tmax), X) of (4.12.1). Moreover, there is the blowup alternative; i.e., if
Trmax < 00 (respectively, Tmin < 00), then [|[u(t)||pa) — 00 ast T Tmax (respectively,
ast | —Trin)-
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REMARK 4.12.4. Note that one can also show, as in Theorem 4.8.1, a form
of continuous dependence as well as the conservation laws (whenever the relevant
conditions on g are satisfied).

REMARK 4.12.5. Note that the results of Section 4.6, i.e., the existence of L2
solutions, have an obvious counterpart in the setting of Theorems 4.12.1 and 4.12.3.
This is not the case for those of Sections 4.4 (Kato’s method), 4.9 (H® solutions,
s < N/2), and 4.10 (H™ solutions, m > N/2). Indeed, those results are obtained
by differentiating the equation, in one way or another, with respect to space. It is
not clear, in general, what a good analogue of the space differentiation would be.

REMARK 4.12.6. We established in the previous sections local existence results
for (4.1.1) in spaces of the type H*(R") with s > 0. One may wonder if there is
any local well-posedness result in H® spaces with s < 0, as is the case for KdV,
for example. This is a delicate question. For nonlinearities of the type g(u) =
Alu|®u, the answer is no; see Birnir et al. [32], Christ, Colliander, and Tao (80],
and Kenig, Ponce, and Vega [216]. On the other hand, the answer is yes if, for
example, g(u) = Mu?. See Kenig, Ponce, and Vega [214]. More generally, one can
investigate the minimal value of s for which the initial value problem (4.1.1) is
(locally or globally) well-posed in H®. This question has been (and is still being)
studied by many authors. See, for example, Bourgain [38], Kenig, Ponce, and
Vega [214], Staffilani [318], and Tao [335]. Note also that the nonlinear Schrédin-
ger equation (4.1.1) can be solved in certain spaces that are not based on L?, like
Lorenz spaces LP**® (see Cazenave, Vega, and Vilela [67]) or Besov spaces B;m (see
Planchon [298, 299]).



CHAPTER 5

Regularity and the Smoothing Effect

In this chapter we consider the nonlinear Schrédinger equation (4.1.1) in RV,
We address the problems of regularity of solutions and the C* smoothing effect.

The problem of regularity of solutions can be formulated as follows. Suppose
@ € H*(R") for some s > 0 and suppose the nonlinearity g is such that there is
a local existence theory of H® solutions (see Chapter 4). It follows that there is a
maximal solution ¥ € C((—Tmin, Tmax), H*(RY)) of (4.1.1). Suppose now that ¢ is
smoother than just H*(RY), say ¢ € H*'(R") for some s; > s. The question is
then: does u belong to C((~Tmin, Tmax), H**(R™))? In fact, one can simplify the
problem by assuming that there is also a local existence theory of H*! solutions. It
follows that there is a maximal solution uy € C((=T};., Tk..), H* (RV)) of (4.1.1).
Of course, an H*! solution is in particular an H*® solution. By uniqueness of HS
solutions, we deduce that u = u; on the larger interval where the two solutions
are defined. We then see that (7., ,7..) C (=Tmin, Tmax) because, again, an
H*! solution is an H*® solution. The question then becomes: does Tpin = T,
and Timax = Tih,,7 In other words, can u blow up in H*(R") before it (possibly)
blows up in H*(RV)? At this level of generality, there is no complete answer to
this question. (It seems that there is no counterexample either.) We give, however,
partial answers to this question in Sections 5.1-5.5.

The problem of the C* smoothing effect is the following: Let ¢ € H$(R") and
let u € C(I, H*(R")) be a solution of (4.1.1). Under what conditions on ¢ and ¢
is the solution u in C=((I \ {0}) x R")? In other words, when are the properties
of Section 2.5 preserved for the nonlinear equation? We study this question in
Section 5.6.

Finally, we observe that the results of this chapter are stated for one equation,
but similar results obviously hold for systems of the same form. See Remark 3.3.12
for an appropriate setting.

5.1. H? Regularity, 0 < s < min{1,N/2}

In this section we consider local nonlinearities, so that we may apply the H®
theory of Section 4.9. In this case, there is regularity at the H*! level for any
s < 81 < min{1, N/2}, as the following result shows.

THEOREM 5.1.1. Let 0 < s <min{l, N/2}. Let g € C(C,C) satisfy g(0) = 0 and
lg(u) — g(v)] < CA + |[u]* + [v|*)|u—v| forallu,veC

with
0<ax

N-—-2s"
147
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Let (,p) be the admissible pair defined by (4.9.3). Let v € H*(RYN) and let
u€ C(( —Tmin, Tmax ) H*RM) N LY (= Timins Tmax), BS 2(RY)) be the mazimal H*
solution of (4.1.1) given by Theorem 4.9.1 (case s > 0) or Theorem 4.6.1 (case
s=0). If p € H* (RN) for some s < s; < min{1, N/2}, then for every admissible
pair (¢,7), u € C((~Tmins Tmax) HSI(RN))HLIOC(( Tinins Tmax), By} (RN))

ProOOF. We consider ¢ > 0, the argument for ¢t < 0 being the same. We know
that u is an H*1 solution (in the sense of Theorem 4.9.1) on some maximal interval
[0,T) with T < Tiax, and we need to show that T’ = Ty (see the discussion at the
beginning of this chapter). We argue by contradiction, and we suppose T’ < Tax-
In particular, T < oo so that

(5.1.1) )l 2 00

Moreover, since T’ < Tax,

(5.1.2) lullLro.m),B5,) + sup_ [u(t)|las < oo.
: 0<t<T

We now reproduce some estimates from the proof of Theorem 4.9.1. We decompose
g = g1 + g2 as in Remark 4.9.2 and we deduce from Propositions 4.9.4 and 4.9.5
that

(5.13) lor@llsz, < Cllullge,
and
614) oz, < Clul® o lullsp, < Clluls, lulsy,.

where the last inequality follows from the embedding Bg’z(RN ) — i=n (RM).
It then follows from (5.1.4), Holder’s inequality and (5.1.2) that for any interval
Ic(0,T),

(5.1.5) lull v, By < C||U”Lv(1,B;,2)HUHLP(I,Bj} < Cllullgr,pr) »

where 1 < p < 7y is given by
1 1 4—a(N-2s)

P 7 4

We now apply Strichartz’s inequalities in Besov spaces and we deduce from equa-
tion (4.1.2) and from (5.1.3) and (5.1.5) that (see the proof of Theorem 4.9.1)

(5.1.6) Nlullee(r,500) + llull v(z,821,) < Cllellas + CllullLr iy + Cllull 1o 1,551,

for every interval 0 € I C (0,7). We now let 0 < € < T and we consider I of the
form (0,7) with e < 7 <T. We have
lullr,meny < Nullro,r—e),mo) + ulli(r—e,r),me)
<lullzro,r-ey, mo1y + Ellull oo ((r=e,7),101)
< Ce +efullpe(r,mey -
Similarly,

4— a(N 2s)
||UHLP(I,B;}2) <Cete “u“L'Y(I BJL) -
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It then follows from (5.1.6) that

lullpoez, o)y + Ill Lvgr,men) <

4-a(N-—-2s
C+C€ +€C”“”L°°(I,Hsl) +E 4 CHU’”L“’(I,B:IZ) 3

where the various constants are independent of + < 7. We therefore may fix
small enough so that the last two terms in the right-hand side are absorbed by the
left-hand side. It follows that

el oo 1,00 + “U||L~r(1,B;}2) <C,
where C is independent of 7 < T. Letting 7 T T, we obtain a contradiction
with (5.1.1). o
5.2. H! Regularity

In this section we establish H! regularity. This can be done for local non-
linearities, by starting from the H*® solutions of Section 4.9. For more general
nonlinearities, this can be done starting from the L? solutions of Section 4.6. We
begin with the first case.

THEOREM 5.2.1. Let 0 < s <min{1,N/2}. Let g € C(C,C) satisfy g(0) = 0 and
lg(u) — g(v)] L CA +u|* + |v[*)|lu—v| for all u,v € C

with
0<ax<

N-2s’
Let (v,p) be the admissible pair defined by (4.9.3). Let ¢ € H*(RN) and let
u € C((—Tmi,,,Tmax),HS(RN))ﬂLz)C((—Tmin,Tmax),Bz,2(RN)) be the marimal H*

solution of (4.1.1) given by Theorem 4.9.1 (case s > 0) or Theorem 4.6.1 (case
s = O)) If‘p € HI(RN)J then u € C((_Tmin,Tmax)le(RN))'

ProoOF. The proof is very similar to the proof of Theorem 5.2.1, except that we
use the Sobolev spaces H!(R") and W1 (R") instead of H*1(R") and BL(RY),
and the inequalities
g1 (w)llz < Cllullmn
and
llg2(w)llwr.r < CHUHZN@?) lullwre < Clluligs  lluliwre

instead of (5.1.3) and (5.1.4). O

We now consider more general nonlinearities and study the H! regularity of
the L? solutions of Section 4.6. Since there are two slightly different results for
the local existence in H* (Sections 4.3 and 4.4), there are two possible regularity
results, depending on what set of assumptions on g we choose. For simplicity, we
only establish one such result.

We recall the assumptions of Theorem 4.6.4. Let

< 2<r<xif N=1),

2N
< r
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and let g : L2(RY) N L™ (RY) — L™ (RY). Assume that there exists o > 0 such
that for every M > 0, there exist K (M) < oo such that

(5.2.2) lg() = gl < K(M)(llulg- +llvlIE-) v~ ul
for all u,v € L2(RN) N L"(RV) such that ||lu||zz, ||v]lL2 < M. Set

2 1 1
a-N(i"?)

so that (g,r) is an admissible pair and assume

LT

(5.2.3) a+2<q.

We have the following result.

THEOREM 5.2.2. Let g = g1 + - -- + gk be as in Theorem 4.6.4; i.e., each of the
g;’s satisfies (5.2.1)~(5.2.3) for some r;,05,q;. Assume, in addition, that

(5.2.9) IVas ()l -y < KMl [ Vull s
for all w € HY(RY) such that fJul|yz < M. Set r = max{ry,...,7x} and
¢ = min{qy,...,qk}. Let ¢ € L>(R") and let u € C((~Tmin, Tmax), L2(RY)) N
L? ((=Tmins Tmax): LT(RY)) be the mazimal solution of problem (4.1.1) given by

loc

Theorem 4.6.4. If o € H*(RY), then u € C((=Tmin, Tmax), H*(RY)).

PRrOOF. We first observe that g satisfies the assumptions of Theorem 4.4.6, so that
there is local existence in H'(R"). We consider ¢ > 0, the argument for ¢ < 0 being
the same. We know that u is an H! solution (in the sense of Theorem 4.4.6) on
some maximal interval [0,7) with T < Ty.x, and we need to show that T' = Tyax
(see the discussion at the beginning of this chapter). We argue by contradiction,
and we suppose T < Tmax- In particular, T < oo so that

2. t 1 .
(5.25) @l — oo

Moreover, since T < Thax,

(5.2.6) sup |lu(t)llzz + sup |lullpe(o,1),L75) < 0.
0<t<T 1<j<k

We now reproduce some estimates from the proof of Theorem 4.4.6. It follows from
(5.2.2) and (5.2.4) that

lgs I vy < 19OV, 5 + CRBD|ulE, iy -
Applying (5.2.6), we deduce that

||gj(u)HW1,,J, < C+ Cllulli lullyry forall0<t<T.

2

It then follows from Hélder’s inequality that

1
e .
||9j(u)”Lq; (1w <SCT% + C][u”‘;f,j (I,ij)“u“LPj(I,W“j)

for any interval I € [0,7"), where
1 1
(5.2.7) — = — 41—

o + 2
P G i

qj
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so that p; < ¢; by (5.2.3). Using again (5.2.6), we see that
(528) 195001 g ooy S C o+ Ol gy

We now let 0 < ¢ < T and we consider I of the form (0,7) with e <7 < T. We
have

”u”Lp] (I,lerj) S ”u“LpJ ((O,T—E),Wl’rj) + Hu”ij((f—e’-r)’Wl’rj)
a;+2

1-—
< Nullzes o r-eywimsy +& 9 Ml gas ((rme,rywrms)

by (5.2.7). We next observe that u is an H! solution on (0,T) so that by The-
orem 4.4.6, u € LPi((0,T — &), Wb (RN)) for every € > 0. It then follows
from (5.2.8) and the above estimate that

s +2

1—-—L—=
(5.2.9) 195l g g iy < Ce+ 75 Clull oy g winsy

where the constants are independent of 7 < T. We now apply Strichartz’s inequal-
ities and we deduce from equation (4.1.2) and from (5.2.9) that

llull o (r,b1) +Z||U||Lq](1 wirsy < Ce +CZ£ Iulqu,(I Wi -
j=1

We therefore may fix € small enough so that the sum in the right-hand side is
absorbed by the left-hand side. It follows that

k

ull oo by + X el Loy (gwrmsy < C
j=1

where C is independent of 7 < T. Letting 7 T T, we obtain a contradiction
with (5.2.5). O

REMARK 5.2.3. Theorem 5.2.2 applies to the model case
g(u) = Vu+ fu(-)) + (W * ju*)u

under the following assumptions. The functions V and VV € L3 (RV) + L=(RV)
for some 6§ > 1, 6§ > N/2, and W € L°(RN) + L>®(RY") for some ¢ > 1, 0 > N/2.
We have f(0) =0 and

4
|f(z1) — f(z2)] L C(1 + |z1| + Izgl)ﬁlzl — 29| forsome0< g < N

The fact that the assumptions are satisfied is easily verified; see Corollary 4.6.5 and
Remark 4.4.8 for the details.
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5.3. H? Regularity

In this section we study the H? regularity of solutions. Since we already estab-
lished the H! regularity in the preceding section, one possibility is to start from an
H? solution. However, we then need the assumptions of either Theorem 4.3.1 or
Theorem 4.4.6. This imposes either the Hamiltonian structure or WP regularity
of g. On the other hand, if we start from an L? solution, then we do not need
such assumptions on g (see Theorem 4.6.4). Since the assumptions on g for local
existence in H? require neither the Hamiltonian structure nor the Wl regularity
(see Theorem 4.8.1), it may be more economical for L? solutions to jump directly
to the H? regularity. For this reason, we present two regularity results, one for H!
solutions and the other for L? solutions.

THEOREM 5.3.1. Let g = g1 + --- + gi satisfy the assumptions of either Theo-
rem 4.3.1 or Theorem 4.4.6. Assume further that there exists 0 < s < 2 such that,
foralll1 <j <k,

(5.3.1) lg; (w2 < CM)A + flulla-)

for all u € H5(RY) such that ||jullgn < M. Let ¢ € H'(RY) and let u €
C((~Tmin, Tinax), HY(RN)) be the mazimal solution of the problem (4.1.1) given
by Theorem 4.3.1 or Theorem 4.4.6. If ¢ € H?(RY), then it follows that u €
C((_Tmimeax)yH2(RN))‘

Proor. We recall that if g satisfies the assumptions of either Theorem 4.3.1 or
Theorem 4.4.6 as well as (5.3.1), then g satisfies the assumptions of Theorem 4.8.1,
so there is local existence in H*(R"). We know that u is an H? solution (in the
sense of Theorem 4.8.1) on some maximal interval [0,T") with T' < Tpax, and we
need to show that T' = Ti,ax (see the discussion at the beginning of this chapter).
We argue by contradiction, and we suppose T' < Tiax- In particular, T < oo, so
that

(5.3.2) @)z = oo.

Moreover, since T < Tiax,

(5.3.3) sup |u(t)|lzm < oo
0<t<T

and, since u is an H? solution on [0,T),

(5.3.4) lull Lo (0,7, H2) + llwt]l Lo ((0,7),2) < 0O

for all admissible pairs (a,b) and all 0 < 7 < T. We now reproduce some estimates
from the proof of Theorem 4.8.1. For simplicity, we suppose k& = 1, the case
k > 2 being treated as in the proof of Theorem 5.2.1 above. We first observe that
by (5.3.1), g(¢) € L*(RY). Next, we recall that (by (3.3.7) or (4.4.21)) there exist
2<rp<2N/(N -2) (2<r,p<o0if N=1) such that

(5.3.5) lg(w) — g(@)liLor < C(M)||u - v]

LT



5.3. H2 REGULARITY 153

for all u,v € HY(RY) such that ||u| g1, ||lv|gr < M. We consider v and ¢ such
that (v, p) and (g,r) are admissible pairs. It follows from estimate (4.8.4) and
from (5.3.3) that

d
(5.3.6) H-‘E (u) < CHut”L‘I'(J,LT)

LY (J,Le")
for every interval I C [0,T). Applying now Lemma 4.8.2 and (4.8.7), we obtain
that

luel Loz < Cllellaz + Cllgl)llzz + Clluel L g1
for every interval 0 € I C [0,T). Using (5.3.4) and the fact that v < g, we
deduce easily that (see the proofs of Theorems 5.1.1 or 5.2.1 above for the details)
ug € LI((0, T),LT(RN)). Applying again (5.3.6) and Lemmas 4.8.2 and 4.8.5, it
follows that

(5.3.7) us € L%((0,T), L*(RY)).

Next, we easily deduce from (5.3.1), the interpolation inequality (4.8.20) and esti-
mate (5.3.3) that there exists C such that

1
(5.3.8) Ng(u(®)lr: < C + Eﬂu(t)HHz forall 0 <t <T.

Finally, we use equation (4.1.1) and estimates (5.3.3), (5.3.7), and (5.3.8) to obtain
1
@l < C+ Sllu®)ze forall0<t <T.

Thus ||u(t)||gz < 2C for 0 <t < T, which yields a contradiction with (5.3.2). O

REMARK 5.3.2. We note that we did not use all the assumptions of Theorem 4.3.1
or Theorem 4.4.6. In fact, we need only assume that g € C(H'(RN), H™1(R")) (so
that the equation makes sense) and that each of the g;’s satisfies (5.3.1) and inequal-
ity (5.3.5) for some exponents 2 < 7;,0; < 2N/(N —2) (2 <rj,p; L0 if N =1).
Under these assumptions, it follows that if ¢ € H*(RY) and if u € C(I, H}(RY)) is
a solution of (4.1.1) on some interval I > 0, then u € C(I, H2(R")). The argument
is exactly the same. In practice, though, the existence of an H! solution is obtained
by either Theorem 4.3.1 or Theorem 4.4.6.

REMARK 5.3.3. Here are two examples of applications of Theorem 5.3.1. Consider
first
g(u) = Vu+ f(,u(-)) + (W Jul*)u,

where V, f, and W are as follows. The function V is a real-valued potential, V &
L¥(RN) + L®(RY) for some § > 1, § > N/2. W is an even, real-valued potential,
W e L°(RN) 4+ L= (RN) for some ¢ > 1, ¢ > N/4. The function f: RY xR — R
is measurable in z € RY and continuous in u € R and satisfies (3.2.7), (3.2.8),
and (3.2.17). We extend f to RV x C by (3.2.10). It follows that g satisfies the
assumptions of Theorem 4.3.1 (see Example 3.2.11), and similar estimates show
that (5.3.1) holds (for s sufficiently close to 2). In particular, we may let f(z,u) =
Mu|*u with A € Rand 0 < a <4/(N—-2) (0 <a <ooif N=1,2). Consider next

g(u) = Vu+ f(u(-)) + (W * [ul)u,
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where V,VV € L¥(RN) + L®(RN) for some § > 1, § > N/2, W € L°(RY) +
L>®(RY) for some ¢ > 1, 0 > N/4, and f is as in Theorem 4.4.1 (for example,
f(z) = AMz|®z with A € C and (N — 2)a < 4). It follows that g satisfies the
assumptions of Theorem 4.4.6 (see Remark 4.4.8) and that (5.3.1) holds (for s
sufficiently close to 2).

We now study the H? regularity of L? solutions.

THEOREM 5.3.4. Let g = ¢ + -+ + gk be as in Theorem 4.6.4; i.e., each of
the g;’s satisfies (5.2.1)~(5.2.3) for some r;,a;,q;. Set r = max{ri,...,mx} and
q = min{qi,...,qk}. Assume, in addition, that there exists 0 < s < 2 such that

(5.3.9) lg(u)llze < K(M)(1+ ||ullgs) for all u € H*RY)

such that ||ul|2 < M. Let ¢ € L*(RY) and let u € C((~Tmin, Tmax), L2(RY)) N
Lfoc((—Tmin,Tmax),Lr(RN )) be the mazimal solution of the problem (4.1.1) given

by Theorem 4.6.4. If o € H*(RY), then u € C((=Tmin> Tmex)s H2(RN)).

Proor. We first observe that by (5.2.2) and (5.3.9), there is local existence in
H?(RM) by Theorem 4.8.1. The proof is then analogous to the proof of Theo-
rem 5.3.1 (see also the proof of Theorem 5.2.2). O

REMARK 5.3.5. Theorem 5.3.4 applies to the model case
g(u) = Vu+ f(u()) + (W xful*)u

under the following assumptions. The function V € L3(RY) + L>(R") for some
§>1,6 > N/2,and W € L°(RV) + L®(RY) for some ¢ > 1, ¢ > N/2. We have
f(z,0) =0 for all z € RY and

4
|f(z,21) — f(z,22)] < C(1 4 |z1] + |22])P|21 — 22| for some 0 < B < N

The fact that the assumptions are satisfied is easily verified, see Corollaries 4.6.5
and 4.8.6 for the details.

5.4. H™ Regularity, m > N/2

In this section we consider a nonlinearity g that satisfies the assumptions of
Theorem 4.10.1 for some m > N/2 and we study the H™ regularity of the solutions
for m; > m. This is a particularly simple case as the following result shows.

THEOREM 5.4.1. Let m > N/2 be an integer and let g € C™(C,C) (in the real
sense) with g(0) = 0. Let ¢ € H™(RY) and let u € C((—~Tmins Tmax), H™(RN))
be the mazimal solution of (4.1.1) given by Theorem 4.10.1. If p € H™ (RY) for
some m1 >m and if g € C™(C,C), then u € C™ ((=Tmin, Tmax), H™ (RV)).

PROOF. We consider £ > 0, the argument for ¢ < 0 being the same. We know
that u is an H™ solution on some maximal interval [0,7") with T < Tihax, and we
need to show that T = Tinax (see the discussion at the beginning of this chapter).
Consider 7 < Tinax. It follows that

sup [lu(t)llgm < oo
o<t<r
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so that
sup ||u(?)|re < o0o.
0Lt
Applying property (i) of Theorem 4.10.1 (at the level m;), we deduce that T’ > 7.
Thus T = Trax- O

5.5. Arbitrary Regularity

So far, we have established regularity up to the level H2(R") for H* solutions,
0 < s €1, and regularity of arbitrary level for H™ solutions with m > N/2. In
higher dimensions, there is of course a gap between H? and H™ with m > N/2.
It seems that there is no general result concerning regularity at higher order. See
Ginibre and Velo [135] and Kato [206, Corollary 4.3] for some partial results in that
direction. Here is a result concerning a very particular nonlinearity.

Let g(u) = AMu|®u with A € C and a an even integer. In particular, g €
C*(C,C). By Theorems 4.6.1 (case s = 0), 4.9.1 (case 0 < s < min{1,N/2}),
4.4.1 (case s = 1) or 4.9.9 (case 1 < s < N/2), there is local existence in H*(RY)
for (4.1.1) when 0 < s < N/2 and s > N/2 — 2/a. Moreover, for every admissible
pair (g,7), v € LL _((—Tmin> Trmax), H*"(RY)) (see the above-mentioned theorems

loc

and Remark 4.4.3 for the case s = 1). We have the following regularity result.

THEOREM 5.5.1. Let g(u) = Mul|*u with A € C and o an even integer. Let
0 < s < N/2 satisfy
N 2

(551) s> 3 — a

Finally, let ¢ € H*(RN) and let u be the corresponding mazimal H® solution of
(4.1.1), v € C((~Tmin, Tmax)s H*(RY)) N LY _((=Tmins Timax)s H>"(RN)) for every

admissible pair (g,r) (see above). If ¢ € H™(RYN) for some m > N/2, then u €
C((—TminaTmax)aHm(RN))'

PROOF. Suppose first s < 1. If s < 1 and m = 1, then regularity follows from
Theorem 5.2.1 and if m = 2, regularity follows from Theorem 5.3.1. If m > 3,
then in particular u is an H? solution by Theorem 5.3.1. If N < 2, then regularity
follows from Theorem 5.4.1, and if N > 3 we are reduced to the case s > 1 and
N > 3, which we study below.

We define ¢ > 2 by

i 1 1 2
(5.5.2) a =" W
We observe that a > 2 so that

5. 2 <
(5 5 3) <rg < N9

(with equality if a = 2). Moreover, it follows from (5.5.1) and (5.5.2) that
(554) rgs > N.
We deduce from (5.5.3)—(5.5.4) that there exists r such that

2N
2 —_— .
<T<N—2’ rs >N
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In particular, there exists ¢ such that (g, r) is an admissible pair. We also note that

by (5.5.2),

l < 1 2
r 2 Na
so that ¢ > a. It follows that v € L& _((—~Thmin, Tmax), H*"(RY)). Since

loc

H™(RV) < L*®(R") because rs > N, we obtain
(5.5.5) v € L ((=Trmins Tmax), L= (RY)) .

We now observe that, due to the particular structure of g(u), the proof of Lem-
ma 4.10.2 yields the estimate

(5.5.6) lg(@)llam < Cllv||felvlzam  for all v e H™RY).

We consider ¢t > 0, the argument for ¢t < 0 being the same. We know that u is an
H™ solution on some maximal interval [0,T") with T < Thax, and we need to show
that T = Trax (see the discussion at the beginning of this chapter). We use equa-
tion (4.1.1), the property that J(t) is an isometry in H™(RV), and estimate (5.5.6)
to obtain

t
@)l < lpllam +C /O (s[5 l1u(s)lrm ds for all 0 <t < T

Applying Gronwall’s lemma, we deduce

t
lu®) | g= < |||l g exp (C’/ lu(s)||F e ds) forall0<t<T.
0

If T < Trax, then (5.5.5) yields limsupy;7 ||u(t)||gm < oo, a contradiction with the
blowup alternative in H™(RY). =

5.6. The C*° Smoothing Effect

In this section we present a result of Hayashi, Nakamitsu, and Tsutsumi [177,
178, 179] describing a C* smoothing effect similar to the one observed for the
linear equation (see Section 2.5). More precisely, under suitable assumptions on
the nonlinearity, if the initial value ¢ decays fast enough as |z| — oo, then the
corresponding solution of (4.1.1) is smooth in both ¢ and z for ¢ # 0, even if ¢ is
not smooth. There are several results in that direction, depending on what are the
assumptions on g{(u) and on the initial data. Some of these results, however, are
fairly complicated technically. Therefore, and for the sake of simplicity, we only
give a simple, typical result in order to illustrate the idea, and we refer to the papers
of Hayashi, Nakamitsu, and Tsutsumi [177, 178, 179] for a more complete study.

THEOREM 5.6.1. Assume that N =1. Let T > 0, let ¢ € HY(R), and let u be a
strong H!-solution of

s + Uge + Ju|?u =0
{ : Fuze +ufu on {0,T7].
u(0) = ¢

If ¢ has compact support, then u € C*°((0,T) x R).

(5.6.1)
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PRrRoOF. Let us first do a formal calculation, in order to make clear the idea, which
is quite simple. We use the operators P, defined in Section 2.5. More precisely for
any positive integer £, let
(5.6.2) u(t,z) = (x + 2itd;)lu(t, z).
We deduce from formula (2.5.4) that

¢ 22 22
(5.6.3) ul(t,z) = (2it) e’ T (e " Fu(t, 1))
It follows from (5.6.2), (2.5.5), (5.6.1), and (5.6.3) that
2 22 o2

(5.6.4) iuf + ub, + (2it) %' T O (Je T u)Pe M) = 0.
Note that |v|?v = vov, and so

At || = Z O vdivoky .
n+j+k=~£

Therefore, setting

2
(5.6.5) v(t,z) = e " wult,z),
we deduce from (5.6.4) that

uf +ul, + (2it)’e! % Z vk = 0.

netj+k=£

Since uf(0) = xtp, we see that
ul(t) = T(t)(zbp) +z/ Tt—s)( (2is)fe & Z Iz v( )8’“1}(3)) s,
n+j+k=~£
and so
(5.6.6)  Jlu‘(®)llz= < llzpllz2 +/ | > u(s)8iu(s)du(s) |2 ds.
n+,7+k ¢
Next, by Hélder’s inequality,
> aru(s)diu(s)dku(s))|| <
ntj+k=¢ L2
> Nzl 2 62u(s)] 2 105 v(s)I 3¢ -

n+j+k=£

Furthermore, it follows from Gagliardo-Nirenberg’s inequality that
g y

H(?iv(s)HLgf < C”Bf;v(s)Hi2 Hv(s)ll;ﬁl for every j € {0,...,¢}.
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Therefore,
> lazus)l, llaiv(S)Ilef [85v(s)]] 3¢ < Cllozu(s)|| 2 lv(s) 1T
n+j+k=~£

< ShE) e Tl

C
< g”ue(s)llm .

(Note that u is bounded in H!(R), hence in L*(R).) Applying (5.6.6), we deduce
from Gronwall’s inequality that

(5.6.7) lu(t)|lz2 < Cllzbpl: forallt e [0,T),

where C depends only on T, £, and |lul|pe(0,7),s1)- In particular, given 0 <
e < T, ve L®((e,T),HYR)) for every positive integer £. Since the mapping
v — |v]?v is continuous H® — H* (see above), it follows from (5.6.4) that uf €
L>((e,T), L% (R)), and so v; € L®((¢,T), H..(R)) for every positive integer
¢. 1In particular, v € C([¢,T), HE (R)), for every positive integer £. Applying
again (5.6.4), we deduce that v € C!([e, T), Hf .(R)) for every positive integer £.
Differentiating the equation k times with respect to t, we obtain eventually, with
the same argument, that v € C*([e,T), Hf .(R)) for all positive integers £ and k.
Therefore, v € C*®([e, T| x R), which means that u € C*°([¢, T} x R). The result
follows, since € > 0 is arbitrary.

Now, we want to make that argument rigorous. In order to do that, we need

the following result.

LEMMA 5.6.2. Suppose ¢ and u are as above. If, in addition, ¢ € S(R), then
u € C([0,T), S(R)).

ProOOF. We proceed in three steps.

STEP 1. u € L*®((0,T), H*(R)) for every positive integer £. This follows
from Theorem 5.5.1.

STEP 2. zPu € L®((0,T), H¢(R)) for all nonnegative integers p and £. We
argue by induction on p. We have already established the result for p = 0 (Step 1).
Assuming it is true up to some p > 0, let us show that it is true for p + 1. Set
uF(t) = O%u(t). Given a positive integer £,

(5.6.8) uf +ub, + Z wuwiuF = 0.
n+j+k=~£

Taking the L2 scalar product of (5.6.8) with ie=26%" £2P+2yf, where € € (0,1), we
obtain

1d B
§El|€_szzﬂip+1ue(t)”%2 - Im/ﬂize‘%zthmue

(5.6‘9) +Im/(e——2ez"’z2p+2a7 Z un{ﬁuk>

n+j+k=~£
=a+p3.
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We integrate the term o by parts, and we note that Im uiz—[‘; = 0. It follows that

a= —Im/ (((2p+2) - 48@*2)6_”2I”u“le_ezzzp“_u—é)
(5.6.10)
2
< Cp)l|zPut |z ™= 2P+ |2 < Clp, )l 2P ut| 2

by the induction assumption. On the other hand,
2 -
B < ”e—sac rp+1uZHL2 Z ]Ie—mzxp'*'lunujuk”;;?

n+j+k=~¢

< OOl 2P |12 3 e 2P b s

(5.6.11)

since v/ is bounded in L* for every j, by Step 1. It follows from (5.6.9), (5.6.10),
and (5.6.11) that

1d

5ol (B <

¢
Cp, O)lle™==" 2P+ 1|12 + OOl &Pl 12 Y [l o+ b 1o
k=0
for every nonnegative integer £. Therefore,

1d —ex?
2d Z == o ()] <

£
O 3 e~z 010 3 e 5P .
k=0

Hence the result follows by integrating the above differential inequality and letting
el 0.

STEP 3. Applying Step 2 and equation (5.6.8), we see that, for all nonneg-
ative integers £ and p, zPuf € L>((0,T), L?); in particular, zPuf € C([0,T], L?).
Considering again (5.6.8), we deduce that zPuf € C*([0,7,L?) for all £ and p.
Iterating that argument, we obtain that zPuf € C*°([0, T}, L?) for all nonnegative
integers £ and p. This completes the proof. O

END OF THE PROOF OF THEOREM 5.6.1. Consider a sequence ¢ € S(R) such
that ¢r — ¢ in HY(R) as k — oo, and such that ||zPpi||z2 < 2||zPe| L2 for all
positive integers k and p. Let uy be the solution of (5.6.1) with initial value ¢ given
by Theorem 3.5.1. It follows from Theorem 3.5.1 that ux — u in C([0, 7], H'(R))
as k — oo. On the other hand, by Lemma 5.6.2, the calculations of the formal
argument above are rigorous for the solutions uy. Therefore, estimate (5.6.7) holds
for the solution ux and is uniform in k. Thus ||u?(t)||z: < C(£) for all t € [0,T) and
all £ > 1. One concludes as in the formal argument that we described before. [

REMARK 5.6.3. Note that we have shown in fact that the function v defined
by (5.6.5) belongs to C*((0,T), H™(RY)) for all m > 0, whenever (1 + ?)%p €
'L?(R) for every positive integer m. Evidently, there are also partial results if we
only assume that (1 + .’EZ)%&(P € L%(R) for some given positive integer mg.
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REMARK 5.6.4. Note that we did not really use that u € C([0,T), H}(R)). What
we used precisely is that u € L?((0,T), L®(R)) and that the solution depends
continuously on ¢ in L2((0,T), L>(R)). This may be used to show a C* smoothing
effect for initial data in L2(R) (see Corollary 5.7.5 below).

REMARK 5.6.5. In Theorem 5.6.1, we chose the nonlinearity g(u) = |u|?u to sim-
plify the calculation of 07'g(u). With exactly the same method, one can establish
the same result for g(u) = A|u|**u, where k is a nonnegative integer and A € R.
More generally, the result holds when g(u) = f(Ju|?)u, where f : [0,00) — R is in
C®, but the calculations are technically a little bit more complicated.

5.7. Comments

Theorem 5.3.1 can be generalized in the framework of Theorem 4.12.1. More
precisely, we have the following result.

THEOREM 5.7.1. Let A and g = g1 + --- + gx be as in the statement of The-
orem 4.12.1. Assume further that there exists a Banach space D(A) — YV —
X such that, for every € > 0, there exists a constant C. for which |ully <
ellullpay + llullx for all w € D(A). Let p € X4, and consider the mazimal solu-
tion u € C((—Tmin, Tmax), Xa) of the problem (3.7.7) given by Theorem 4.12.1. If
¢ € D(A), it follows that & € C((~Tain, Tmax) D(A)) N CL((~Trmins Trmax)s L2(2)-

PROOF. Local existence in D(A) follows from Theorem 4.12.3. The proof of The-
orem 5.3.1 is then easily adapted (with the estimates from the proof of Theo-
rem 4.12.3). 0

REMARK 5.7.2. Let © be a smooth, open subset of R?, and let g satisfy the
assumptions of Theorem 3.6.1. Consider ¢ € H}(Q), and let u be the maximal
solution of (3.1.1) given by Theorem 3.6.1. If ¢ € H?(Q), then (from Brezis and
Galloust [45]) u € C((—Tmin, Tmax), H2(£)) N C1((=Tmin, Tmax ), L2(2)).

THEOREM 5.7.3. Assume that N =2 or N = 3, and let k be any positive integer
if N=2 andk =14 N =3. Let T >0, A € R, let p € HY(R), and let
u € C([0,T), HY(R)) nC*([0,T), H"1(R)) satisfy the equation

{ iug + Au + Au|? 'y =0
u(0) = .
If ¢ has compact support, then u € C*((0,T) x R).

Proor. The proof is adapted from the proof of Theorem 5.6.1 (see also Re-
mark 5.6.5). a

REMARK 5.7.4. The C'® smoothing effect of Theorem 5.6.1 holds as well (with
an obvious adaptation of the proof) for the nonlinearity g(u) = (W x |u|?)u, where
W e L}(R) + L®(R). The proof again makes use of the property that the solution
depends continuously on ¢ in L2((0,T), L°(R)). (See Hayashi [162] and Hayashi
and Ozawa [188]).
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COROLLARY 5.7.5. Assume N =1. Let A € R and W € LY(R) + L®(R). Con-
sider ¢ € L2(R) and let u € C(R,L*(R)) N L (R,L®(R)) be the solution of the
problem
{ iug + Au+ Aufu + (W x [ul)u =0
u(0)=¢
given by Corollary 4.6.5. If ¢ has compact support, then u € C®°((R\ {0}) x R).

ProoF. Note that (4,00) is an admissible pair in dimension 1. Therefore, the
result follows from Remarks 5.6.4 and 5.7.4. O

REMARK 5.7.6. A smoothing effect of analytic type was established for equations
of the type ius + Au = F(u,%) in RV, where F is a polynomial in (u,%) (for
example, F(u,T) = |u|?™u, where m is a nonnegative integer). Under some decay
and smoothness assumptions on the initial value u(0) (that do not imply that
u(0) is analytic), it is shown that the corresponding solution is (real) analytic in
space and/or in time (see A. de Bouard [97], Hayashi [161, 163, Hayashi and
Kato [174, 175], and Hayashi and Saitoh [192, 193]).



CHAPTER 6

Global Existence and Finite-Time Blowup

Throughout this chapter we continue the study of equation (4.1.1) in the whole
space RY. So far, we have studied the local properties of solutions of nonlinear
Schrédinger equations: local existence, regularity, and the smoothing effect. In
this chapter we begin the study of the global properties of the solutions. We
establish criteria on the nonlinearity and/or the initial data to determine whether
the solutions exist for all times, or blow up in finite time.

In Section 6.1 we apply the results of Section 3.4. These results are based on
the conservation of charge and energy and yield global existence for all initial data
or for small data only, depending on the nonlinearity.

In Sections 6.2, 6.3, and 6.4 we establish global existence under a certain as-
sumption of smallness on the initial value, without assuming the Hamiltonian struc-
ture (i.e., without the conservation laws). The smallness condition can be just a
quantity related to the H! norm of the initial value (Section 6.2), or depend on
how the initial value “oscillates” as |z] — oo (Section 6.3), or depend on how the
initial value behaves like a homogeneous function as |z} — oo (Section 6.4).

In Section 6.5 we obtain sufficient conditions on the nonlinearity and the initial
value for finite-time blowup and we establish some lower estimates of the norms
that blow up.

In Section 6.6 we consider the so-called “critical” or “pseudoconformal” case
g(u) = Alu|®u. We first establish sharp existence results concerning the initial-
value problem in H*(RV) and L?(R"). Next, we describe some properties of the
blowup solutions that are only known for the critical nonlinearity.

In Section 6.7 we still consider the so-called “critical” or “pseudoconformal”
case g(u) = )\lulﬁu, and we apply the pseudoconformal transformation to derive
some further information on the nature of the blowup.

6.1. Energy Estimates and Global Existence

In this section we give some sufficient conditions for global existence based on
the conservation of charge and energy. For that reason, we consider solutions in the
energy space H!(R") and nonlinearities for which there is conservation of charge
and energy.

THEOREM 6.1.1. Let g be as in Theorem 4.3.1. Assume further that there exist
A>0,C(A) >0, and € € (0,1) such that

! ;Ellull?p +C(A) for allu e H'(RY)

(6.1.1) G(u) <
163
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such that ||ul|pz < A. Consider ¢ € HY{Q) and let u € C((=Tmin, Tmax), H1(RY))
be the corresponding mazimal solution of (4.1.1) given by Theorem 4.3.1. If
llelie < A, then Tmin = Tmax = 00. In addition u € L®(R, H'(RN)).

Proor. This is an immediate consequence of Theorems 3.4.1 and 4.3.1. ]

Below is an application of Theorem 6.1.1 to the model nonlinearity of Corol-
lary 4.3.3.

COROLLARY 6.1.2. Let g(u) = Vu+ f(-,u(:)) + (W x [u|*)u, where V, f, and W
are as follows: V is a real-valued potential, V € LO(RN) 4+ L=®(RY) for some 6 > 1,
§ > N/2; W is an even, real-valued potential, W € L°(RY) + L®(RY) for some
o >1,0>N/4, and f : RY x R — R is measurable in z € RN and continuous
in u € R and satisfies (3.2.7), (3.2.8), and (3.2.17). The function f is extended to
RY x C by (3.2.10). Assume further that there exist A >0 and 0 < v < 4/N such
that

(6.1.2) F(z,u) < Alul?(1 + |ul*),
and that
(6.1.3) wt e L°(RY) + L®(RY)

for some § > 1, 8 > N/2 (and 0 > 1 if N = 2). It follows that for every
¢ € HY(RYN), the mazimal strong H*-solution u of (4.1.1) given by Corollary 4.3.3
is global and sup{|ju(t)|lg : t € R} < co.

PROOF. We claim that, with the notation of Corollary 4.3.3,
1
(6.1.4) G(u) < > |lull?: + C(Jlullge) for all u e HY(RY).

The result then follows from Theorem 6.1.1. To prove the claim, let V = V; + V5,
where V; € L™ and V; € L%, and let Wt = W; + W,, where W; € L™ and
Wy € LP. We have

4G (u) < 2|Villz=llullis + 20|VallLs lull? as +4AfullZa + Al
+ Wl ffulZe + 1 Wallzoflull] a0
<O+ [lullze) + Cllul® s + CllUIIZ‘ﬁfz + Cllull? e,

On the other hand, it follows from Gagliardo-Nirenberg’s inequality that

lell? s, < Cllull fulull

v v+2- Nr
lull 542 < Cllul g il ,

el e < Clull fullull s

Since &, 2 X <2, (6.1.4) follows from the inequality ab < ea” + C(e)b" . O
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REMARK 6.1.3. In the case where F satisfies (6.1.2) with v = 4/N, then instead
of (6.1.4), we obtain the following inequality:

1 4
(6.1.5) G(u) < (5 + C||u|[§g) w21 + C(ful|g2) for all w e HY(RY).

In this case, all solutions of (4.1.1) are global and uniformly bounded in H?, pro-
vided ||¢]|z2 is small enough. This follows from (6.1.5) and Theorem 6.1.1.

We now give an example of application of Theorem 3.4.3, which shows global
existence under a smallness assumption on the initial value.

THEOREM 6.1.4. Let g be as in Theorem 4.3.1. Assume further that G(0) =0 and
that there exist € > 0 and a nonnegative function n € C([0,¢),RT), with n(0) =0,
such that

1—¢

(6.1.6) G(u) £ lull?: +n(lullz2) for all w € HY(RY)

such that |u]lgr < €. It follows that there exists a > O such that, for every ¢ €
HYRY) with ||¢|lg: < a, the mazimal strong H'-solution u of (4.1.1) given by
Theorem 4.3.1 is global and sup{||u(t)||m : t € R} <e.

PrROOF. The result follows from Theorem 3.4.3. |

COROLLARY 6.1.5. Let g(u) = Vu+ f(-,u(:)) + (W % |u|?)u, where V, f, and
W are as follows: V is a real-valued potential, V € L*(RN) + L®(R™N) for some
§>1,6 > N/2; W is an even, real-valued potential, W € L°(RVN) + L®(RV)
for some o > 1, 0 > N/4; and f : RN x R — R is measurable in z € RN and
continuous in u € R and satisfies (3.2.7), (3.2.8), and (3.2.17). The function f is
extended to RN x C by (3.2.10). It follows that there exists a > 0 such that, for
every ¢ € HY(RY) with ||| g1 < a, the mazimal strong H*-solution u of (4.1.1)
given by Corollary 4.3.3 is global and sup{|lu(t)||g: : t € R} < c0.

Proor. With the notation of Corollary 4.3.3, we have
G(u) < Cllullfz + Cllullft® + Cllullz + Vall s llulln -

Since in the splitting V = V; + V4, ||V2]|1+s can be made arbitrarily small, the result
follows from Theorem 6.1.4. O

6.2. Global Existence for Small Data

In this section we do not assume conservation of charge or energy. We establish
global existence for small initial values in H!(R™) for nonlinearities that vanish at
a sufficient order at the origin. We rely on the method of Kato [206]. We essentially
reproduce the estimates of the fixed-point arguments of Chapter 4, but we eliminate
the dependence on t. Note that with this technique, we obtain not only the global
existence but also a certain decay of the solution. For the sake of simplicity, we
consider local nonlinearities only.

THEOREM 6.2.1. Let g € C(C,C) satisfy g(0) = 0. Assume there exist

4 4 4 .
(6.2.1) NSa1§a2<N_2 (N§a1§a2<oosz=1)
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such that
(6.2.2) |g(u) — g(v)| < C(Ju|** +|v|** + [ul*? + [v|**)|u —v| for all u,v € C.
There exists eg > 0 such that if ¢ € HY(RYN) satisfies ||p||m1 < eo, then the
corresponding mazimal H' solution u of (4.1.1) given by Theorem 4.4.6 is global,
i.e.; Tmin = Tmax = 00. Moreover, u € LI(R, WL (RY)) for every admissible
pair (q,T).
PRrROOF. We may assume without loss of generality that o; = %. Moreover, ar-
guing as in the proof of Theorem 4.4.1, we can write g = g; + g2 where g;(0) =
g2(0) =0 and for j =1, 2,
(6.2.3) lgj(w) — g;(v)| < C(lu|% + |v|*)|lu —v| for all u,v € C.
We consider the admissible pairs (v;,p;), j = 1,2, such that p; = a; +2; in
particular, 73 = p1 =2+ 4/N. Given 0 < t < Tiax, We set

f@) = llullze=0,0),8Y) + “U“L‘u((o,t),wlml) + ”u”L’Y2((0,t),W1vP2) .

Since ; < oo (and u is continuous with values in H(R")), we see that

(6.2.4) F@& Llelm ast]o.

On the other hand, it follows from Strichartz’s estimates that there exists C inde-
pendent of ¢ such that

(625)  7() < Cllglln + Clas@l ot o .10t + ClE20) g g .oy -

Since |g;(u)| + [Vg;(u)| < Clul® (lu| + |Vu|) by (6.2.3) and Remark 1.3.1(vii), it
follows from Hélder’s inequality in space and time that there exists C independent
of T such that

“gl (u)”L‘I{ ((O,t),Wl’pll) S C”u”z}‘ll (((),t),Lpl ) ”u”L‘YI ((O,t),lepl)

. (6'2'6) < Cf(t)a1+1 .

Similarly, there exists C independent of T such that
”g"’(u)”mé((o,t),wlfpé) < CllullZi (0,6),L02) 1l L2 (0,8), w1 02) 5

where y is given by

1 _ 4 — (N - 2)&2

b 20m(0p+2)
We note that due to the assumption (6.2.1), 72 < p < co. Therefore, since H! <
Lr2 and WhP2 < L2, we see that |lul|Lu((0,¢),Le2) < f(t), and so

(6.2.7) 1920} sy < CF O
It now follows from (6.2.5)—(6.2.7) that
() < Cllellg + CFR)* T + Cf()*! for all 0 < t < Tipax-

Applying (6.2.4), we deduce easily that if |||l < €0 where g9 > 0 is sufficiently

small so that
(2Cso)°‘l+1 4 (26’80)"‘2+1 <1,
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then f(¢t) < 2C||p|lgr for all0 <t < Thyax. Letting t T Tinax, we deduce in particular
that ||ul] Lo ((0,Tmax), H?) < 00, 50 that Tmayx = oo by the blowup alternative. Thus
f(t) is bounded as t — o0, so that

llwell o< (0,00), 1) + 1l L7 ((0,00), w101y + [[ull L2 ((0,00), Wie2) < 00

By Strichartz’s estimates and the previous estimates of g;(u), this implies that
u € LI((0, 00), WLT(RY)) for every admissible pair (g,7). The estimate for t < 0
is obtained by the same argument. O

REMARK 6.2.2. Theorem 6.2.2 says that if ||| g1 is small, then the corresponding
H! solution u is global and decays ast — oo in the sense that v € LI(R, WL (RY))
for all admissible pairs (¢, 7). Note that we already mentioned results of the above
type. See in particular Remarks 4.5.4, 4.7.5, and 4.9.8 where it is assumed that
IVellLz, llellLz, and ||o| g., respectively, are small. These results, however, ap-
ply to (essentially) homogeneous nonlinearities. This is a major difference with
Theorem 6.2.2 which applies, for example, to the case g(u) = a|u|* u + bju|*?u.

REMARK 6.2.3. The smallness condition on |||z can be improved, depending
on the assumptions on g. Also, instead of considering H'! solutions, one can consider
more generally H® solutions. See Section 5 of Kato [206] and Pecher [295]. Note
that global existence results for small data hold under various assumptions on the
nonlinearity and for smallness of the initial data in various spaces. See, for example,
Hayashi and Naumkin [183], and Nakamura and Ozawa [257].

6.3. Global Existence for Oscillating Data

In this section we consider the model nonlinearity

(6.3.1) g(u) = Alu|%u,
where
4
(6.3.2) reC, 0§a<N_ 0<a<xif N=1).

We show that the solutions of (4.1.1) are “positively global”; i.e., Tnax = oo if the
initial value ¢ is sufficiently “oscillating” in a sense to be made precise below (see
Theorem 6.3.4 and Remark 6.3.5). This result is based on a global existence result
for small data whose proof makes use of a Strichartz inequality for nonadmissible
pairs. We first introduce the number o, which we will also use in Chapter 7. We let

_2-N++VN?+12N +4
- 2N ’
i.e., o is the positive root of the polynomial Nz? + (N — 2)z — 4.

(6.3.3) agp = ag(N)

REMARK 6.3.1. We note that o > 0 satisfies Na? + (N — 2)a — 4 > 0 if and only
if a@ > ag. We also note that

2

< _4
N+2 N N -2 =7
4

<

N_
2 a2
N TSN
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We have the following global existence result.

THEOREM 6.3.2. Let g satisfy (6.3.1)—(6.3.2). Suppose further that a > oy, where
oo is defined by (6.3.3), and let

_ 20(a+2)
There ezists € > 0 such that if p € H'(RY) and 1Tl Le ((0,00),Lo+2) < €, then the
mazimal H' solution u of (4.1.1) given by Theorem 4.4.1 is positively global, i.e.,
Trmax = 00. Moreover, u € L2((0,00), L*+*2(RY)), and u € L7((0,c0), WHP(RN))
for every admissible pair (v, p).

For the proof of Theorem 6.3.2, we will use the following lemma.

LEMMA 6.3.3. Letr = a+2, let (q,7) be the corresponding admissible pair, and
let a be given by (6.3.4). It follows that a > q/2 if and only if & > ap, with og
defined by (6.3.3). For such values of o and a, and for 0 < T < oo, we have the
following estimates for A defined by

A(H(E) = /Ot‘.T(t —8)f(s)ds for0<t<T.

(i) Ifu € L2((0,T), L"(RYN)), then A(Ju|*u) € L*((0,T),L"(RN)). Further-
more, there exists C independent of T such that

(6.3.5) Al oo, < ClEE L0 29 2

for every u € L*((0,T), L™(RY)).
(ii) Ifu e L*((0,T), L7 (RM))NLI((0,T), Wi (RN)) and if (v, p) is any admis-
sible pair, then A(|u|*u) € L7((0,T), WHP(RYN)). Furthermore, there exists
C independent of T such that
(6.3.6) Al *u) [l v 0,1y, w10y £ CllullZa 0,1y, Ly |4l La g0, 1), w17
for every w € L2((0,T), L"(RN)) N L9((0,T), WL (RM)).
ProorF. The first part of the lemma is a simple calculation, which we omit. For
assertions (i) and (ii) consider a defined by (2.4.2). Since (a+1)r' =r, (a+1)a’ = a,
and
1 1l «
TEo T
q q a
we see that
llul*ull o 0,1,y = ”U“‘z:(l(o,T),Lr)
and (applying Holder’s inequality twice) that

Ml ®uwll o (0,1, wry < Cllull e o,7),0m) lll Lago, 1), wam) -

The results now follow from (2.4.3) and Strichartz’s estimates, respectively. O

ProoF oF THEOREM 6.3.2.  We use the notation of Lemma 6.3.3. Let € > 0,
let ¢ € H'(R") be such that

NT)elize(o,00),2m) < €,
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and let u be the maximal solution of (4.1.1) defined on [0, Tipax) With 0 < Thax <
co. It follows from equation (4.1.2) and from (6.3.5)-(6.3.6) that there exists K
independent of T" and ¢ such that

(6.3.7) lullzeo.m,zr < €+ Kllull 3 o,r),1r)
and
(6.3.8) lullLaco.mwrry < Kllellan + Kllull Fa o,y 4l Logo,m),wrm)

for every T < Tmax. (The term K[|y in (6.3.8) comes from Strichartz’s esti-
mates.) Assume that € satisfies

(6.3.9) 20H Ke® < 1.

Let f(t) = llullze(0,¢),z7)- It follows that f € C([0,Tmax)) and that f(0) = 0.
Furthermore, it follows from (6.3.7) that f(t) < e + K f(t)®*! for all 0 < ¢ < Thax.
Using (6.3.9), we deduce by a simple continuity argument that f(t) < 2¢ for all
0 <t < Tinax, so that

(6.3.10) el Lo ((0, Toman) L) < 26
Applying (6.3.8) and (6.3.10), we obtain

(6.3.11) 1l (0 w17y < 2K i1

We now deduce from equation (4.1.2) and from Strichartz’s estimates (for the linear
term) and (6.3.6) that u € L7((0, Tax)W1#(RY)) for every admissible pair (v, p).
In particular, it follows from the blowup alternative that Ty, = co. This completes
the proof. O

The main result of this section is now the following (see [72]).

THEOREM 6.3.4. Let g satisfy (6.3.1)~(6.3.2). Suppose further that a > og, where
ap is defined by (6.3.3), and let a be defined by (6.3.4). Let ¢ € HY(R"N) satisfy
|- lo(:) € L*(RYN). Given b € R, set

(6.3.12) eo(@) = ¢ (),

and let Uy be the mazimal H! solution of (4.1.1) with the initial value ¢ €
HY(RN). There exists by < 0o such that if b > by, then Tmax(ps) = 00. Moreover,
Uy € Lo((0,00), L*2(RY)), and @y € LY((0,00), WL2(RN)) for every admissible
pair (7, p)-

ProoOF. Letr = a+2 and let (g, r) be the corresponding admissible pair. A direct
calculation, based on the explicit kernel of the Schrédinger group (see Lemma 2.2.4),

shows that .
—dtEm |p o b
TOel@) = T D (el @),

where the dilation operator Dg, 8 > 0, is defined by Dsw(z) = 3 Zw(Bz). It easily

follows that

1/b
2(a—gq
1T bll2e (000).20) = /0 (1 - br) 5 [T ()3, dr
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Since ||T(7)¢ll- < Cl|T(T)ella < Cllgllar and since

by Lemma 6.3.3, we see that
l. ‘J’ > a Ty =— .
ble NI ()enlie ((0,00),L7) =0

The result now follows from Theorem 6.3.2. O

REMARK 6.3.5. We note that |¢p(z)] = |¢(x)]. In particular, Theorem 6.3.4
implies that there is (positively) global existence for initial values of arbitrarily
large amplitude. The condition b > by means that ¢, is sufficiently “oscillating”
as |z| — oo.

REMARK 6.3.6. It is the condition | - |¢(-) € L?(R") that ensures @, € H'(RY).
For a general o € HY(RY), ¢p € LZ(RY) N HE (RY), but ¢ ¢ HY(RY).

REMARK 6.3.7. Here are some comments on Theorem 6.3.4.

(i) Let ¢ = 4(a + 2)/Na, so that (¢,a -+ 2) is an admissible pair. One easily
verifies that if o > 4/N, then g < a, where a is given by (6.3.4), and that if
a < 4/N, then g > a. Next, if u € L7((0,00), WH#(RY)) for every admis-
sible pair (7, p), we have in particular u € L9((0,00), L*2(R™)), and also
u € L®((0,00), L%"2(R")) by Sobolev’s embedding theorem. Therefore,
u € L2((0,00), L*T2(R")) if @ > 4/N. On the other hand, if a < 4/N,
then the property u € L2((0,00), L%t2(R")) expresses a better decay at
infinity.

(ii) If A <0, then all H' solutions of (4.1.1) are global (see Section 6.1). There-
fore, Theorem 6.3.4 means that all the solutions 4, have a certain decay as
t — oo for b large enough.

(iti) If A > 0 and a < 4/N, then all H! solutions of (4.1.1) are global (see
Section 6.1). Therefore, Theorem 6.3.4 means that 4, has a certain decay
as t — oo if b is large enough. Note that certain solutions do not decay,
in particular the standing waves, i.e., solutions of the form e*y(z) (see
Chapter 8).

(iv) If A > 0 and o > 4/N, then (4.1.1) posesses solutions that blow up in finite
time (see Section 6.5 below). Theorem 6.3.4 means that for any ¢ € H!(RV)
with | - |(-) € L2(RY), the initial value ¢ gives rise to a solution which is
(positively) global and which decays as ¢t — oo provided b is large enough.

REMARK 6.3.8. Assume g satisfies (6.3.1)-(6.3.2). Suppose further that
o > ap, where o is defined by (6.3.3), and let a be defined by (6.3.4). Let
@ € HY(RV) satisfy |- |¢(-) € L2(R"). Given s € R, let u® be the maximal H' solu-
tion of (4.1.1) with the initial value 9, = J(s)p. It follows that there exists sp < oo
such that for every s > so, Tmax(%s) = 00. Moreover, u® € L“((O,oo),L“+2(RN)),
and u® € L7((0,00), WH*(RY)) for every admissible pair (7,p). Indeed, since
1T (-Yell e ((0,00),L7) s finite (See Corollary 2.5.4), we see that

1TC)bsllze (000027 = 1TCIel o ((s1000,L7) =2, 0,
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and the result follows from Theorem 6.3.2.

6.4. Global Existence for Asymptotically Homogeneous Initial Data

In this section we consider the model nonlinearity

(6.4.1) g9(u) = Alul%u,
where
4
(6.4.2) AeC, ao<a<N_2 (v <a<xoif N=1),

where oq is defined by (6.3.3). We first establish global existence of solutions for

initial values that are sufficiently small in a certain sense. We then apply this

result to initial values that are asymptotically homogeneous using the estimates of

Section 2.6. The results of this section are based on Cazenave and Weissler [73, 75].
We first introduce some notation. Let

_4—(N-2)a
(6.4-3) IB — W
so that

N
(6.4.4) 2(a—j-l2) +ha=1.
Note that by (6.4.2),

N

(645) 0<,8<-2—(&j—2)<1
and
(6.4.6) Bla+1)<1.

Next, given 0 < T < oo, we define the spaces X1 and Wr by
(6.4.7) X = {u€ L%((0,T), L*T2(RN) : esssup t?|[u(t)||pe+z < 00},
0<t<T
(6.4.8) Wr = {p€S'RN): sup t°||T(t)p|La+z < 00},
0<t<T

where we use the convention that if 1 € S(RY), then ||¢||pet2 = o0 if ¥ &
Lot2(RN). We note that, given ¢ € S’(R"), the mapping t ~— T(t)y is continuous
R — S’(R"), so that the definition (6.4.8) makes sense. We also observe that Xt
and W are Banach spaces when equipped with the norms

(6.4.9) lullxy = esssupt®[Ju(t)|za+z ,
0<t<T

(6.4.10) lelw, = sup ?|T(t)pllzars -
0<t<T

This is quite clear for X by applying Theorem 1.2.5. For Wy, we argue as follows.
Suppose (¢n)n>0 is a Cauchy sequence. It follows that (un)n>0 defined by u,(t) =
J(t)n is a Cauchy sequence in X and thus has a limit v € Xp. It now suffices
to show that u(t) = T(t)y for some ¢ € S'(RV). Since u, — u in Xr, there exists
to € (0,T) and a subsequence (ny)i>o such that uy,, (fo) — u(te) in L&T2(RN),
hence in S’(RY). Therefore, v,, = T(—to)un, (to) — T(—to)u(ty) in S'(RN). We
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let ¢ = T(—to)u(to). Since ¢,, — ¢ in S'(RN) and uy, (t) = T(t)¢n, , We see that

u(t) = T(t)p.
We begin with the following existence result.

THEOREM 6.4.1. Assume (6.4.1)—(6.4.2) and consider the spaces Xt and Wr
defined by (6.4.3)-(6.4.10). There exists g > 0 such that the following properties
hold:

(i) Let0 < T < oo and ¢ € Wr. If||¢llwy < € < gq, then there exists a unique
solution u € Xt of equation (4.1.2) such that |lul|x, < 2e.

(i) Let @, ¢ € Wy satisfy |lollw., |¥llw.. <€ < e and let u,v be the corre-
sponding solutions of (4.1.2) in X such that |lul|x_, ||lvlix,. < 2e. If

Na
6.4.11 tH T () (¢ — a2z = A< <p< —,
( ) st ) = )| Le+a 00 for some i< p< 5o
and if € is sufficiently small (depending on 1), then
(6.4.12) sup t*llu(t) — v(t)|lga+2 < 24.
t>0
In particular, t?||u(t) — v(t)||La+z — 0 ast — oo.

(i) Let ¢ € Wy satisfy |l@llw., < e < ep and let u be the corresponding solution
of (4.1.2) in X such that |ux,, < 2e. If

sup t*[|T(t)pllpa+2 = A < o0 for some u satisfying (6.4.11)
>0

and if € is sufficiently small (depending on ), then
supt*||lu(t)|lLe+z 24 and t'|u(t) — T(@)¢| Le+z = 0 ast — oo.
>0

REMARK 6.4.2. We note that the equation (4.1.2) makes sense for ¢ € Wr and
u € Xr. Indeed, T(t)y is well defined and the integral ‘

t
(6.4.13) Gu)(t) = i./o T(t - s)g(u(s))ds
is too. To see this, we observe that
(6.4.14) lg(u(t)ll, 232 < IMu@lgEe < IAEAED|jy)ght

Thus the mapping s — J(t — s)g(u(s)) belongs to L. ((0,t), L*+?(RV)) and
(6.4.15) 1T (¢ = 8)g(u(s))|Lase < IA|(E = 5) TFD s~AEAD |y 341

It follows from (6.4.5)—(6.4.6) that G(u) is well defined, and in fact t — G(u)(t) is
continuous (0,T) — L*T2(RY). Note also that ¢ — T(t)y is continuous [0, c0) —
S'(RY) and bounded [4,00) — L**2(RY) for every § > 0. It follows that T(t)¢p
is weakly continuous (0,00} — L%*2(R¥). Since G(u) is strongly continuous, we
see that if ¢ € Wr and if u € Xr satisfies (4.1.2), then u is weakly continuous
(0, T) — Le*2(RN).

PROOF OF THEOREM 6.4.1. We proceed in three steps.
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STEP 1. Proof of (i). This follows from a quite simple fixed-point argument.
Given ¢ € Wp, set
H(u)(t) = T(t)o+G(u)(t) for allue Xz and t € (0,7T),
where G(u) is defined by (6.4.13). It follows from (6.4.15) that

i
IH@) (O zet2 < 8 llollwy + MIHUII?JI/ (t = 5)” Tt s=AlatD) g5
0
Using (6.4.4), (6.4.5), and (6.4.6), we see that

t 1
/ (t — )" T g BletD) g — 4P / (1 = o)~ 7o y-BlatD) g,
0 0

=CtP.
It follows that H(u) € Xt and that there exists K indépendent of T such that
IH@)lxr < llolwr + Kllull§E! for all w € Xr.
Similarly, one shows that, by possibly choosing C larger,
() = H@)lxr < K (6l + 1ol%, ) lu - vllx, for all u,v € Xr.

We deduce that if g9 > 0 satisfies 2Kef < 1, then for any ¢ € Wy with |joflw, <
€ < gg and any 0 < T < 0o, H is a strict contraction on the ball of radius 2¢ of
Xr. Thus H has a unique fixed point, which solves (4.1.2).

STEP 2. Proof of (ii). Set
a(t) = sup t*lu(s) — v(s)|lgess for £ > 0.
0<s<t

We note that u > § so that a(t) is well defined. We deduce from equation (4.1.2)

that
tflu(t) — v(t)l| o+

t
< A+ Ct*(|ull%, + [|v||3‘<T)a(t)/ (t — )" TotD goBgmh g
0

= A4 Ol + 013, )a(0) [ (1 =) T o-085 4 o
for all t > 0, where the last identity follows Erom (6.4.4). Since
(6.4.16) af+p<1
by (6.4.4) and (6.4.11), it follows that there exists C (depending on u) such that
a(t) < A+ C(lull%, + V)%, )a(t) < A+ C(2e)%a(t) forallt > 0.

If € > 0 is sufficiently small so that C(2e)* < 1/2, we deduce that a{t) < 24 for all
t > 0 and (6.4.12) follows by letting ¢ T co.

STEP 3. Proof of (ili). The first part of the statement follows from (ii) ap-
plied with ¢ = 0. It remains to show that t*||u(t) — T(¢)p|lpe+z — 0 as t — .
We observe that

t
u(t) = T@)pllLe+> < I/\l/ (t — 5)7 75D |u(s) [, ds
0
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and that |[u(t)||pe+2 < Ct™¥ for every § < v < p. Assuming
(6.4.17) af+p<(a+lly<li,
which is possible by (6.4.6) and (6.4.16), we obtain

t
u(t) = T(O)pllese < C / (t — 5)” ToD o= (ot v g
0
— Ctl—%—(a+l)u )

Applying now (6.4.4), we deduce that
t*llu(t) — T(@)ellpate < cpraf-(aty __, ¢

t—o0

where the last property follows from (6.4.17). |

The relationship between the solutions in X constructed in Theorem 6.4.1 and
finite energy solutions is given by the following lemma.

LEMMA 6.4.3. Assume (6.4.1)—(6.4.2) and consider the spaces X1 and Wr de-
fined by (6.4.3)—(6.4.10). Let gg > 0 be given by Theorem 6.4.1. Let 0 < T < oo
and ¢ € Wr satisfy ||¢llwr < €0, and let u € X7 be the unique solution of equa-
tion (4.1.2) such that ||ul|x, < 2eo, given by Theorem 6.4.1. If p € HY(RY), then
u € C([0, T}, H*(RM)).

PROOF. Let u! € C([0,Tnax), H(RY)) be the maximal strong H! solution of
(4.1.1) given by Theorem 4.4.1. We first observe that, since H}(RN) «— Le+%(RV),

lulllx, < CTP||ullpee((0,r),21) T 0.

Thus there exists 0 < 7 < min{7, Tmax } such that [[ul|lx, < 2ep. Also, |lullx, <
lullx,; < 2e0. Using the uniqueness property in Theorem 6.4.1, we conclude that
u! = u on (0,7). We now observe that for 0 < ¢t < min{T, Tryax},

u(t) — ul(t) =i / T(t — s)g(u(s)) — g(u'(s))]ds,
0
so that (see above)
() — wl (@)l Lesz <
¢ Na
C/o (t = )7 T (Jlu(s)Fasa + ful () Fase) fu(s) — w(5) esa ds
We fix 0 < T/ < min{T, Tmax}. On (0,T"), |[u'(s)||pe+2 is bounded. Furthermore,

lu(s)||Fase < Cs™P=. Thus, since ||u(s) — u!(s)||e+2 = O for s < 7, we deduce
from the above inequality that there exists C, depending on T”, such that

¢

lu(t) — w ()| otz < C/ (t- s)"“gz% llu(s) — ul(s)||patads forall 0 <t <T'.
0

It then follows from (a generalized form of) Gronwall’s lemma that © = u! on

(0,T"). Since 0 < T' < min{T, Tmax} is arbitrary, we conclude that u = u' on
(0, min{7, Tinax }), and it remains to show that T' < Tp,,x. Assume by contradiction
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that Tmax < T. Since u € C([0, Trmax), H{(RM)), [lu(t)]|zo+> is bounded near 0;
and since u € X, ||u(t)||zo+2 is bounded away from 0. Thus

sup  Jlu(t)||pet+z < 00.
O<t<Tlnax

It easily follows, by applying Remark 1.3.1 (vii) and Holder’s inequality, that there
exists C such that

(6.4.18) Hg(u(t))“wlﬂ-_z < Cllu(®)fwre+z  for all 0 < t < Thpax-

a-+1

We now let 0 < 7 < Trax and we observe that
t
u(t +7) = T(e)ulr) +i / Tt — $)g(uls + 7))ds for 0 < t < T — T
0

We now let 7 = a + 2 and we let ¢ be such that (g,7) is an admissible pair.
Applying Strichartz’s estimates and (6.4.18), we deduce that (see, e.g., the proof of
Theorem 4.4.1)

(6.4.19)  lullzec((rey, ) + lellLoroywiry < Cllw(m)lmr + Cllull Lo (7,00, w1)
with C independent of 7 < § < Tipax. Since

g_:z —2
lell Lot (700, w1y < (0 = 7)7 Nl Lag(r0),wrr) < (Trmax — )% |lullpager0),wrmy

we see that if we fix 7 sufficiently close to Thax,

1
Cliullz (¢r0),wrry < 5llullLeqroy,wiry s
and it follows from (6.4.19) that
lullzoe((r,0), 1) + [ullLa((r.0), Wy < 2C u(T)]| 51 -

Letting 8 T Timax, we obtain u € L®°((7, Tmax), H 1(IRN )), which contradicts the
blowup alternative of Theorem 4.4.1. O

REMARK 6.4.4. Lemma 6.4.3 is a regularity result. Under the same assumptions,
one can show that if ¢ € H*(R") for some

Na N
7 <« indl —
2(Oz+2)_s<mm{ , 2},

then u € C([0,T}, H*(R")) and u coincides with the H* solution given by Theo-
rem 4.9.1. The proof is similar (see the proof of Theorem 4.9.1). The assumption
s > Na/2(a + 2) implies that H*(RY) — Le+tZ(RV). Thus |jullx, — 0asT | 0
whenever u is an H® solution. This is an essential step in the proof of Lemma 6.4.3.
Note that the assumption s > Na/2(a+2) also implies the condition o < 4/(N—2s)
of Theorem 4.9.1.

COROLLARY 6.4.5. Assume (6.4.1)—(6.4.2) and consider the spaces X7 and Wy
defined by (6.4.3)—(6.4.10). Then there exists g > 0 with the following property.
Let o € HY(RN) and let u € C([0, Tmax), H*(RN)) be the corresponding strong H'
solution of (4.1.1) given by Theorem 4.4.1. If |lo|lw.. < € < €o, then Tipax = o0,
u € Xoo, and |ul|x.. < 2e.
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Proor. The result follows from Theorem 6.4.1 and Lemma 6.4.3. O

We now comment on the above results.

REMARK 6.4.6. The essential condition for global existence in Theorem 6.4.1 is

lellw..

< gg. The main difficulty in exploiting this assumption is that the structure

of W is not known. We give below some sufficient conditions for ¢ to belong

to Wy

(i)

HYRV) A LEF (RY) & We. Indeed,
IT@)ellLare < CIT@@llm < Cllelas

and .
T @)l ot < [t|” T+ ol ez

so that
N

(1 + )T Tl ors < Ol as
We see in particular that if ¢ € HY(RN) N LEH (RY), then ||¢|w, — 0 as
T | 0 and sup,o t*|| T ()¢l pe+2 < oo for all p < Na/2(a + 2). ‘
Let p € C with Rep = 2/a. It follows from Theorem 2.6.1 that ¢(z) = |z|~?
satisfies t3||T(t)Y|lLa+2 = ¢ > 0. In particular, ¢y € Ws. Note that the
assumption (6.4.2) is essential.

Assume o < 4/N (in addition to (6.4.2)). Let p € C with Rep = 2/«
and set Y(z) = |z|7P. We see that ¥|(zj>1) € H*({|z| > 1}) and that
Yl{jz<1) € L%H({I:c[ < 1}). In particular, there exists ¢ € H*(R") such
that ¢ — ¢ € L (RY). For example, ¢ = ny with n € C®°(R") such that
n(z) = 0 in a neighborhood of 0 and 7(z) = 1 for |z| large. Moreover, given
a+t?2

any ¢ € HY(RV) such that p—¢ € LR (RM), it follows from Corollary 2.6.7
that ¢ € W and that [|T(t)(g — ¥)||pete < Ct™ 78D,

(iv) Let
) Na Na
(6420) min {,3, 4(a+2)} <pu< m,
let p € C satisfy
N
4. Rep=2 —_
(6.4.21) ep M+a+2’

and set ¢(z) = |z|7?. It follows from Theorem 2.6.1 that t*||T(¢)4| pe+2 =
¢ > 0. Moreover, it follows from (6.4.20) that 9|{j5>1} € H*({|z| > 1}) and

that ¥|(|z1<1) € L%H({Im! < 1}). In particular, there exists ¢ € HY(R")

such that ¢ — ¢ € L%(RN ) (see (iii) above). In addition, given any
a+2

¢ € HY(RV) such that ¢ — ¢ € La_i_l(RN ), it follows from Corollary 2.6.7

that ¢ € Wy and that [|T(t)e||pe+: < C’(t_ﬂgﬂf?i + t7#). Moreover,
t*| T (t) |l La+z — c as t — oo.
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REMARK 6.4.7. Let 9(z) = 8jz|™? with p € C such that Rep = 2/a and § € C.
It follows from Remark 6.4.6(ii) above that there exists a constant K such that
lvllw. < K|8|. In particular, if |§] < eo/K, it follows from Theorem 6.4.1 that
there exists a unique solution v € X, of (4.1.2) (with the initial data ¢ instead
of ¢) such that ||v||x,. < 2go. Such a solution is of particular interest since it is
self-similar. We recall that if u is any solution of (4.1.1) (or (4.1.2)) on (0, c0) x RV
and if v > 0, then u., defined by u,(t,z) = yPu(v%t,vz) is also a solution. (The
assumption Rep = 2/« is essential.) A solution u is called self-similar if it is
invariant under the transformation u — uy, ie., if v = u, for all v > 0. We
claim that v is self-similar. Indeed, it is easily verified that v, satisfies (4.1.2) with
the initial value ¥ (z) = y*¥(yz). Evidently, since 4 is homogeneous, ¥, = .
Moreover, it follows from a direct calculation that ||v,|x.. = ||v||x. . Therefore,
by the uniqueness property of Theorem 6.4.1, v, = v for all ¥ > 0. We observe
that v is weakly continuous (0,00) — L**2(R¥) by Remark 6.4.2, so that f =
u(1) € Lt2(RN) is well defined. Applying the identity v(t,z) = vPv(y?t, yz) with

7=t‘%,weseethat
x
v(t,x =t"5f( = ;
(t.2) f(\/i>

i.e., the self-similar solution v is expressed in terms of its profile f. Note that
self-similar solutions are not H' solutions in general; see [73, 75]. For a more
detailed study of self-similar solutions, see Cazenave and Weissler [73, 74, 75],
Furioli [119], Kavian and Weissler [209], Planchon [298], Ribaud and Youssfi [302],
and Weissler [363].

REMARK 6.4.8. Here are some more applications of Theorem 6.4.1 and Corol-
lary 6.4.5.

(i) Assume o < 4/N and fix p satisfying (6.4.11). Let p € C with Rep = 2/a
and let 6 € C. Set ¥(z) = &|z|™® and let ¢ € H'(RY) be such that

P —@ € L%(RN). If [6] and |l — 1,[1||Lg¢_§ are sufficiently small, then

lellwe, |¥llw,., < €, where e > 0 is as in part (ii) of Theorem 6.4.1 (see
Remark 6.4.6(ii) and (iii)). If we denote by u and v the corresponding
solutions of (4.1.2), then v is an H! solution by Lemma 6.4.3 and v is self-
similar by Remark 6.4.7. Moreover, it follows from Theorem 6.4.1(ii) and
Remark 6.4.6(iii) that t*||u(t) — v(t)||L«+2 is bounded uniformly in t > 0.
Since t?||v(t)||p=+2 = ¢ > 0, we deduce that t#||u(t)||e+2 — cast — co. In
particular, we know the exact rate of decay of ||u(t)||po+2 as t — oo. Note
also that u(t) is asymptotic to the self-similar solution v as t — oo (in the
sense that t5||u(t) — v(t)||Le+2 — 0 as t — co).

(ii) Let u satisfy (6.4.20) and let p € C satisfy (6.4.21). Set ¢(z) = §|z|~P and
let ¢ € HY(RV) be such that ¥ — ¢ € LS (RN). If 6] and |¢ — w”L%i’—f
are sufficiently small, then ||p|lw.. < €, where € > 0 is as in part (iii) of
Theorem 6.4.1 {see Remark 6.4.6(iv)). If we denote by u the corresponding
solution of (4.1.2), then u is an H?! solution by Lemma 6.4.3. Moreover, it
follows from Theorem 6.4.1(iii) and Remark 6.4.6(iv) that t*||u(t)||pe+2 —
¢ > 0ast — oo. In particular, we know the exact rate of decay of J|u(t)||po+2
as t — oo. Note also that by Theorem 6.4.1(iii) and Remark 6.4.6(iv),
t)|u(t) — T(¢)¢|lpe+2 — 0 as t — oo. This means that u(t) is asymptotic
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to T(t)4 as t — co. Note that I(¢)y is a self-similar solution of the linear
Schrodinger equation; see Remark 2.6.6(iii).

REMARK 6.4.9. Here are some comments on the decay rates of ||u(t)||La+2 that
are achieved by H! solutions of (4.1.1). (See also Remark 7.3 in [75].)

(i) Suppose a < 4/N. It follows from Remark 6.4.8(ii) above that if 8 < u <
Na/2(a+2), then there exist H' solutions of (4.1.1) for which ||u(t)]| pe+2 =
t~# as t — oo (in the sense that t*||u(t)||L«+2 — ¢ > 0). By Remark 6.4.8(i),
u = (s also achieved if o < 4/N, and it follows from the results of Chapter 7
below that u = Na/2(a+2) can also be achieved. Moreover, u = Na/2(a+
2) is the fastest possible decay in general (see Bégout [20] and Hayashi and
Ozawa [187]). On the other hand, it is not known whether some solutions
can have a slower decay than t=#.

(ii) Suppose & > 4/N. It follows from Remark 6.4.8(ii) above that if Na/4(a +
2) < u < Na/2(a + 2), there there exist H' solutions of (4.1.1) for which
lw(®)||gotz = t™* as t — oo. A decay like =74 s also possible and
is the fastest possible (see (i) above). Note that the lower bound u >
Na/4(a+2) is also optimal. Indeed, if u € X is a solution of (4.1.1), then
u € Lﬂg_f-?F((O,oo),L"‘“(RN)) (see Remark 3.12 in [75]). If A in (6.4.1) is
a negative real number, the same property holds for any H! solution with
initial value in H}(RY) N L%(RY, |z|? dz); see Chapter 7 below. In both

cases, it follows that liminf; TS lu()|pet+2 = 0.

6.5. Finite-Time Blowup

We show that, under suitable assumptions on the nonlinearity, some solutions
of the nonlinear Schrédinger equation blow up in finite time. We follow the method
of Glassey [148]. This is essentially a convexity method, but not purely energetic.
It is based on the calculation of the variance

|z fu(t, z)|? dz

RN

That calculation is technically complicated. Therefore, for the sake of simplicity,
we consider a specific type of nonlinearity. More precisely, we consider the case
where g is as in Example 3.2.11. Therefore, we assume

9(uw) =Vu+ f(u() + (W * |ul*)u,

where V, f, and W are as follows. The potential V is real-valued, V € LP(R") +
L>®(RY) for some p > 1, p > N/2. The function f : RN x R — R is measurable
in z € RY and continuous in © € R and satisfies (3.2.7), (3.2.8), and (3.2.17).
Extend f to RY x C by (3.2.10). The potential W is even and real valued; W ¢
LI(RY) 4+ L°(RY) for some g > 1, ¢ > N/4. In particular, g is the gradient of the
potential G defined by

6w = [ {FV @@ + Feu@) + J07  P)lu(a)l | da.

RN
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and we set

E(u) = %/|Vu(a:)|2 dz — G(u) for all u € HY(RY).
Q

We recall (see Corollary 4.3.3 and Remark 5.3.3) that the initial-value problem
for (4.1.1) is locally well posed in H'(R"), that there is conservation of charge and
energy, and that there is the H?(R™) regularity if the initial value is in H2(R").

Our blowup result is based on the following identities, which will also be essen-
tial in the next chapter to establish the pseudoconformal conservation law.

PROPOSITION 6.5.1. Letg
9(u) = Vu+ f(,u() + (W [ul*)u

be as in Example 3.2.11. Assume, in addition, that

(6.5.1) z-VV(z) e L°(RYN) + L®(RN) for someo > 1,0 > g,

(6.5.2) f(z,u) is independent of x,
(6.5.3) z-VW(z) € L5(RY) + L®RY) for some § > 1,6 > %

Consider ¢ € H*(RN) such that | - |p(-) € L2(RY), and let u be the corresponding
mazimal solution of (4.1.1). It follows that the function t — | - Ju(t,-) belongs to
C’((—Tmin,Tmax),Lz(RN )). Moreover, the function

(65.4) te £ = [ laPlutt o) do
RN
18 in Cz(—Tmina Tmax)r
(6.5.5) f(t) = 4Im/ﬂx-Vudx,
]RN
and

£1(t) = 16E(0) + / (8(V + 2)F(u) — 4N Re(f(u)m))dz
RN

(6.5.6) + 8/ <V + %x . VV) [u|? dz

RN

+4/ ((W+%x-VW)*|u|2)]u|2d:c

RN
for all t € (—Tin, Tmax)-

Before proceeding to the proof, we establish the following lemma.

LEMMA 6.5.2. Letg € C(HY(RY), H~Y(RV)). Assume that g(w) € LL _(RN) and

loc

that Im g(w)@ = 0 a.e. in RY for allw € HY(RN). Let I 3 0 be an interval of R, let

¢ € HY(RV), and let u be a weak H'-solution of (4.1.1) on I. If|-|¢(-) € L*(RN),
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then the function t — |- |u(t,-) belongs to C(I, L*(RN)). Furthermore, the function
f defined by (6.5.4) belongs to WH>(I) and the identity (6.5.5) holds for a.a. t € I.
Ifu is a strong H'-solution of (4.1.1) on I, then f € C*(I) and the identity (6.5.5)
holds for all t € I.

Proor. Without loss of generality, we may assume that I = [0,T] with 0 <
T < oco. Formally, the result follows by multiplying the equation by i|z|*%, taking
the real part, and integrating on RV . However, the equation makes sense only in
H~Y(RY) and i|z|?z ¢ H'(R"), so we need a regularization argument. Let & > 0,

and take the H—1—H duality product of equation (4.1.1) with se=2¢11"|z|2u(t, z) €
HY(RV). Setting
1e(t) = lle™ = afu(t)liEs
we deduce easily that
F(t) = 2Im / {Vu - V(e 2= |z)2m) — e=2¢1=P |z 2g(u)a}dz .
RN

Since Im(Vu - V) = Im(g(u)%) = 0 a.e., we obtain that
£(t) = 2Im / TV - V(e |g?)de
RN
= 4Im /{e"emz(l - 26|a:|2)}e_5"”|2ﬂz -Vudz,

RN

and so

¢ 2 2
(6.5.7)  f.(t) = f-(0) +4 /0 Im / {e=l21° (1 — 2¢|z|?)}e~ 1 mz - Vudz dt.
RN

Note that e~¢l=I”(1 — 2¢|z[?) is bounded in z and & and that ||e_5|z|2|a:[cpHLz <
lzellz2- Therefore, we deduce easily from (6.5.7) that

ﬁ@SMMM§+CAHVMvaﬁ@M&

It follows easily that

C t
(6.5.8) V@) < llzlellrz + '2‘/ IVu(s)||f2ds foralltel.
0

Letting € | 0 and using Fatou’s lemma, we see that zu(t) € L2(RY) forall t € I
and that |||z|u(t)|||L2 is bounded in t € I. Therefore, the function t — |- |u(t,-)
is weakly continuous I — LZ(R™) (see Section 1.1). Moreover, we may let ¢ | 0
in (6.5.7) and we obtain

t
(6.5.9) lzu(®)]22 =[] + 4 / Im / Tz Vudedt.
0
RN

Note that the right-hand side is a continuous function of ¢ and so the function
t — |- |u(t,) is continuous I — L2%(RN). It follows that the right-hand side
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of (6.5.9) is a W™ function and the identity (6.5.5) holds a.e. If u is a strong H'-
solution, then the right-hand side of (6.5.9) is a C* function, so the identity (6.5.5)
holds for all £ € I. O

COROLLARY 6.5.3. Let g be as in Lemma 6.5.2. Assume that g : H'(RN) —
H-YRY) is bounded on bounded sets and let I 5 0 be a closed, bounded interval of
R. Let ¢ € HY(RN) be such that |- |p(-) € L2(RY) and let u be a weak H!-solution
of (4.1.1) on I. Let (¢m)men C HY(RY) and for all m > 0, let u™ be a weak
H'-solution of (4.1.1) corresponding to the initial value p,,. Assume further that
| - Jom(-) € L2RY) for all m > 0 and that z¢,, — o in L2RN) as m — oc.
If u™ — u in LI, HY(RY)) as m — oo, then zu™ — zu in C(I,L*(R"N)) as
m — oo.

PROOF. Assume by contradiction that there exist (t;)m>0 C I and € > 0 such
that ||zu™(tm) — zu(tm)|lL2 > €. Without loss of generality, we may assume that
there exists 7 € I such that t,, — 7 as m — co. We deduce from (6.5.9) that for
everyt €I,

t
(6.5.10) lzu™ ()2 = |oemlZe +4 / Im / Tz Vumdzdt.
o

It follows from (6.5.10) that [} - |[u™(¢t)||L2 is bounded uniformly in ¢ € I and
m > 0. Since (u™)m>0 is bounded in L®(I, HY(RY)), (9(u™))m>o is bounded in
Le°(I,H-Y(R")) so that (u*)m>o is bounded in L*°(I, H-1(RY)), by (4.1.1).
Therefore, (u™)m>0 is bounded in C%% (I, L3(RY)). We deduce that u™(tn,) —
u(7) in L(RY) as m — oo and, since |-|u™(¢,) is bounded in LZ(RN), |- |u™(tm) —
u(r) in L2(RY) as m — oco. Since ™ — u in L>®°(I, HY(RY)), it then follows
from (6.5.10) and (6.5.9) that [|zu™(tm)|r2 — |lzu(T)||z2 as m — oo, and so
Tu™(ty) — zu(r) in L*(RV), which yields a contradiction. This completes the
proof. O

PROOF OF PROPOSITION 6.5.1. The first part of the statement follows from
Lemma 6.5.2. It remains to show that the function f defined by (6.5.4) belongs
to C%(—=Tinin, Tmax) and that the identity (6.5.6) holds. Formally, the result would
follow by calculating the time derivative of the right-hand side of (6.5.5). This
corresponds to multiplying equation (4.1.1) by ¢(2r8,u + N%), which is not allowed
since the equation only make sense in H~1(R"). The proof we give below is based
on two regularizations. Therefore, we proceed in two steps.

STEP 1. The case ¢ € H?*RY). Note first that by H? regularity, u €
C((~Trmin, Timax)s H2RM)) N C*((=Tmins Tmax ), L2(RY)). Given € > 0, consider
fe(z) = e=<l=I” and let
(6.5.11) he(t) =Im / f.ux - Vudzr for every t € (—Tmin, Tmax)-

RN
We claim that A, is C! and that

(6.5.12) hl(t) = —Im / u{20.70,T + (NO¢ + 10,8, )u}dz .
RN
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Indeed, (6.5.12) is equivalent to

t
(6513)  he(t) = he(0) —Im / / {2678, + (N8, + 18,6, )a}dz ds.
0
RN

The identity (6.5.13) holds in fact for every function 4 which is continuous in
HY(RN) and C* in L?(R"). Indeed, by density we need only establish (6.5.13) for
u which is C! in H1(R"). In this case, we deduce from (6.5.11) that

R.(t) = —Im/05utm-Vﬂdx—Im/9€ux-Vﬂt dr,
RN RN

and (6.5.13) follows by integration by parts, since
f.uzx - Vg = V - (x8cutt;) — N6 vty — .02 - Vu — 78,0, ut;
This proves the claim. Using now equation (4.1.1), we see that
(6.5.14) hL(t) = —Re /(Au + g(w)){20:70,T + (N, + rd.0.)u}ldz .
RN
Next, an elementary calculation based on the identity
Re(20.Vu - V(r&,m)) = —((N — 2)8e +70,0:)|Vu|® + V - (26| Vul?)
shows that for every u € H2(RY),
Re / Au{20.70,u + (Nb. + rd.0.)u}tdz
RN
_ 2
(6.5.15) =-2 / 0c|Vul” dz
RN
- / (2r8,0.|8,ul® + (N + 1)8,6. + rd26,) Re(@d,u)}dz .
RN
We now calculate the various terms corresponding to g(u). Since

Re[Vu{20.70,7 + (NO. + r0:0.)a}] = V - (xVOc|u|?) = 0:(z - VV)|u|?,

we obtain
(6.5.16) Re / Vu{20.r0,T + (N6, + 70,0 )u}dz = — / B (z - VV)iu[2 dz .
RN RN
Next,
Re[f(u)(20.r0,1)] = V - (220 F(u)) ~ 2(NO. + 10,0 ) F(u),
so that
Re / F(){20.r0, + (N6. +r0,6.)T}dz =
(6.5.17) RY

/(NG'E + 70,0 )(f(w)T — 2F (u))dz .
RN
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Finally, using the identity
Re[u{20:r8,T + (Nb: + r0,.0:)u}] = V - (zf.|ul?),
we obtain

Re / (W x |u|®)u{20.780,5 + (NO. + r6,6:)T}dx = — / O |ul’z - (VW * [u|?)dz
RN RN

On the other hand, W is even, so that VW is odd. Therefore,

/95|u|2x (VW * |u)?)dz
RN

_ 1 /0 [ul?[(z - VW) % |u|?]|dzx

/ / (66(z) — 6 (1) (@) P u(w) Pz - VW ( — y)dy de

RN RN
and so

Re / (W * [u]?)u{20.70, + (N6, + r3,6.)T)}dz
]RN
1
Goas) =3 [ beuPlle W)« juPlds
RN

-3 | [ @) - 0@ Pruw)ls - oW (e - )y .

RN RN

Applying (6.5.15), (6.5.16), (6.5.17), and (6.5.18), we deduce from (6.5.14) that

RL(t) =2/05|Vu|2dx+ /Gs(x-VV)|u|2dx

RN RN
+ | N6.(2F(u) — f(u)%)dz + B |ul?[(z - VW) x |ul?|dzx
R[ JR[
(6.5.19) + / {ro:6(2/8,ul? + 2F (u) — f(u)7)

+ ((N + 1)8:6, + rd26.) Re(ud,u) }dz

+3 [ [0 - 0@ lu)s VW - )y do.

]RN RN

Note that 8.,70.0., and r:’afﬂs are bounded with respect to both z and e. Fur-
thermore, 6. 1 1, 8,8 — 0, 78,6, — 0, and 7820, — 0 as € | 0. On the other
hand, for every ¢t € (—Tmin, Tmax), we have u(t) € H*(R") and |z|u(t) € L?(RY)
by Lemma 6.5.2, and so we may use the dominated convergence theorem to pass
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to the limit in the right-hand side of (6.5.19) as € | 0, except in the last one. We
obtain

]iﬁ} hL(t) =2 / IVu|?dz + N /(2F(u) — Re(f(u)u))dzx
(6.5.20) RN =
+ / uPe- Vst / uf2((z - VW) % juf2)dz + L,
RN RN

where L is the limit as € | 0 of the last term in (6.5.19). We claim that
(6.5.21) L=0.
Since also

lifl(’)l he(t) = Im/ﬂx - Vudz = h(t),

4

RN

we see that h is of class C! and that

K(t)=2 [ |Vul?dz+ N [ (2F(u) — Re(f(u)u))dz
]
+ / [ul?z-VVdz + -;— / lul?((z - VW) « |u|?)dz
RN RN

Equation (6.5.6) now follows from the above identity, (6.5.5), and conservation of
energy. We finally prove the claim (6.5.21). Note that

’ [ [ 60— by Plutw)ie - W@~ )dy de| <

(6.5.22) R'RY

/ / o (@) = Oe(w)] ‘”” 9(y)’lum)lzlu(y)l?l(zw)-vW(w-yndydx.

RN RN

Also, it follows from assumption (6.5.3) and from Young’s and Sobolev’s inequalities
that

lu(z)*lu(y)Pl(z — y) - YW (z — y)ldy dz < Cllulz. + CHUII‘lLﬁg_

RN RN
< Cllulld -
Since
sup[z]M——as—(—‘y)—] < oo and lxlw —0 ae inRY xRV,
z#Y |z -yl |z — i €l0

we may use the dominated convergence theorem to pass to the limit in (6.5.22) as
€ | 0, and we obtain (6.5.21).

STEP 2. Conclusion. Let (¢m)men C H2(RY) be such that ¢, — ¢ in
HY(RM) and zpm — z¢ in L2(RY) as m — oo, and let u™ be the corresponding
maximal solutions of (4.1.1). Let ®(t) denote the right-hand side of (6.5.6) and let
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®,,(t) denote the right-hand side of (6.5.6) corresponding to the solution u™. It
follows from Step 1 that

1 s
(6.5.23) ||zu™(t)||22 = ||zom |32 +4tIm/<p_mx~chmdm+/ / ®,,(s)dsdt.
o Jo
RN

By continuous dependence and Corollary 6.5.3, we may let m — oo in (6.5.23) and
we obtain

t s
llzu(t)|2: = ||ze]/22 +4tIm/¢m-Vgodz+/ / ®(s)dsdt,
‘ 0o Jo
]RN

from which (6.5.6) follows. O

THEOREM 6.5.4. Let
g(w) = Vu+ £(,u(-) + (W * [ul*)u
be as in Example 3.2.11. Assume further that

(6.5.24) 2(N +2)F(s) — Nsf(s) <0 forall s >0,
1

(6.5.25) V+ 51: -VV <0 a.e.,
1

(6.5.26) W + Ex VW <0 a.e

Let ¢ € HY(RY) be such that | - |o(-) € L2(RN). If E(¢) < 0, then Tpin < 00 and
Tmax < 00. In other words, the solution u of (4.1.1) blows up in finite time for
botht >0 andt < 0.

ProoF. It follows from (6.5.24), (6.5.25), (6.5.26), and Proposition 6.5.1 that for
every te ("Tmim Tmax)’

(6.5.27) zu(t)|?: < 6(t),

where
0(t) = |lzpl|22 + 4t Im/@m -Vdz + 8t2E(yp).
]RN
Observe that #(t) is a second-degree polynomial and that the coefficient of t? is
negative; therefore 8(t) < 0 for |t| large enough. Since ||zu(t)||2. > 0, we deduce
from (6.5.27) that both Tin and Tihax are finite. O

REMARK 6.5.5. Note that the proof of Theorem 6.5.4 does not show that
lzu(t)|lzze — 0 as ¢ T Tmax or t | —Tmax. (See Ball [16, 15] for an interesting
discussion of related phenomena.) This is sometimes the case (see Remark 6.7.3),
but not always. Consider the model case g(u) = Alu|*u with A > 0 and o = 4/N.
First, observe that by the invariance of the equation under space translation, one
constructs easily a solution such that |[zu(t)||3; # 0 as ¢t T Tiax. Indeed, it follows
from the conservation of momentum (3.1.5) that, given o € RY,

1ol = [Pl +aol? [ 1o +2 [ 2-aoll + 4t [ 2o,
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so that ||(z — zo)ul/z2 will not converge to 0 if |zo| is large enough. Moreover, in
general,
inf {||(z — zo)u(t)llz2 : t € [0, Tmax), To € RN} >0.

To see this, we follow an argument of Merle [248]. Consider a real-valued, spherically
symmetric function ¢ € HY(RY) such that zp(z) ¢ L2(RY) and E(p) < 0. Let
(¢n)n>0 be a sequence of real-valued, spherically symmetric functions such that
zon(z) € L2(RN) for all n > 0 and ¢, — ¢ in HY(RM) as n — oo, and let uy,
be the corresponding solutions of (4.1.1). In particular, E(py,) ol E(p) and

lenllzze — ll@llzz. Therefore, it follows from the proof of Theorem 6.5.10 below
n-—00

(see in particular formula (6.5.42)) that there exists a function ¥ € W4 (RV),
¥ > 0, such that

d2

pres / Tlun|? <2E(p) <0 for 0 <t < Thax(@n) -

On the other hand, since ¢, is real valued, one easily verifies that
d
S [ vt

[l <2 [ wig? +225(p)

for 0 < t < Tax(in) and for n large enough. This implies that there exists 70 < oo
such that

=0,
t=0

so that

(6.5.28) Trax(¢n) <T® for n large enough.
On the other hand, for every zo € RV, we have (see the proof of Theorem 6.5.4)
Iz = zo)un(®)lZ2 = l(z = zo)#nllFz + 8E(¢n)t® for 0 <t < Trnax(n) -
In particular, for n large enough,
Iz = zo)un(t)lIZ2 2 ll(z = z0)@nll?2 + 16E(p)t? for 0 < t < Tinax(in) -
Since inf,, egn [|(Z — ZTo)enl|32 2 %0 it now follows from (6.5.28) that
inf {||(z — 20)un(t)l|L2 : 0 < t < Tinax(¢n), 20 € RV} — o0,
which proves the claim.
REMARK 6.5.6. The proof of Theorem 6.5.4 is based on the fact that the non-
negative quantity ||zu(t)|?. is dominated by the polynomial §(t) and that the

assumption E(p) < 0 implies that 8(t) takes negative values. A necessary and
sufficient condition so that 6(t) takes negative values is that

2
(65.29) (1 [ 72 Vods) > 2B(leells.
RN
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Therefore, we have
if E(p) =0 and Im/@x-Vgodx<0 then Ty < 00,
if E(p) =0 and Im/@x-chda:>0 then Tiin < 00,

if E(p) > 0 and Im/E:c -Vodr < —/2E(p)||zoflz: then Thax < oo,
RN

if E(¢) > 0 and Im/@x -Vedr > V2E(p)l|lzplirz then T, < oo.
RN

REMARK 6.5.7. Note that

2N +2)F(s) — Nsf(s) = —Ns# £ (s~ C+IF(s)),

and so assumption (6.5.24) is equivalent to the property that s+ R (s) is a
nondecreasing function of s. Similarly, V + 3z - VV =V + 378,V = £8,(r?V).
Therefore, assumption (6.5.25) (respectively, (6.5.26)) is equivalent to the property
that |z|?V (x) (respectively, |z|2W (z)) is a nonincreasing function of |z|.

REMARK 6.5.8. Note that the assumption E(yp) < 0 is a sufficient condition for
finite-time blowup, but it is not necessary. To see this, consider the model case
g(u) = Au|*u with A > 0 and 4/N < a < 4/(N —2). We claim that for any
Ey > 0, there exists ¢ such that E(p) = Ey and Thax(w) < co. Indeed, fix
a real-valued function § € C®(RV) and set ¥(x) = e~d=I’g(z). It follows that
¥ € CX(RY) and that

(6.5.30) Im/'zZz VY =— / |z|26(x)? < 0.
RN RN
Set now
— l 2 . A a+2
A= [iver, B=2 [,
RN RN
C=/1x12|w]2, D=-Im/2p‘a:-v¢.
RN RN

Given o, 4 > 0, to be chosen later, set p(z) = oyp(ux). It follows from (6.5.30) that

Im/ﬁx-Vgo<O,
RN

so that, in view of (6.5.29), we need only show that we can choose o and u so that

(6.5.31) E(p) = Eq,

(6.5.32) <Im/¢z . Vgo)z > 2E(p)||zp)|2 -

RN



188 6. GLOBAL EXISTENCE AND FINITE-TIME BLOWUP

Conditions (6.5.31)-(6.5.32) reduce to

2 a
(6.5.33) %“2 (A - ‘;—23> = Ey,
D? o
(6.5.34) 'E >4 - EB .

Fix now
D2
0<e<ming A, —
€ mln{ O } ,
and let u be given by
s B
B =3
In particular, (6.5.34) is satisfied and (6.5.33) reduces to

o%.

B T2 4 (N-D)a
8(A—e) 7 = Eo,

which is achieved for ¢ suitably chosen.

REMARK 6.5.9. Theorem 6.5.4 shows the existence of solutions for which both
Trmax < 00 and Tpin < c0. As a matter of fact, there exist solutions for which
Tmax = 00 and Tmin < 00 and solutions for which Tinax < oc and Timin = 0o. Indeed,
let g(u) = AJu|®u with A > 0 and @ > 4/N. Let ¢ € H*(RN) with |-|¢(-) € L*RY)
be such that E(y) < 0. It follows that the maximal solution u of (4.1.1) blows up
in finite time for both ¢t > 0 and ¢ < 0 (see Theorem 6.5.4). Theorem 6.3.4 implies
that if b is large enough, then the maximal solution % of (4.1.1) with initial value
b given by (6.3.12) is positively global and decays as t — oo. Of course, E(pp) > 0
for such b’s, and one may wonder if 4, still blows up at a finite negative time. The
answer is yes, as the following argument shows. Changing ¢ to 7, (which changes
Up(t) to up(—t)), it suffices to show that if E(yp) < 0, then for all b > 0 the solution
v of (4.1.1) with initial value

. T 2
¥(z) = p(e)e 5
blows up at a positive finite time. Let Tp,.x(1) be the maximal existence time of
v, and let f(t) = ||| - [v(t,)[|2.. It follows from formulae (6.5.5) and (6.5.6) that

F(t) = f(0) + t£'(0) + 8E()E — Z‘i 24 / / / 10|°*2 dz do ds

for all 0 <t < Tax(¥), and so
f(t) € f(0)+tf'(0) +8E(p)t* for all 0 < t < Tinax(¥).

Setting P(t) = f(0)+tf(0)+8E(u(0))t? for all t > 0, a straightforward calculation
shows that

2
P(o) = ool +4(F(0) - Gl ) +82 (Blo) + Flaelis - 3F(0))
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with
F(p) = Im/a@Vgodx.

RN
In particular,

P(3) - pE@ <0,

and we deduce easily from (6.3.13) that Tpnax(¥) < 1/b (see the proof of Theo-
rem 6.5.4). Hence the result follows.

The condition for finite-time blowup in Theorem 6.5.4 is E(p) < 0. However,
the argument is based on the study of ||zu(t, z)||%., and this quantity is defined only
if zpo(x) € L2(RV), but not for a general ¢ € H*(RV). The question as to whether
negative energy implies finite-time blowup for general H! solutions is open (see
Gongalves Ribeiro [152] and Merle and Raphael [249] for partial results). However,
Ogawa and Tsutsumi [275] have shown the following result in this direction.

THEOREM 6.5.10. Let g(u) = A|ju|®u with A > 0. Assume N > 2 and

4

—<

NN 2
If ¢ € HY(RYN) is such that E(p) < 0 and if ¢ is spherically symmetric, then
Tmin < 00 and Tax < 00; i.e., the solution u of (4.1.1) blows up in finite time for
botht >0 andt < 0.

(2<a<4ifN=2).

The proof is in some way an adaptation of the proof of Theorem 6.5.4. In-
stead of calculating ||zu(t, )||3,, we calculate ||M(z)u(t,z)||%., where M : RNV —
R is a function such that M(z) = |z| for |z] < R and M is constant for |z|
large. Next, we use the decay properties of the spherically symmetric functions of
HY(RM) to estimate certain integrals for |z| large that appear in the calculation of
| M (x)u(t, z)||2,. Note that, as opposed to the case zp € L2(R"), the appropriate
function M (z) depends on the initial value ¢.

The proof makes use of the following lemma.

LEMMA 6.5.11. Let N >1 and let k € C1([0,00)) be a nonnegative function such
that r~(N-Dk(r) € L®(0,00) and r~N=D(k'(r))~ € L®(0,00). There exists a
constant C such that

k% g gy <
Clull s (™ N =Dk | s gy + = VD) el vy
for all spherically symmetric functions u € H'(RV).
PROOF. By density, we may assume that u € D(RV). For s > 0,

K =~ [ 2 (kofulo)P)do

=— /:o K (o)|lu(o)]*do — 2 /600 k(s)Re (u(o)u,(c))do

S/m(k’(a))”IU(U)Ide’Jr?/ k(o) lu(o)llur(o)ldo .
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Therefore,
k(s)lu(s)? < Cllr= NV ®) e [ullZ2 @y + Cllullzz@ lIr™ N =Dk || 2@y »

and the result follows. 0

PRroOF oF THEOREM 6.5.10. By scaling, we may assume A = 1. Let u be as in
the statement of the theorem. Consider a function ¥ € W4>(R"), and set

1
V()= 3 /\I!(x)[u(t,z)|2dz for all t € (—Tin, Tmax)-
RN

We claim that

d? o
P vwy =2 (@ e at2
&) / (H(®)Vu, Vu)dz - —5 / ATu|*+? dg
RN
1
(6.5.35) ~3 /AQ\IJ[usz

RN

for all ¢ € (—Thin, Tmax), where the Hessian matrix H(¥) is given by H(¥) =
(0;0k%)1<jk<n- Assuming ¢ € HA(RY), it follows that u is an H? solution
(see Remark 5.3.3). In this case, (6.5.35) follows from elementary calculations
(see Kavian [208]). The general case follows by approximating ¢ in H*(R") by
a sequence (¢n)n>0 C H2(RY) and using the continuous dependence. Next, we
rewrite (6.5.35):

2
;?V(t)=2NaE(u(t))-2 / { %\ Guf? — (H(T)Va, Vu)}
]RN
(6.5.36) +———- / (2N — A)|u|**? dz — / A?W|ul?dz.

RN
Let now p € D(R) be such that p(z) = p(4 — ), p > 0, [ p =1, supp(p) C (1,3),
and p’ > 0 on (—o0,2). We define the function 6 by

6(r) =r— / (r—o)p(o)de for r > 0.
0
We consider ¢ € (0,1), to be specified later, and we set
Y(z) =0(r)= (erz)

and
2

yz) =v(r) =1 —0'(er?) ~ 2er20" (er?) = /er p(s)ds + 2er?p(er?)
0

for z € RN and r = |z|. Elementary calculations show that

{ (H(®)Vu, Vu) = 2(1 = y(r))lu-|?,

(6.5.37) AT = 2N(1 _ ’7(7')) +4(1 . N)E?"ze”(é"l‘z),
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and that
A% = e(AN(N + 2)8"(er?) + 16(N + 2)er?0" (er?) + 16(er?)%0"" (er?)) .
In particular, there exists a constant a such that
(6.5.38) A0 L < 2ae.
It now follows from (6.5.36), (6.5.37), and (6.5.38) that

d? 2 2N«
(6539) V() <2NaB(p) ~4 [20)furl + 225 [20)ul"+? + aelullz,
where we have used the above relations and the properties % >land 6’ <0. We
claim that there exist b and ¢ such that

o

2Na a Wele - otd R Nay g
(6.5.40) a+2/7('r)[u| 2 < pema llull 3 (/’Ylur|2) +ce2 ||u||L§2

Indeed, we first observe that (r) < 1+ 2sup,sq sp(s), so that

1
/’Y(T)Iu|a+2 < Cllytullfe flulz:

otd N 1 o (N _1 - 4
<Cllullgf I N Py 3u f + Cllull g2 e~ N Dy 2 () Tl e -

The first inequality follows from the property a < 4 and the second from Lem-

ma 6.5.11 (one easily verifies that v% € CY([0,00))). Observe that v(r) = 0 for
r <e %, sothat [r~@®Dydu, |2 <" |y2u,||L2. Next, note that v > 1/2 for
er? > 2. Furthermore,

7' (r) = 6erp(er?) + 4e®r3p’ (er?) ,
so that +'(r) > 0 for er? < 2 and
7 (r) 2 ~4r%|p/(er®)] 2 ~de? |53 (8)l| = 0.00) -
Thus [[r~™-Dy=3(y)"|l1= < Ce¥ and (6.5.40) follows. Using now (6.5.39),

(6.5.40), and conservation of charge, we see that

2
%V(t) < 2NaE(p) — 4/7(T)Iur|2

(N—1a otd g No
+boeT 7 lell 2 (/viurl"’) +ee 7 ||pllgd? + aellelFe -

Finally, since a < 4, we may apply the inequality 9 < z + 1 to obtain

(N-—

65.41) V() < 2NaB(p) - (4= b T2 ol ) [9(r)furl

(N-1a otd Na
+oe T ol y e lpllgd? + aelle Za -

We note that the constants a, b, and ¢ do not depend on ¢ and €. Since E(p) <0
and o < 4, it follows immediately from (6.5.41) that one can choose £ > 0 depending
only on ¢ through ||¢||z2 and E(p) such that

d2

(6.5.42) =

V(t) < NaE(p) for all t € (~Timin, Timax)-
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Since V(t) > 0, (6.5.42) implies that Tiyin < 00 and Tax < 0. O

REMARK 6.5.12.  There are two limitations in the above proof. The first one is
a < 4. If a> 4, powers of ||’y%urH 12 larger than 2 appear with positive coeflicients
in (6.5.41). This is due to the homogeneity in Lemma 6.5.11. The other limitation
is N > 2, since if N =1 the power of ¢ in the second and third terms of the right-
hand side of (6.5.41) vanishes. This is due to the fact that the radially symmetric
functions in dimension 1 do not have any decay property. However, in the critical
case N = 1, o = 4, Ogawa and Tsutsumi [276] have proved that all negative energy
H! solutions blow up in finite time without any symmetry assumption. Their
method is a more sophisticated version of the above argument. (See also Martel
[240] for certain extensions.)

We now give a lower estimate for blowing up solutions (see [70]).

THEOREM 6.5.13.  Suppose g{u) = Aul*u with A > 0 and

4 4 4
N*a<N—2 (N_a<oosz 1).

If o € HY(RYN) is such that Tinax < 00, then there exists § > 0 such that

é
T t)l“ﬂf‘g for 0 <t < Tipax.
max — L)<

A similar estimate holds near —Tinin if Tiin < 00.

(6.5.43) IVu(t)|Le >

PRrROOF. Generally speaking, every time one proves local existence by a fixed point
argument, the proof also gives a lower estimate of the blowup. Here, we do not go
through the entire local existence argument, but instead we give a direct proof. Set
r = a+2 and let ¢ be such that (g, 7) is an admissible pair. Let ¢ be as above, and
let u be the corresponding solution of (4.1.1). It follows from Remark 1.3.1(v) that

(6.5.44) IV(ul*u)l| - < Cllullz-{Vullz-.
By conservation of energy,
: T
Mlullz- = =rE(e) + 511 Vullz. .

Therefore ,

Mlulf- < C(1+ || Vul22)" <COQ+ || Vulz2)™ .
From (6.5.44) and the above inequality, we deduce that for any 0 < t < 7 < Thax,
20
IV (ul* Wl Lo (2,),07) £ CA+ VUl Lo (t,7),22)) ™ VUl Lot 2,7y,
—q' 2a
< O(r = )% (1 + [Vl pe (6m),22)) ¥ 1Vl Loty 17)

Set now
fe(7) = 1+ [Vl Lo (2,7, 22) + VU] Lot ),L7) >
so that, by the above inequality,

a-q’ 2¢
(6.5.45) 19l 1,0y < Clr =) ()%
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On the other hand, it follows from Strichartz’s estimates that
IVull oo 2,y L2) + IVl Ls(t,m),r) £ CIVU@)z2 + CIV(W* W)l Lo (1,09,
for 0 < t < 7 < Tinax- By (6.5.45), this implies that

20

(6.5.46) fi(1) < C(1+]|Vu(t)||Lz)-|—C(’r—t)gﬁift(T)H‘T for 0 <t <7 < Tmax-

Consider now t € (0, Tmax). Note that if Tihax < o0, it follows from the blowup
alternative that f;(7) — oo as 7 T Thax- Note also that f; is continuous and
nondecreasing on (¢, Tmax) and that

filr) 2 1+ IVu®)] 22 -

Therefore, there exists 7o € (t, Tmax) such that fi(re) = (C + D)1 + [[Vu(®)]iz2),
where C' is the constant in (6.5.46). Choosing 7 = 79 in (6.5.46) yields

1+ |Val)lzz < C(1+C) M (r0 )7 (14 | Vu()]1p2) ¥

< (14 C) % (Tpax — 1) 7 (1 + [|Vul(t)||2) 5,

and so

1
- r(q—q")
(1 + C)1+& (Thax — t) 2ead’

Hence the result follows, since ¢ € [0, Tinax) is arbitrary and —r—é—%&q—,) = —é— — N_4~2_ O

1+ [Vu@®) L 2

Before proceeding further, we establish an immediate consequence of the above
result concerning the blowing up of certain L? norms of the solution.

COROLLARY 6.5.14. Suppose g(u) = Au|*u with A > 0 and
4 4 4
N‘a<N—2 (N_a<oosz 1>.

If o € HY(RY) is such that Tmax < 00, then ||u(t)||z» P oo for allp > &2

max

Moreover,

N
(6.5.47)  Ju@®)|e > For 0 < t < Tmax if -5‘1 <p<a+?

1_ N
(Tmax - t)Q 2

and

(6.5.48)  |u(t)||rr = for0 <t < Thax if p > a + 2.

o= GD

A sitmilar estimate holds near —Tii if Tmin < 00.

ma

REMARK 6.5.15. Note that if N > 3 andp > 285, orif N = 2 and p =

00, then it may happen that [|u(t)||z» = oo for some (or all) t € (—Tin, Tmax)-
Clearly, this does not contradict the above estimates. Note, however, that u €
LY ((=Twmin, Tmax), WHT(RY)) for every admissible pair (g, ), so that by Sobolev’s

embedding theorem, ||u(t)||z» < oo for a.a. t € (—Timin, Tmax) provided N < 3 or
N>4andp< 13—1_\’4.
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PrOOF OF COROLLARY 6.5.14.  Suppose ﬁrst ¢ < p < a+ 2 By Gagliardo-
Nirenberg’s inequality,

2— . 4p — 2N«
lull§t?. < CIVullzzllul 3 with p= IN (N =2)p

By conservation of energy and the above inequality, we obtain

2X o

IVu(t)liZ: < 2E(p) + mlIU(t)IILifz < C + C||Vaut) | 72" lu(t) |3
for all 0 < t < Tax. Since ||Vu(t)||z2 o 00, it follows that
IVu@®)lif: < Clulz™.

By Theorem 6.5.13, this implies

€
lu®llzr = — .

(Tmax - t):’—%‘:(-‘%— 3 2)

Inequality (6.5.47) follows, since E_JFL LNy 1 2ﬂ

Suppose now p > o + 2. It follows from Holder’s 1nequahty that

222, < [ullF2 full e 7T

Therefore, by conservation of charge and energy,

2 o < 2(P—§_a+22)
[Vu(t)l|Z= < 2E(p) + mllﬂ(t)liLifz < C+Cluft )Il;%llwllm P

for all 0 < t < Tinax. The lower bound (6.5.48) now follows from Theorem 6.5.13
and the above inequality. M

REMARK 6.5.16. Theorem 6.5.13 and Corollary 6.5.14 give lower estimates of
IVulz2 and |ju]/z» near the blowup. They do not give any upper estimate. It
is interesting to compare these results with the corresponding ones for the heat
equation. If one considers the equation u; —Au = |u|P~ !y with a Dirichlet boundary
condition, then a simple argument (even simpler than the proof of Theorem 6.5.13)
gives the lower estimate ||| pe > (Tipax — ty"a. Ifa< F‘l—'iv then it is known that
this is the actual blowup rate of the solutions (see [361, 126, 195, 352]). However for
larger s, some solutions blow up faster (see [196]). A lower estimate is obtained
as well for ||u||L», p > No/2. In some cases it is known that ||u||z» also blows up for
p= Na/2 (see [362]) and that ||u||z» remains bounded for p < Na/2 (see [113]).

REMARK 6.5.17. In the case & > 4/N, one does not know the exact blowup rate
of any blowing up solution. In addition, one does not know whether |ju||z» blows
up for 2 < p < Na/2. On the other hand, there is an upper estimate of integral
form (see Merle [243]). More precisely, if ¢ € H*(RV) and z¢(z) € L*(R"), then

d2

o) / ]x[zlu(t,z)|2 dx = ANaE(p) — 2(Na — 4) / ]Vu(t,w)[2 dx

RN RN
<a—b|Vu(t)]|2. for some constants a,b > 0.



6.5. FINITE-TIME BLOWUP 195

Since ||zu(t)||2, > 0, this implies that

Tnlax t
/ / IVeu(s)|2s ds dt < oo.
0 0

Since

’Tmax t Tmﬂx
/ / IVu(s)lZ> dsdt = / (Tmax = D[ Vu(®)|Z2 dt,
0 0 0

it follows immediately from Hélder’s inequality that
Tmax
/0 Vu)||fzdt <oco for 0< p<1.

If ¢ € HY(R") and ¢ is spherically symmetric, then one obtains the same estimate.
Indeed, by using the fact that o > 4/N, one can improve (6.5.42) to

d2
=3V() < NaB(g) - (Na - 4)|Vuls

and the conclusion is the same.

REMARK 6.5.18. In the case a = 4/N, then (6.5.43) becomes
é

(6.5.49) IVu)ll = m

¥

[V

and (6.5.47) and (6.5.48) become
)

(Tmax - t)%(%_%)

(6.5.50) lu()llzr =

In particular, ||ul|z» blows up for p > 2. Since |juf|12 is constant, estimate (6.5.50)
is optimal with respect to p. On the other hand, it is known that the blowup rate
given by (6.5.49) and (6.5.50) is not always optimal, since some solutions blow up
twice as fast (see Remark 6.7.3 and Bourgain and Wang {41]). Moreover, in space
dimension N = 1, Perelman [297] has constructed a family of blowing up solutions

for which .
log |log(Tmax — )|} ¢
(RE e O] Pp—

which is very close to but different from the lower estimate (6.5.50). Merle and
Raphael [250] recently obtained the upper estimate

1
log |log(Tmax — t)} \ 2
Tmax —t

for a certain large class of blowing up solutions, which is very close to the lower
estimate (6.5.49). These results show in particular that at least two different blow
up rates are actually achieved. This was established in space dimension NV = 1, but
there are strong indications that it might also hold in higher dimensions.

IVu(®)2 < c(

REMARK 6.5.19. There is an abundant literature devoted to the determina-
tion of the blowup rate by means of numerical computations. See Frisch, Sulem,

and Sulem [114], Le Mesurier, Papanicolaou, Sulem, and Sulem (226, 228, 227],

McLaughlin, Papanicolaou, Sulem, and Sulem {242], and Patera, Sulem, and Sulem
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[293]. See also [336] for a survey of some of this literature. For a given equation,
the computed blowup rates vary widely according to the authors. For example, in
the case @ = N = 2, the rates (as of 1993) range from (Tp, — t)™% to (Tpy — )~ %
(see in particular Table 1 of [336], p. 409). Furthermore, for a given author, the
rate may vary from one paper to another. On the other hand, it seems that the
“fast” blowup rate of the pseudoconformally self-similar solutions in the critical
case (see Remark 6.7.3) was never reported numerically. This last point is usually
interpreted as the exceptional character of this blowup rate. This does not seem to
be correct, however, since it has been shown to have some “stability”; see Bourgain
and Wang [41].

6.6. The Critical Case: Sharp Existence and Blowup Results

In this section we consider the model nonlinearity

(6.6.1) g{u) = Mu|®u,

where .

(6.6.2) A>0 -2
.6. , a= N

We recall that the H! solutions of (4.1.1) are global and bounded in H!(RM)
provided ¢ € HY(RY) satisfies |||z < § for some § > 0 (see Remark 6.1.3). In
fact, one can determine the optimal §. Let R be the (unique) spherically symmetric,
positive ground state of the elliptic equation

(6.6.3) ~AR+R=|RI"R inR"

(see, for example, Definition 8.1.13 and Theorems 8.1.4, 8.1.5, and 8.1.6). Note
that any ground state of (6.6.3) is of the form e R(x — y) for some § € R and
y € RY. We have the following result of M. Weinstein [356].

THEOREM 6.6.1. Assume (6.6.1)—(6.6.2) and let R be the spherically symmetric,
positive ground state of (6.6.3). If p € HY(RY) is such that

A= llellze < IRz,

then the mazrimal H' solution u of (4.1.1) is global and sup,cg ||u(t)||lg: < oo.

REMARK 6.6.2. The condition ||¢| ;2 < A~%||R|| 2 is sharp, in the sense that for
any p > A~ ||R||z> (in fact, even for p = A—% |IR|| 12, see Remark 6.7.3 below) there
exists ¢ € HY(RY) such that ||p||z2 = p and such that v blows up in finite time
for both t < 0 and t > 0. Indeed, let (z) = R(v/Az), so that |[t]|z2 = A~ ||R| 1>
and ¢ is a solution of
—AY + M) = A%

It follows that E(y)) = O (see formula (8.1.21)). Let p > A~ || Rz, set vy =
A= p/||R|lzz > 1, and consider ¢, = yi. It follows that ||@,| 1> = p and

+2 2 )
——IV¥liz. <0,

E(p,) =7*T?E(y) - r 5
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and so the corresponding solution u, of (4.1.1) blows up in finite time (see Theo-
rem 6.5.4). Note that there are certain extensions of Theorem 6.6.1 to nonlinearities

of the form g(u) = Au|®u with a > 4/N; see Bégout [19].

REMARK 6.6.3. In space dimension N = 1, an elementary calculation shows that

32
(6.6.4) R(z) = ——,
cosh(2z)
in particular,
IRIZ: = 7v3.

Therefore, it follows from Theorem 6.6.1 that if ¢ € H(RY) is such that
A= |l@llL2 < 3%+/7, then the solution u of (4.1.1) is global and sup,eg ||u(t)|[z < oo.

PrOOF OF THEOREM 6.6.1. By conservation of charge and energy and by
Lemma 8.4.2 below, we have for all ¢t € (—Thin, Tmax)>

1 A
SIVe®li: < Ble) + a—HIIU(t)II%ﬁz

< Ble) + gz VU O

A
< B(o) + 22 )12,

- 2||R]$-
and so . NPT
Pllze 2
11— Vul(t < E{p).
5 (1- o ) 19uols < £
Hence the result follows, by using the blowup alternative. O

REMARK 6.6.4. Assume A > 0 and let d be the supremum of the u’s such
that ||p||z2 < u implies global existence of the corresponding L? solution (see
Remark 4.7.5). Then it is clear that d < A~%||R|| 2, where R is as in Theo-
rem 6.6.1. This follows from Remark 6.6.2 and from the regularity property (iii)
of Theorem 4.7.1. Whether or not d = A~%||R||z2 is an open question. How-
ever, one can show that if ¢ € L2(RN) satisfies ||¢|lp2 < A\~%||R]||z2, and if, in
addition, | - fo(-) € L2(RVN), then Tyin = Tmax = o0 and u € LI(R, L™ (RM)) for
every admissible pair (g,7). (Here, Tmax,Tmin are the existence times given in
Theorem 4.7.1.) Indeed, consider a sequence (¢n)nzo C HY(RY) with ¢, — ¢
in L2(R") and zy@,(z) bounded in L?(RY). The corresponding solutions u, sat-
isfy |- |un(-) € C(R, L*(RY)) (see Lemma 6.5.2), and from the pseudoconformal
conservation law we see that (see formula (7.2.8))

8t2E(un(t)) = |zpnl|2. forallt e R,

L2
where vn(t) = e~ "5 u,(t). In particular, [va(t)]z2 = llua(®)lzz = llgnlz2, so0
that there exists ¢ > 0 such that |Jun(¢)]|2 < A™=||R]||z2 — € for n large enough.
It follows that there exists C such that ||Vu,(t)]|2: < CE(vn(t)) for all t € R (see
the proof of Theorem 6.6.1). By Lemma 8.4.2, this implies that

4 C
len (1522 < CE@a®)lleallfs < 77 forall t e .
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We conclude as in Remark 4.7.4 above.
Theorem 4.7.1 has an immediate application to the study of blowup solutions.

THEOREM 6.6.5. Assume (6.6.1)—(6.6.2). Let p € L>(R") and let u be the cor-
responding mazimal L? solution of (4.1.1) given by Theorem 4.7.1. If Tmax < 00
and if (tn)n>0 i any sequence such that t, T Tmax, then u(t,) does not have any
strong limit in L*(RN). A similar statement holds for Tiin.

PROOF. Assume that u(t,) — w in L?*(RY). By continuous dependence (see
Theorem 4.7.1),

1
Tmax(u(tn)) > §Tmax(w) >0 for n large enough.
This implies that
1
Tiax(p) = tn + —2-Tmax(w) for n large.
This is absurd, since t, — Tmax- O

In fact, one can prove a stronger result which implies the above theorem
(see [71]).

THEOREM 6.6.6. Assume (6.6.1)-(6.6.2). There exists p > 0 with the following
property. Let ¢ € L2(RY) and let u be the corresponding mazimal L? solution of
(4.1.1) given by Theorem 4.7.1. If Tmax < 00 and if L is the set of weak L? limit
points of u(t) as t 1 Tmax, then w||2: < [l@||2. — p? for all w € L. A similar
statement holds for Tyin-

ProoF. It follows from Step 1 of the proof of Theorem 4.7.1 (see in particu-
lar (4.7.4)) that there exists 6 > 0 such that if

1Tl La+2((0,7),La+2) < 6,
then Tmax(4) > 7. Letting ¢ = u(t), we deduce that
T )ult)| Lat2((0,Tmax—t),Lo+2) = 6 for all t € [0, Trax)-
Therefore, given any ¢ € L2(R™) and any ¢ € [0, Tinax),

8 < 1T()(wlt) = Y Lot2((0,Tmax—t),Lo+2) + IT )V Lotz (0, Trmae~t), Lo +2)
< clluft) = Ylloz + 1T Le+2((0,Tmax—t),Lo+2) 5

where c is the constant in the corresponding Strichartz estimate. Since

ITOP et zos2) = O

it follows that

O 1o

lim inf |lu(t) - ¥[z2 >
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Therefore, if u(t,) — 9 for some sequence t, T Trax, then

52 .
= < hnn_l_}orcl)f lu(tn) — 1/}”%2

= hnn_lloréf(u(tn) - ¢,U(tn) - 1/})L2
= lim inf (lut)liFz + 191172 — 2(u(tn), ¥)r2)
= lelzz = 9l3:
and the result follows. O

For H' spherically symmetric blowup solutions in dimension N > 2, there is
a minimal amount of concentration of the L? norm at the origin, as the following
result shows (see Merle and Tsutsumi [251], Y. Tsutsumi [344], and M. Wein-
stein [360]).

THEOREM 6.6.7. Assume (6.6.1)—(6.6.2). Suppose further that N > 2 and let

R be the spherically symmetric, positive ground state of equation (6.6.3). Let vy :

(0,00) — (0,00) be any function such that v(s) rie and s2+(s) TS 0. Finally,
8 8

let o € HY(RY) and let u be the mazimal H' solution of (4.1.1). If y is spherically
symmetric and such that Tmax < 0o, then

1
. > \-2
lim inf lu(t)llz2 () 2 A7= |[Rllzz,
where Q; = {r € RY : 2| < |Tmax — t]%'y(Tmax —t)}. A similar statement holds
for Tin.
As a consequence of Theorem 6.6.7, we have the following result.

COROLLARY 6.6.8. Under the assumptions of Theorem 6.6.7, if Tinax < 00 and if
L is the set of weak L? limit points of u(t) as t T Tax, then

wl2: < ll@l2: = A% ||R||2, forallw € L.
A similar statement holds for Tiin.

REMARK 6.6.9. Note that the minimal loss of L? norm given by Corollary 6.6.8
is optimal. Indeed, there exist solutions that blow up in finite time, and for which
o2, = A=||R||2. (see Remark 6.7.3). Corollary 6.6.8 improves the conclusion
of Theorem 6.6.6 for H! spherically symmetric solutions, in the sense that it gives
the optimal value of p.

PROOF OF COROLLARY 6.6.8.  Assume t, T Tmax and u(t,) — w in L2(RY).
Given € > 0, u(t,) — w in L%({|z| > £}), and so

NwllZe((jzpsepy < lim inf (a2 (1> e -
On the other hand,
lu(ta )22 ((z1sep) = )iz = ultn)lZe((jai<e)
= llelZz = llult)l22((a1<ey)
<leliz — luta)liza, »
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and the result follows from Theorem 6.6.7. O

PROOF OF THEOREM 6.6.7.  Set w(t) = [|Vu(t)||7. so that w(t) oy 0. We

max

claim that

(6.6.5) 1tiTY¥inf ()2 ({2t <o @)y Trmm—ty) = A~ | Rl 12 -

The result follows from (6.6.5) and (6.5.49), since v is arbitrary. We prove claim
(6.6.5) by contradiction, so we assume that there exists ¢, T Tinax such that

(6.6.6) timfu(tn) |22 (el <w(tn)v(Tmue—ta)}) < A= Rllz2
We set .
Up(z) = w(tn) 2 u(ty, w(ty)z),
so that
lvalle = lu(ta)llze = flollLe,
(6.6.7) [Vonllre =1,
E(vn) = w(tn)?E(u(tn)) = w(tn)*E(p) — 0.
It follows in particular that
1 A
E(vn) = 57 a—_}_—zllvn“zﬁz )
so that
(663) loallgiz — 2 20,

By (6.6.7), (un)n>o0 is & bounded sequence in H'(R"), so that there exist a sub-
sequence, which we still denote by (v5)n>0, and w € HY(RY) such that v, — w
weakly in H'(R") as n — oo. Since the v,’s are spherically symmetric, we deduce
that v, — win Lot2(RY) (see Proposition 1.7.1). In particular, E(w) < 0, and

by (6.6.8), w # 0. By applying Lemma 8.4.2 below, we obtain
(66.9) A= fwllzs > |Rllze
Given M > 0,
lwllzz ({lzi<aryy = Hm fvnllLzgoi<ay)
= lim fJu(tn)llz2 (|21 <Mw(ta)))
< Hminf u(te)l 22 ({12l <w(tn) ¥ (Tmax—ta)}) »
since y(s) — oo as s | 0. Since M is arbitrary, by applying (6.6.9) we obtain
liminf [[u(tn) |l L2 ({lol<w(tn)y(Tmax-ta)1) 2 @22 2 A% Rl e,

which contradicts (6.6.6). This completes the proof. ]

In fact, Corollary 6.6.8 can be generalized to nonradial solutions (and also to
the space dimension N = 1). More precisely, we have the following resuit.
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THEOREM 6.6.10. Assume (6.6.1)—(6.6.2). Let R be the spherically symmetric,
positive ground state of equation (6.6.3). Finally, let ¢ € HY(RN) and let u be the
mazimal H' solution of (4.1.1). If Timax < oo and if L is the set of weak L? limit
points of u(t) ast T Tmax, then

lwliz2 < llellfz = A5 |RIf: forallwe L.
A similar statement holds for Tyin.

By conservation of energy and the blowup of || Vu(t)||1 2, Theorem 6.6.10 is an
immediate consequence of the following proposition.

PROPOSITION 6.6.11.  Let (up)n>0 C HY(RN)\ {0} and u € L*(RY) be such that
U — u in L*(RN) as n — oo. If furthermore ||Vun| 2 — oo and

. E(uy)
limsup ——%— <0,
neo VtunlZz

then [[ul2, < liminfn e [lunll2: = A"% | RJI2,.
We will use the following lemma.

LEMMA 6.6.12. If (un)nzo C HY(RN) is such that
(i) lunllZe =a >0,
(ii) 0 <infpxo [VunllLz < sup,>o [VunllLz < oo,
(i) limsup,_, E(un) <0,
then u > A‘§||RH%2, where p = p((un)n>o0) ts defined by (1.7.6).
PROOF OF PROPOSITION 6.6.11. (Assuming Lemma 6.6.12.) Let (un)n>0 be as

in the statement of Proposition 6.6.11. Set a = liminf,_, ||ux||2,. By considering
a subsequence, we may assume that

2
lunl}s — a.

2
Set wn = [[Vun|7; and define vn(z) = wd up(wnz). It follows that ||un)3, =
lunllZ2; [VonlZ. =1, and

lim sup E(v,) = limsup Eun) <0.

n—00 n—00 Hvun ”iz

We first show that a > 0. Indeed,

v l _ ”vn“%ﬂ v |12
Blun) = 5 (1= M ) 19w,

by Lemma 8.4.2, which implies that Allv,|/¢. > || R[|$., and so a > Aa | R||2;. We

now set
Vva

.
loallza ™"

n
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so that (wn)n>o satisfies the assumptions of Lemma 6.6.12. Therefore,

1((wn)n0) = A% ||R)12: .

We apply Lemma 1.7.5 to the sequence (wn)n>0. Given € > 0, it follows from the
above inequality that there exists T such that

p(wn,T) > )\"%HRH%Q — ¢ for n large enough.

Therefore, setting yn = y(wn,T) with y(-,-) defined by Lemma 1.7.4(ii),

[wn(z)|? dz > ™4 IR|2: —& for n large,
{lz_yn|<T}

which means that
a

o ] e@Pa R -

{Iz'—znlstn}
with z, = wpyn and t, = wpT. Note that t, — 0. By possibly extracting
n—0o0
a subsequence, we may assume that either |z,| I 0 0r zy 2 for some
n—

z € RY. In the first case, consider M > 0. Smce un — gy in L2({|:1:l < M}), w
deduce that

el qratcnny) < Hminf lunlZa qzi< )
= liminf {{lunllZ2 — llunlZ2((jo12np) }
= a — limsup ||u, |2
n_)oopll nllz2(fiz1> M)
<a—A"%||R||%; +e¢.

The result follows by letting M T oo, then & | 0. In the second case, consider § > 0.
Since u, — u in L%({|z] > &}), we see that

Il 22 ((lzzizep) < lim inf lunlZ2(gjz—ziza1)
= lilfggf{||un||L2 — lunlZ2(glozi<sn }
= qa — lim sup ||un||?
m Sup lunllz2({jz=21<6})
<a—-A%|R|% +e.
The result follows by letting é | 0, then € | 0. This completes the proof. O

PROOF OF LEMMA 6.6.12. We claim that there exists § > 0, depending only on
N and X with the following property. If (up)n>0 C HY(RY) is such that

(6.6.10) lunll32 =a >0,
(6.6.11) 0 < inf ||[Vup| 1z < sup |[Vuni: < oo,
n20 n>0
(6.6.12) limsup E(u,) <0,
n~00

(6.6.13) 1((un)nz0) < A% || R|2z,
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then a > p((un)n>0), and there exists a sequence (Un)n>0 C H(RY) satisfy-
ing (6.6.11), (6.6.12), and (6.6.13), and such that ||%,||2, = a — 8 for some 8 > 4.
The result follows, since if (up)p>0 C H H(RY) is as in the statement of the lemma,
and if p((un)n>0) < )\‘%HRH?}, then we may apply the claim k times to obtain
a — kd > p((un)n>0), which is absurd for k large. Therefore, we need only prove
the claim, and we consider (un)n>0 C H!(RY) satisfying (6.6.10)~(6.6.13). The
property a > u((un)n>0) follows from (6.6.11), (6.6.12), (6.6.13), and Lemma 8.4.2.
Next, we apply Lemma 1.7.5, then Proposition 1.7.6(iii) to the sequence (un)n>0,
and we consider the corresponding sequences (vi)r>0 and (wi)k>0. We set

2
a+2\*=
.6. b={—+ 0
(6.6.14) ( 7K ) >0,
where the constant K is given by (1.7.17). We first show that
(6.6.15) p = p{(Un)n>0) = 6,

where § is defined by (6.6.14). Indeed, it follows from (1.7.17) and (6.6.14) that

COMES | (R (LCRU LY TN

Assuming by contradiction ¢ < §, we obtain by letting ¥ — oo and applying
Lemma 1.7.5(i) and (6.6.11),

. 1 14 % . 2
> - S Il
hgsolipE(un) > 2(1 (5) )%g%/IVunl >0,
which is absurd. Next, since [wk| < |un,| by (1.7.12), it is not difficult to deduce
from Lemma 1.7.5(ii) and (6.6.13) that

[V

(6.6.16) p((wi)rz0) < u < A% ||R|2: .

Also, it follows from Lemma 8.4.2, (6.6.13), and (1.7.14), that there exists ¢ > 0
such that

(6.6.17) E(vg) > o||Vu|2:  for k large.
On the other hand, it follows from (1.7.15) and (1.7.16) that
(6.6.18) Iikn_lgf{E(unk) ~ E(vg) ~ E{wg)} =2 0.
Inequalities (6.6.12), (6.6.17), and (6.6.18) imply that
(6.6.19) limsup E(wi) <0.

k—o0

Next, we deduce from (1.7.13) and (6.6.11) that
(6.6.20) Vil zz < Cllttmy I < C.
Finally, we show that

(6.6.21) lim inf || V]| z2 > 0.

To prove this, we argue by contradiction and we assume that there exists a subse-
quence, which we still denote by (wg)k>0, such that ||Vwgl|iz2 — 0 as k — oo. It
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follows that E(wy) — 0 as k — 00, so that (6.6.12), (6.6.18), and (6.6.17) now im-
ply that {|Vuk|lz2 — 0 as k — oco. Using (1.7.16), we deduce that ||un, ||pe+2 — O,
so that, by (6.6.11),

1
limsup E(uy) > = liminf || Vu,||2. > 0,
2 n—oo

n—oo

which contradicts (6.6.12). Hence we have proved (6.6.21). Setting
~  Va—u

k _
[|wll L2

we see that 0 < |[ugl|2: = a — u < a — 4, and we deduce from (1.7.14), (6.6.20),
(6.6.21), (6.6.19), and (6.6.16) that the sequence (U)o satisfies estimates (6.6.11),
(6.6.12), and (6.6.13). This completes the proof. g

K

REMARK 6.6.13. For more information on the blowup in the critical case, see the
series of papers of Nawa [264, 265, 266, 267, 268, 269, 270].

6.7. The Pseudoconformal Transformation and Applications

In this section we consider the model nonlinearity

(6.7.1) g(u) = Alu|®u,

where

(6.7.2) AeR, a=4
7. , =5

In this case, the pseudoconformal conservation law, introduced by Ginibre and
Velo [133], becomes an exact conservation law. This conservation law is associated
to a group of transformations which leaves invariant the set of solutions of (4.1.1)
(see Ginibre and Velo [139]). We describe below this group of transformations (the
pseudoconformal transformation).

It will be convenient to use the Hilbert space

(6.7.3) T =H'RY)NL*RY,|z|%dz) = {u € HYRY) : |- |u(-) € LXR")}
equipped with the norm
(6.7.4) lullE = llulFn + zullis -
Let now b € R. Given (¢,7) € R x R", we define the conjugate variables (s,y) €
R x RY by

8 y

S:—l_-—iﬁ’ y———ﬁa, or equivalently ¢ = T 5 T = T s
Given u defined on (=51, S2) x RN with 0 < 81,5, < o0, we set
Tl_{oos ?belg—l 2_{00 if bSp > 1
s 0S5 > -1, % S <1
We define up, on (—713,1%) by
wnlt, ) = <1+bt>—%e"ﬁ%u( t_ =z )

1+bt"1+bt

(6.7.5)
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or equivalently

(6.7.6) up(t,z) = (1 — bs)%'e“bl'z:s u(s,y).
Note that
(6.7.7) llus (D)2 = llu(s)llz2

and, more generally,

(6.7.8) lup(t) Lotz = (1 — bs) T [ju(s)|| pos2 i B > 0.
In particular,

(6.7.9) s ()| ov2 = (1 — bs) 7 [ju(s) | o2

so that if bs; > —1 and bs; < 1, then

(6.7.10) lupll Lot2((=ty 22y Lov2) = [[UllLata((sy,00)L0+2)

with ¢; = l—jgs—l and t; = T_%E. Next, if u € C((—51, S2), X), then it is clear that
up € C((-T1,77),%). In addition,

(6.7.11) leus(t)llLz = (1 —bs) ™ lyu(s) L2

(6.7.12) Vup()]l22 = %II(—by +2i(1 - bs)V)u(s)|| 2 ,

(6.7.13) [Vu(s)|izz = %H(bx + 24(1 + bt)V)up(t)|| 2 -

The interest of the above transformation lies in the following result.

THEOREM 6.7.1. Suppose u € C((—5S1, S2), LA RM))NLET2((—= Sy, S2), L4H2(RY))
is a solution of (4.1.1) (see Theorem 4.7.1). Let b € R, let T1,T> be defined
by (6.7.5), and let up be defined by (6.7.6). It follows that

up € C((=Th, To), L*(R™)) N L& ((~T1, T), L*T2(RY))

loc

is also a solution of (4.1.1). If, in addition, u € C((—51,952),%), then u, €
C((-1,T2), %).

PRrOOF. It is clear that u, € C((=T1,T3), L*(R")). In addition, it follows from
(6.7.10) that up € Lﬁ)i'Q((—Tl,Tg),L“"'Q(RN)). Furthermore, one shows that if
0 < 81,85 < oo and if bS; > —1 and bS; < 1, then the mapping u — w, is continu-
ous C([-51, S2]7 LQ(RN)) n La+2((—51, S2)s La+2(RN)) - C([_Tlv TQ]’ LQ(RN)) n
Lot((=Ty, Ty), L*3(RV)).

Let now u € C([~S1,S2], L2RM)) N L*+2((~81, S2), L*T2(RY)) be a solution
of (4.1.1), with Sy and Sy as above. Let ¢ = u(0). We have in particular Th,in(p) >
Sy and Tiax () > S2. Consider (¢n)n>0 C H?(RV) such that ¢, — ¢ in L2(RV).
By continuous dependence (Theorem 4.7.1(v)), Thin(wn) > S1 and Tax(¥n) > So
for n large enough. We denote by u™ the corresponding solutions of (4.1.1). We
first observe that u™ € C((—S1, S2), H*(RY)) by Theorem 4.7.1(iii). Applying then
Remark 5.3.3, we deduce that u™ € C((~S1,S,), H*(R")); i.e., u is an H? solution.
It follows that u satisfies equation (4.1.1) a.e. on (—S;,S2) x RY. A tedious, but
straightforward, calculation shows that (u™), satisfies (4.1.1) a.e. on (=73, T>) xR".,
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The conclusion follows from continuous dependence (Theorem 4.7.1(v)) and from
the continuity property mentioned above. O

REMARK 6.7.2. Note that the pseudoconformal transformation preserves both
the space L?(RV) and the space £. On the other hand, it does not preserve the
space H(RM).

REMARK 6.7.3. The pseudoconformal transformation has a simple application
(see M. Weinstein [359]), which yields interesting information on the blowup. As-
sume for simplicity that A = 1 and let 1 be a nontrivial solution of (6.6.3). (Note
that ¢(z) has exponential decay as |x| — oo; see, for example, Theorem 8.1.1.)
It follows that u(t,x) = ey(z) is the solution of (4.1.1) with ¢ = 1, and that
Timax () = Tmin(p) = +oo. We set v(t,z) = u_1(t,z); i.e.,

e
(6.7.14) v(t,z) = (1 - t)_%e_“(l-t) ezﬁw(llt) forr e RV, t < 1.

Therefore,
N

(p—2)
(6.7.15) lo@)llzr = (1=~ "F |¢lzs forallt<1, 1<p< oo,

Thus, ||v||za+2((0,1),02+2) = +00 80 that Tiax = 1. Furthermore, it follows from

(6.7.12) that
2

1veits = [ |(2+ 1257w do
RN
so that
(6.7.10) (1= OIVo(®)lz2 — [Vlzz.

We deduce in particular from (6.7.15) and (6.7.16) that v blows up twice as fast
as the lower estimates (6.5.49) and (6.5.50). This implies that, at least in the case
a = 4/N, the lower estimates (6.5.49) and (6.5.50) are not optimal for all the
blowup solutions. ‘

It also follows from (6.7.15) that [|v(t)|L» proy 0if 1 <p< 2, sothat

(6.7.17) v(t)—=0 in L*(RM)ast 1.

In particular, the loss of L? norm at the blowup is equal to ||R|| 12 if ¢ is a ground
state of (6.6.3), but it is larger if 9 is an excited state. (Note that excited states
exist if N > 2; see [25].) Therefore, the loss of L? norm given by Theorem 6.6.10

is not always optimal.
Note also that by (6.7.11),

(6.7.18) lzv(®)llz2 = A = Dllzllzz —0

(cf. Remark 6.5.5.). In particular, v(t) proy 0 in L%({|z| > €}) for any € > 0.
Furthermore, one easily verifies that v(t) proy 0 in HY({|z] > €}) and in Lo°({|z| >

e}) (this last point because v has exponential decay). Therefore, v(t) blows up only
at z = 0. Furthermore, it follows from an easy calculation that |v(t)|? proy fll|226

in D'(RY), where § is the Dirac measure at z = 0.
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Finally, we observe that formula (6.7.14) also makes sense for ¢ > 1, and that
v given by (6.7.14) is also a solution of (4.1.1) for t > 1. As a matter of fact, the
properties of v ast 71 and as ¢ | 1 are similar. Formula (6.7.14) gives (formally)
an extension of the solution v beyond the blowup time Ti,.x = 1. We know that
v satisfies (4.1.1) on (—o0,1) and on (1,00), and we investigate in what sense v
may be a solution near t = 1. Note first that v € C((—o0,1) U (1, 00), L*(RY)) and
that |Jv(t){lr2 = |[¥|lL2 for t # 1, so that by property (6.7.17) v is discontinuous
in LZ(RN) at t = 1. On the other hand, v € L®(R,L?(R")), so that Av €
L®(R,H~?(RY)). Furthermore, it follows from (6.7.15) that |||v(t)|®v(t)||s: =
c|l — t|*F*. Therefore, if we assume N > 3, then |[v|*v € LL (R, L'(RY)). If m
is an integer such that L'(RY) — H~™(R™) (so that in particular m > 2), then
we deduce that |v|*v € LL (R, H-™(R")). Therefore, u; € L} (R, H~™(R)), so
that v € C(R, H-™(R")). Thus v(t) — 0 in H~™(R") as ¢t — 1. This implies
easily that v satisfies (4.1.1) in D'(R, H~™(R")). Therefore, we see that v can be
extended in a reasonable sense beyond the blowup time Tp,.x = 1. However, the
meaning of this extension is not quite clear. Indeed, if we define

. ut) ift<1
t) =
o(t) {o 1> 1,

then the above argument shows that v is also an extension of v beyond Tipax = 1,
which satisfies (4.1.1) in D'(R, H"™(R")). As a matter of fact, one can define
many such extensions. For example, since equation (4.1.1) is invariant by space
translation and by multiplication by a constant of modulus 1, we see easily that for
any y € RY and w € R,

- v(t) ift<1
5 =1 " |
e“u(t, —y) ift>1

satisfies (4.1.1) in D'(R, H~™(R¥)) and is also an extension of v beyond Tpax = 1.
About this problem, see Merle [245].

REMARK 6.7.4. In space dimension NV = 1, the solutions considered in the above
remark are completely explicit. Indeed, it follows from formula (6.6.4) that

S

. 2 .
iy it O

1-t cosh (%)

v(t,z) =

is a solution of the Schrédinger equation iu; + gz + |u/*u = 0 that blows up at
t=1.

REMARK 6.7.5. Let v(t) be as in Remark 6.7.3. Given y € RV, set v,(t) =

v(t,- —y), so that v is a solution of (4.1.1) for which Tinax = 1, and that blows up
at the point y € RY. Given (yz)1<e<k With y; # y, for j # ¢,

k
w(t) =Y oy (0)
£=1

is a function that blows up at £ = 1, and only at the points y¢. On the other hand,

since (4.1.1) is nonlinear, w is not a solution of (4.1.1). However, Merle [244] shows

that there exists a solution u of (4.1.1) on [0,1) for which Tj,x = 1 and which is
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asymptotic as ¢ T 1 to w. This shows in a way the stablhty of the type of blowup
displayed by v.

REMARK 6.7.6.  Assume for simplicity A = 1 and let R be the positive, spherically
symmetric ground state of (6.6.3). It follows that for any v € R, u > 0, and y € RV,
u(t,z) = ee® tR(u(z — y)) is a solution of (4.1.1). For any b < 0 and z; € RY,
u(t,x) = vp(t,x — 1) is therefore also a solution. An easy calculation shows that

|~

N
2
u(t, ) = <~—ﬁ_) 0= Pt i
(6.7.19) Tmax =1

X R(m(j——z((m - 1131) - (Tmax - t)%))

with Thax = —1/b, w = Tmax, To = ¥/Tmax, and 8 = v — u?Tyax. Let now
¢ € HY(RY) be such that [l¢||z2 = ||R||z2 and such that Tmax < oo. It follows
from Merle [246] that there exist § € R, w > 0, 29,1 € RY such that u is given
by (6.7.19). Similarly, if Tyyin < 00, then there exist § € R, w > 0, zg,z; € RY
such that u is given by

N

3 x—z .2
ult,z) = ( w ) 10+1—41T_ ,nJlrg t m“‘“R( ((x'—xl)"(Tmin‘Jf't)xO)) .

Tmin +1 ‘

In other words, the only solutions that blow up on the critical sphere are those
obtained from the ground state by the pseudoconformal transformation. Note in
particular that if u is a solution on the critical L? sphere, then Tmax and Timin
cannot both be finite.

min t

6.8. Comments

We begin with some examples of applications of the results of the preceding
sections.

REMARK 6.8.1. Let g(u) = A|u/*uwithA € Rand0 < a < 4/(N=2) (0 < a < c©
if N=1).

(i) If A <0, then all solutions of (4.1.1) are global.

(ii) If A > 0 and a < 4/N, then all solutions of (4.1.1) are global.

(iif) If A > 0 and a > 4/N, then the solution of (4.1.1) is global if ||z is
small enough. On the other hand, given 1 € H(RV), ¢ # 0, the solution
of (4.1.1) with ¢ = kv blows up in finite time, provided |k| is large enough.

Statements (i) and (ii) follow from Corollary 6.1.2. The first part of (iii) follows
from Corollary 6.1.5. Finally, the last part of (iii) follows from Theorem 6.5.4.
Indeed, it is clear that (6.5.24) is satisfied, and that E (k) < 0 for |k| large enough.

REMARK 6.8.2. Let g(u) = A(Jz|"|u|?)u, where A € R, and 0 < v < min{N, 4}.

(i) If A < 0, then all solutions of (4.1.1) are global.
(ii) If A > 0 and 0 < v < 2, then all solutions of (4.1.1) are global.

(i) If A > 0 and v > 2, then the solution of (4.1.1) is global if |j¢] g is
small enough. On the other hand, given v € HY(RV), ¥ # 0, the solution
of (4.1.1) with ¢ = k1 blows up in finite time, provided |k| is large enough.
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Statements (i) and (ii) follow from Corollary 6.1.2. The first part of (iii) follows
from Corollary 6.1.5. Finally, the last part of (iii) follows from Theorem 6.5.4.
Indeed, it is clear that (6.5.26) is satisfied, and that E{kvy) < 0 for |k| large enough.

REMARK 6.8.3.  Let g(u) = A|u|*u+8(|z]~¥*[u[*)u, A\, € R, 0 < a < 4/(N-2),
and 0 < v < min{N, 4}.

(i) The solution of (4.1.1) is global if ||¢||z1 is small enough.
(i) If A, 8 < 0, then all solutions of (4.1.1) are global.

(iti) f A <0, 8> 0, and 0 < v < 2, then all solutions of (4.1.1) are global.

(iv) If A >0, 8 <0, and a < 4/N, then all solutions of (4.1.1) are global.

(v) If A, 8>0,a <4/N, and 0 < v < 2, then all solutions of (4.1.1) are global.

(vi) If \,8 > 0, a > 4/N, and v > 2, then given ¢ € HY(RY), ¢ # 0, the
solution of (4.1.1) with ¢ = k4 blows up in finite time, provided |k| is large
enough.

(vii) If A > 0, 3< 0, @ > 4/N, a > 2, and v < 2, then given ¥ € H(RVM),
1) # 0, the solution of (4.1.1) with ¢ = ki blows up in finite time, provided
lk| is large enough.

(viii) fX <0, 8> 0, a <4/N, @ < 2, and v > 2, then given ¢y € H*(RY),
 # 0, the solution of (4.1.1) with ¢ = k) blows up in finite time, provided
|k] is large enough.

Statement (i) follows from Corollary 6.1.5. Claims (ii), (iii), (iv), and (v) follow
from Corollary 6.1.2. Finally, (vi), (vii), and (viii) follow from Theorem 6.5.4.

REMARK 6.8.4. There are some finite-time blowup results in strict subdomains
Q c R¥. For example, assume Q C R¥ is smooth, bounded, and star-shaped
about the origin, and g(u) = |u|*u for some 4/N < a < 4/(N — 2). It follows that
a solution u € C1([0, 7], L?(Q)) N C([0, T}, H*(Q) N H}(Q)) of (3.1.1) blows up in
finite time, provided E(y¢) < 0 (see Kavian [208], proposition 1.2). In addition, if
Q is a smooth, bounded domain of R? and g(u) = |u|?u, then for every z¢ € Q
there exists a solution that blows up like the singular solution in RY (the rescaled
ground state of Remark 6.7.3) at 9. See Burg, Gérard, and Tzvetkov [50].

REMARK 6.8.5. Consider the problem (4.1.1) with g(u) = Au|%u, A € R, and
a > 0. Suppose first that @ < 4/N. It follows from Theorem 4.6.1 that for
every ¢ € L?(RV), the corresponding L? solution of (4.1.1) is global. By H*
regularity (Theorem 5.1.1), we deduce that if 0 < s < min{N/2,1}, then for every
@ € H*(RY), the corresponding H*® solution of (4.1.1) given by Theorem 4.9.1
is global. Fix now 0 < s < min{N/2,1} and assume 4/N < a < 4/(N — 2s)
and A < 0. It follows (see Remark 6.8.1(i) above) that for every ¢ € H*(RV),
the corresponding H! solution of (4.1.1) is global. On the other hand, it follows
from Theorem 4.9.1 that for every ¢ € H*(R"), there exists a local H® solution u
of (4.1.1). One may expect that the H* solution is global, but there is no equivalent
of the conservation of energy at the H?® level. It is possible to show, however, global
existence for all ¢ € H*(RY) in some cases; see Bourgain [38] and Colliander et
al. [88, 89, 90, 91]. See also Vargas and Vega [350] for a related result of global
existence for all initial values in a space strictly larger than L?*(R™) for the cubic
one-dimensional Schrédinger equation.



CHAPTER 7

Asymptotic Behavior in the Repulsive Case

In this chapter we continue the study of the global properties of the solutions
of (4.1.1). We have seen in the preceding chapter that for certain nonlinearities and
initial values, the solution of (4.1.1) satisfies u € LY(R, WL (R")) for every admis-
sible pair (g,r). See, e.g., Theorem 6.2.1. This implies that u(t) has a certain decay
ast — oo. If g is “sufficiently” superlinear near 0, for example if g(u) = A|u|%u with
a “sufficiently” large, then g(u) will have a stronger decay. One may then expect
that the term g(u) becomes negligible in equation (4.1.1) and that the solution u(t)
behaves as t — oo like a solution of the linear Schrédinger equation. This turns
out to be the case, under appropriate assumptions on g, and the scattering theory
formalizes this kind of property. Of course, we have been vague in saying that
the solution u(t) behaves like a solution of the linear Schrédinger equation, since
this can be measured in various different topologies. This gives rise to different
scattering theories.

In Section 7.1, we describe the basic notions of the scattering theory.

In Sections 7.2-7.4, we develop a scattering theory in the weighted Sobolev
space ¥ defined by (6.7.3)-(6.7.4). We first establish the pseudoconformal conser-
vation law (Section 7.2), then deduce the decay properties of solutions (Section 7.3),
and develop the scattering theory (Section 7.4).

In Section 7.5, we apply the pseudoconformal transformation in order to obtain
some further results (both positive results and counterexamples).

In Sections 7.6-7.8, we develop a scattering theory in the energy space H*(RV).
We first derive the Morawetz estimate (Section 7.6). This is the essential tool to
obtain the decay properties of the solutions (Section 7.7) on which the scattering
theory is based (Section 7.8).

7.1. Basic Notions of Scattering Theory

In this section we introduce basic notions of scattering theory. Consider a
Banach space X in which the equation (4.1.1) can be solved locally. For example,
X can be H'(RY), L?*(RN), H*(R"), or the space % defined by (6.7.3)—(6.7.4),
depending on the nonlinearity g. See Chapter 4.

Let ¢ € X be such that the corresponding solution u of (4.1.1) is defined for
all t >0, i.e., Tax = oo. If the limit

(7.1.1) Uy = tl_i)ngoﬂ’(—t)u(t)

exists in X, we say that u,. is the scattering state of ¢ (at +00). Also, if p € X is
such that the solution of (4.1.1) is defined for all ¢ < 0; i.e., Tiin = 00, and if the
limit

(7.1.2) u- = lim F(-t)u(t)

t——00

211
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exists in X, we say that u_ is the scattering state of ¢ at —oo.
We observe that saying that ¢ has a scattering state at +oo is a way of saying
that u(t) behaves as t — £oo like the solution J(t)uy of the linear Schrodinger

equation.
We set
(7.1.3) R4 = {p € X : Tinax = o0 and the limit (7.1.1) exists}
and
(7.1.4) R- ={p € X : Tyyin = 00 and the limit (7.1.2) exists}.

In other words, R, is the set of initial values ¢ which have a scattering state at
+o00. We define the operators

(7.1.5) Ui : Ry — X mapping @ — uy

and we set

(7.1.6) Uy =Ur(Ry).

If the mappings Uy are injective, we set

(7.1.7) Qe =Ui':Us - Rs.

The mappings Q1 are called the wave operators. Next, we set
(7.1.8) OL=Us(RyNR2).

Finally, the scattering operator S is the mapping

(7.1.9) S=U;0_:0_—-0,.

In other words, v, = Su_ if and only if there exists ¢ € ¥ such that Tax = Tmin =
oo and such that J(—t)u(t) — uy as t — Foo.

REMARK 7.1.1. Note that the operators and the sets that we defined above
depend on the space X in which the convergence (7.1.1) or (7.1.2) takes place.

REMARK 7.1.2. We observe that for the linear Schrédinger equation; i.e., when
g(u) = 0, all the operators Us, Q4,8 defined above coincide with the identity on
X. Note, however, that, in the general case g # 0, these operators are nonlinear.

REMARK 7.1.3. Assume that

g(ﬂ):m for all u € X.

It follows that changing ¢ to —t in the equation (4.1.1) corresponds to changing u
to U, which means changing ¢ to @. So we see that

R.=Ri={peX:peRy},

U =U; ={veX:T€ly},

O_=0;={veX:0€0,},
and that U_yp = ULy and Q_p = Q..
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7.2. The Pseudoconformal Conservation Law

Throughout this section we consider a nonlinearity g is as in Example 3.2.11.
Therefore, we assume
9(u) =Vu+ f(u() + (W * [u*)u,

where V, f, and W are as follows. The potential V is real valued, V € LP(RY) +
L®(RYN) for some p > 1,p > N/2. f:RY x R — R is measurable in z € RN and
continuous in u € R and satisfies (3.2.7), (3.2.8), and (3.2.17). Extend f to RY xC
by (3.2.10). The potential W is even and real valued, W € LI(R") + L*(RN) for
some ¢ > 1, ¢ > N/4. In particular, g is the gradient of the potential G defined by

(121 G = [ {FVE@EE + Fe o) + {0+ WP iz,
RN

and we set

(7.2.2) E(u) = % /R N [Vu(z)?dz — G(u) for all u € HY(RY).

We recall (see Corollary 4.3.3) that the initial-value problem for (4.1.1) is locally well
posed in H(R") and that there is conservation of charge and energy. Moreover,
if o € ¥ with ¥ defined by (6.7.3)-(6.7.4), then v € C((—Tmin, Tmax), L) (see
Remark 6.5.2). Also, if ¢ € HZRY), then u € C((~Thmin, Tmax), H2(RY)) (see
Remark 5.3.3).

The following “pseudoconformal conservation law,” discovered by Ginibre and
Velo (133, 134], is essential for the study of the asymptotic behavior of solutions.

THEOREM 7.2.1. Let X be defined by (6.7.3)—(6.7.4) and let
9(u) = Vu+ f(-,u()) + (W x Ju*)u

be as in Example 3.2.11. If ¢ € ¥ and if v € C((—Tmin, Tmax), Z) s the corre-
sponding solution of (4.1.1), then ‘

¢
(7.2.3) Nz + 26t V)u(®)]2: — 8t2G(u(t)) = 2|32 —/ s6(s)ds,
0
where G is defined by (7.2.1) and

o(t) = { /(S(N +2)F(u) — 4N Re(f(u)u))dz

RN
(7.2.4) +8/(V+ %z-VV)lude
]RN
1
+4 /((W + 7% VW) % |u|?)|ul? dx}
RN

for allt € (—Tmin, Timax)-

REMARK 7.2.2. Note that by Proposition 6.5.1, the left-hand side of (7.2.3)
makes sense.
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ProoF OF THEOREM 7.2.1.  Let
h(t) = [z + 2itV)u(t)||2. — 8t°G(u(t)).
We have
R(t) = ||lzu(t)||3z + 43| Vu(t) |22 — 4t Im / Tz - Vudr — 8t°G(u(t))
RN
= |lzu(t)||22 — 4t Im /'ﬁ.r -Vudz + 8t2E(p),
RN

where the energy F is defined by (7.2.2). Applying Proposition 6.5.1, we deduce
that h € C*(—Timin, Imax) and that

d
W(t) = llzu(t)]3s - 4Im/ﬂ:c Vudz
RN
d_ [
— 4t% Im / gz - Vudz + 16tE(p) = —t6(t),
]RN

and (7.2.3) follows after integration on (0, t). O

REMARK 7.2.3. Note that when V = 0, f(s As|¥s for some A € R and
W (z) = pjz|2 for some p € R (u =0, if N = 1,2), (7.2.3) is an exact conservation
law, which is

It

(x4 26t V)u(t)||22~

7.2.5 AN ¥+ (el
(7.2.5) [ { gt + £« Pl b = fals.
]RN

It corresponds to the invariance of the equation under a group of transformations.
See Section 6.7 and see Ginibre and Velo {139] and Olver [285].

REMARK 7.2.4. Note that if ¢ # 0, then

z|?

2
(7.2.6) (z + 2itV)w = 2ite! T V(e w)

and so
jz|2

I(z + 2itV)w||3. = 42| V(e 5t w) |22 .
Therefore, if we set
(7.2.7) u(t,z) = e~ u(t, 1),
then (7.2.3) is equivalent to

(7.2.8) 8t2E(v(t)) = ||zp)|2z - /0 s6(s)ds .

That equivalent formulation of (7.2.3) will be helpful later.
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REMARK 7.2.5. Let f € C(C,C) satisfy f(0) = 0 and |f(v) — f(u)| < C(Jul* +
[v|*)[v—u| for all u,v € C, where0 < a <4/(N-2) (0 < o < 00 if N =1). Assume
further that f(e*u) = € f(u) for all u € C and 8 € R. It follows from (7.2.6) that
) —ilel?
|(z + 2it V) f(w)] = 2[t]|V(e™* f(u))| = 2]tV (f ()],

where v is defined by (7.2.7). From the above identity and Remark 1.3.1(vii), it
follows that
Iz +2aV)F (W a2 < CltlvllZesz Vol zo+e .

Since |v| = |u| and 2|¢t||Vv| = |(z + 2itV)ul, we obtain

(7.2.9) Iz +2itV)f (W)l g2 < Cllullfoszli( + 20tV )uf| posz .
Note that when o = 0; i.e., when f is globally Lipschitz continuous,
(7.2.10) [[(z + 2itV) f(u)||z2 < Cll(z + 2itV)ul 2 .

The constants C in the above inequalities are independent of u and ¢.

7.3. Decay of Solutions in the Weighted L? Space

In this section we apply the pseudoconformal conservation law to the study of
the asymptotic behavior of solutions. For simplicity, we restrict our attention to
the model case

(7.3.1) g(u) = —nju|%u,
where
4
(7.3.2) n >0, O<a<N_2 0<a<ooif N=1).

and we refer to Section 7.9 and Ginibre and Velo [133, 132, 134, 139] for more
general results. Note that in this case,

(7.3.3) Tinin () = Tmax(p) =00 for all ¢ € HI(RN)

(see Remark 6.8.1(i)).
Furthermore, it follows from (7.2.8) that (7.2.3) is equivalent to

8t2{%/]Vv(t)|2d9:+g%—§/|v(t)l°‘+2da:} _
RN RN

~ Na
a+2

(7.3.4)

4 t
lzellZ> + 4n /0 S/ lv(s)|®*2dzds for all t € R,
RN

where v is defined by (7.2.7). We have the following result.

THEOREM 7.3.1. Assume (7.3.1)—(7.3.2). If ¢ € HY(RN) satisfies | - |o(-) €
L2(RM) and if u € C(R,HY(RY)) is the corresponding solution of (4.1.1), then
the following properties hold:
(i) Ifa>4/N, thenforevery?ﬁrg% 2<r<cif N=1;2<r<o0
if N =2), there exists C such that

(7.3.5) @)l < CleI™NE=9)  for allt € R.
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(i) If @ < 4/N, then for every2 <7< 2L 2<r<oif N=1;2<r<o0
if N =2), there exists C such that

(7.3.6) (@) < CJlt|~NGE=DA=60)  for all t € R,
where
o) {0 if2<r<a+2
r)= —(a+2))(4—Na .
<(:-(2c;(2a+(4—Na)) fr>a+2

Proor. If « > 4/N, we deduce from (7.3.4) that

v T < ||zp||z. forallt € R.
8t2 [ |Vu(t)dz < |lzg||2, forallteR

RN
Applying conservation of charge and Gagliardo-Nirenberg’s inequality, we obtain

1

@l = @iz < CIVuE 3P o)t 3P

< CltNGE D) | N

L
< Cltl—N(%—% .

Hence (i) is established. Assume now a < 4/N. We consider the case t > 1, the
argument being the same for ¢ < —1. It follows from (7.3.4) that

/j SR[ lu(s)|**? dz ds .

4— Na
a+2

8t2E(v(t)) = 8E(v(1)) + 4n

This implies that

4—Na [*1
< Eh(s) where h(t)=t2/|v(t)|"+2dx.
1

h(t) < C +

RN

Applying Gronwall’s Lemma, we deduce that

h(t) < Ct7
from which we deduce
(7.3.7) [0(t)]| Lase < CtNG-TH)

Applying (7.3.4) and (7.3.7), we obtain
t
8t2 / Vu(t)2dz < C + c/ % ds < O 4 Cr-
RN 0
and so

(7.3.8) IVo(@)||2 < Ct~ "€ .
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Applying (7.3.7), Hélder’s inequality, and conservation of charge, we deduce that
forevery 2 <r <a+ 2,

(3-1) 1-2edD () 1)
lu®llz- = lo@)llr < Cllo) o5 o ()]l 3a '
11 1— _S__+_22 1_1
< CRI~NE-Djjpli, T G

< Cltl—N(z—F) .

This implies (7.3.6) for 2 < r < a+2. For a+2 < r < 2% it follows from (7.3.7),
(7.3.8), and Gagliardo-Nirenberg’s inequality that

2N (r—a-2) 2N(r—a—2)

lu@)lz- = o)z < CIVu)lIZE** o o) 8=
< Ct~NG-PA-6(r)
Hence (7.3.6) follows for 7 > o + 2. This completes the proof. D

REMARK 7.3.2. Theorem 7.3.1 implies in particular that if ¢ € H*(R") and
|- lo(-) € L*(RY), then the corresponding solution u of (4.1.1) converges weakly to
0 in L2(R™N) as |t| — 0o. Indeed, u is bounded in L? and converges to 0 strongly
in Lo2,

REMARK 7.3.3. Note that for @ > 4/N, u has the same decay properties in
L™(RY) as the solutions of the linear Schrédinger equation (see Proposition 2.2.3)
for every 2 < r < 2N/(N —2). When a < 4/N, the decay properties are the same
forr<a+2.

COROLLARY 7.3.4. Assume (7.3.1)~(7.3.2). Assume further that a > ap, where
oo s defined by (6.3.3). Let ¢ € HY(RYN) satisfy | - |p(-) € L*(RYN), let u be the
mazimal solution of (4.1.1), and set

(7.3.9) v(t) = (z + 2itV)u(t) forteR.

It follows that uw € LI(R, WLT(RY)) and v € LI(R, L"(RN)) for every admissible
pair (g,7).

REMARK 7.3.5. Note that it follows from Proposition 6.5.1 that v is well defined,
and that v € C(R, L*(R™M)).

For the proof of Corollary 7.3.4, we will use the following lemma.

LEMMA 7.3.6. Under the assumptions of Corollary 7.3.4, it follows that v €
L{ (R,L™(RN)) for every admissible pair (q,7).

ProoOF. Given € > 0, let
|ul®

mu forueC.

ge(u) =

Let u® be the maximal solution of (4.1.1) with g replaced by g.. Note that for
every € > 0, g. is globally Lipschitz continuous C — C. Note also (see, e.g.,
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Corollary 6.1.2) that u, is globally defined and that, by conservation of charge and
energy,

(7.3.10) sup lu® ()] g < 0.

£>0

Next, we observe that |g(u) — g (u)| < |g(u)| and that |g(u) — ge(u)] = 0ase |0
for every u € C. It follows easily that u¢ — u in L (R, LP(R")) as ¢ | O for
every 2 < p < 2N/(N -2) (2 <p < o0 if N =1). (See, e.g., Step 3 of the proof
of Theorem 4.4.6, and in particular the proof of (4.4.29).) Using the conservation
of energy for both u and u, one deduces easily that u* — u in LS (R, H(R"))
as £ | 0. Therefore, we need only estimate the solutions u® independently of
e. It follows from Lemma 6.5.2 that v°(t) = (z + 2itV)us(t) € C(R,L*(RN)).

Furthermore, applying formula (2.5.5), we obtain
t
(7.3.11) ve(t) = T(t)xp + z/ T(t — s)(z + 2isV) g (u*(s))ds.
0

Since g. is globally Lipschitz continuous, it follows from (7.2.10) that there exists
C, such that
[[(z + 2itV)ge (w)|| 2 < Cell(z + 2itV)w|2 .

Therefore, (x + 2itV)g.(v®) € L (R, L2(RN)). Applying Strichartz’s estimates,

loc

we deduce from (7.3.11) that v¢ € LY (R, L"(RY)) for every admissible pair (g,7).

loc
Next, we observe that there exists C independent of € such that

|ge(v) — ge(u)] < C(|u|® + Jv|¥)|v —u| for all u,v € C.

Therefore, we deduce from (7.2.9) and (7.3.10) that there exists C' independent of
t and € such that

(@ +2itV)ge(w)||_oxz < Cli(z + 2itV)w|pora for all w e HY(RM).

It then follows from Strichartz’s estimates and (7.3.11) that if 7 > 0, if (q,r) is any
admissible pair, and if (7, p) is the admissible pair such that p = a + 2, then there
exists a constant C independent of € and 7 such that

(7.3.12) v Lo((=rryzry < Cllzglze + O 08|l ((=ryr),L0) -

We first let (¢,7) = (v,p). We deduce that if 7 > 0 is sufficiently small, then
0% || L (= 7,0y < 2CNT@llL2. Applying again (7.3.12) with an arbitrary admis-
sible pair (g,7), we obtain that |[v®||pe((—r,r),L) is bounded as € | 0. By letting
e | 0, we conclude easily that v € LI((~7,7), L"(R")) for every admissible pair
(g,r). By time-translation invariance of the equation, this implies that if to € R,
then (z + 2i(t — to)V)u € LI((to — 7,to + 7), L"(RY)) for every admissible pair
(g,7). Since Vu € LI((to — 7,to + 7), L"(R")) by Remark 4.4.3, we conclude that
v € LI((tg — 7,to + 7), L"(RY)), which completes the proof. t

PRrOOF OF COROLLARY 7.3.4. We proceed in two steps.

Step 1. u € LI(R,WLT(RN)) for every admissible pair (g,7). Note first
that v € LI (R, WL (RY)) by Remark 4.4.3 or Theorem 4.4.6. Consider now

loc
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r = a+ 2, and let ¢ be such that (g,r) is an admissible pair. We have

u(t) =T (t)p —in /Ot T(t — s)|u/u(s)ds.
Therefore, it follows from Strichartz’s estimates that for every t > T > 0,
lullza(o,0,wr) < Cllelar + Clilul*ull o 0,1y, w1y + Cllul*wll Lo (09, w1y »
where C is independent of ¢ and T". Since
lul®wllwr < Cllullz-lullwa.-,

we deduce from Holder’s inequality that for every T € [0, ],

9=2

T =9 q
llullLao,8),wrmy < Clloll g + C(/ lu(s)ll i+ ds) llull a((0,7), w1y
(7.3.13) oz

wo( [ 1N @) " lolinramn
By Theorem 7.3.1, ||u{s)|/rr < CS_%, and so
lu(s)l3” < Cs™7.

Note that since @ > a9, we have 2a > ¢ — 2. Therefore for T large enough,

(7.3.14) c( /T t u(s)]| 27 ds>g;_2 <

On the other hand, u € L®((0,T), H*(RN)) N L((0,T), WL (RV)). Therefore, it
follows from (7.3.13) and (7.3.14) that ‘ ‘

O} =

1
lullLao,8),wrry < C + §||u|lu((o,t),ww) -

Letting t T 0o, we obtain
llwl| e ((0,00), w1y < 20

One proves as well that u € L%((~o00,0), WV7). Applying again Strichartz’s esti-
mates, one obtains the result for every admissible pair.

STEP 2. v € LI(R,L"(RY)) for every admissible pair (g,7). Note that v €
L{ (R,L™(R")) by Lemma 7.3.6. Consider now r = a + 2, and let ¢ be such that
(g,7) is an admissible pair. It follows from formula (2.5.5) that

t
v(t) = T(t)zp — in/ T(t — s)(z + 2isV)|u|*u(s)ds.
0
Therefore, we deduce from Strichartz’s estimates that for every ¢ > 0,

[vll La(o,ty,7y < CllzellLe + Cli(@ + 2isV)|u|“ull Lo 0.4y, L7 »
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where C is independent of t. By applying (7.2.9), we obtain

T e O\
[olzscoa.2r) < Clleglin +C( [ IIE? ds) ™ Iollsiom
(7.3.15) -
ro( [ as) " el
for every T € [0,t]. One concludes as in Step 1 above. O

7.4. Scattering Theory in the Weighted L? Space

In this section we still assume (7.3.1)-(7.3.2). We show that the scattering
states, the wave operators, and the scattering operators are defined on the space ¥
defined by (6.7.3)—(6.7.4) provided o > oy defined by (6.3.3). The results of this
section are due to Ginibre and Velo [133] for a > 4/N and to Y. Tsutsumi {341] for
@ > ag. In Section 7.5 below, we will obtain a similar result for & = g, but by a
different method using explicitly the pseudoconformal transformation.

THEOREM 7.4.1. Assume (7.3.1)~(7.3.2). Assume further that o > og, where g
is defined by (6.3.3) and let ¥ be the Hilbert space defined by (6.7.3)—(6.7.4). If
¢ € T and if u is the mazimal solution of (4.1.1), then there exist u*,u~ € ¥ such

that

IT(~pu(t) ~ s 72 0.

In addition,

_ 1 1 _
iz = lu~le = lelle and 5 [ 19u¥2 =3 [ 1967 = Bp).
RN RN

PROOF. Let v(t) = T(—t)u(t). We have

o(t) = —m/T ) Jul*u(s)ds

Therefore for 0 <t < 7,

(7.4.1) v(t) —v(T) = ——m/ T(—s)|ul®u(s)ds.
It follows from Strichartz’s estimates that
() — vl = ITO@E — o)l < Clul®llge i)
where (g, r) is the admissible pair such that r = o + 2. Thus,
lo(t) = o(r)llm , == 0

(see the proof of Corollary 7.3.4). Therefore, there exists ut € H*(R") such that
v(t) — ut in H! as t — co. One shows as well that there exists u~ € H(R")
such that v(t) — u~ in H! as ¢t — —oo. Finally, it follows from formulae (7.4.1)

and (2.5.5) that

z(v(t) —v(1)) = —in /t T(=s)(z + 2isV)|u|%u(s)ds.
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By Strichartz’s estimates,
() = v(rDllzz = 1T O)z(v(t) — vz < Cli(z + 2isV)|ul*u|l Lo (1,r),1) »
where (g, r) is the admissible pair such that 7 = o + 2, and so

l=(o(t) = v(r)llzs , = 0

(see the proof of Corollary 7.3.4.) Therefore, z(v(t) —ut) — 0 in L? as t — oo.
One shows as well that z(v(t) —u~) — 0 in L? as t — —oco. The other properties
follow immediately from conservation of charge and energy. [

REMARK 7.4.2. Theorem 7.4.1 means that the mappings U, : ¢ — ut and
U.- : ¢ — u~ are well defined ¥ — %. In fact, one can show with similar estimates
that Uy and U_ are continuous. Note that Uy are nonlinear operators.

REMARK 7.4.3. By Corollary 2.3.6,

+oo
ut = —ip (—8)|ul%u(s)ds.
0

In particular,

+oo
(7.4.2) u(t) = T(t)ut + in/ T(t — s)|ul|®u(s)ds for all t € R.
t

We now construct the wave operators §24 that are the inverses of the opera-
tors Uy.

THEOREM 7.4.4. Assume (7.3.1)-(7.3.2). Assume further that o > ag, where og
is defined by (6.3.3), and let ¥ be the Hilbert space defined by (6.7.3)-(6.7.4).

(i) For every ut € X, there exists a unique ¢ € ¥ such that the mazimal
solution u € C(R, HY(RY)) of (4.1.1) satisfies || T(=t)u(t) — ut|s — 0 as

t — +o0o.
(ii) For every u~ € X, there erists a unique ¢ € ¥ such that the mazimal
solution u € C(R, HY(R™)) of (4.1.1) satisfies |T(—t)u(t) —u " |jz — 0 as

t — —o0.
Proor. We prove (i), the proof of (ii) being similar. The idea of the proof is to
solve equation (7.4.2) by a fixed-point argument. To that end, we introduce the
functions w(t) = T(¢)ut and 2(¢) = (z + 2itV)w(t, z). Let (g,7) be the admissible
pair such that r = a + 2. It follows from Strichartz’s estimates and Corollary 2.5.4
that w € LY(R, W (RY)), z € LY(R, L"(RY)), and that ||w(t)||z- < C|t|~?%/9. Let

2
(7.4.3) K = llwllzommwrny + lzllomor) + sup e ()] or-

Given S > 0, set
I=(500),
and let
E={ueL'I,W"R"Y)): (z+2itV)u(t,z) € LI,L"(R")) and

. 2
flullLocr,wrry + (@ + 26tV )u() | Loz,1m) + Stlell; [t flu(t)lL- < 2K}
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and
d(u,v) = ||lv —uf e,y foru,vekE.
It is easily checked that (E,d) is a complete metric space. Given u € E,
gl < Clu@®lg-lu@lws < CRE) ™ ut)ws.

and so by Holder’s inequality,

9=2

af [F 2,0\
1900l 1 ety < C(2K) ( [ d) el oz i
< C(QK)a-HSl—qu"z ,

since 2a > q — 2. It then follows from Corollary 2.3.6 that J(u) defined by

(7.4.4) T(W)(t) = —i /t " (- s)g(u(s))ds
makes sense, that

(7.4.5) J(w) € C([S,00), H}RM)) n LI, WE"(RM)),
and that

(7.4.6) 1T @) ez < g for S large enough.

Furthermore,
(z + 2itV) T (u)(t) = —i /oo T(t - s)[(z +2isV)g(u(s))]ds,

by formula (2.5.5). Since
lI(z + 2isV)g(u(s))ll 1~ < Cllu(s)IE-lI(z + 2isV)uls)]iLr

by (7.2.9), one concludes as above that

(7.4.7) (z + 2itV)J (u) € C([S, 00), LARM)) n LI, L™(RY)),
and that
(7.4.8) [z + 2itV)T (u)llLeqr,ory < —I3£ for S large enough.

Finally, it follows from (2.2.4) that

2(etl) 2
e t 9

1T (@) (@)l < ’7/ [t — 5|75 [lu(s)[| 5 ds < C(2K)° 18"
¢
since 2(a + 1) > g. Therefore for S large enough,
2 K
(7.4.9) sup {t7 || T (u)()||z- : t € [S,00)} < 5

Applying (7.4.3), (7.4.6), (7.4.8), and (7.4.9), we deduce that A defined by
A(u)(t) = T(t)uy + T (u)(t),

Y
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maps F to itself if S is large enough. One easily verifies with similar estimates that
if S is large enough, then

(7.4.10) d(A(w), A(v)) < %d(u,v) for all u,v € E.

Applying Banach’s fixed-point theorem, we deduce that A has a fixed point v € E
that satisfies equation (7.4.2) on [S, c0). It follows from (7.4.5), (7.4.7), Strichartz’s
estimates, and Corollary 2.5.4 that u € C([S, c0), H'(RV)) and that (x + 2itV)u €
C([S, o0), L*(RY)). In particular, ¢ = u(S) € I. Note also that

u(t+ 8) = Ty + i / "5t — $)g(us + S))ds.
0

Therefore, u is the solution of the problem
{ iug + Au+g(u) =0
u(S) = 1.

Note that, by Remark 6.8.1, the solution u is global. In particular, u(0) is well
defined, and by Proposition 6.5.1, u(0) € X. It follows from equation (7.4.2) that

T(—t)u(t) —ut = —i /too T(s)g(u(s))ds.

Since u € E, it is not difficult to show with the above estimates that | J(—t)u(t) —
ut|lz — 0 as t — co. Therefore, ¢ = u(0) satisfies the conclusions of the theorem.

It remains to show uniqueness. Let ¢j,p9 € ¥, let u; and ug be the corre-
sponding solutions of (4.1.1), and assume that || J(—¢t)u;(t) — ut||ys — 0ast — oo
for j = 1,2. It follows from Remark 7.4.3 that u; is a solution of (7.4.2). Further-
more, it follows from Theorem 7.3.1 and Corollary 7.3.4 that u; € LY(R, W1 (R")),
(x 4 2itV)u; € LY(R, L™(RY)), and that [t|2/9]|u;(t)||L- is bounded. In a similar
way to the proof of (7.4.10), one obtains that ui(t) = uy(t) for t sufficiently large.
By uniqueness for the Cauchy problem at finite time, we conclude that ¢; = . O

REMARK 7.4.5. It follows from Theorem 7.4.4 that the wave operators €, :
ut — ¢ and Q_ : u~ — @ are well-defined ¥ — X. In fact, one can show with
similar estimates that {; and 2_ are continuous. By Theorems 7.4.1 and 7.4.4,
Urly = Q Uy = I on X, where Uy is defined by Remark 7.4.2. In particular,
Q4 : ¥ — ¥ is one-to-one with continuous inverse (1)1 = Uy.

THEOREM 7.4.6. Assume (7.3.1)~(7.3.2). Assume further that o > ag, where ag
is defined by (6.3.3), and let ¥ be the Hilbert space defined by (6.7.3)—(6.7.4). For
every u~ € X, there exists a unique ut € T with the following property. There
exists (@ unique) ¢ € ¥ such that the mazimal solution v € C(R,X) of (4.1.1)
satisfies T(—t)u(t) — u* in T ast — +oo. The scattering operator

S: L > X mapping u” —ut
is continuous, one-to-one, and its inverse is continuous ¥ — X. In addition,

lutllze = u™llz2 and [Vut||2 = |Vu™ |2 for every u™ € 2.

ProOF. The result follows from Theorems 7.4.1 and 7.4.4 and Remark 7.4.5, by
setting S = U, Q_. Note that S™! = U_Q,. O
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REMARK 7.4.7.  Since T(t) is an isometry of H'(R"), the property ||T(—t)u(t) —
u®| g1 — 0 is equivalent to |[|u(t) — T(t)u|[z1 — 0. In general, it is not known
whether the property || T(—t)u(t)—u*||z — 0is equivalent to |ju(t) T (t)ut |z — 0.
On this question, see Bégout [18].

7.5. Applications of the Pseudoconformal Transformation

In this section we consider equation (4.1.1) in the model case

(7.5.1) g{u) = Aju|%u,
where
(7.5.2) AeR, O<ax O<a<owif N=1).

N -2

We complete the results of the preceding section by using the pseudoconformal
transformation. More precisely, we apply the pseudoconformal transformation
(6.7.6) with b < 0, and we suppose for convenience that b = —1. Moreover, through-
out this section we systematically consider the variables (s,y) € R x RY defined by

t x . S Y
=——, y=-—, or lently, ¢=  z= ,
s=7_7» Y=7—7 On equivalently s *T 11
Given 0 < a < b € oo and u defined on (a,b) x RV, we set
t . _|zi?
(7.5.3) v(t,z) = (1 —t)—%u(l—t,.lf?%-uu-w

for z € RV and T4 <t< ﬁ In particular, if u is defined on (0, c0), then v is

defined on (0,1). Transformation (7.5.3) can also be written, using the variables
(s,y), as

(7.5.4) v{t,z) = (1 + s)%u(s,y)e_iﬂiif_s? .

One easily verifies that u € C([a, 8], X) if and only if v € C([15, ﬁg],}:) (0<a<
b < oo are given), where the space ¥ is.defined by (6.7.3)-(6.7.4).

Furthermore, a straightforward calculation (see Theorem 6.7.1) shows that u
satisfies (4.1.1) on (a,b) if and only if v satisfies the equation

Na-—4

(7.5.5) g+ Av+A1—-t)" 2 ||t =0

on the interval (735, l—fl’_—b). Note that the term (1—t) A5 g regular, except possibly

at t = 1, where it is singular for & < 4/N. Furthermore, the following identities
hold (see (6.7.11)—(6.7.13)):

(7.5.6) lo®IFF% = (1+5)F lu(s)05E, 620,
(757) Vo032 = 3+ 201 + ) V)u(s) 2z
(7.5.8) IVu(s)]2s = %H(x —2%(1 — V)0 (t)| % .

It follows from (7.5.6) and conservation of charge for (4.1.1) that

(7.5.9) %Hv(t)“m = 0.
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Moreover, if we set

1 Noa-4 )\ a
Ey(t) = 5”‘70(73)”%2 —(1-1t)"> a—_}‘:‘é”")(t)nl,:fz ,

By(t) = (1—t)*F

= (1= VOl - 5 I,
Bs(®) = 3@~ 2001 - )OI ~ (1~ F o5
it follows that
510 SE@=-0-9F I st
(7.511) %&o u—N””“ 2o,
(7.5.12) EE;:,( ) =

Indeed, (7.5.10) and (7.5.11) are equivalent, and both are equivalent to the pseu-
doconformal conservation law for u, by (7.5.6) and (7.5.7). Similarly, the iden-
tity (7.5.12) is equivalent to the conservation of energy for u, by using (7.5.6)
and (7.5.8).

The results that we present in this section are based on the following observa-
tion.

PROPOSITION 7.5.1. Assume (7.5.1)-(7.5.2) and let £ be defined by equations
(6 7.3)~(6.7.4). Let u € C([0,00),X) be a solution of equation (4.1.1) and let v €

C([0,1),X) be the corresponding solution of (7.5.5) defined by (7.5.3). It follows
that J(—s ) (s) has a strong limit in T (respectively, in L*(R")) as s — oo if and
only if v(t) has a strong limit in ¥ (respectively, in L2(RN)) ast T 1, in which case

|2
(7.5.13) slirgofl’(——s)u(s) = e’t_J_‘.T(—l)v(l) inY  (respectively, in L*(RY)).

PRrROOF. We define the dilation Dg, 8 > 0, by Dgu(z) = 8% u(Bz) and the mul-

L.a|T 2
tiplier M,, ¢ € R, by Meu(z) = € £3 u(x). With this notation, and using the

explicit kernel

T(t)u =

1 fo -y
—r [ uwa,
(4mit) = s

elementary calculations show that

(7.5.14) T(1)Dp = DT (B#*r) forallT € Rand 8 >0,
and that
r
(7.5.15) T(r)Me =M _=_ Dﬁﬂ’(l n 07) forall T,oc e R

such that 1 + o7 > 0. We note that by (7.5.3),

v(t) :M_il_tD_l_’u(l t

11—t

t) for0<t <1.
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Therefore, we deduce from (7.5.14) and (7.5.15) that

F(—t)o(t) = M_13’<—%)u(%> for all ¢ € [0, 1),

which we rewrite in the form

T(—s)u(s) = ef"izv(—lis%(l 2 S) .

Hence the result is established. O

The following result implies that if & < 2/N, then no scattering theory can
be developed for equation (4.1.1) (see Barab [17], Strauss [322, 325], and Tsutsumi
and Yajima [348]).

THEOREM 7.5.2. Assume (7.5.1)~(7.5.2) and let T be defined by (6.7.3)—(6.7.4).
Assume further

2
a< = (@<1iN=1).
Let ¢ € T and let u € C(R,X) be the corresponding solution of (4.1.1). If ¢ # 0,
then T(—t)u(t) does mot have any strong limit in L*(RN) as either t — oo or

t — —oo. In other words, no nontrivial solution of (4.1.1) has scattering states,
even for the L2(RY) topology.

ProoF. We consider the case ¢ — oo, the argument for t — —oo being the
same. We argue by contradiction and we assume J(—t)u(t) oo Ut in L2(RY). In
ade )

particular,
lutllzz = fu®)llzz = llelliz2 > 0.
On the other hand, we deduce from (7.5.13) that v(t) prdl in L2(R") with

w= T(l)(e"ilz‘l_lzm_) #0.

Since a + 1 < 2, we have

()| () lw|*w #0 in L (RY).

Let 8 € D(RY) be such that
(7.5.16) (tlw|®w,8) =1.
It follows from (7.5.5) that

d Na-4

-(E(v(t),e) = (1Av,0) + A(1 - t)

(ilv|v, 6)

Na-4
2

= (iv, AG) + M1 —t) (t|v|%v, 6) .
Therefore, by (7.5.16), and since v is bounded in LZ(R™),

No-—4

‘—j-t-( —C forl-e<t<1,e>0small enough.

Since (Na — 4)/2 < —1, it follows that |(v(t),8)| — oo as t T 1, which is absurd. [J

OOWIES NEEP
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REMARK 7.5.3. In the case N = 1 and 1 < a < 2, we have the following
result. Let ¢ € ¥ and let u € C(R,E) be the corresponding solution of (4.1.1)
with g(u) = Mu|*u. If ¢ # 0, then T(—t)u(t) does not have any strong limit in ©
as either t — oo or t — —o00. The proof is similar. One needs only observe that,
since v(t) is bounded in £ (hence in H*(R)), v(t) — w as t T 1 in LP(R) for every
2 < p < oo, and so |v(t)|v(t) — |w|*w as t T 1 in L3(R).

If @ > 2/N and if A <0, then every solution in ¥ of (4.1.1) with g(u) = Au|*u
has scattering states in LZ(R"), as the following result shows (see Tsutsumi and
Yajima [348]).

THEOREM 7.5.4. Assume (7.5.1)~(7.5.2) and let I be defined by (6.7.3)—(6.7.4).
Let ¢ € £ and let u € C(R,X) be the corresponding solution of (4.1.1). If A <0,
then there exist u+ € L*(RYN) such that

T(~tyu(t) — uy in L*(RYN).

t—£o00

REMARK 7.5.5. Here are some comments on Theorem 7.5.4.

(i) If @ > ap, then it follows from Theorem 7.4.1 that u; € X and that the
convergence holds in £. The same conclusion holds in some other situations:
if @ = ag, see Theorem 7.5.11; if & > 4/(N+2) (a > 2if N = 1) and if |jo||s
is small enough, see Theorem 7.5.7. On the other hand, if a < 4/(N + 2),
or if a < ap and ||¢|ls is large, then we do not know whether uy € T.

(if) Theorem 7.5.4 does not apply to the case A > 0. In fact, if @ < 4/(N +2),
there are arbitrarily small initial values ¢ € ¥ that do not have a scattering
state, even in the sense of L?(R™). To see this, let ¢ € T be a nontrivial
solution of the equation

—Ap + ¢ = Ap|%p

(see Chapter 8). Given w > 0, set ¢, (z) = w=p(z/w). It follows that
~Ap, + wpy = Mgu|*p.. Therefore, u,(t, ) = ey, (z) satisfies (4.1.1)
and T(—t)u,(t) = e™*T(—t)y, does not have any strong limit as t — oo
in L2(RY). On the other hand, one easily verifies that if o < 4/(N + 2),
then |luy ||z — 0 as w | 0. However, we will see below (Theorem 7.5.7) that
if @ > 4/(N + 2), then small initial values in ¥ have scattering states in &
at too.

PRroOOF OF THEOREM 7.5.4. By Proposition 7.5.1, we need only show that v(t)
has a strong limit in L?(R") as ¢t 1 1. As observed above (Remark 7.5.5), there
is a better result when a > ag. Therefore, we may assume that a < ag, and in
particular @ < 4/N. Therefore, it follows from (7.5.9) and (7.5.11) that

(7.5.17) o)l < C,
(7.5.18) o)L+ < C,
(7.5.19) [Vo(t)llze < C(1 —1t)

Na-4
4
¥
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for all t € [0,1). By using the embeddings L%(RN) — H-YRN) — H2(RM)
and equation (7.5.5), we obtain

vell -2 < |02 + C(1 — )5
< Clollps +C(1 - 1) ™5

| g2
o+l

Therefore,

lerllg-= < €+ 01 -5,
by (7.5.17) and (7.5.18). It follows that v, € L!((0,1), H~2(R")). Hence, there
exists w € H™2(RY) such that v(t) — w in H72(RV) as ¢ 1 1. By using (7.5.17)
again, we obtain that w € L2(RV) and

(7.5.20) v(t) ~w in L*(RN) ast11.
Consider now ¢ € HY(RV), and let 0 < ¢ < 7 < 1. We deduce from (7.5.5) that
(v(r) = v(6), )iz = [ (00 )-sam ds
t
. ; — o
= /t (iVv, V)2 ds +/t (1 s) (z)\lv| V1Y) a L5 Lo ds,

and so
I(w(r) = v(8), ¥) 1] < CIVH 1z / Vol ds

a+1

& Ol o / K

< 0|Vl / (1— )25 / (1— )" ds,
t t

by (7.5.19) and (7.5.18). Letting 7 T 1 and applying (7.5.20), we obtain

1 Na— 1 Na—4
[(w — v(t), ) 12| < CV] s / (1-5)"s / (1— 5)™* ds
<Cc(- t) ||V1/J||Lz +C(1 - t)

We now let ¢ = v(t) and we apply again (7.5.19) and (7.5.18). It follows that

l(w — v(8), v(t)) 2] < C(L - )" (1 - ) 5F" + O(
(7.5.21) < C(l —t) No-2 _t_T_{ 0.
Finally,

() = wlZe = —(w = v(t),v(t)) L2 + (w ~ v(t), w) 2 prodl
by (7.5.21) and (7.5.20). This completes the proof. O

Besides the fact that Theorem 7.5.4 does not apply to the case A > 0, neither
does it allow us to construct the wave and scattering operators, since the initial value

'cp and the scattering states u+ do not belong to the same space. We will improve

this result under more restrictive assumptions on « by solving the initial-value
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problem for the nonautonomous equation (7.5.5) and by applying Proposition 7.5.1
which relates the behavior of © at infinity and the behavior of v at ¢ = 1.

However, we want to solve the Cauchy problem for (7.5.5) starting from any
time t € [0,1], including ¢t = 1 where the nonautonomous term might be singular.
In order to do this, define the function

No~—

Al —1t) = f —co<t<]
7.5.22 t)=¢
(7.5.22) f(®) {A fiot

and consider the equation
(7.5.23) g + Au + f(t)|v|*v =0.

Under appropriate assumptions on a, the initial-value problem for (7.5.23) can be
solved starting from any time ¢ € R, and we have the following result.

THEOREM 7.5.6. Assume (7.5.1)—(7.5.2) and let T be defined by (6.7.3)—(6.7.4).
Assume further that

(7.5.24) o> (a>2if N=1).

4
N+2
It follows that for every to € R and ¢ € L, there exist Try(to, ) < to < Tm(to,¥)
and a unique, mazimal solution v € C((Tr,Tm),X) of equation (7.5.23). The
solution v is mazimal in the sense that if Tar < 0o (respectively, T,, > —00), then
lu(®)l|z: — oo ast T Ty (respectively, t | Trn). In addition, the solution v has the
following properties.

(i) IfTar =1, thenliminfy1 {(1—t)%|lv(¢)lpn} > O with 6 = 21 jf N > 3,
6<1-LifN=2andé=4-L14f N=1

(ii) The solution v depends continuously on v in the following way. The mapping
W — Ty is lower semicontinuous & — (0,00], and the mapping ¢ — T,
is upper semicontinuous X — [~00,0). In addition, if ¥, — ¥ in ¥ as
n — oo and if [S,T) € (Ton,Tnm), then v, — v in C([S,T},X), where vy,
denotes the solution of (7.5.23) with initial value yn,.

PROOF. The result follows by applying Theorems 4.11.1 and 4.11.2 with A(¢)
f(t —to).

On

We now give some applications of Theorem 7.5.6 to the scattering theory in ¥
for (4.1.1).

THEOREM 7.5.7. Assume (7.5.1)~(7.5.2) and (7.5.24). Let ¥ be the space de-
fined by (6.7.3)—(6.7.4). With the notation of Section 7.1 (corresponding to the ¥
topology), the following properties hold:

(i) The sets Ry and Uy are open subsets of L containing 0. The operators
Uy : Ry — Uy are bicontinuous bijections (for the ¥ topology) and the
operators Q4 : Ux — R4 are bicontinuous bijections (for the X topology).

(i) The sets Oy are open subsets of & containing 0, and the scattering operator
S is a bicontinuous bijection O_ — O (for the X topology).
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REMARK 7.5.8. Theorem 7.5.7 implies that there is a “low energy” scattering
theory (i.e., scattering theory for small initial data) in ¥ for the equation (4.1.1)
with g(u) = A|u|*u, provided 4/(N +2) <a<4/(N-2) (2<a<oo,if N=1).
As observed before (see Remark 7.5.5), if o < 4/(N + 2) and A > 0, then there is
no low energy scattering.

" PROOF OF THEOREM 7.5.7. Let ¢ € ¥ and let u be the corresponding so-

lution of (4.1.1) with g(u) = Aju|*u. Let v be the solution of (7.5.5) with the
2

initial value v defined by ¢(z) = go(w)e_il%L‘ (see Theorem 7.5.6). The solution
v is defined by (7.5.4), as long as (7.5.4) makes sense. Therefore, it follows from
Proposition 7.5.1 and Theorem 7.5.6 that ¢ € Ry if and only if Ty (0,v) > 1, and

.z 2
that in this case uy = 6’1'4]‘3’(—1)'0(1). Therefore, the open character of R, and
the continuity of the operator U, follow from the continuous dependence of v on
1 (property (ii) of Theorem 7.5.6).
RE 4 2
Let now y € X, and set w = J(1)(e , so that y = e""zl"‘.T(—l)w. It
follows from Proposition 7.5.1 and Theorem 7.5.6 that y = U, for some ¢ € T

"'%ﬁy)

(ie., y € Uy) if and only if Trp(1,w) < 0. In this case, ¢ = eill‘aﬁz(O), where
z is the solution of (7.5.5) with the initial value z(1) = w. Thus ¢ is uniquely
determined and the operator U, is injective. Furthermore, the open character of
U, and the continuity of the operator 2 = (U,)~! follow as above from the
continuous dependence of z on w.

As observed in Remark 7.1.3, the similar statements for R_, U_, U_, and Q_
are equivalent, by changing ¢t to —t and u(t) to @(—t). Therefore, we have proved
part (i) of the theorem. Part (ii) now follows from part (i) and the definitions of
O+ and 8 (formulae (7.1.8) and (7.1.9)). 0

We now establish further properties of the wave operators 2.

THEOREM 7.5.9. Assume (7.5.1)—(7.5.2) and (7.5.24). Let * be the space de-
fined by (6.7.3)-(6.7.4). With the notation of Section 7.1 (corresponding to the &
topology), the following properties hold:

(i) If A <0, then U+ = Z. Therefore, the wave operators Q1 are bicontinuous
bijections T — Ry.

(ii) If A >0 and a < 4/N, then Uy = 3. Therefore, the wave operators Q4 are
bicontinuous bijections ¥ — R..

PrOOF. Assume A < 0, or A > 0 and oo < 4/N. Let w € X, and let z be the
solution of (7.5.5) with the initial value z(1) = w. By Theorem 7.5.6, z is defined
on some interval [1 —&,1] with € > 0. Set
. £ 2
o(y) = e%ez%z(l —g,eY) €X.

Let u be the solution of equation (4.1.1) with the initial value

(7.5.25) u(l ~ 5) =¢.

£

‘Since A < 0, or A > 0 and a < 4/N, we obtain that u is global. Therefore, we may

define ¢ = u(0). We claim that ¢ € R, and that uy = eiﬁ‘lﬁﬂ'(—l)w‘ Indeed,
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consider v defined by (7.5.4). We see by applying (7.5.4) with ¢ = 1 —¢ and (7.5.25)
that

v(l—¢)=2(1-¢),
so that by uniqueness v = z, and so the claim follows from Proposition 7.5.1. This
completes the proof. 0O

We now study the asymptotic completeness. We first recover the results of
Section 7.4, with a different proof, though.

THEOREM 7.5.10. Assume (7.5.1)~7.5.2) and let T be defined by (6.7.3)~(6.7.4).
If A <0 and a > ap with ag defined by (6.3.3), then Uy = Ry = . In particular,
Us, Q4, and S are bicontinuous bijections ¥ — L. Here, we use the notation of
Section 7.1 (corresponding to the ¥ topology).

ProoF. By Theorem 7.5.9 and Remark 7.1.3, we need only show that Ry = .
Let v € %, let u be the solution of (4.1.1), and let v be defined by (7.5.4). If
a > 4/N, then it follows from (7.5.10) that E;(t) is nonincreasing, which implies
that [|Vu(t)| 2 is bounded as t T 1. Since [Juv(t)l|z2 is also bounded by (7.5.9), we
deduce that Jjv(t)||g: is bounded as t T 1. By Theorem 7.5.6, this implies that v(t)
has a limit as ¢ T 1, and so ¢ € R by Proposition 7.5.1. We now assume o < 4/N.
It follows from (7.5.11) that ||v(t)||pe+2 remains bounded as ¢t 1 1. Set r = a + 2,
and let (g,7) be the corresponding admissible pair. Given 0 < tg <t < 1, it follows
from equation (7.5.23) and Strichartz’s estimates that

(7.5.26)  |[vl| Lo ((to,8), 1) F+ 0l La((to, 0, Wiy <
Cllu(to) g + C[|f|vlaUHLq’((to,g),wl,r')-

Since
IW*vllwir < CllvllZes2llvliwir < Cllvflwar,
we deduce from Holder’s inequality that

”f|'U|a'U||Lq'((to,t),wlsr’) < CHf“LTZT(tO t)“U“Lq((to,t),Wim) .

Since o > aq, f € LTfE’f(O, 1). Therefore, if we choose tg sufficiently close to 1 so
that C||f[|Lq_17(t D < 1/2, then we deduce from (7.5.26) that
05

||'U“Loc((t0,t),H1) + ”'U“Lq((to,t))wl,r) < QC”’U(tO)Hyl forall tg <t < 1.

Therefore, v remains bounded in H(RV) as ¢ T 1, and one concludes as above. [J

Finally, we extend the asymptotic completeness result to the case a = ag (see
Cazenave and Weissler [72]).

THEOREM 7.5.11. Assume N =1 or N > 3, let T be defined by (6.7.3)—(6.7.4),
and let o be defined by (6.3.3). If g(u) = AMu|*u with A < 0 and a = ay, then
Uy = Rqy = Z. In particular, Uy, Q.i, and S are bicontinuous bijections & — 2.
Here, we use the notation of Section 7.1 (corresponding to the ¥ topology).

Proor. By Theorem 7.5.9 and Remark 7.1.3, we need only show that R, = X.
Let ¢ € T, let u € C(R,XZ) be the solution of (4.1.1) with g(u) = Au|*u, and let v
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be defined by (7.5.4). Note that, since u is defined on [0, %), v is defined on [0, 1).
By Proposition 7.5.1, ¢ € R4 if v(f) has a limit in X as t T 1. Therefore, in view
of Theorem 7.5.6, we need only show that

(7.5.27) sup [|v(t)|lgr < oo.
t€(0,1)

We argue by contradiction and we assume that (7.5.27) does not hold; i.e.,

(7.5.28) limsup ||v(t)||g: = .
111

We consider separately the cases N > 3 and N = 1.
CASE N > 3. By (7.5.28) and property (i) of Theorem 7.5.6,

a

2
IVu@)liz: = W_;_z__‘%‘

for some constant a > 0 and all t € [0,1). By applying (7.5.11), we obtain

d b
- < -
th2(t) = (1 ——t) N<12-2+Nziz_%

for some constant b > 0. Since a = ayp, the above inequality means

d b

—F(t) € ———

a2 < (1-¢)°

which implies that E5(t) prodials This is absurd, since E5(t) > 0. This completes
the proof in the case N > 3.

CASE N = 1. The argument is the same as above, except that we first need to
improve the lower estimate of the blowup given by property (i) of Theorem 7.5.6.
We claim that

a
(7.5.29) lv@)llar > 1 pegEm

for some constant @ > 0 and all ¢ € [0,1). Indeed, note first that by (7.5.11),

d
— <
() <0,

and so

sup |lv()||pa+z < 0.
t€[0,1)

Fix to € [0,1). It follows from equation (7.5.23) and Strichartz’s estimates that

vl o (20,0, 181 < Cllv(to)llmr + Cllf vl vl L1((so,8), 1)  for all ¢ € (2o, 1).

On the other hand,
lvl*vllgr < Cllvl|Zes 1ol a
and, by Gagliardo-Nirenberg’s inequality,

at2
ol < Clivllga*lloll a3 -
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Therefore, we deduce from the above four inequalities that there exists a constant
K independent of tg and ¢ such that

[Vl Lo (k089,51

(7.5.30) lvllLo=((to,t), 11y < Klvto)llmr + K[| FllL1 (to,t)

Now, by (7.5.28), there exists t; € (to,1) such that ||v|pe((to,t0),51) = (K +
1)|lv(to)|| g1 - Letting t = ¢; in (7.5.30), we obtain

Satd
lo(to)lle < K (K + Dllv(to)llgr) = fllztto,e0) »
hence sess
1< K(K+1)=+ ”U(tO)“H14||f“L1(to,t1)

Since || f]| 21 o, t1) < fllzrony < C(A —t0)*F 2, we obtain (7.5.29). We now con-
clude exactly as in the case N > 3. This completes the proof. a

REMARK 7.5.12. Here are some comments concerning Theorem 7.5.11.
(i) The conclusion of Theorem 7.5.11 holds in the case N = 2, but the result
was established by a different method. See Nakanishi and Ozawa [263].

(i) If 4/(N + 2) < a < ag, then we do not know whether R, = R_ = 5.
Showing this property amounts to showing that no solution of (7.5.5) can
blow up at t = 1.

REMARK 7.5.13.  Ginibre and Velo [130] extended the construction of the wave
operators (Theorem 7.5.7) to a wider range of a’s by working in the space H*(R™)N
F(H*(RY)), where 0 < s < 2. The lower bound on a for that method is given by

a>max<s—1 4 2
"N+2s'N|[°
If N < 3, one obtains the lower bound a > 2/N by letting s = 3/2. If N > 4, there
is still a gap between the admissible values of o and the lower bound a > 2/N for

the scattering theory given by Theorem 7.5.2. See also Nakanishi and Ozawa [263]
for related results.

7.6. Morawetz’s Estimate

This section is devoted to the proof of Morawetz’s estimate, which is essen-
tial for constructing the scattering operator on the energy space. See Lin and
Strauss [230], and Ginibre and Velo [137, 138, 143]. We begin with the following
generalized Sobolev’s estimates.

LEMMA 7.6.1. Letl <p< . Ifqg < N is such that 0 < g < p, then _ﬂ_[u('.zv’ e
LY(RN) for every u € WYP(RYN). Furthermore,

p q
(7.6.) / MO g < (52 ) Il 19ully o cvery u e WH(RY).

ProoF. By density and Fatou’s lemma, we need only establish (7.6.1) for u €
D(RYN). Let z(z) = |z|~9%2. We have V-2 = (N — ¢)|z|~9. Integrating the formula

WPV -z =V (julz) — pluf"~' Viul
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over the set {z € R";|z| > r > 0}, we obtain that

_ |u(z)? |u(@)[P~* [Vu(z)|
(7.6.2) (N —q) /{MM} ] dz Sp/{lzbr} B dr.

Applying Holder’s inequality, it follows that

) @) R@P NGy
W q)/{m»} oo Sp</{|xl>r} |z|e d> ellzz 1Veler

Since r > 0 is arbitrary, (7.6.1) follows. O

COROLLARY 7.6.2. If N > 4, then Ii‘l%%ﬁ € L*(RN) for every u € H*(RYV).
Furthermore, there exists C such that

2
(7.6.3) / '“I(ji' dz < Cllull%.  for every u € HA(RV).
]RN

PROOF. Note that it suffices to establish (7.6.3) for u € D(R"). Applying (7.6.2)
with g = 3 and p = 2, we obtain

) @, ju(z)| [Vu@)|
o 3)/{l$,>r} Eic Sz/ﬂx]»} ERC

: 2(-/{|:t[>r} I-%‘:%]% dx>% </{|z|>r} % dx) % '

Applying (7.6.1) with p = g = 2 to both » and Vu, we obtain

2
UL
(V- 3) @ 47 < Ol [Vullar < Clulb
{ai>ry 12l
The result follows by letting r | 0. O

We now assume that N > 3, and we consider
g(u) = Vu+ f(u(-)) + (W [u*)u,

where V, f, and W are as follows. The potential V' is real valued such that V,VV ¢
LP(RM) 4+ L*°(RY) for some p > N/2. The function f : [0,00) — R is continuous
and f(0) = 0. We assume that there exist constants C and « € [0, 525 ) such that

If(v) — flu)] < CA+ |[u|®* + |%)|v—u| forall u,v eR,
and we extend f to C by setting

flz)= Ii_lf([Zl) forallz¢€ C, 2 #0.

We set I
z
F(z) = f(s)ds forallzeC.
0
Finally, W : RN — R is an even, real-valued potential such that W, VW € Lq(RN )+

L®(R™) for some ¢ > 1, ¢ > N/4.
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We know (see Section 3.3) that g is the gradient of the potential G defined by

6tw) = [ {3V @M@ + Faue) + 107 s WP  de.
RN

—

Finally, we set

E(u) = % / |Vu(z)?dz — G(u) for all w e HY(RN).
]RN

For u € HY(RY), we set
(764)  hw) = 2ilul + SR @) ~ m ) + 2P L (W ul?)
2 2r 2 |z ’

If u is such that h(u) € L*(RY), we set

(7.6.5) H(u) = /h(u)dm.

RN

We will use the following estimate.

LEMMA 7.6.3. Let N > 3, let g be as above, and set p = max{c + 2,2—;—3—1}. If

h and H are defined by (7.6.4) and (7.6.5), then h(u) € LY(RY) for every u €
HYRN)NWLP(RN). Furthermore, there exists C such that

|H(v) = H(uw)| < C(1+ flullm + Jvfiz)**?

(7.6.6) x (lullgr + Jullwre + vl g + lvllwre v — ullg:

for all u,v € HYRN) n WhHe(RN).

PROOF. Let us write V, = Vi + Va, where V; € LT (RV) and V € L®(RN);
VW = Z; + Z,, where Z; € LYR”") and Z; € L®(RM); and f = f1 + fa, where
f1 is globally Lipschitz continuous and |fo(v) — fa(u)| < C(|u| + |v])*|v — u| for all
u,v € C. Set

¢i(u)=|u|21—i—l-(Zi*]u|2) and wi(u)=%{2m(u)—afi(u)} fori—1,2.

Consider u,v € D(RY). We have
/ Vilhl? — )] < / Val(le] + ful)lo - ul
RN RN

< CIVall (o1l gy + Nl gy )llo — g,
< Cllullen + vlla)llv — wllwn.
Also,

/ Va(lol?® ~ )] < Clullze + ollze)llo - ulzz
RN
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Finally,
/twl(v wlu)|<c/‘”'+'“'| ul

a+1
/lwz | o [Py,
RN

Applying H(’)‘lder s inequality and (7.6.1), we deduce that

/ [2(v) — tp2(u)]
]RN

C(llvllza+a + llullLet2)*(IVOl Lt + VUl pos2)llv — ull Lot
CQ + flull g + ol ) 2l + Hullwee + ol + llvllwee)llv = ullgs -

and

<
<

Also,
/ [1(v) — ¥1(w)| < C(IVollzz + [[VullL2)llv — uf 22 .
N
One obtains the same inequalities for ¢; and ¢, by applying Young’s and Hoélder’s

inequalities. Therefore, (7.6.6) holds for all u,v € D(RY). The result now follows
easily by density. O

‘We are now in a position to state and prove the main result of this section.
THEOREM 7.6.4. (Morawetz’s estimate) Assume N and let g be as in

>3
Lemma 7.6.3. Ifp € HYRY) and if u € C((=Tmins Tmax), HX(RN)) is the mazimal
solution of (4.1.1), then

(7.6.7) / H{u(r))dr < - { wu(t), ur(t))pz — (Guls), ur(s)) L2}

for all =Tmin < 8 <t < Tmax, where H(u) is defined by (7.6.5).

REMARK 7.6.5. Note that the inequality (7.6.7) makes sense. Indeed, it follows
from Remark 4.4.3 or Theorem 4.4.6 that u € LI((s,t), W™ (RY)) for every ad-

missible pair (g,7). Applying Lemma 7.6.3, we deduce easily that H(u) € L(s,t).

PROOF OF THEOREM 7.6.4. We proceed in two steps.

STEP 1.  (7.6.7) holds, when ¢ € H?(R™). Note that by Remark 5.3.3,
u € C((=Tmins Tmax)s H2(RY)) N CH{(~Tmin, Tmax)> L2(RY)). Therefore, the equa-
tion (4.1.1) makes sense in L?(R") and we may multiply it by u, + (N — 1)u/2r €
C((—=Tmins Timax), L2(RY)) (by Lemma 7.6.1). Therefore,

N-1
(7.6.8) (iut + Au+ g(u), ur + Tu> =0 on (~Tmin, Tmax) -
L2

We claim that

, N-1 1d,.
(769) (’L’U/t,ur + or u) Lo = -éa(l’u, ur)L2 .
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Indeed, by density, we need only establish the identity (7.6.9) for smooth functions
u. In this case, it follows from integrating the identity

a N-1_ 1 L 1 T L
Re {zut (ur + o u)} = -Q-Bt Re(ivu,) + —2-V . (; Re(zum)) .

We also claim that

(7.6.10) <Au, U + u) <0.
L2

Again by density, we need only establish (7.6.10) for u € D(R"). Note that in this
case,

Re {Au('ﬂr + N - 1ﬂ>} = V'Re{Vu(ﬁT-{- N lﬂ) - —{[Vu|2}
2r 2r 2r
N-1 .,
+V-< 3 xlu])

1
— VUl ~ fur?} -

(N-DN-3)

4r3 ’
and so
N -1 1
(Au,ur-f- u) =—/—-{|Vu|2——[urlz}—a—b,
2r 12 T
RN
where
orfu(Q)? N=3 [0 B3y o o if N=3
= = - — u .
““Vo if N > 4, —_ R{,T if N> 4.

Note that b is well defined by Corollary 7.6.2. Inequality (7.6.10) follows immedi-
ately. Furthermore,

N-1 1 )
(7611) (Vu, Up + TU>L2 = —§ / V:,-l'u,i .

RN

Also, we need only establish (7.6.11) for u € D(RY). In this case, (7.6.11) follows
from integrating the identity

_  N-1\1_ Viuj? 1 2
Re{Vu(ur+ o u)}-V-(z o )—EVTM.

Note also that

(7.6.12) <f(u),ur N - ) /—{2F u) —uf(u)}.

Note that we need only establish (7.6.12) for u € D(R™). In this case, (7.6.12)
follows from integrating the identity

Re {f(u) (u + iv%ﬁ)} _v. (mff_i)) - %}—1{25’(@ —Tf(u)}.
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Finally, we claim that

(7.6.13) ((W* |ul?)u, ur + —]\%—;—Eu> L = ——% / [u|2-|%l (VW * |u?).
IRN

Also, we need only establish (7.6.13) for u € D(R"). In this case,

Re{(W*|u|2)u<ﬂr+N2;1ﬂ>} =v.(2 (W *|ul )|u|2>———|u|21—| V(W |uf?).

Equation (7.6.13) is obtained by integrating the above equality. We deduce (7.6.7)
from formulae (7.6.8)-(7.6.13).

STEP 2. Let ¢ € HYRV), let u be the corresponding maximal solution
of (4.1.1), and let —Tinin < 8 < t < Tax. Consider a sequence ¢™ € H?(RNM)
such that ¢™ — ¢ is H}(RY). Let u™ be the corresponding solutions of (4.1.1).
It follows from Theorem 3.3.9 that u™ — wu, in C([s,t], H}(R")). Furthermore, it
follows from Remarks 4.4.3 and 4.4.4 that for every admissible pair (g,7), u™ is
bounded in LI((s,t), WL (RY)), uniformly with respect to m. In particular,

(™ ()l (e — (), un(r))z

uniformly on [s,t], and by Lemma 7.6.3,

t

/H @ = [ ().
The result now follows by applying Step 1. O
COROLLARY 7.6.6. Assume N > 3 and let g(u) = —nlu|®u for some n > 0

and 0 < a < 4/(N — 2). For every ¢ € HY(RY), the mazimal solution u €
C(R, HY{(RN)) of (4.1.1) satisfies

+o00 t a+2
(7.6.14) / %ﬁﬂ dz dt < 0o

In addition, u(t) — 0 in HY(RN) as t — *oo.

PRrROOF. It follows from Remark 6.8.1(i) that the solution u is global and bounded
in HY(RY). Applying (7.6.7), we obtain

tor (s, )] T 2 2
/_t / e dzds < C(flu(t)|in + llu(=t)ll3n) < C.
RN

Hence (7.6.14) follows by letting ¢ T co. In order to show the weak convergence to
0, we need to verify that for every ¥ € D(RY), (u(t),%) — 0 as t — *oo. Note
that

. QIS [utt, 2)] )
|<u(t),¢>|sR[|<t>uw|< el |w|<c<[ 2
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and so oo

| w2 < oo.
Finally, u is bounded in H1(R"), and so by the equation, u; is bounded in H~(RN).
We see in particular that the function ¢ — |(u(t),¢}| is (uniformly) Lipschitz con-
tinuous R — R. Hence the result follows. O

REMARK 7.6.7. Theorem 7.6.4 requires N > 3. (If N = 1,2, then singular terms
appear in the proof of (7.6.10).) This is the reason why the scattering theory in the
energy space (the asymptotic completeness part) was developed only for N > 3.
Recently, Nakanishi [259] obtained a substitute for Morawetz’s estimate in any
dimension. More precisely, in the model case g(u) = —nju|*u with n > 0 and
0<a<4/(N-2)(0<a<oifN=1,2),

/ /W<](m+22tV)u|2 770ét2l la+2> <

(N +5)(3 -~
(1 + 5

Ny
Dl + dsup Fu()

in particular,

= t? +2
7.6.15 / / ——|ul*T < 0.
( ) 1 M(up+ﬁﬁ[|

This is obtained by taking the scalar product of the equation with pu + I" - Vu,
where ' )

Dte) = s, pltia) = oy L

Vel + VIEE+8 (|22 +1%)3

Note that (7.6.15) is weaker than (7.6.14) particularly because of the time depen-
dence in the factor of |u|*t2. It is sufficient, however, to deduce the asymptotic
completeness in dimensions N = 1 and N = 2 under the assumption a > 4/N, i.e.,
the analogue to Theorem 7.8.1. See [259]. Note that the proof, however, is much
more delicate than the proof of Theorem 7.8.1.

7.7. Decay of Solutions in the Energy Space

Throughout this section we assume that N > 3. We apply Morawetz’s estimate
to the study of the asymptotic behavior of solutions. For simplicity, we restrict our
attention to the model case

(7.7.1) 9(u) = —nlu|*u,
where
4
(7.7.2) n >0, O<cu<N_2 0<a<wifN=1),

and we refer to Section 7.9 and Ginibre and Velo [137, 138] for more general re-
sults. Note that in this case, Tmin(¢) = Tmax(®) = oo for all ¢ € HY(RY) (see
Remark 6.8.1(i)). Note also that we may apply Corollary 7.6.6. Our main result of
this section is the following.
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THEOREM 7.7.1. Let N > 3 and assume (7.7.1)~(7.7.2). If

4
(773) a > 'N,

then for every ¢ € HY(RY), the mazimal solution v € C(R, H*(RN)) of (4.1.1)
satisfies

2
(7.7.4) flu(@)|l L el 0 forevery2<r< N3

REMARK 7.7.2. The above result is due to Ginibre and Velo [137]. However the
proof that we present below follows closely an idea of Lin and Strauss [230].

ProOOF OF THEOREM 7.7.1.  The proof that we give below does not cover the case
N=3and ac (%, —‘/l_g'—l] (The proof in that case is slightly more complicated,
and the result follows from Theorem 7.9.2 below.) We only consider t > 0, the case
t < 0 being treated similarly. Note that we need only establish (7.7.4) for r = a+2,
since the general case follows immediately from the boundedness of the solution in
H'(RY) and Holder’s inequality. We proceed in several steps.

STEP 1. The estimate

7.7.5 / u(t,z)|®2de — 0
(7.7.5) {I:cIZtlogt}I (t, )| T
holds. Indeed, let M > 0 and let
lelf |z < M
Op(x)y=4 M -
() {1 if 2] > M

so that 0y € WH°(RV) and ||VOu|ir= < 1/M. Thus 6pu € C(R, H*(RY)) and

(tue + Au + g(u), i0pmu) -1, = 0.

d 2
RN

(g(u),i0pmu)g-1, g1 =0,

Note that

N

<Z"U,t, 'I:9M’U;>H—1,H1 =

and

—(Au, i0puyg-1, 541 = (Vu,iVOyu) 2 = (Vu,iuVlnr) e

=—Re/iﬂVu-V0M
RN

glo

1
< @l <
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It follows that
2 Ct 2
O lu(t, z)|"dz < i + [ Bulp|“dx  for every t € R.
RN RN

Letting M = tlogt, we obtain

C
2 2
@) de < ot [ Bropdiol do.
{lz|>tlogt} RN
Applying the dominated convergence theorem to the last term in the right-hand

side of the above estimate, we obtain that

[u(t,z)|?de — 0.

t— 00
{lz>tlog t}
The result now follows from Hélder’s inequality and the boundédness of u in
HYRM).
STEP 2. For every € > 0,t > 1, 7 > 0, there exists ¢y > max{t, 27} such
that

to
(7.7.6) / lu(s,z)|* 2 dxds < €.
7 el<3log )

Indeed, by Morawetz’s estimate (7.6.14),

*® 1
+<>o>‘/1 STogs / |u(s, z)|o*2

{lz|<slog s}
o pt42k+l)r g
> / / lu(s, z)[*F2
,; t+2kT slogs '
{|z|<slog s} R
o

1t
Z) = u(s, )|*+?

T = Yk Jerokr
k=0 {j|<5 log s}

with 1 = (¢ + 2(k + 1)7) log(t + 2(k + 1)7). Since

> 1
g:; (t+20k+ Dr)log(t + 2(k + D7) 7

we see that there exists £ > 0 for which

t+2(k+1)7
/ lu(s,z)[*2 <e.
¢

+2kT
{lz|<slog s}

Hence the result follows with tg =t + 2(k + 1)7.
STEP 3. For every € > 0, a,b > 0, there exists tp > max{a, b} such that

(7.7.7) sup  |lu(s)|lpat+z < €.
s€[to—b,to)
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Consider t > 7 > 0, and write

ut) =T (t)p +1 | - T(t - s)g(u(s))ds + 1 t Tt — s)g(u(s))ds

t—7

(7.7.8)
=o(t) +w(t, 1) + 2(¢, 7).

It follows from Corollary 2.3.7 that

(7.7.9) v(t)]| Lotz — 0.
100

Let now
0 fa>1
p:

2 .
1o fa<1.

Observe that N(% — -11;) = & min{a,1} > 1. Therefore, we deduce from (2.2.4) that

lw(t, T)lLr < /0 .—T(t - s)—N(%'%)Hu(s)l o+l ds

Liet1)p!

< O~ (¥ min{a,1}-1) sup lu(s)5EL, -
Since 2 < (a+1)p’ < %, and since u is bounded in H(RY), there exists C such
that
(7.7.10) lw(t, ™)l < Cr-(Fmin{e1}=1)  for gl ¢ > 7> 0.
On the other hand, note that

w(t, 7) = T(7)u(t —7) - T(t)e,

and so it follows from conservation of charge that
(7.7.11) lw(t, 7)llce < 2z -

Applying (7.7.10), (7.7.11), and Hélder’s inequality, we deduce that there exists K
such that

Na—2max{a,
(7.7.12) lw(t, )| gess < Kr~ w8 forall¢ > 7> 0.

Finally, by (2.2.4),

t
(7.7.13) Izt ) pose < | (t — 8) " TokD Ju(s)|| 25 L, ds.
t

Note that Na < 2(a + 2), and let p € (1, %) 1t follows in particular that
(a+1)p’ > a+ 2. Applying (7.7.13), Hélder’s inequality, and the boundedness of
u in LoT2(RY), we obtain

1

e s < ([ (6= ¥0) % ([ ruenge)”
<Ccrl ( /t; ”u(s)[[%;”i) g
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for some 6, u > 0. In particular, there exists L such that

m
2(t, )| pose < LT"“( sup fus, )] 2 d‘”)
s>t—1
{lz1>5log s}

(7.7.14) .

m
+ L7'5< [u(s, z)|*+? dzds)
T el <5 log s}

It follows from (7.7.9) that there exists ¢; > max{a, b} such that

(7.7.15) () otz < -Z- for t > ¢, .
Next, let 7 > b such that
(7.7.16) lw(t, 7)|| pasz < 2 fort >0,

which exists by (7.7.12). By Step 1, there exists t; > t; such that

fort > ty.

N

m
(7.7.17) LT{‘+‘5< sup / Iu(s,w)|a+2da:> <
>t—1
T a2 0g )

Finally, by Step 2, there exists tg > 5 such that

to 14 e
(7.7.18) er(/ / [u(s, z)|*2 dxds) <3
t

0—271
{lz|<slog s}

Note that [t — 71,t] C [to — 271,t0] for all t € [tg — b,tg]. Therefore, it follows
from (7.7.18) that

t M
(7.7.19) LT{S(/ / lu(s, z)|**? dx ds) < Z )
-b
T lzi<i 108 5)
Applying (7.7.8), (7.7.15), (7.7.16), (7.7.14), (7.7.17), and (7.7.19), we deduce that
lu(t)||La+2 < € for every t € [to — b,to]. Hence the result follows.

STEP 4.  We need to show that for every € > 0, |ju(t)||pe+2 < & for t large.
Let ¢t > 7 > 0. It follows from (7.7.8) and (7.7.12) that

_ No—2max{a,1
(7.7.20) lu(t)||pe+2 < JJv({E) | Lotz + KT Ha+2) + ||z(¢, T) || pate -
Consider € > 0, and let 7. be defined by
_ No—-2max{a,1}
(7.7.21) KR Z .

We deduce from (7.7.9) that there exists ¢; > 0 such that
(7.7.22) [0(8)[|ate < % fort >t;.
Applying (7.7.20), (7.7.21), and (7.7.22), we obtain

(7.7.23) ()| otz < g +||2(t, 7)||pase  fort >t
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Note also that by (2.2.4),

t |
2t 7)otz < / (t — )" T flu(s) |22, ds
(7.7.24) e

1— No
< M7 T gup lu(s)||531:  for every t > 7.

t—7¢,t
By Step 3, there exists tg > max{7.,t;} such that ||u(t)||za+2 < & fort € [to—7e, to).
Therefore, we can define

te = sup{t > to : |lu(s)|jpo+2 < € for all s € [tg — 7,t]}.
Assume that t. < oo. It follows that
(7.7.25) u(te)llLa+e = €.
Applying (7.7.23) and (7.7.24) with ¢t = t., we obtain that

€ 1- ghiia
€S§+MT5 HoFD) gatl

which implies
1- 2(§$2 «a > _1_
Te €25t
Applying (7.7.21), we see that
1

s
(7.7.26) ™ 2 Sr AR

where
y = a(Na -2 —2max{a,1}) + (Na — 4)

2(a+2)
Observe that when o < 1, we have v > 0 (remember that Na > 4). Therefore,
(7.7.26) implies that 7. is bounded by a positive number. This is a contradiction
when ¢ is small, since 7. — oo as € | 0. When a > 1, one easily verifies that v > 0
when N > 4, or when N = 3 and a > ‘/1—27‘1, in which case we obtain the same
contradiction. Therefore, t. = 0o, which is the desired estimate. O

THEOREM 7.7.3. Let N > 3 and assume (7.7.1), (7.7.2), and (7.7.3). For every
p € HY(RY), the mazimal solution u € C(R, H*(RY)) of (4.1.1) satisfies

(7.7.27) u € LIR, WH(RN))  for every admissible pair (q,r).

For the proof, we will use the following elementary lemma.

LEMMA 7.7.4. Leta,b > 0 and p > 1. Assume that b is small enough so that
the function f(z) = a — z + bxP is negative for some x > 0, and let o be the first
(positive) zero of f. Let I C R be an interval and let ¢ € C(I,R,) satisfy

o) <a+bp(t)? foralitel.

If ¢(to) = 0 (or more generally ¢(to) < xzq) for some ty € I, then ¢(t) < xzo for
allt € 1.
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PROOF. By assumption, the set J = {z > 0;f(z) > 0} is of the form J =
[0,y] U [2,00) for some 0 <y < o < z. Since {¢(t) : t € I} is a connected set and
f(#(t)) > 0, we must have either {¢(t) : t € I} C [0,y], or else {¢(t) : t € [} C
[2,00). This proves the result. O

PROOF OF THEOREM 7.7.3.  Let (v, p) be the admissible pair such that p = a+2.
For every S,t > 0,

u(t+ S) = t)u(S—i—z/ﬂ’t—s (S + 5))ds.

It follows from Strichartz’s estimates, Remark 1.3.1(vii), and Holder’s inequality
that for every t > S > 0,

1/
el s,y wiey < Cllu(S)||m +C</ lu(s)IZs “u(s)“W19>
< Cllw(S)

+C( [ a5 s )uw,p)" ,

where C is independent of ¢, S. Note that (o + 1)v' > ~, and so

t 1/
([ e iz o)l )
S

_ e
< sup{Jlu(s)l s = ST (ull Ly (50w -

It follows from Theorem 7.7.1 that

t ’ 1/’)" .
1)y~ ' 7
([ s I pe@lns ) < Ml s

=1
= e(9)||ul Z’Y((S,t),wl,p)7

where £(S) — 0 as S — oo. Therefore,

lullzvsowin < Cliella +e(S) Ul s g wim -

By Lemma 7.7.4, we see that if we fix S large enough, then ||u||zv((s,¢),w1e) <
K for some K independent of t. Therefore, u € LY((S,o0), WH?(RY)). One
shows as well that for S large enough, u € LY((~o0, —S), WH?(RV)), and so u €
LY(R,WY#(RN)). This implies that g(u) € LY (R, W* (RN)), and the result
follows from Strichartz’s estimates. 0O

REMARK 7.7.5. One can add the following property to the statement of The-
orem 7.7.3. If ¢ € H*RY), then u; € LI(R, L"(RY)) for every admissible pair
(g,7). This is obtained by a similar argument, by applying the estimates used in
the proof of Theorem 5.3.1. It is not difficult to see, using Sobolev’s inequalities,
that this implies v € LI(R, W27 (R")) for every admissible pair (g, r); in particular,
w e LR, H*(RN)).
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7.8. Scattering Theory in the Energy Space

We apply the results of Section 7.7 in order to construct the scattering operator
in the energy space H'(R™). The results below are due to Ginibre and Velo [137].
We still assume that N > 3 and that ¢ is given by (7.7.1)-(7.7.2). We refer to
Section 7.9 and to Ginibre and Velo [137, 138] for more general results, and to
Nakanishi [259] for the case N = 1,2. We first construct the scattering states.

THEOREM 7.8.1. Let N > 3 and assume (7.7.1), (7.7.2), and (7.7.3). Ifp €
HY(RM) and if u € C(R,HY(RN)) is the mazimal solution of (4.1.1), then there
ezist ut,u” € HY(RYN) such that | T(=t)u(t) — uF || g s 0. In addition,

—4to0

_ 1 1 )
lullze = lluliz2 = llellze  and 5 / |Vutf? = 3 / IVu™ | = E(p).
RN RN

PROOF. Let v(t) = T(—t)u(t). We have

v(t) = ¢ +i/0 T(—s)g(u(s))ds.

Therefore for 0 <t < T,

t
v(t) —v(r) = z/ T(~s)g(u(s))ds.
It follows from Strichartz’s estimates that
lo(t) = v(P) e = ITE) () = ()l < Clg() e umy iy
where (g,7) is the admissible pair such that 7 = o 4 2, and so

lo(®) = vl — 0
,T—00

(see the end of the proof of Theorem 7.7.3). Therefore, there exists ut € H(RY)
such that v(t) — uT in H! as t — co. One shows as well that there exists u~ €
HY(RY) such that v(t) — v~ in H! as t — —oc. The other properties follow from
conservation of charge and energy. O

REMARK 7.8.2. The mappings U, : ¢ +— u™ and U_ : ¢ +— u~ defined by The-
orem 7.8.1 map HY{(RY) — HY(R¥). In fact, one can show with similar estimates
that U, and U_ are continuous H'(RV) — H}(RY).

REMARK 7.8.3, We deduce from Corollary 2.3.6 the following formula:

Foo
ut =g+ T(—s)g(u(s))ds;
0

in particular,

(7.8.1) u(t) = T(t)u* - i/ioo T(t —s)g(u(s))ds forallteR.

We now construct the wave operators.
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THEOREM 7.8.4. Let N >3 and assume (7.7.1), (7.7.2), and (7.7.3).

(i) For every u* € HYRYN), there exists a unique ¢ € HY(RN) such that the
mazimal solution u € C(R, HY(R")) of (4.1.1) satisfies

1T(—t)u(t) —ut||g — 0 ast — +o0.

(ii) For every u~ € HY(RN), there exists a unique ¢ € H'(RYN) such that the
mazimal solution u € C(R, HY(RN)) of (4.1.1) satisfies

|T(—t)u(t) ~ v ||z — 0 as t — —oo.

PROOF. We prove (i), the proof of (ii) being similar. The idea of the proof is to
solve equation (7.8.1) by a fixed-point argument. To that end, we introduce the
function w(t) = T(t)u™. Let (¢,7) be the admissible pair such that r = a + 2. It
follows from Strichartz’s estimates and Corollary 2.3.7 that w € LI(R, WL (RY))
and that ||w(t)]|L- — 0 as t — co. Consider S > 0 and let

(7.8.2) Ks = [|wll Lo ((8,00),w1r) + sup lw (@)l - -
Note that
(7.8.3) Ks — 0.
S—o0
Let

B = {u € LU(5,00), W (R) [l a((s.pwery + s0D [0 < 2K5}

and
d(u,v) = ||v — ullpe((s,00),L7) for u,v € E.

It is easily checked that (F,d) is a complete metric space. Given u € E, we have
(see the proof of Theorem 7.7.3)

Hg(u)”Lq’((S,OO),WI"J) S C(2K5)0+1 .
By Corollary 2.3.6, J(u) defined by

(7.8.4) mew=-f/m7a—@mqgms

makes sense and

(7.8.5) I (u) € C([S, 00), H'(RM)) N L((S, 00), WHT(RN)),

and

(7.8.6) 1T (W)l La((5,00), w1y + 1T (W) | Lo (5,000, 51y < C(2K )T

Applying (7.8.3), (7.8.6), and Sobolev’s inequality, we deduce that
(7.8.7) 1T (w)llLa((s,00),wr) FINT (Wl Loe((8,00),7) < Ks for S sufficiently large.
Putting together (7.8.2) and (7.8.7), we see that A defined by

A)(t) = T(t)uy + T (u)(t) fort>S
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maps F to itself if .S is large enough. One easily verifies with similar estimates that
if S is large enough, one has

(7.8.8) d(A(u), A(v)) < —;—d(u, v) forall u,ve E.

It follows from Banach’s fixed-point theorem that .A has a fixed point v € F,
which satisfies the equation (7.8.1) on [S,00). Note that u € C([S, cc), H*(RV))
by (7.8.5); in particular, ¥ = u(S) € HY(RY). Note also that

u(t+8) =T +1 /Ot T(t— s)g(u(s + 5))ds.

Therefore, u is the solution of the problem
{ iUy + Au+g(u) =0
u(S) =9

Note that, by Remark 6.8.1, the solution u is global. In particular, u(0) € H}(RY)
is well defined. It follows from the equation (7.8.1) that

T(—t)u(t) —ut = —i /too T(s)g(u(s))ds.

Since u € E, it is not difficult to show with the above estimates that || T(—t)u(t) —
ut||gn — 0 ast — oo. Therefore, ¢ = u(0) satisfies the conclusions of the theorem.

It remains to show uniqueness. Let 1, € HY(RY ), let u; and uy be the
corresponding solutions of (4.1.1), and assume that |T(—t)u;(t) — ut|g — 0 as
t — oo for j = 1,2. It follows from Remark 7.8.3 that u; is a solution of (7.8.1).
Furthermore, it follows from Theorems 7.7.1 and 7.7.3 that u; € L(R, WIm(RN))
and that {lu;(t)|lz- — 0 ast — oo. In a similar way to the proof of (7.8.8), one
obtains that ui(t) = wua(t) for t sufficiently large. By uniqueness for the Cauchy
problem at finite time, we conclude that p; = 3. O

REMARK 7.8.5. Note that the above proof of the construction of ¢ for a given
up only uses a fixed-point argument. In particular, it still works for N = 1,2.
It is not difficult to see that it also works in the limiting case o = 4/N. The
proof of uniqueness is more delicate and uses the decay estimate of Theorem 7.7.3.
This is where we use the assumption N > 3. As observed in Remark 7.8.9 below,
uniqueness also holds in dimension V =1 or 2.

REMARK 7.8.6. Nakanishi [260] has extended the existence part of Theorem 7.8.4
to the case & > 2/N when N > 3. The construction is by a compactness argument.
Note that when a < 4/N, uniqueness is an open problem (see Remark 7.8.5).

REMARK 7.8.7. The wave operators Q4 : u* +— ¢ and Q. : u~ + ¢ defined
by Theorem 7.8.4 map H}(RYN) — HY(RM). In fact, one can show with similar
estimates that 2, and Q_ are continuous. By Theorems 7.8.1 and 7.8.4, U;Qy =
Q. Uy = I on HY(RY), where U, is defined by Remark 7.8.2. In particular,
Q4 : HY(RN) — HY(R") is one-to-one with continuous inverse (24)"! = Uy.

THEOREM 7.8.8. Let N > 3 and assume (7.7.1), (7.7.2), and (7.7.3). For every
u~ € HY(RY), there exist a unique ut € H*(RY) and a unique ¢ € H*(R"), such
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that the mazimal solution u € C(R, HY(RY)) of (4.1.1) satisfies T(—t)u(t) — u*
in HY(RN) as t — too. The scattering operator

S: H'RY) = H'(RY) mapping v — u*

is continuous, one-to-one, and its inverse is continuous H (RN) — HY(RY). In
addition, |ut |2 = u”llL2 end [VuT|2 = |Vu~||L2 for every v~ € H'(RY).

Proor. The result follows from Theorems 7.8.1 and 7.8.4, and Remark 7.8.7, by
setting S = U, ... Note that S™1 =U_Q,. O

REMARK 7.8.9. We note that the conclusion of Theorems 7.8.1, 7.8.4, and 7.8.8
also hold if N =1 or N = 2. See Remark 7.6.7 and Nakanishi {259).

7.9. Comments

The estimates of Theorem 7.3.1 hold for more general nonlinearities. In par-
ticular, consider g(u) = f(u(-)), where f is as in the beginning of Section 7.2.
Assume that F(s) < 0 for all s > 0, and that there exists 0 < § < 4/N such that
—5~27%F(s) is a nondecreasing function of s > 0. We have the following result.

PROPOSITION 7.9.1. Let g be as above. If ¢ € H*(RYN) is such that | - [o(-) €
L%(RYN), and if u is the mazimal solution of (4.1.1), then

N2s 1

/F Dde < Cl%  and u(®)|zr < Cl~ 523D

forallt € R and all 2 <1 < 2N/(N - 2).

Proor. It follows from Theorem 7.2.1 that v defined by (7.2.7) satisfies

2E(v) < [[zp|[% — /0 s / (8(N + 2)F () — AN Re(f(u)a))dz ds.
]RN

By assumption, —sf{s) < —(2 + §)F(s). Therefore,

/ |Vo(t)|? dz — 2t / F(u(t))dz < (4 — N§) / t / sF(u(s))dz ds.
0

RN RN RN

One concludes as for Theorem 7.3.1 that

[ Flutnas < o,
and so [|[Vu(t)||zz < Cltl’¥. The result now follows from Gagliardo-Nirenberg’s
inequality and conservation of charge. O

Applying these estimates, one can extend the scattering theory in ¥ to more
general nonlinearities (see Ginibre and Velo {133, 132]).
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The result of Theorem 7.7.1 can be generalized in the following way. Consider
g(u) = f(u(-)), where f is as in the beginning of Section 7.2. Assume that there
exists & < 4/N such that

(7.9.1) F(s) < C(s* + s°%%)

so that all solutions of (4.1.1) are global (see Section 6.1). Assume further that
(7.9.2) If(s)] < C(s#t +s¥T1) forall s> 0

for some 4/N < u < v < 4/(N —2). Assume finally that

(7.9.3) 2F(s) — sf(s) > cmin{s**%,s**2} forall s > 0.

We have the following result.

THEOREM 7.9.2. Assume N > 3 and let g be as above. For every p € HY(RV),
the mazimal solution u € C(R, HL(RN)) of (4.1.1) satisfies

O

for every 2 <r < 2N/(N —2).

ProOOF. The proof is an adaptation of the proof of Theorem 7.7.1. We only prove
the result for ¢ — 00, the case t — —oo being similar. Note also that we need
only establish the result for r = v + 2, the general case following immediately from
the boundedness of the solution in H!(RY) and Hélder’s inequality.

STEP 1. We have the estimate

- 2N
(7.9.4) / ju(t, &), — 0 forall 2<r < .
{lz|>tlogt}
The proof is the same as that of Step 1 of the proof of Theorem 7.7.1.
STEP 2. For every ¢ > 0, t > 1, 7 > 0, there exists tog > max{t,27} such
that

to
(7.9.5) / / min{[u|**?, [u|**?*}dzdt < e.
to—21
{lzl<tlogt}
This follows from Morawetz’s estimate and (7.9.3). (See the proof of Theorem 7.7.1,
Step 2.) ,

STEP 3. Foreverye>0,t>1,7>0and 2 <r < 2N/(N — 2), there exists
to > max{t, 27} such that

to
(7.9.6) / / lu(t,z)|"dedt <e.
7 fel<tionty

Note that we need only establish the result for = y + 2, the general case fol-
lowing immediately from the boundedness of the solution in H!(R") and Hélder’s
inequality. Consider € > 0,t > 1, 7 > 0. Let

[ ultz) if|u(t,z)| <1
'_J(t’x) - { 0 if fu(t, )| > 1,
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and w = u — v. It follows from Step 2 that for every & > 0, there exists tq >
max{t, 27} such that

to
/ / [u(t, )| 12 dzx dt
to—

27
{lz|<tlogt}

(7.9.7) )
t¢]
+ / [w(t,z)|*+ 2 dzdtb <.
t0—27'
{lz|<tlogt}
Note that
to to
/ lu(t, z)[* T2 dz dt = / [u(t, 2)|#+2 da dt
t0_2T{|Z|§“°gt} to-zr{lz[gtlogt}

(7.9.8) .

+ / lw(t, z)|#+? dz dt.

to—27
{lz|<tlogt}

Applying Hoélder’s inequality in space and time, and conservation of charge, we

obtain

to

[ wears
to—27
{lz|<tlogt}
(7.9.9) e 2
crs( [ wtt )1+
to—

2 i<t log 1)
Choosing ¢’ such that
(7.9.10) e+ OrsE ()8 <.,
the result follows from (7.9.8), (7.9.9), (7.9.7), and (7.9.10).
STeEP 4. For every € > 0 and ¢, 7 > 0, there exists ty > max{t, 7} such that

(7.9.11) sup  |lu(s)||pv+2 < €.
SE[to—T,tQ]
Consider t > 7 > 0, and write

t—71 t

(ro1py (UO=TWeri | T-s)gluls)ds i | Tt - g(u(s))ds

=ov(t)+w(t,7)+ 2, 7).
It follows from Corollary 2.3.7 that

(7.9.13) lo@)lzess — 0.

Arguing as in the proof of Theorem 7.7.1, Step 3, one shows easily that there exists
K such that

_v{Np~2max{p,1})
(7.9.14) lwt, 7Y pv+e < K7 Zi(vF2) forallt>7>0.
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Let now

(7.9.15) p= %ﬁ €@ u+2

Arguing as in the proof of Theorem 7.7.1, Step 3, one shows easily that there exist
L < o and a, b, c > 0 such that

o) tete e <2+ ([ iz ) s ([ )],

and one concludes as in the proof of Theorem 7.7:1, Step 3.

STEP 5. We need to show that for every € > 0, we have [lu(t)||fv+2 < e fort
large. Consider € > 0, and let 7. be defined by

_u(N;L—Zmaxgu,l“ £
KTE 2pu(v42 .

(7.9.17) =1

It follows from (7.9.13) that there exists t; > 0 such that

(7.9.18) lo(t) ]| s < Z fort >t,.

Applying (7.9.12), (7.9.13), (7.9.14), and (7.9.17), we obtain

(7.9.19) (@)l pese < g 4 |2(t, )| prsz for ¢ > max{ty, 7).
Note also that, given t > 7., we deduce from (2.2.4) that

(79.20) et 7dllzese < On T sup (ullgf + fulzEL)

where p is given by (7.9.15) (compare the proof of Theorem 7.7.1, Step 4). By
Holder’s inequality and conservation of charge,

wlvt2)—v

(7.9.21) lull4Ft < Cliull fues
Note that

ulv+2)—v < u(v+1)
v - v
and so it follows from (7.9.20), (7.9.21), and the boundedness of u in H*(R") that
there exists M such that

<v+1,

1 — N pv+2)—v
(7.9.22) 2t 7e)llLve < Mre *7P sup (lullpes ).

t—7e,t

By Step 4, there exists to > max{7.,t1} such that [lu(t)||p.+2 < € fort € [to—Te, to).
Therefore, we may define

t. = sup{t > to : JJu(s)||Lv+2 < e for all s € [tg — 7., t]}.
Assume that t. < co. It follows that
(7.9.23) ()| pesz = <.
Applying (7.9.22), (7.9.23), and (7.9.19) with ¢t = ¢, we deduce that

o Nv v —
2(v+2) E% ’

1
€S§+M7—E
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R £ v -2y
which implies 7. o) RE=R 1/2M. Applying (7.9.17), we obtain that

1
(7.9.24) =2 TR
© T MK

where
y = (u(v +2) — 2v)(Np — 2 — 2max{p, 1}) + v(Nu - 4)

2u(v +2)
One can conclude as in the proof of Theorem 7.7.1, Step 4, provided v > 0. If
p <1, then

_ (v +2)—v)(Np-4)
2u(v +2)
Note that p > 2/N > v/(v + 2), so that u(v + 2) — v > 0. Since also Ny > 4, we
see that v > 0. If 4 > 1, then vy = %(p — ¢(v)), where

_ (N-2)z+4
¢($)—(N—2)(:c+2)'

When N > 4, ¢ is nondecreasing, and so ¢(v) < ¢(4/(N —2)) = 4/N. This implies
again that v > 0. When N = 3, ¢(z) is decreasing and ¢(4/(N — 2)) = 4/N. Since
Npu > 4, there exists v < U < 4/(N — 2) such that u — ¢(¥) > 0. Observe that f
satisfies as well assumptions (7.9.2) and (7.9.3) with v replaced by 7. Therefore, in
this case also, v > 0. This completes the proof. O

REMARK 7.9.3. It is not difficult to extend the results of Theorems 7.7.3, 7.8.1,
7.8.4, and 7.8.8 to the case where g is as in Theorem 7.9.2. Therefore, one can

construct a scattering theory in H*(RY) for such nonlinearities (see Ginibre and
Velo [137, 138]).

REMARK 7.9.4. Concerning the decay of solutions in L™, see Ginibre and Velo
(132], Dong and Li [107] (one-dimensional case), Cazenave [57] (two-dimensional
case), and Lin and Strauss [320] (three-dimensional case).

REMARK 7.9.5. When g(u) = Mu|¥u, A € R, a scattering theory can be con-
structed in a subset of L2(RY), containing, for example, all functions with small
L? norm and also all functions in v € L2(R") such that zu € L?(R") in the case
A < 0 (see Cazenave and Weissler [71] and also M. Weinstein [359] for a related
result). A low energy scattering theory can also be constructed in H*(RY); see
Nakamura and Ozawa [255].

REMARK 7.9.6.  When g(u) = Au|*u, with A > 0 and a > 4/N, it is not difficult
to adapt the proofs of Theorems 7.8.1, 7.8.4, and 7.8.8 (by using Theorem 6.2.1) in
order to construct the scattering operator S on the set {u € H(RN) : ||ul|i < €}
for € small enough. Obviously, the scattering operator cannot be defined on the
whole space H!(R¥), since some solutions blow up in finite time (see Remark 6.8.1).
The assumption a > 4/N is optimal (see Cazenave and Weissler [72], Remark 4.4).

REMARK 7.9.7.  The results of Sections 7.3 and 7.4 can be extended to Hartree-
type nonlinearities. See Cazenave, Dias, and Figueira [61], Chadam and Glas-
sey [76], Dias [103], Dias and Figueira [104], Ginibre and Velo [134], Hayashi [159],
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Hayashi and Ozawa [185, 188, 189, 186], Hayashi and Tsutsumi [194], Lange [221,
220}, P.-L. Lions [233, 234}, Nawa and Ozawa [271], and Pecher and Von Wahl [296].
The results of Sections 7.6, 7.7, and 7.8 can also be extended; see Ginibre and
Velo [143] and Nakanishi [258].

REMARK 7.9.8. It follows from Theorem 7.5.2 that if g(u) = AJu|*u with A € R
and a < 2/N, then no solution of (4.1.1) has a scattering state, even for the L?
topology. This means that no solution behaves as t — oo like a solution of the
Schrédinger equation ius + Au = 0. However, it may happen that some solutions
behave as t — $oo like a solution of a different, linear Schrédinger-type equation.
This is the theory of modified wave operators. See Ginibre and Ozawa [129], Gini-
bre and Velo [141, 142, 144], Hayaski, Kaikina, and Naumkin [172], Hayashi and
Naumkin [181], Hayashi, Naumkin, and Ozawa [184], Nakanishi (262, 261}, and
Ozawa, [287].

REMARK 7.9.9. In the case N = 3 and g(u) = A|u|?u with A < 0, Colliander et
al. [90] have shown that the Cauchy problem is globally well-posed in H*(R") for
s > 4/5 and constructed the scattering operator on all of H*(R"). The results are
based on a new form of Morawetz’s estimate.



CHAPTER 8

Stability of Bound States in the Attractive Case

In this chapter we study the stability of standing waves of the nonlinear Schro-
dinger equation for a class of attractive nonlinearities. Throughout the chapter,
we consider the problem (4.1.1) in the model case g(u) = Alu/*u where A > 0
and 0 < @ < 4/(N —2) (0 < a < 00 if N = 1,2), and we indicate references
concerning more general nonlinearities. Without loss of generality, we may assume
that A = 1. We have seen in the preceding chapter that when )\ < 0, all solutions
converge weakly to 0, as t — £o0o. When A > 0, we have a completely different
situation. Indeed, in the case o > 4/N, all solutions with small initial data converge
weakly to 0 as t — $00, see Theorem 6.2.1; and, on the other hand, it follows from
Remark 6.8.1 that solutions with “large” initial data blow up in finite time. In
fact, in both the case a > 4/N and the case a < 4/N, we show in Section 8.1 the
existence of a third type of solutions, that are global but do not converge weakly
to 0. More precisely, we construct solutions of (4.1.1) of the form

u(t, z) = e“'p(z),

where w € R and ¢ € H'(RY), ¢ # 0. Such solutions are called standing waves,
or stationary states, or localized solutions. In Section 8.2, we show that when
a > 4/N a class of standing waves is unstable, and in Section 8.3, we show that
when a < 4/N a class of standing waves is stable. We apply purely variational
methods, and we refer to Section 8.4 for other methods.

8.1. Nonlinear Bound States

Throughout this section, we consider g of the form

(8.1.1) g(u) = |u|*u
with
4 .
(8.1.2) 0<a<N_2 O<a<xif N=1,2).
We look for solutions of (4.1.1) of the form
(8.1.3) u(t,z) = e™p(z),

where w € R is a given parameter and ¢ € H*(R"), ¢ # 0. It is clear that ¢ must
solve the problem

{ € H'(RV),p #0,
—Ap+wp = |p|%e.

We refer to Strauss [323], Berestycki and Lions [25], Berestycki, Gallouét, and Ka-
vian [24], Berestycki, Lions, and Peletier [26], and Jones and Kiipper [199] for a

255

(8.1.4)
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complete study of (8.1.4) as well as for similar problems with more general nonlin-
earities. In particular, it is known that if w < 0, then (8.1.4) does not have any
solution. Therefore, from now on we assume that

(8.1.5) w>0.
We begin with a regularity result.
THEOREM 8.1.1. Assume (8.1.2), a > 0, and b € R. If u € HYRY) satisfies
—Au+ au = blu|®u in H-YRN), then the following properties hold:

() u € W3P(RYN) for every 2 < p < co. In particular, u € C*(R") and

|DPu(z)] — O forall|B] < 2.
jal —o0

(ii) There exists € > 0 such that e*1%l(Ju(z)| + |Vu(z)|) € L=°(R"N).
ProOOF. Changing u(z) to (1b/v/a)~ = u(z//a), we may assume that u satisfies
(8.1.6) —Au +u = bju|%u
with |b| = 1. Note that (8.1.6) can be written in the form
(8.1.7) FHQ + 47%)€)?) Fu) = blu|*u,

where F is the Fourier transform and (8.1.7) makes sense in the space of tempered
distributions &' (R™).

(i) Note that if u € LP(RY) for some a+1 < p < 0o, then |u|*u € L7 (RV).
Tt follows that uw € H>3+1 RN) = WZFET(]RN) (see Remark 1.4.1). Applying So-
bolev’s embedding theorem, this implies that

a+1 2

p N’

(8.1.8) uwe LIRYN) for all g > P_ such that 1 >
a+1 q

Consider the sequence g; defined by

1 1 2 2

— = (a+ 1) S T —

q; ( )<a+2 Na+Na(a+1)J>
Since (N — 2)a < 4, we see thatﬁ-i—%-:—é with 6 > 0. We have

1 1 .
— ——=—(a+1)§ < -4,
41 qj

and so ;11; is decreasing and 51]—_ — —o0. Since go = a + 2, it follows that there
j—00
exists k > 0 such that
1 1
—>0 for0< i<k
e 9k+1

We claim that u € L% (RY). Indeed, u € H'(R") so that v € L%(R"N); and if
u € L% (RYN) for some £ < k — 1, then by (8.1.8),

ue LIRN) forall g > 2e suchthat12a+1—z.—_—i—.
at+l ¢ ¢ N g

<0.

In particular, u € L%+ (R"Y). Hence the claim follows. Applying once again (8.1.8),

we deduce that u € LI(RY) for all ¢ > gx/(a + 1) such that 1/q¢ > 1/gx+1. In
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particular, we may let ¢ = co. Therefore, |u|*u € L2(RY) N L®(RY), so that u €
W2P(RY) for all 2 < p < co. Applying Remark 1.3.1(vii), we obtain that |u|®u €
WLP(RN) for all 2 < p < 0. In particular, it follows from (8.1.6) that for every
je{l,...,N}, (A +Ddu € LP(RV); ie, F~Y((1 + 4n?|¢>)FOju) € LP(RN).
Thus d;u € H*P(RN) = W*P(RVN) (see Remark 1.4.1). Therefore, u € W3P(RVN)
for all 2 < p < 0. By Sobolev’s embedding, u € C*%(RY) for all 0 < § < 1, so
that |DPu(zx)| — 0 as |z| — oo for all |8] < 2.

2|
(i) Let € > 0 and 6.(z) = e™#<=1. §, is bounded, Lipschitz continuous, and
|VO.| < 6. a.e. Taking the scalar product of the equation with §.u € H*(RN), we
obtain

(8.1.9) Re / Vu - V(6:7) + / Belu? < / Be |ul*T2.
RN RN RN
Note that V(6.w) = TV0. + 6.Vu. Therefore,

Re (Vu . V(Osﬂ)> > 0:|Vul? - 6, |ul|Vul .

Applying (8.1.9) and Cauchy-Schwarz’s inequality, we obtain easily

(8.1.10) /95[u|2 < 2/9€|u1“+2.
RN RN

By (i), there exists R > 0 such that |u(z){* < 1/4 for |z| > R. Therefore,

(8.1.11) 2/95[ul°‘+2 <2 e'x'[u|a+2+%/0€|u|2.
RN {lzI<R} RN

Putting together (8.1.10) and (8.1.11), we obtain
/ Oclul? < 4 / eloljylot?
RN {i=I<R}

Letting ¢ | 0, we deduce that

(8.1.12) /e’“"]ul2 <o0o.
RN

Since u is globally Lipschitz continuous by (i), we deduce easily from (8.1.12) that
lu(z)|V+2el*l is bounded. Next, applying ; to equation (8.1.6) and multiplying the
resulting equation by 6.0;4 for j = 1,..., N, we obtain by the same calculations
as above that

/e'z||VuI2 <.

RN
Since Vu is globally Lipschitz continuous by (i), we deduce that |Vu(z)|N*2el?l is
bounded, as above. O

LEMMA 8.1.2. Assume (8.1.2), a > 0, and b € R. If u € HY(RYN) satisfies
—Au + au = bju[*u € H™Y(RY), then the following properties hold:

(i) Jan IVul? + a fgu lul® = b fon fu[ot2.
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(ii) (Pohozaev’s identity)

N-2) / Vul? + Na / 2 = 28 / o2

RN

PrOOF. Equality (i) is obtained by multiplying the equation by , taking the real

part, and integrating by parts.
The identity (ii) is obtained by multiplying the equation by z - V& and taking
the real parts. Indeed, one obtains

Re(—Au(z - V) +aRe(u(z - VT)) = bRe(lu|u(z - VT)).

Applying the identities
. N-2 2 » o 1 2
Re(-Au(z - V) = ——2~|Vu| + V. { —Re(Vu(z - V7)) + §a:|Vu| ,
N
Re(u(z - V1)) = ~ -l + 5V - aluP’)

N 1
a — a+2 . a+2
Re((ulu(z - VB) = =~ [ul"*? + —= V- (@ul**?),
and integrating over RY yields the result. Note that these calculations are justified
by the regularity properties of Theorem 8.1.1. O

Before stating the main result of this section we need to introduce some no-
tation. Assuming (8.1.2) and w > 0, we introduce the following functionals on

HYRN).

(8.1.13) T(u) = / IVl dz,
(8.1.14) V(u) = a—-lﬁ/m;a”dm—gliu]?dm,
RN RN
(8.1.15) S(u) = %T(u) V),
(8.1.16)  E(u) = /IVu|2 x———/lul"‘“dm— u)———/|u|2dx

One easily verifies that these functionals are in C*(H*(R"),R), and that T"(u) =
—2Au, V'(u) = |u|*u — wu. We introduce the sets A and G defined by

(8.1.17) A={ue H'(R"):u #0and — Au+wu = |u|*u},

(8.1.18) G={ue A:S(u)<S()forallve A}.

We have the following result.
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COROLLARY 8.1.3.  Assume (8.1.2) and w > 0. Ifu € HY(RN) satisfies (8.1.4),
then

(8.1.19) S(u) = NT(u),
(8.1.20) (N —2)T(u) =2NV(u),
Na -4
1. E =
(8.1.21) (W) =~ T(w),
(8.1.22) / [ul®> = ) —_— T (u).
ProoF. These identities follow immediately from Lemma 8.1.2. O

Our goal is to show that A and G are nonempty and to characterize G. For
technical reasons, we consider separately the cases N >3, N =2, and N = 1.

THEOREM 8.1.4. Assume N > 3, (8.1.2), and w > 0.

(i) A and G are nonempty.
(ii) u € G if and only if u solves the minimization problem

V(u) = A%,
(8.1.23) N
{ S(u) = min {S(w) : V(w) = AT},
'where A = B22inf{T(v) : V(v) = 1}. In addition, min{S(w) : V(w) =
AT} = 25AT.
(iii) There emsts a real-valued, positive, spherically symmetric, and decreasing
function ¢ € G such that G = J{e®p(- —~y) : 6 e R,y € RV},

THEOREM 8.1.5. Assume N =2, (8.1.2), and w > 0.

(i) A and G are nonempty.
(ii) u € G if and only if u solves the minimization problem

{ u€ N and fpu [ul* =17,
S(u) = min{S(w) : w € N},

where N = {u € H'(R") : V(u) = 0 and u # 0} and v = £ minyen S(w).

(iii) There ezxists a real-valued, positive, spherically symmetric, and decreasing
function ¢ € G such that G = J{e¥p(- —y): 0 € R,y e RV}.

THEOREM 8.1.6. Assume N =1, (8.1.2), and w > 0.

(8.1.24)

(i) A and G are nonempty.
(i) A=G

(ili) There ezists a real-valued, positive, spherically symmetric, and decreasing
function ¢ € G such that G = |J{e®p(- —y) : 6 € R,y € R}.
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Let us first consider the case N = 1, which is especially simple.
PROOF OF THEOREM 8.1.6.  Note that (8.1.4) is the ordinary differential equa-
tion
(8.1.25) —u" + wu = |u|%u.

Define ¢ = (w(a+2)/ 2)=, and let ¢ be the maximal, real-valued solution of (8.1.25)
such that ¢(0) = ¢ and ¢'(0) = 0. It is clear that ¢ is an even function of z.
Furthermore, on multiplying the equation by ¢, we obtain

d(l 2 w, 1 o+2
- = —— =0
( ® ¢ +a+2|s0! )

dr\2 2
and so
(8.1.26) lcp'z A ~1—[<p|°‘+2 =0
2 2 o+ 2
throughout the existence interval. It follows easily that ¢ is bounded and therefore
exists for all x € R. Furthermore, ¢”(0) = —wac/2 < 0. Therefore, there exists

a > 0 such that ¢/ < 0 on (0,a). We claim that ¢’ < 0 on (0,00). Otherwise,
there would exist b > 0 such that ¢’ < 0 on (0,b) and ¢'(b) = 0. Applying (8.1.26),
this would imply that ¢(b) = —c. Therefore, there would exist d € (0,b) such that
o(d) = 0. Applying again (8.1.26), we would obtain ¢'(d) = 0, which would imply
that ¢ = 0. Therefore, ¢ decreases to a limit £ € [0,c). In particular, there exists
Zm — 00 such that ¢’ (zm) — 0. Passing to the limit in (8.1.26), we obtain that

£ 1
2 —_— = =
e(a+2 2) 0.

which implies £ = 0. Therefore ¢ decreases to 0, as * — +00, and we deduce easily
that the decay is exponential. Therefore ¢” and hence ¢’ also decay exponentially
to 0. Therefore, ¢ € A, which proves (i). Let now v € A. On multiplying the
equation by 7', we obtain

1 o2 W 2 1 a+2 _.
(8.1.27) 2|’u] 2|v| +a+2lv| =K.

Since v € H'(R), it follows that v(z) — 0 as |z| — oo. Therefore, by the equation,
v"(z) — 0 as |z| — oo, and so v'(z) — 0 as |z| — oo. Letting |z| — oo in (8.1.27),
we deduce that K =0, and so

Lo W9 1 at2 _
(8.1.28) 2Ivl 2Ivl +a+2[v| =0.

In particular, |v} > 0, for if v would vanish, then by (8.1.28) v' would vanish at
the same time and we would have v = 0. Therefore, we may write v = pe®?, where
p > 0 and p,0 € C*(R). Writing down the system of equations satisfied by p, 6,
we see in particular that p8” + 2p'6’ = 0, which implies that there exists K € R
such that p%¢’ = K, and so §’ = K/p?. On the other hand, since |¢/| is bounded, it
follows that p26’ is bounded. This means that K2/p? is bounded. Since p(z) — 0
as |z| — oo, we must have K = 0. Therefore (remember that p > 0) 6 = 6 for
some fp € R. Thus v = "%p. Since p € H L(RY), there must exist z9 € R such
that p’(zo) = 0; and, by (8.1.28), p(zo) = c. Let now w(x) = p(z — xo). It follows
that w satisfies (8.1.25), w(0) = ¢, and w’(0) = 0. By uniqueness of the initial-value
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problem for (8.1.25), we have w = ¢, and so v(z) = e (2 + z¢), which completes
the proof. O

We next consider the case N > 3, and we begin with the following lemma.

LEmMA 8.1.7. Assume N > 3, (8.1.2), and w > 0. It follows that the minimiza-
tion problem

(8.1.29) { V(W =1

T'(u) = min{T(w) : V(w) = 1}

has a solution. Every solution u of (8.1.29) satisfies the equation
—Au+ Awu = Alul®u,

where

N -2

(8.1.30) A= 2

inf{T'(v) : V(v) = 1}.

PROOF. We repeat the proof of Berestycki and Lions [25]. We recall the definition
of the Schwarz symmetrization. If u € L2(R") is a nonnegative function, we denote
by u* the unique spherically symmetric, nonnegative, nonincreasing function such
that _

H{z € RY :u*(z) > A} = [{z € RY 1 u(z) > A}| forall A > 0.

We refer to Berestycki and Lions [25], appendix A.III for the main properties of the
Schwarz symmetrization. In particular,

(8.1.31) R{ fu* P =R[ fuf?

for all 1 < p < oo such that u € LP(RY), and

(8.1.32) / |Vu*|? < / IVul®> if u e HYRY).
RN RN
The proof proceeds in four steps.

STEP 1. Selection of a minimizing sequence. Let u € H!(RM). One can
easily find A > 0 such that V(Au) = 1. Therefore, the set {u € H!(RVY): V(u) = 1}
is nonempty. Let (v )men be 2 minimizing sequence of (8.1.29). Let u,, = |vm|*.
It follows from (8.1.31) and (8.1.32) that (4m)men is also a minimizing sequence
of (8.1.29).

STEP 2. Estimates of (um)men. By definition, [[Vu,,||z> is bounded, and
by Sobolev’s inequality, (tm)men is bounded in LWZ%(RN ). On the other hand,

V(um) = 1 implies that
w 9 1
sl < a+2
RN RN

By Holder’s inequality, this implies that

w 2 1 e a+2—-Na/2
Sl < g luml F 3327
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Since a +2 — Na/2 < 2, it follows that (um)men is bounded in L?(RY), hence in
HY(RM).
STEP 3. Passage to the limit. By Step 2 and Proposition 1.7.1, there exist
u € HY(R") and a subsequence, which we still denote by (um)men, such that
Uy — 4 as m — oo, weakly in H'(RN) and strongly in L®*?(RV). By the weak
lower semicontinuity of the L? norm,
N
(8.1.33) V) >1 and T(u) < liminf T(um) = ——
M =00 N -2

where A is defined by (8.1.30). Since V(u) > 1, it follows that u # 0. We claim
that in fact V(u) = 1. Indeed, if V(u) > 1, then there exists A > 1 such that
v(z) = u(Az) satisfies V(v) = 1. It follows that

A,

2N
N -2
which contradicts the definition of A. Thus, V(u) = 1, which implies by definition
of A that T'(u) > 2NA/(N — 2). Comparing with (8.1.33), we see that T'(u) =
2NA/(N — 2). Therefore, u satisfies (8.1.29).

T(v) = "NT(u) < T(u) < A,

STEP 4. Conclusion. Let u be any solution of (8.1.29). There exists a La-
grange multiplier A such that

(8.1.34) —Au = A(|u|*u — wu).
Taking the L2-scalar product of (8.1.34) with u, we obtain

T(w) = A((a +2)V () + 2 / ]u|2) .
e

with p > 0. Therefore, A > 0. Applying Lemma 8.1.2(ii), we deduce that
2N 2N
T(u) = ——— - =y
(W) = g3AV0) = 552

Since T(u) = 2NA/(N — 2), it follows that A = A. This completes the proof.  [J

COROLLARY 8.1.8. Assume N > 3, (8.1.2), andw > 0. If A is defined by (8.1.30),
then the minimization problem

{ V(uw) = A%
(8.1.35) N
T(u) = min{T(w) : V(w) = A7}

has a solution. Every solution u of (8.1.35) satisfies the equation (8.1.4). In addi-
tion,

X3
N
=

(8.1.36) min{T(w) : V(w) = A

ProOOF. Given u € HY(RYN), let Au € H(RY) be defined by
u(z) = Au(A?z).

One quite easily verifies that u satisfies (8.1.29) if and only if Au satisfies (8.1.35).
Therefore, it follows from Lemma 8.1.7 that (8.1.35) has a solution. Finally, given a
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solution u of (8.1.35), let v be defined by Av = u. It follows that v satisfies (8.1.29),
and so T(v) = 2NA/(N —2), by (8.1.30). This implies that T(u) = AT~ 1T(v) =
INA® /(N — 2). Hence (8.1.36) follows. Furthermore, since v satisfies

—Au+ Awu = Alul®u,

it follows that u satisfies (8.1.4). This completes the proof. O

COROLLARY 8.1.9. Assume N > 3, (8.1.2), andw > 0. If A is defined by (8.1.30),
then the minimization problem

{ V(u) =A%

(8.1.37) . .
S(u) = min{S(w) : V(w) = Az}

has a solution. Every solution u of (8.1.37) satisfies the equation (8.1.4). In addi-
tion,

2 I
b=

Finally, u satisfies (8.1.37) if and only if u satisfies (8.1.35).

wfz

(8.1.38) min{S(w) : V(w) = A

PROOF. Let u € HY(RY) be such that V(u) = A¥. We have

S(u) = 5T(w) - A¥,

so that u satisfies (8.1.35) if and only if u satisfies (8.1.37). Therefore, (8.1.37)
has a solution by Corollary 8.1.8. Finally, let u satisfy (8.1.37). It follows that u
satisfies (8.1.35), and by Corollary 8.1.8, u satisfies (8.1.4). Furthermore, (8.1.38)
is a consequence of (8.1.36) and (8.1.19). O

COROLLARY 8.1.10. Assume N > 3, (8.1.2), and w > 0. It follows that G is
nonempty. Furthermore, u € G if and only if u satisfies (8.1.37)..

Proor. Consider a solution u of (8.1.37). It follows from Corollary 8.1.9 that u
satisfies (8.1.35) and (8.1.4). In particular, we deduce from (8.1.36) and (8.1.38)

that
2N
(8.1.39) v =AY, T =AY, Sw)= %A%.

Applying Corollary 8.1.9, we deduce that A is nonempty. Consider any v € A. It
follows from Corollary 8.1.3 that if

(8.1.40) V) = 'y% ,
then
2N « 2 N
(8.1.41) T(v) = N7 and S(v) = 37
Let 0 = A/v, and let v(z) = w(o?z). We have V(w) = A%, and so by (8.1.36),
2N
(8.1.42) T(w) > AT

“N-2
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By (8.1.41),
N 2N n 7y
T = ?_IT = .A.T e
(w) =07 T) = g547 3

Applying (8.1.42), we deduce that v > A. By (8.1.39) and (8.1.41), this implies
that

(8.1.43) S(v) > S(u),

and so u € G. In particular, G is nonempty. If we assume further that v € G, then
we must have S(v) < S(u), since u satisfies (8.1.4). In view of (8.1.43), this means
that

S(v) = S(v).
Applying (8.1.39), (8.1.40), and (8.1.41), we obtain that
2 N
V(v) = A% = z.
(v) z and S(u) N—2A2
By Corollary 8.1.9, v satisfies (8.1.38), which completes the proof. g

Finally, before completing the proof of Theorem 8.1.4, we need the following
lemma.

LEMMA 8.1.11. Let a : RN — R be continuous and assume that a(z) — 0 as
lz| — co. If there exists v € H'(RY) such that

(8.1.44) / (|Vol* — alv|?) dz < 0,
RN

then there exist A > 0 and a positive solution u € HY(RN)NC(RYN) of the equation
(8.1.45) —~Au+ Au=au.

In addition, if w € HY(RN) is nonnegative, w # 0, and if there exists v € R such
that —Aw + vw = aw, then there exists ¢ > 0 such that w = cu. In particular,
B=A.

PRrROOF. We claim that the minimization problem

llullze =1
(8.1.46) { J(w) = min{J(v) : o[> = 1},

where
) = / (IVuf?  alul?)dz,
RN

has a nonnegative solution. Indeed, let (Um)men be a minimizing sequence of
(8.1.45), and let upy = |Um|. Since |um| = |um| and [Vupr| < |Vun|, we see
that (um)men is also a minimizing sequence. Since a € L>®°(RY) by assumption,
we deduce easily that (um)men is bounded in H'(RY). Therefore, there exists a
subsequence, which we still denote by (4m)men, and there exists u € H HRN) such
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that u, — u in H}(R"™). Note that u > 0 and let us show that v satisfies (8.1.48).
For every r > 0,

[ el =2 <
x

lal(tm + u)|um — u| + sup{la(z)| : |z| > r} / (ud, +u?).
{lzl<r} {lz[>7}

It follows that

[t =2l < 2elim ([l —al?) 4 200p(fa@) ol 2 7).
N {lzi<r}

Consider £ > 0. There exists 7 > 0 such that
2sup{la(z)| : |z| >} < /2.

Since the embedding H'(R") — L%(B,) is compact, we deduce that, for m large

enough,
1

z2
QHaHLm( / |um~u12) <ef2.
{jz|<r}

Therefore,

|a|[ufn - u?] < e for m large enough.

/|a|u,2n m—:»oo/laluz.
RN

RN
Using the weak lower semicontinuity of the L2 norm, we obtain that

]RN
It follows that

Jw)<—p and Julz: <1,

where —p = inf{J(v) : [|v]|z= = 1}. Note that by (8.1.44), u > 0, and so u # 0. We
have |lu|l 2 = 1, since, otherwise, there would exist k& > 1 such that w = ku satisfies
flwl|rz = 1. We would obtain J(w) = k2J(u) < —pu, which is a contradiction by
definition of y. Therefore, ||uf|2 = 1, and, again by definition of y, we must have

J{u) = —p. This proves the claim. Therefore, there exists a Lagrange multiplier A
such that
(8.1.47) —Au+ A =au.

On taking the L?-scalar product of the equation with u, we obtain
(8.1.48) A=p>0.

It follows easily from (8.1.47) that u € H2(RV) n C(RV) (see the proof of Theo-
rem 8.1.1); and since v > 0, we deduce from the strong maximum principle (Gilbarg
and Trudinger [127], corollary 8.21, p. 199) that

(8.1.49) u>0.
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So far, we have proved the first part of the statement of the lemma. Let now v € R
be such that there exists a solution w € H(R"), w > 0, of the equation

(8.1.50) —Aw+vw =aw.

We may assume that w # 0. On multiplying (8.1.47) by w, (8.1.50) by u, and
computing the difference, we obtain

(/\—V)R[wuzo.

Since wu > 0 and wu # 0 by (8.1.49), this implies that v = A. We now claim that
there exists ¢ > 0 such that w = cu, for if this were not the case, there would exist
¢ > 0 such that z = w — cu takes both positive and negative values. Note that

-Az+ Az =az.
On multiplying the equation by z, we see that
J(2) = =Mzl
Therefore, y defined by
z
EE

satisfies (8.1.46). It follows that |y| also satisfies (8.1.46). Repeating the argument
that we made for u, we deduce that |y| satisfies (8.1.47), and that |y| > 0. Therefore,
z has a constant sign, which is a contradiction. This completes the proof. O

PrOOF OF THEOREM 8.1.4.  Parts (i) and (ii) follow immediately from Corol-
lary 8.1.10. It remains to show (iii). Consider u € G, so that u satisfies (8.1.37).
Let f = |Reu|, g = |Imu|, and v = f + ig. We have |v| = |u| and |Vv| = |Vu|. Tt
follows that v also satisfies (8.1.37). Applying Corollary 8.1.10, this implies that

—Av +wv = |v|%,

and so
{ -Af+wf=af
—Ag +wg = ag,
where a = |v|*. Applying Theorem 8.1.1, we deduce that a satisfies the assumption
of Lemma 8.1.11. Furthermore,

J(w) = —w|jv||2: <0.

It follows from Lemma 8.1.11 that there exist a positive function z and two non-
negative constants u, v such that f = yz and g = vz. In particular, Reu and Imu
do not change sign, and so there exist ¢,d € R such that u = c¢z+idz. This implies
that there exist a positive function 1 and 6 € R such that u = e*®1. Therefore, ¥
also satisfies (8.1.37), hence (8.1.4) follows by Corollary 8.1.10. By Theorem 8.1.1,
¥ € C?)(RY) and ¢(z) — 0 as |z| — oo. Applying Gidas, Ni, and Nirenberg [125,
theorem 2, p. 370], we obtain that there exist a positive, spherically symmetric solu-
tion ¢ of (8.1.4) and y € RY such that ¥(-) = ¢(-—y). Therefore, u(-) = e¥p(-~y).

Note that ¢, being radially symmetric, satisfies the ordinary differential equation

N -1
(,0”+ . 90/+90a+1_w<p:0'
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It follows from Kwong [219] that such a solution ¢ is unique. This completes the
proof. ]

REMARK 8.1.12.  Note that we gave a self-contained proof of statements (i)
and (ii). On the contrary, the proof of (iii) relies on the two difficult results of
Gidas, Ni, and Nirenberg [125] and of Kwong [219]. We use property (iii) to prove
a strong version of the stability property (cf. Section 8.3).

We finally consider the case N = 2. Note that the method for N > 3 does not
apply to this case, since by Corollary 8.1.3, V(u) = 0 for every u € A.

PROOF OF THEOREM 8.1.5. We proceed in four steps. We define

(8.1.51) N={ue HR"):V(u) =0and u # 0},
(8.1.52) c=inf{S(w) : w € N},

and

(8.1.53) v = ﬁ inf{S(w): we N}.

Let us first observe that v > 0. Indeed, consider u € N. We have

2
2 < a2 .
[ 1= Sy [
RN RN

On the other hand, it follows from Gagliardo-Nirenberg’s inequality that there
exists C independent of u such that

[ul**? < C(T(u)E [ |ul®.
]R[ ]R[

This implies that there exists o > 0 such that T'(u) > o, and so S(u) > ¢/2 for all
u € N, which implies v > 0. ‘

STEP 1. The minimization problem (8.1.24) has a solution. We repeat the
proof of Berestycki, Gallouét, and Kavian [24]. It is clear that N # @. Let (Vm)men
be a minimizing sequence. In other words, vy, # 0, V(v,) = 0, and S(vn) — c.
Let wy, = |v,|* (see the beginning of the proof of Lemma 8.1.7), so that (W )men
has the same properties as (U )men. Define now (um)men by um(z) = wm()\,l,{23:),
where

o Jwml3s

" v
‘We have
(8.1.54) /ufn =7,

]RN
(8.1.55) V(um) =0,
and
(8.1.56) S(um) = S(wm) — c.
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In particular, (um)men is also a minimizing sequence. It follows from (8.1.54),
(8.1.55), and (8.1.56) that (um)men is bounded in H(R™). Therefore, there exists
a subsequence, which we still denote by (um, )men, and there exists u € H(RY) such
that u, — u in HY(RV) as m — occ. In particular (see the proof of Lemma 8.1.7),

a+2 a+2 2 —_— 2
U — u u* < lim =
/ Mmoo ’ / - m—>10°nf / Um =175

RN RN RN RN
and
T(u) <liminf T'(uy,) .
m-—00
Therefore,

V(u) >0 and S(u)<c.
We claim that V(u) = 0. To see this, we argue by contradiction. If V(u) > 0,
then in particular u # 0, so that there exists A € (0,1) such that v = Au satisfies
V(v) = 0. Thus v € N. Furthermore, T'(v) = \2T'(u) < T(u), so that S(v) < S(u),
which implies that S(v) < c¢. This contradicts the definition of ¢. Therefore,
V(u) = 0. It follows that V(umy,) — V(u), which implies that

2 _ g 2 _
[ = m [at=n
RN RN
and so u satisfies (8.1.24).
STEP 2. Every solution of (8.1.24) belongs to A. Indeed, consider a solution
u of (8.1.24) (which exists by Step 1). There exists a Lagrange multiplier A such

that
Ay = A|u|%u — wu) .

On taking the L?-scalar product of the equation with u, we obtain

T(u)=)\([|u[°‘+2—wkl |u]2>.

R
Since u satisfies (8.1.24), this implies that
_Adway
==
and so A = 1. Therefore, u satisfies (8.1.4).

2¢c

STEP 3. w satisfies (8.1.24) if and only if u € G. Consider any solution u
of (8.1.24) and any v € A (A # &, by Step 2). It follows from Corollary 8.1.3 that
v € N and

_4 _ . S)
(8.1.57) / lv|? = ;&-S(v) = ’YS(u) :
RN

Since v € N, we deduce that S{v) > S(u), and so u € G # @.
Assume further that v € G. Since u € G also, we have S(u) = S(v). It follows

from (8.1.57) that
/ ol =1,
RN

which means that v satisfies (8.1.24). Hence the result is established.
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STEP 4. Conclusion. Properties (i) and (ii) follow from Step 3. We estab-
lish (iii) by following the argument from the proof of Theorem 8.1.4. W]

DEFINITION 8.1.13. A function u € A is called a bound state of (8.1.4). A
function u € G is called a ground state of (8.1.4). By definition, this is a bound
state that minimizes the action S among all other bound states.

REMARK 8.1.14. Note that the ground state is unique, modulo space translations
and multiplication by €%, as follows from Theorems 8.1.4 to 8.1.6.

REMARK 8.1.15. In the literature, one sometimes calls any positive solution
of (8.1.4) a ground state. It follows from Theorems 8.1.4 to 8.1.6 that these two
definitions are equivalent, modulo multiplication by €.

REMARK 8.1.16. In the case N = 1, every u € A is a ground state, since
A = G. This is not true anymore when N > 2. Indeed, in this case, it follows from
Berestycki and Lions [25] and Berestycki, Gallouét, and Kavian [24] that there
exists a sequence (Um)men C A such that S(u,) — 00 as m — oo. This implies
that for m large, um ¢ G-

REMARK 8.1.17.  Let u be the (unique) positive, spherically symmetric ground
state of (8.1.4) with w = 1. For w > 0, let u,(z) = w'/*u(wiz). It follows that
u,, satisfies (8.1.4), and so u,, is the unique positive, spherically symmetric ground
state of (8.1.4). We have

lucl =wt% [0t [|oup.
' RN RN
Therefore, if & > 4/N, there exists o > 0 such that ||u,||z: > o for all w > 0. On

the other hand, if o < 4/N, then ||u,| g1 — 0 as w — 0. In particular, there exist
ground states of (8.1.4) of arbitrarily small H! norm (when w varies).

8.2. An Instability Result
We begin with the following result of M. Weinstein [356].

THEOREM 8.2.1. Assume (8.1.1) with o = 4/N and let w > 0. If ¢ € A (cf.
Theorems 8.1.4, 8.1.5, and 8.1.6), then u(t,z) = e*“'y(x) is an unstable solution of
(4.1.1) in the following sense. There ezists (Pm)men C HY(RYN) such that

om — ¢ in HYRY),
m—00

and such that the corresponding mazimal solution u., of (4.1.1) blows up in finite
time for botht > 0 andt < 0.

PRrROOF. We have E(p) = 0, by Corollary 8.1.3. Therefore, E(Ap) < 0 for every
A > 1. On the other hand, it follows from Theorem 8.1.1 that | - [o(-) € L%(RY).
Applying Theorem 6.5.4, we deduce that the maximal solution of (4.1.1) with the
initial value Ay blows up in finite time for both ¢ > 0 and t < 0. The result follows
by letting, for example, om = (1 + L)¢. O
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In the case & > 4/N, we have the following result of Berestycki and Cazenave
[23] (see also Cazenave [59, 60]).

THEOREM 8.2.2. Assume (8.1.1), (8.1.2), and w > 0. Suppose further that o >
4/N. If p € G (cf. Theorems 8.1.4, 8.1.5, and 8.1.6), then u(t,z) = e™*tp(z) is
an unstable solution of (4.1.1) in the following sense. There ezists (Ym)men C
HY(RY) such that

m—00
and such that the corresponding mazimal solution u,, of (4.1.1) blows up in finite
time for both t > 0 andt < 0.

REMARK 8.2.3. As we will see, the proof of Theorem 8.2.2 is much more compli-
cated than the proof of Theorem 8.2.1. On the other hand, the result is much weaker
(except when N = 1), since it only concerns the ground states (see Remark 8.1.16).
It is presently unknown whether the other stationary states are unstable.

Let us define the functional Q € C1(H'(R"),R) by

(8.2.1) Qu) = / |Vul? - ﬂ% / [u]**?  for u € HY(RY),
RN RV

and let

(8.2.2) M ={uec H(RY):u+#0 and Q(u) = 0}.

The proof of Theorem 8.2.2 relies on the following result.

PROPOSITION 8.2.4. Let o, w be as in Theorem 8.2.2. Ifu € HY(RYN), thenu € G
if and only if u solves the following minimization problem:
{ u € M,

(8.2.3) S(u) = min{S(v) : v € M}.

For the proof of Proposition 8.2.4, we will use the following lemma.

LEMMA 8.2.5. Givenu € HY(RM), u#0, and A > 0, set P(\,u)(x) = A u(Az).
The following properties hold:
(i) There exists a unique X*(u) > 0 such that P(A\*(u),u) € M.

(i) The function A — S(P(X,u)) is concave on (A*(u),00).

(iii) A*(u) <1 if and only if Q(u) <0.

(iv) A*(u) =1 if and only if we M.

(v) S(P(Auw)) < S(P(A*(u),u)) for every A > 0, X # A*(u).
) LS(P(Au) = :Q(P(\u)) for every XA > 0.

Y [PAu)* =P, |ul*) for every X > 0, where * is the Schwarz symmetriza-
tion.
(viii) If upm — u in HY(RY) weakly and in L+2(RN) strongly, then P(\,um) —

P(Au) in HY(RY) weakly and in Lo+t2(RN) strongly for every A > 0.

(vi

(vii
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PROOF. Let u € HY(RY), u# 0, and let uy = P(\,u). We have

s24) S = [wuped [ 2 e
(8.2.4) (u,\—2 U 5 | v el .
RN RN RN

Property (vi) follows easily. Let A*(u) be defined by

A ()5 = 2(‘]"V22)</|vu|2></1u|a+2>_1.
RN RN

Elementary calculations show that with A*(u) defined as above, properties (i), (ii),
(iii), (iv), and (v) are satisfied. Property (vii) follows easily from the definition
of Schwarz’s symmetrization (see the beginning of the proof of Lemma 8.1.7). Fi-
nally, given A > 0, the operator u — P(\ u) is linear and strongly continuous
HY(RYM) — HY(RYN). Therefore, it is also weakly continuous. The L**2 continuity
is immediate. Hence (viii) follows. 0

COROLLARY 8.2.6. The set M is nonempty. If we set

(8.2.5) m = inf{S(u) :u € M},

then Q(u) < S(u) —m for every u € H*(RY) such that Q(u) < 0.

Proor. It follows from Lemma 8.2.5(i) that M is nonempty. Let u € H*(RY) be

such that @Q(u) < 0, and let f(A) = S(P(A,u)). By Lemma 8.2.4(iii), A\*(u) < 1,
and, by (ii), f is concave on (A\*(u),1). Therefore,

F) 2 F(A(w) + (1= A" (u)f'(1).
Applying Lemma 8.2.5(vi), we obtain
S(u) = F(A"(w)) + (1 = A" (w))Q(u) = f(A" () + Q(u) -
Since by Lemma 8.2.5(i) P(A*(u),u) € M, we deduce that f(A\*(u)) > m, and so
S(u) 2 m+ Q(u),

which completes the proof. |

PROOF OF PROPOSITION 8.2.4. We proceed in three steps.

STEP 1. The minimization problem (8.2.3) has a solution. We know that
M # @& by Corollary 8.2.6, so that (8.2.3) has a minimizing sequence (vy,)mex-
In particular, Q(vy,) = 0 and S(v,) — m, where m is defined by (8.2.5). Let
Wi = |[Um|*, and upy, = P(A*(Wm), wsn). It follows from Lemma 8.2.5(i) that u,, €
M. Furthermore, it follows from Lemma 8.2.5(vii) that u,, = [P(A*(wm), vm)|*-
Therefore,

S(um) < S(P(A (wm),vm)) < S(P(A"(vm), vm)) < S(vm),
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where the last two inequalities follow from Lemma 8.2.5(v) and (i}. In particu-
lar, (um)men is a nonnegative, spherically symmetric, nonincreasing minimizing
sequence of (8.2.3). Furthermore, note that

2 Na—4 2w [ o
S(um) = 7 Qum) + g [ [Vunf?+% [ 42,
R

N RN

No -4 w
= =N /|Vum|2+5/ufn.
RN RN

It follows that (1 )men is bounded in H*(RY). Since Q(uyn,) = 0, we deduce from
Gagliardo-Nirenberg’s inequality and the boundedness of (s, )men in L2(RY) that
there exists C such that

Na
IVumllze < C||Vum”L42 .

Since Na > 4, we obtain that ||Vuy,| 12 is bounded from below, and since Q(u,,) =
0, there exists o > 0 such that

(8.2.6) lumllpa+z > o foralm>0.

By Proposition 1.7.1, there exist v € H}(RM) and a subsequence, which we still
denote by (tm)men, such that u, — v as m — oo, in H(RY) weakly and in
Lot?(RY) strongly, and so by (8.2.6), v # 0. Therefore, we may define u =
P(A*(v),v). By Lemma 8.2.5(i), v € M and Lemma 8.2.5(vii), P(A*(v), tm) — ©
in HY(RN) weakly and in L*T2(R") strongly. Therefore,

S(u) < liminf S(P(X*(v), tyn)) < lim inf S(P(A" (te), tm)

= liminf S(uy) =m,

where the last three inequalities follow from (v), (iv), and (8.2.5), and so u satis-
fies (8.2.3).

STEP 2. Every solution of (8.2.3) satisfies (8.1.4). Consider any solution u
of (8.2.3). For ¢ > 0, let u(z) = o ty(0z). One easily verifies that

Quo) = oV 2"5Q(u) = 0,
and so u, € M. Since u = u; satisfies (8.2.3), we deduce that f(o) = S(u,) satisfies
f/(1) = 0. One computes easily, by using the property u, € M, that
Q) =(S"(w), w) g1, 11,

where S’ is the gradient of the C! functional S (i.e., S'(u) = —Au + wu — |u|%u).
It follows that

(8.2.7) (8" (u), uyg-1 g1 = 0.
On the other hand, Q' (u) = —2Au — I—VZ—alul"‘u, and so since u € M, we obtain
(8.2.8) (Q"(u),u)g-1. g = —aT(u) < 0.

Finally, since u satisfies (8.2.3), there exists a Lagrange multiplier A such that
S'(u) = AQ'(u). Applying (8.2.7) and (8.2.8), we deduce that A = 0, and so
S’(u) = 0, which means that u satisfies (8.1.4).
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STEP 3. Conclusion. Consider
(8.2.9) £ =min{S(u) : u € A}.

Let u € G. In particular, S(u) = £. Applying Corollary 8.1.3, one obtains easily
that w € M. Therefore, S(u) > m, where m is defined by (8.2.5). In particular,

(8.2.10) (>m.

Consider now a solution u of (8.2.3). By Step 2, u € A. Since S(u) = m, it
follows from (8.2.9) that m > £. Comparing with (8.2.10)}, we obtain m = £. The
equivalence of the two problems follows easily. ]

PROOF OF THEOREM 8.2.2. Let ¢ € G, and let oy = P(A\, ) for A > 0. It
follows from Proposition 8.2.4 and Lemma 8.2.5 that

(8.2.11) Qpa) <0
and
(8.2.12) S{pa) <m= S(p)

for all A > 1. Let uy be the maximal solution of (4.1.1) with the initial value ¢,.
By conservation of charge and energy,

(82.13) S(ur(t) = S(pa) for all t € (~Tinin(9), Tmax (1)) -

By continuity, we deduce from (8.2.11) that Q(ux(¢)) < .0 for |f| small. On the
other hand, if ¢ is such that Q(ux(t)) < 0, then it follows from Corollary 8.2.6,
(8.2.13), and (8.2.12) that

(8.2.14) Qua(t)) < S(pr) —m = -8 <0.

By continuity, (8.2.25) holds for all t € (~Trin(®)), Tmax(#a)). Applying Proposi-
tion 6.5.1, we deduce that f defined by (6.5.15) satisfies

F(t) =8Q(ux(t)) < =86 for all t € (—Tmin(©2)s Tmax(®r)) -

It follows easily that both Tinin(s) and Tiax(@a) are finite (see the proof of The-
orem 6.5.4). Hence the result follows, since p) — ¢ in HY(RV) as A | 1 (apply
Theorem 8.1.1). O

REMARK 8.2.7. Theorems 8.2.1 and 8.2.2 show the instability of ground states
when o > 4/N. When a < 4/N, it follows from the results of Section 8.3 that the
ground states are, to the contrary, stable.

REMARK 8.2.8. The method of proof of Theorem 8.2.2 can be adapted to more
general nonlinearities. See Berestycki and Cazenave [23], Fukuizumi and Ohta [118§],
and Ohta [282].
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8.3. A Stability Result

Our goal in this section is to establish the following result of Cazenave and
Lions [66] (see also P.-L. Lions [235, 236] and Cazenave [58])

THEOREM 8.3.1. Assume (8.1.1), (8.1.2), and w > 0. Suppose further that a <
4/N. If p € G (cf. Theorems 8.1.4, 8.1.5, and 8.1.6), then u(t,z) = e“'yp(z) is
a stable solution of (4.1.1) in the following sense. For every ¢ > 0, there exists
8(g) > 0 such that if ¢ € HY(RY) satisfies ||o—||g1 < 8(¢), then the corresponding
mazimal solution v of (4.1.1) satisfies

3. inf inf |ju(t, ) —e¥p(- — <e.
(8.3.1) sup fnf inf, v(t, ) —e¥o(- —y)lm <e

In other words, there exist functions 0(t) € R and y(t) € RY such that

(8:3.2) sup o(t, ) — O — y(t))ln <.

REMARK 8.3.2. Theorem 8.3.1 means that if 1 is close to ¢ in H'(R"), then
the solution of (4.1.1) with initial value % remains close to the orbit of ¢, modulo
space translations. Note that a < 4/N, which implies that all solutions of (4.1.1)
are global (see Remark 6.8.1).

REMARK 8.3.3. The space translations appearing in (8.3.1) and (8.3.2) are nec-
essary. Indeed, let ¢ € G. Given € > 0 and y € R" such that |y| =1, let
Pe(z) = €% Yp(z) and wu(t,z) = @YWt (x — 2ety) .

One easily verifies that u. is the solution of (4.1.1) with initial value y.. Further-
more, . — @ in H 1(]RN ) as € | 0, but one easily verifies that for every € > 0,

inf _ 18 — .
sup fnf flue(t) — el = 2|loll

On the other hand, it is clear that if ¢ € G is spherically symmetric and if ¢ is also
spherically symmetric, one can remove the space translations in (8.3.1) and (8.3.2).
In other words,

sup inf [lv(t) — €% <e.

tegeeR” (t) ollm <e

This follows from a trivial adaptation of the proof of the stability theorem in the
subspace of H'(R") of spherically symmetric function. Alternatively, this follows
from the observation that if f,g € H(R") are spherically symmetric, then

yierﬁafN 1FC) = gC =l = 1f — glla -
REMARK 8.3.4. The rotations e appearing in (8.3.1) and (8.3.2) are necessary.
Indeed, let ¢ € G and let u(t,z) = e™*p(z). Given € > 0, let
pe(z) = (1+6) /(1 +€)z) and u(t,z) = 0TI+ )3 (1 +¢)Pa).

One easily verifies that u. is the solution of (4.1.1) with initial value .. Further-
more, @, —  in HY(RM) as £ | 0, but one easily verifies that for every £ > 0,

sup inf [jue(t,-) — (- — y)llmr =sup inf flus(t,") —ult,  — Yl = llolla .
teR yERY teR yERN
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REMARK 8.3.5. Theorem 8.3.1 only asserts the stability of ground states. Except
when N = 1, where A = G, one does not know whether the other standing waves
are stable.

The proof of Theorem 8.3.1 relies on the following result.

PROPOSITION 8.3.6. Assume 0 < o < 4/N andw > 0. Let 7 > 0, and let E be
defined by (8.1.16). If

(8.3.3) I'= {u € HY(RM): / fu|? = 7'}
RN

and

(8.3.4) —v =inf{E(v) : v €T},

then the following properties hold:

(i) The minimization problem

uel
(8.3.5) { E(u) = min{E(v) : v € '}

has a solution.

(i) If (um)men satisfies [|umliL2 — /7 and E(uy,) — —v, then there exist a
subsequence (Um, Jken and a family (yx)ken C RY such that (um, (-—Y&))keN
has a strong limit u in HY(RN). In particular, u satisfies (8.3.5).

PROOF. The proof relies on the concentration-compactness method introduced by
P.-L. Lions [235, 236] in the form of Proposition 1.7.6. We proceed in three steps.

STEP 1. 0<wv<oo. Itisclearthat I' £ @. Let u € I and A > 0; set
up(z) = /\sz'u()\:c) .
It follows easily that uy € I' and that

A2 A
E(UA) = _2“ / ’V’U,F - m / |u|°‘+2 .
RN RN

Since Na < 4, we have E(uy) < 0 for A small, and so v > 0. Next, we claim that
there exist § > 0 and K < oo such that

(8.3.6) E(u) > 6||ul3p — K forallu eT.

This follows immediately from Gagliardo-Nirenberg’s inequality

/ e <o froue) ([ )

RN RN
and the property Na < 4. Therefore, v > —K > —00.
STEP 2. Every minimizing sequence of (8.3.5) is bounded in H'(R") and

bounded from below in L2t2(RV). Let (un)n>0 be a minimizing sequence. Since
U, € T, (Un)n>o is bounded in L2(RY), then by (8.3.6) (un)»o is bounded in
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HY(RY). This proves the first part of the statement. Furthermore since v > 0, we
have E(uy,) < —v/2 for n large enough. It follows that

(8.3.7) / |22 > O‘T”u.
]RN

Hence the result is established.

STEP 3. Conclusion. We need only prove (ii). Let (Un)n>0 satisfy ||un]lz2 —
VB and E(u,) — —v. Setting

Vi

A 7

we deduce that (up)n>0 is @ minimizing sequence of (8.3.5). Note that by rescaling,
we may assume that 7 = 1. We now apply Proposition 1.7.6 to the minimizing
sequence (un)n>0 (note that a = 1). We claim that

(8.3.8) pw=1,

where p is defined by (1.7.6). Note first that, since (un )n>0 is bounded from below
in L*t2(R™), we have p > 0 by Proposition 1.7.6(ii). Suppose now by contradiction
that

(8.3.9) O<p<l.

We use the sequences (Vk)ix>o0 and (wk)e>o0 introduced in Proposition 1.7.6(iii). It
follows from (1.7.15)—(1.7.16) that

lim inf(B(un,) — B(vi) — E(wy)) 2 0,

so that

(8.3.10) limsup(E(vg) + E(wi)) < —v.

k—o0

Next, observe that, given u € H'(RY) and a > 0, we have

a® -1 a+2

o+ 2 / ful®*
RN

Applying the above inequality with and ax = 1/||vi|12, and since azvy € T', we
obtain that

E(u) = G%E(au) +

A i |
E > k a+2'
(vk)_—*a% t 2T /Ivkl
RN
Similarly,

v b -1
E > — + & at2
(wy) 2 b2 + a+2 /Iwk’

RN

with by = 1/||wg|| L2, and so

E(vg) + E(wg) > —v(ag? +b7%) + a -1 / log|®H2 + b1 / lwg |22
- o+ 2 o+ 2
RN RN
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Finally, note that a,:Q — u and b,;2 — 1 — u by (1.7.14). In particular, by (8.3.9)
0:=min{p"%,(1-u)"%}>1.
Therefore, using (1.7.16), then (8.3.7) we deduce that

o 1. .
(B () + E(we)) 2 v+~ iminf [ un, |7
RN

6—1
> vt = > v,

which contradicts (8.3.10). Therefore, the proof of the claim (8.3.8) is complete. We
finally apply Proposition 1.7.6(i), and we deduce that for some sequence (yx)k>0 C
RY and some u € HY(R"), up, (- — yx) — u in L2(R") (and in particular, u € T')
and in L*T2(R"N). Together with the weak lower semicontinuity of the H' norm,
this implies
E(u) £ lim E(u,, )= -~v.
k—o0

By definition of v, we have E(u) = —v. In particular, E(u,, ) — E(u), and it
follows that || Vuy, ||r2 = [[Vul|/L2, which implies that u,, (- — yx) — u strongly in
HY(RY). O

LEMMA 8.3.7. Let0 < a<4/N and w > 0. There exists u > 0 such that

(8.3.11) / [ul?> = for every ground state u of (8.1.4).
RN

Proor. The result follows from uniqueness of the ground state up to translations
and rotations (cf. Theorems 8.1.4, 8.1.5, and 8.1.6). Alternatively, when N >
2 the result follows from (8.1.19), (8.1.22), and property (ii) of Theorems 8.1.4
and 8.1.5. e ‘ a

COROLLARY 8.3.8. Let 0 < oo < 4/N, w > 0, and let u be defined by (8.3.11).
If u € HY(RY), then u is a ground state of (8.1.4) if and only if u solves the
minimization problem

8.3.12 vel
(8.3.12) {S(u):min{S(’U) rv el

where I' is defined by (8.3.3). In addition, the problems (8.3.12) and (8.3.5) are
equivalent.
ProoFr. We proceed in four steps.

SteP 1. Problem (8.3.12) is equivalent to problem (8.3.5), which has a
solution by Proposition 8.3.6. Indeed, if u € I, then S(u) = E(u) + wu/2, and so
problem (8.3.12) is equivalent to problem (8.3.5).

STEP 2.  We have k < 4, where £ is defined by (8.2.9) and k is defined by
(8.3.13) k = inf{S(v) :v eT}.
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Indeed, consider u € G. We have S(u) = ¢, and by Lemma 83.7, u € I. By
definition of k, this implies k < £. :

STEP 3. Every solution of (8.3.12) belongs to A. Consider a solution u
of (8.3.12), and let

ur(z) = ATu(Az) for A > 0.
We have uy € T and u; = u. It follows from (8.3.12) that

d
ﬁS(UA)lz\:l =0,
which means that

(8.3.14) T(u) = -2-(%6_-‘-2—) / u[o+2 |
RN

Now, since u satisfies (8.3.12), there exists a Lagrange multiplier A such that S'(u) =
Au, and so there exists ¢ such that

(8.3.15) —Au + dwu = |u|%u.
On taking the L2-scalar product of (8.3.15) with u and applying (8.3.14), we obtain

4— (N -2a
—Na L)
from which it follows that § > 0. Define now v by

w(z) = 6= v(67x).
We deduce from (8.3.15) that v € A, which implies
(8.3.16) Sw) >¢.

dwy =

One computes easily that

4~ (N-2)a

S(u) = 6522 5(v) + “;-’fu —4).

Applying (8.3.16) and Step 2, we obtain that

4— (N -2)o

£> 6% e+%(1—5).

On the other hand, it follows from Corollary 8.1.3 that £ > 0, and by (8.3.11) and

Corollary 8.1.3,
wp _4—(N- 2)a€
2 2a ’
and so
1> 54_(1;/0‘_2)0’ n 4 — (N — 2)a
20

This means that f(d) <0, where

1-4).

4-(N-2)a 4~(N——2)a 4~ N«
f(e)=8"2= - s+ .
2« 2x

One checks easily that f(s) > 0, if s # 1. Therefore, § = 1, which implies in view
of (8.3.15) that u € A.



8.3. A STABILITY RESULT 279

STEP 4. Conclusion. It follows in particular from Steps 2 and 3 that £ = k.
Therefore, if u € G, thenu € I and S(u) = k, which implies that u satisfies (8.3.12).
Conversely, let u be a solution of (8.3.12). We have u € A by Step 3, and since
S(u) = k = £, it follows that u € G. 0

PROOF OoF THEOREM 8.3.1. Assume by contradiction that there exist a sequence
(Vm)men C HY(RN), a sequence (tm)men C R, and € > 0 such that

(8:317) =~ el — 0,

and such that the maximal solution u,, of (4.1.1) with initial value ¥, (which is
global, cf. Remark 8.3.2) satisfies

. . . _ 10 . >
(8.3.18) inf inf Jum(tn, ) = (= y)lm 2.
Let us set »
(8.3.19) U, = U (Em ) -

It follows from Corollary 8.3.8; Theorems 8.1.4, 8.1.5, and 8.1.6; and (8.3.19) that
(8.3.18) is equivalent to

i - 12€.
(8.3.20) Jgfcu’vm ullgr > €
Applying Corollary 8.3.8, we deduce from (8.3.17) that

|1,bm[2 Tk and S(¥m) — k,
- m—00
RN

where k is defined by (8.3.13). From conservation of charge and energy, we deduce
that

/ fom|? — p, and S(vym) — k
m—0o0 m—00

RN

. as well. Therefore, (Vm)men is a minimizing sequence for the problem (8.3.12),
hence of the problem (8.3.5) (see Corollary 8.3.8). From Proposition 8.3.6(ii) it
follows that there exist (Ym)men C RY and a solution u of the problem (8.3.5) such
that ||vm — u(- — Ym)|lg1 — 0. But u € G by Corollary 8.3.8, and so u(- —yn,) € G,
which contradicts (8.3.20). O

REMARK 8.3.9. Note that the proof of Theorem 8.3.1 only makes use of the
following two properties. The conservation laws of (4.1.1) (charge and energy),
and the compactness of any minimizing sequence. Therefore, the method is quite
general and may be applied to many situations. See, e.g., Cazenave {58], Cazenave
and Lions [66], P.-L. Lions [235, 236]), and Ohta [282, 283, 284].

REMARK 8.3.10. . One does not know in general about the functions 8(¢) and y(t)
of (8.3.2). If both ¢ and v are spherically symmetric, one may let y(t) = 0 (see
Remark 8.3.4). Remarks 8.3.3 and 8.3.4 display examples for which one may let 8
and y be linear in ¢t. One does not know whether this is true in general. Concerning
this question, see the remarkable papers of Soffer and Weinstein [316, 317]. They
consider in particular a one-dimensional equation with a potential. In this case,
y = 0, but they also show that one may let 8 be linear in ¢.
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8.4. Comments

REMARK 8.4.1. There are other methods to study the stability of standing waves,
based on the study of a linearized operator. See Shatah and Strauss [311], Gril-
lakis, Shatah, and Strauss [154, 155]. See also Gongalves Ribeiro [151], Blanchard,
Stubbe, and Vazquez [33], M. Weinstein [358, 357], Rose and Weinstein [303], and
Cid and Felmer [81]. The stability of excited states has also been studied, in par-
ticular by Jones [198] and Grillakis [153].

By using the techniques of Section 8.1, one can establish the following useful
result of M. Weinstein [356] relating the ground states of (8.1.4) with the best
constant in a Gagliardo-Nirenberg inequality.

LEMMA 8.4.2. Let R be the (unique) spherically symmetric, positive ground state
of the elliptic equation (6.6.3), i.e.,

—~AR+R=|R|*R inRY
with @ = 4/N (see Definition 8.1.13 and Theorems 8.1.4, 8.1.5, and 8.1.6). It

follows that the best constant in the Gagliardo-Nirenberg inequality

1 c 3
L wistz < Sivuitavls,
is C = ||R||;5-

PROOF. We follow the argument of M. Weinstein [356]. We need to show that

. 2||R||%2
4. f J - _._L_’
(8 4 1) uEItIIrll,u;éO (u) a+2
where 0
. Vull7.|ullf
( ) - a+2
”u”La+2

We set

o= inf J(u
w€H1 u#0 ( ),

and we consider a minimizing sequence (u,)p>0. We observe that by Gagliardo-
Nirenberg’s inequality, ¢ > 0. We consider v, defined by vp(z) = pntn{An) With

N-2
_ unire _ a2
An = v nd p, = >
[Vun|l L2 | Vun | 2
so that ||vpllL2 = ||[Vunllz2 = 1 and
lonll 7572 = J(vg) = J(un) — 0 >0.
n—ooo

By symmetrization (see the proof of Lemma 8.1.7), we may assume that v, is
spherically symmetric, and so there exist a subsequence, which we still denote by
(Un)n>0, and v € H'(RY) such that v, — v in H}(RN) weakly and in L*+2(RY)

— 1
strongly (see Proposition 1.7.1). Since ||v||fe+2 = liMp o0 ||Un]|Le+2 = 07 3%2 >0,
it follows that v # 0. This implies that

(8.4.2) Jw)=0 and [v|rz = ||Volp2 = 1.
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In particular, %J(v + tw)li—o = 0 for all w € HY(RY) and, taking into ac-
count (8.4.2), we obtain

2
—Av—i—%vzaa;

Let now u be defined by v(z) = au(bz) with @ = (a/o(a +2))* and b = (a/2)7,
so that u is a solution of (6.6.3) and

Juwy=Jw)=o0.

lv|%.

Since u satisfies equation (6.6.3), we deduce from Pohozaev’s identity (see Lem-
ma 8.1.2) that

1, o 1 +2
SIVuls = ~—— g%,

and that 2||Vu||2; = Nllull3. (see formulae (8.1.21) and (8.1.22)), and so

8.4.3) Jw) =~ f = 2l
(8.4 = gl = s lullgs

Since R also satisfies equation (6.6.3), it satisfies the same identity. Since u mini-
mizes J, we must have J(R) > J(u), which implies that ||u||pz < |R|z2. On the
other hand, R being the ground state of (6.6.3), it is also the solution of (6.6.3)
of minimal L2-norm by (8.1.19) and (8.1.22), so that ||R|{zz < |lullzz. Therefore,
[Rllzz = |lu|lL2, and the result now follows from (8.4.3). O



CHAPTER 9

Further Results

In Sections 9.1 and 9.2 we present some results that follow easily from the
techniques that we developed in the previous chapters. On the other hand, we
describe in Sections 9.3 and 9.4 two results that do not fall into the scope of these
methods. Finally, we briefly describe in Section 9.5 some further developments.

9.1. The Nonlinear Schrodinger Equation with a Magnetic Field

In this section we study the nonlinear Schrédinger equation in R? in the pres-
ence of an external, constant magnetic field. Given b € R, b # 0, we consider the
(vector-valued) potential ® defined by

b :
@(:17) = .2_(_1:2’2:1’0) for z = (1‘11"1“271"3) € RB:

which is the vector potential of the (constant) magnetic field B = cu—ri(CID), that is,

—

B =(0,0,b).
We define the operator A on L2(R®) by
D(A) = {u € L*(R®) : Vu +i®u € L*(R®?) and Au+ 2i® - Vu — |®*u € L*(R?)},
and

Au = Au + 2i® - Vu — [®2u  for u € D(A).
We consider the nonlinear Schrodinger equation
{ tug + Au+ g(u) =0
u(0) = o,

and we refer to Avron, Herbst, and Simon [5, 6, 7], Combes, Schrader, and Seiler
[93], Eboli and Marques [109], Kato [202], Reed and Simon [301], and B. Simon [313]
for its physical relevance. We begin with the following observation.

(9.1.1)

LEMMA 9.1.1. A is a self-adjoint, < 0 operator on L?(R3).

PROOF. Since D(R3) C D(A), D(A) is dense in L?(R3). Furthermore, given
u,v € D(A), (Au,v)2 = —(Vu + 1®u, Vv + i®v) 2. Therefore, A is < 0 and
symmetric. It now remains to solve the equation Au— Au = f for every f € L*(R3?)
and A > 0. This follows easily by applying Lax-Milgram’s lemma in the Hilbert
space H = {u € L*(R®); Vu + i®u € L%(R3)}, equipped with the scalar product
(u,v)g = (Vu + i®u, Vv +i®v) 2 + A(u, v) 2. 0

283
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We then may apply the results of Section 1.6. In particular, D(A) is a Hilbert
space when equipped with the norm
lullbiay = I1AulFs + llullze,

and ¢A generates a group of isometries (J(¢));cr on the Hilbert space (D(A))*.
The operators (J(t))¢cr restricted to any of the spaces D(A), X4, L%(R3), or X}
are a group of isometries, where X 4 is defined by

Xa={ueL*R3: Vu+idu e LR},
and
lullk, = IVu+i®ul}s + [l .
In addition, A can be extended to a self-adjoint, < 0 operator on (D{A))* (which

we still denote by A), and A is bounded X4 — X3 and L2(R3) — (D(4))*.
Furthermore, we have the following result.

LEMMA 9.1.2. The following properties hold:
(i) Xa = LP(R3) for every 2 < p < 6.
(i) LI(R3) — X3 for every § <g<2.
(iii) D(A) — LP(R3) for every 2 < p < cc.
PROOF. Let u € X4. We have

IV{|u])] = 'Re <|—Z—|(Vu + z@u))' a.e.
on the set {zx € R3;u(z) # 0}. It follows that
(9.1.2) [V{(lu])] < |Vu + idu| ae.

Therefore, |||ul||g: < |Jullx,. Hence (i) is true. Note also that D(R%) C X4, from
which we deduce that the embedding X4 < LP(R®) is dense, and so (ii) follows
from (i) by duality. Finally, let u € D(A) and set f = Au € L*(R3). For every
7 €{1,2,3}, let v; = O;u + i®ju. We have ‘ ‘

(913) AUj —v; = —(8]- - l‘I)])f - 2Z(V’LL + z<I>u) . (8J(I) - V(I)J) —vj.

Next, observe that |0;®—V®;| < b. Furthermore, V+i® is by definition a bounded
operator X4 — L2(R3), and so, by duality, V — i® is bounded L?(R3) — X%.
In particular, the right-hand side of (9.1.3) belongs to X% and ||Av; — v;[lxs <
Cllullpcay- It follows easily that v; € X4 and |jvj||x, < Cllul|pcay. Letting
successively j = 1,2,3 we obtain the inequality ||Vu + i®u|x, < Cllu|lpa). Ap-
plying (i), we deduce that ||Vu + i®ul[ze < Cllul|p(ay. Therefore, by (9.1.2),
NV (uplllzs < Cllullpea)- Claim (iii) follows by Sobolev’s embedding theorem. O

LEMMA 9.1.3. Ife >0 andl <p< oo, then (I —cA)~! is continuous LP(R3) —
LP(R®) and [|(I — eA)izze,zr) < 1.

Proor. Let § € C'(R,,R,) be such that both # and 6’ are bounded, 8 > 0,
#’ > 0, and 6(0) = 0. By applying the method of proof of Proposition 1.5.1, we
need only show that

(9.1.4) (Au, 0(Jul*)u) 2 <0 for all uw € D(A).
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Consider p € D(R3) such that 0 < p < 1 and p(x) = 1 for |z| < 1, and set
pm(z) = p(x/m) for m > 1. Let u € D(A). We have

(9.1.5) (Au, 6((ul)u)zz = lm (Au, prob((ufu)ye
In addition, since pr6(Ju|?)u has compact support,

(A, (1)) 2 = = Re [ V- ¥ (pmb(1uf0)
RS

—9Im / Prb(|uf?)T® - Vu — / Pl ®26(jul?) uf?
R3 R3

It follows from the Cauchy-Schwarz inequality that

~2Im / pm8([u]?)T - Vu < / Pl ®126(12(?) o] + / Pmb(ul?)Vul?,
IRB

R3 R3
and so
(Au, pr6(ul?)u) ., < — Re / Va- V(pmb(ul?)a) + / pmB(ul2) | V]2
R3 R3

An elementary calculation shows that
= Re (Vu - V(pmb(jul*)T)) + pm(lul*)|Vul®
= — ot ([uP) (02 Vul? ~ Re(@ V) ~ £ Vo - VO(ful?)

< —%me -VO(jul?) a.e. where O(s) = / 6(c)do ;
0

therefore,
1
(A, pm0(u?)0) 12 < 5 [ ©(u)Apm — 0.
R3

Applying (9.1.5), we obtain (9.1.4). O
Finally, we have the following estimate of (J(t)):er.

LEMMA 9.1.4. There exist 6 > 0 and C < oo such that J(t) is continuous
LY(R3) — L°(R?) for every t € (—6,6) and t # 0. Moreover,

C
1T ulle < —
1t

ullz:
for every u € LY(R®) and t € (—6,6), t #0.

ProoF. For every t such that sin(bt) # 0, the following formula holds (see Avron,
Herbst, and Simon [5]).

b A
T(t = . —iF(z,y,t) dy,
(B)u(=) 4 (Amit)s sin(bt)uize wly)dy
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where
—y3)® b b
F(z,y,t) = ‘(ms_“yﬁ)‘ +3 ((x1 = y1)? + (z2 — y2)?) cotg(bt) — §($1y2>— T2y1) -
Therefore,
o]

T t 1 o < —,

NTElezr,L=) < 3] o)
from which the result follows easily. O

Consider now g as in Example 3.2.11 with N = 3; i.e.,
9(u) = Vu+ F(-u() + (W x [ul*)u

with V € LP(R3) + L*(R3) with p > 3/2, W € LY(R®) + L*°(R?®) real-valued po-
tentials, W even, and f(x, u) is locally Lipschitz in u, uniformly in z, and satisfying
|f(z,u) — f(z,v)] < CA+ |ul* + |[v]*)|u — v| for some 0 < a < 4. We set

6) = [ {FV@@P + Faue) + {07+ )@l s
R3
with
|2l

F(z,z) = f(z,s)ds and E(u /|Vu+z<I>u|2dx—G( ).
0

We have the following result (see Cazenave and Esteban [62]; see also de Bouard {96]
for related results for a more general equation).

THEOREM 9.1.5. If g is as above, then the following properties hold.

(i) For every ¢ € X4, there exist Tmin(¢), Tmax(¥) > 0, and a unique, mazi-
mal solution v € C((—Tmin, Tmax ) Xa) N C*((~Tmin, Tmax), X5 ) of problem
(9.1.1). The solution u is mazimal in the sense that if Tmax < 00 (respec-
twely, Tnin < 00), then ||u(t)]ja — o0 as t T Tmax (respectively, as t |
"‘Tmm)

(ii) There is conservation of charge and energy; that is,

lu@®)llzz = llellee and E(u(t)) = E(p) for allt € (~Tmin, Tmax)-

(iii) There is continuous dependence of the solution on the initial value in the
sense that both functions Tnin(p) and Thax(p) are lower semicontinuous,
and that if ¢m — @ in X4 and if ["'leT?] C( mm(‘P) Tinax()), then
U — u in C([-T1, T3], Xa), where u,, is the mammal solution of (9.1.1)
with initial value @, .

(iv) Ife € D(A), thenu € C((~Tmin, Tmax), D(A)NC (= Timins Timax)s L2(R3)).

Proor. It follows from Lemmas 9.1.1 to 9.1.4 that A and g satisfy the assumptions
of Theorems 4.12.1 and 5.7.1. ]

REMARK 9.1.6. By conservation of energy and Lemma 9.1.2(i), there exists § > 0
such that if ||¢||x, < 6, then the maximal solution u of (9.1.1) is global and
sup{|lu(t)||x, : t € R} < oo (compare the proof of Corollary 6.1.2).
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REMARK 9.1.7. In addition to the assumptions of Theorem 9.1.5, suppose that
W+ e LI(R3) + L (R3) for some g > 3/2, and that there exists 0 < § < 4/3 such
that F(z,u) < C(1 + |u|®)|u|? for all u € C. It follows that for every ¢ € X4, the
maximal solution u of (9.1.1) is global and sup{jlu(t)}|lx, : t € R} < oo (compare
the proof of Corollary 6.1.2).

Concerning the existence of solutions of (9.1.1) for initial data in L%(R?%), we
have the following result (see Cazenave and Esteban [62]).

THEOREM 9.1.8. Let g be as in Theorem 9.1.5 and assume further that o < 4/3
and that W € LY(R3) + L®(R3) for some q¢ > 3/2. Let

2 2q}

T = max a+2
{ p—1¢—1

and let (g,r) be the corresponding admissible pair. It follows that for every ¢ €
L?(R3), there exists a unique solution u € C(R,L*(R3%)) n LI (R, L™(R3)) with
us € LL (R, (D(A))*) of (9.1.1). In addition, |[u(t)|[z> = |l¢l/z2 for allt € R, and
ue L] (R, LP(R3)) for every admissible pair (vy,p). Furthermore, if pm — ¢ in
L?(R®) and if u™ denotes the solution of (4.1.1) with initial value @, then u™ — u
inu € L] (R, LP(R®)) for every admissible pair (v, p).

PRrROOF. One adapts easily the proofs of Theorem 4.6.4 and Corollary 4.6.5. [

REMARK 9.1.9. Under certain assumptions on g, one can adapt the methods
of Section 6.5 and show that some solutions of (9.1.1) blow up in finite time (cf.
Gongalves Ribeiro {150]).

REMARK 9.1.10. For a certain class of nonlinearities, equation (9.1.1) has sta-
tionary states of the form u(t,z) = e™*y(z) (cf. Esteban and Lions [110]). One
obtains stability results that are similar to those of Sections 8.2 and 8.3. For some
nonlinearities, the ground states are stable (cf. Cazenave and Esteban [62]), and for
other nonlinearities, the ground states are unstable (cf. Gongalves Ribeiro [151]).

9.2. The Nonlinear Schriédinger Equation with a Quadratic Potential

We already studied the nonlinear Schrédinger equation in RY with an external
potential V, with V € LP(RN)+ L>°(RN) for some p > 1, p > N/2. Here we extend
these results to the case of potentials U that are not localized, but have at most
a quadratic growth at infinity, the model case being U(x) = |z|?>. More precisely,
consider a real-valued potential U € C*(R") such that U > 0 and

D*U € L®(RY) for alla e NV
such that |a| > 2. We define the operator A on L%(RY) by
{ D(A) = {uec HYR") : Ulu* € L)(RY) and Au—Uu € Lz(RN)}
Au=Au—Uu foru e D(A).
We consider the nonlinear Schrédinger equation
iy + Au+ g(u) =0
{ u(0) = ¢.
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We begin with the following observation.
LEMMA 9.2.1. The operator A is self-adjoint and < 0 operator on L2(RV).

PrROOF. Since D(RY) C D(A), D(A) is dense in L>(R"). Furthermore, given
u,v € D(A),

(Au,v)p2 = ~Re/Vu-V7i+ Uuv.
RN

We deduce easily that 4 is < 0 and symmetric. Therefore, it remains to solve
the equation Au — Au = f for every f € L>(RY) and A > 0. This is done eas-
ily by applying Lax-Milgram’s lemma in the Hilbert space H = {u € H}(R") :
Ulul? € L*(RN)}, equipped with the norm defined by

nw%=ww%+/wW+Mwm for all u € H.
RN
O

We may then apply the results of Section 1.6. In particular, D(A) is a Hilbert
space when equipped with the norm

[[uHQD(A) = || Aull7z + JJull L2,

and iA generates a group of isometries (J(¢));cr on the Hilbert space (D(A))*.
The group (JT(t))icr restricted to either of the spaces D(A), X4, L3(RN), X% is a
group of isometries, where X 4 is defined by

Xa={ue H'RY): Ulu® e L'R")}

and
e, = IVl + fulls + [ UluP.
RN
In addition, A can be extended to a self-adjoint, < 0 operator on (D(A))* (which
we still denote by A), and A is bounded X4 — X3 and L%2(RY) — (D(A))*.
Furthermore, we have the following result.

LEMMA 9.2.2. The following properties hold:
(i) Xa— HYRN).
(i) H YRN) — X3.
(iii) D(A) — LP(RY) for every 2 < p < co such that L >

11 2
p 2 N-*
Proor. Claim (i) follows from the definition of X4, and (ii) then follows by
duality. We now prove (iii) for N > 3, the proof for N = 1, 2 being easily adapted.
Let u € D(A) and let f = Au. Consider p > 2 and take the L2-scalar product of
the equation Au — Uu = f with |u[P~2u. (In fact, a rigorous proof would require a

regularization; see the proof of Lemma 9.2.3 below.) One obtains easily

/MHWWSMWM@Lw
IRN
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Since p?|u|P~2|Vu)? = 4|V(|u|P/?)|?, it follows from Sobolev’s inequality that
-1

IIUH’;#_% < ClifllzelluliZzg—s -

Hence (iii) follows, by letting p = 21{,\’__44 if N > 5 and taking any p < oo if N < 4,

then applying Holder’s inequality. O

LEMMA 9.2.3. Ife >0and1 <p < oo, then (I —eA)™! is continuous LP(RN) —
LP(RN), and ||(I — eA) "l gee L) < 1.

ProOOF. Let § € C*(Ry,R,) be such that both § and 8 are bounded, 6 > 0,
6" > 0, and 6(0) = 0. By applying the method of proof of Proposition 1.5.1, we
need only show that

(Au, 0(|u|*)u)r2 <0 for all u € D(A).
We have
(Au, (jul*)u) L2 = (Au, O(ful*)u)rz ~ / UG(|uf*)lul® < (B, 6(|ul*)u) Lz,
RN
and we already know that (see the proof of Proposition 1.5.1) (Au, 8(Ju|?)u)rz < 0.
The result follows.

Finally, we have the following estimate of (J(t)):er-

LEMMA 9.2.4. There exist § > 0 and C < oo such that T(t) is continuous
LYRN) — L®(RY) for every t € (—46,6), t # 0, and

(9.2.2) 1T (@E)ullr- < e flullz:

for every u € LY(RY) and |t] <6, t #0.

Proor. This is a delicate result, based on a calculation of the kernel associated
to J(t). See Oh [277], proposition 2.2. O

REMARK 9.2.5. Estimate (9.2.2) holds for |t| < é. In fact, (9.2.2) does not in
general hold for all t # 0. This can be seen in the special case U(z) = w?|z|?/4,
where there is the following explicit formula (Mehler’s formula; see Feynman and
Hibbs [112])

N

w : (igsior (2l +[yl?) cos(wt) —2a-y))

pnd —————————— 4 sin(wt

T(t)u(z) (47risin(wt)) /e ©n w(y)dy -
N

N
)

We see that [|T(t)u|lgpr,n=) < (w/4mi|sin(wt)|)
estimate is optimal.

if sin(wt) # 0 and that this

Consider now a real-valued potential V : RN — R such that V € LP(RN) +
L>®(RY) for some p > 1, p > N/2.
Let
9(u) = Vu+ f(,u(")) + (W« [u*)u
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as in Example 3.2.11, and set

6= [ 3@ + ) + {07« WP @uo) fda
RN
and
E(u) = é— / [Vul?dz + % / Ulu|? dz — G(u).
RN RN
We have the following result (see Oh [277, 278] for a similar result in the case where
g(u) = —=Alul%u).

THEOREM 9.2.6. If g is as above, then the following properties hold:

(i) For every ¢ € Xa, there ezist Tinin(w), Tmax(¢) > 0 and a unique, maz-
imal solution u € C((—Tmin, Tmax)s Xa) N CY{(=Tmin; Tmax), X3) of prob-
lem (9.2.1). The solution u is mazimal in the sense that if Tmax < 00
(respectively Tinin < ©0), then ||u(t)||la — o0 as t 1 Tiax (respectively, as
t l "Tmin)-

(ii) There is conservation of charge and energy, that is,

”u(t)”l:2 '_“ “QOHL2 and E(u(t)) = E(QO) fOT‘ allt € (_Tmim Tmax)- ‘

(iii) There is continuous dependence of the solution on the initial value in the
sense that both functions Tnin() and Thax(@) are lower semicontinuous,
and that if ¢m — ¢ in X4 and if [_T17T2] C (~Tmia(¥), Tmax(®)), then
U — u in C([-T1,T2], X4), where uy, is the mazimal solution of (9.2.1)
with initial value @m,.

(iv) Ifp € D(A), then u€ C({~Tmins Tmax), D(A))NCY((=Tmins Tmax ), L2(RY)).

PROOF. It follows from Lemmas 9.2.1 to 9.2.4 that A and g satisfy the assumptions
of Theorems 4.12.1 and 5.7.1. O

REMARK 9.2.7. By conservation of energy and Lemma 9.2.2(i), there exists § > 0
such that if |l¢|lx, < 6, then the maximal solution u of (9.2.1) is global and
sup{|lu(t)]|x, : t € R} < oo (compare the proof of Corollary 6.1.5).

REMARK 9.2.8. In addition to the assumptions of Theorem 9.2.6, suppose that
W+ e LIRN) + L= (R") for some ¢ > 1, ¢ > N/2, and that exists 0 < § < 4/N
such that F(z,u) < C(1+ |u|®)|u|? for all u € C. It follows that, for every ¢ € X4,
the maximal solution u of (9.2.1) is global and sup{||u(t)||x, : t € R} < co (compare
the proof of Corollary 6.1.2).

Concerning the existence of solutions of (9.2.1) for initial data in L2(R"), we
have the following result.

THEOREM 9.2.9. Let g be as in Theorem 9.2.6 and assume further that o < 4/N
and that W € LI(RN) + L=®(RN) for some ¢ > 1, ¢ > N/2. Let
2p 2%

r= +27_a_ s
max{a p—l q—l}
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and let (g,7) be the corresponding admissible pair. It follows that for every ¢ €
L*(RYN), there ezists a unique solution u € C(R, L*(RM))n LY (R, L"(RY)) with
us € LL (R, (D(A))*) of (9.2.1). In addition, ||lu(t)||z2 = ||¢llz2 for allt € R, and
u € LY (R,LP(RN)) for every admissible pair (v, p). Furthermore, if ¢m — @ in
L*(RY) and if u™ denotes the solution of (4.1.1) with initial value @, then u™ — u
inu € L] (R, L?(RY)) for every admissible pair (v, p).

loc

PROOF. One adapts easily the proofs of Theorem 4.6.4 and Corollary 4.6.5. O

REMARK 9.2.10. Under certain assumptions on g, one can adapt the methods of
Section 6.5 and show that some solutions of (9.2.1) blow up in finite time. More pre-
cisely, if we assume that |z- VU| < C(|z|2+U) and that g satisfies the assumptions
of Proposition 6.5.1, one can show that (with the notation of Proposition 6.5.1)

£7() = 16E(p / (8(N + 2)F(u) — 4N Re(f(u)0))dz

+8/ <V+§vaV>|uI2da:+4/((W—k%x-VW)*[u[z)]ulzdx
BN

RN
—8/ (U-i—-;—z-VU)IuPd:c.

RN

The proof of the above inequality is similar to that of Proposition 6.5.1. Assume
further that g satisfies (6.5.24), (6.5.25), and (6.5.26), and that

U+%1‘-VUZO.

If ¢ € X4 is such that | - |p(-) € L*(RY) and E(¢) < 0, then Tinax() < 0o and
Tmin(ip) < 0o (compare the proof of Theorem 6.5.4).

REMARK 9.2.11. In the model case U(z) = |z|? and g(u) = Au|®u, where A > 0
and 4/N < a < 4/(N -2) (4/N < a < o0, if N = 1), it follows from Remark 9.2.10
that if v € X4 is such that E(p) < 0, then Thhax(p) < oo and Thin(¢) < . For a
more detailed study, see Carles [51, 52, 53], Fukuizumi [117], and Zhang [369, 370].

9.3. The Logarithmic Schrédinger Equation

Let @ ¢ RY be any open domain. We consider the following nonlinear Schré-
dinger equation:

{ iugs + Au + Vu + ulog(jul?) = 0

(9.3.1) u(0) =

where V is some real-valued potential. The equation (9.3.1) arises in a model of
nonlinear wave mechanics (see Bialinycki-Birula and Mycielski [31]). We cannot
apply the results of Section 3.3 for solving the problem (9.3.1) because the function
z + zlog(]z|?) is not Lipschitz continuous at z = 0, due to the singularity of
the logarithm at the origin. Furthermore, it is not always clear in what space
the nonlinearity makes sense. For example, if @ = RY and v € H*(RY), then
ulog(|u[?) does not in general belong to any LP for p < 2, nor to H~Y(R") (this
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is again due to the singularity of the logarithm at the origin). However, we will
solve the problem (9.3.1) by a compactness method, but before stating the precise
existence result, we need to introduce some notation. Define

F(z) = |z*log(]z|?) for every z € C.
Furthermore, let the functions A, B, a,b be defined by
—5? log(s?) fo<s<es
Afs) = 2 -3 -3 -3
352 +4e °s—e ifs>e3,

and

A
TR )
s
Extend the functions a and b to the complex plane by setting

a(z) = |—§—|a(|z|), b(z) = élb(lz]) forz€ C,z#0.

It follows in particular that A is a convex C-function, which is C? and positive
except at the origin. Let A* be the convex conjugate function of A (see, e.g.,
Brezis [43]). The function A* is also a convex C*-function, which is positive except
at the origin. Define the sets X and X' by

X = {u€Li() : Allul) e L' (@)}, X' = {u € Lioo() : A*(Jul) € L'(2)} .

Finally, set
flullx = inf{k >0: /A<I%I) < 1} forue X
Q

|l x =inf{k>0:/A*(’—:|> 51} forue X'.
Q

We have the following results (see Cazenave [58], lemmas 2.1 and 2.5, and Kra-
nosel’skii and Rutickii [218]).

and

LEMMA 9.3.1. The spaces X and X' are linear spaces. The inner product spaces
(X, - |x) and (X', || - | x+) are reflexive Banach spaces and X' is the topological
dual of X. Furthermore, the following properties hold:

() Ifum™ — win X, then A(lu™) — A(jul) in LX(®).

(ii) Ifu™ — u a.e. and if
m—00

Q/ Al — Q/ Afful) < oo,

then u™ — u in X.
m—00

LEMMA 9.3.2. The operator u — a(u) maps continuously X — X'. The image
under a of a bounded subset of X is a bounded subset of X'.

Finally, consider the Banach space W = H}(Q) N X equipped with the usual
norm. It follows from Proposition 1.1.3 that

W*=H Q)+ X'.



9.3. THE LOGARITHMIC SCHRODINGER EQUATION 293

Define

/[V ? - /V| 2 - —/|U|210g [u?) for every u € W,

where the potential V' € LP(Q2) + L°°(€)) for some p > 1, p > N/2. We have the
following result.

LEMMA 9.3.3. The operator L : u — Au+ Vu + ulog(|uj?) maps continuously
W — W*. The image under L of a bounded subset of W is a bounded subset of
W*. The operator E is continuous W — R.

PROOF. One easily verifies that for every £ > 0, there exists C, such that
(9.3.2) [b(v) — b(u)| < Ce(luf + [v|*)|jv —u| forallu,veC.

Integrating inequality (9.3.2) on 2, and applying Hélder’s and Sobolev’s inequali-
ties, we obtain easily that u — b(u) maps continuously Hg(Q2) — H~1(9) and that
the image under b of a bounded subset of H}(Q) is a bounded subset of H~1(Q).
The same holds for A, and also for u — Vu (by Holder’s inequality), and so the
first part of the statement follows from Lemma 9.3.2. Finally,

(9.3.3) E(u) = %/Wu]z—%/VluIQ—t— %/A(|u|) - %/B(iul).
Q Q Q Q

The first term in the right-hand side of (9.3.3) is continuous H3(2) — R, and it
follows from Lemma 9.3.1(i) that the third term is continuous X — X’. Further-
more,

|B(v) — B(u)| < Ce(|ul"** + [o]'+*) v — u|
by (9.3.2). Integrating the above inequality on 2, and applying Holder’s and So-
bolev’s inequalities, we deduce that

/|B W] < O + ulZn + lulld)llo —ullze for all u,v € HY(S).

Therefore, the fourth term in the right-hand side of (9.3.3) is continuous Hi(Q) —
R. Finally, if V = V] + V2 with V; € LP(Q2) and V; € L*™°(Q), then

(9.3.4) /IVIIUI2 < I|V1HLPIIUI|;% + V2l L lullZ -

Thus the second term in the right-hand side of (9.3.3) is continuous Hg(Q2) — R,
which completes the proof. 0

Our main result of this section is the following (see Cazenave and Haraux [63]).

THEOREM 9.3.4. Let V be a real-valued potential such that V € LP(Q2) + L*(Q})
for some p > 1, p> N/2. The following properties hold:

(i) For every ¢ € W, there exists a unique, mazimal solution v € C(R,W) N
CHR,W*) of problem (9.3.1). Furthermore, sup,cg |lu(t){lw < oc.
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(ii) There is conservation of charge and energy; that is,

lu@)llzz = llellzz  and E(u(t)) = E(p) for allit € R.

(iii) There is continuous dependence of the solution on the initial value in the
sense that if om — @ in W, then un — u tn W uniformly on bounded
intervals, where uy, is the mazimal solution of (9.3.1) with initial value p,,.

For the proof of Theorem 9.3.4, we will use the following two lemmas.

LEMMA 9.3.5. We have

| Im ((vlog(Jv]?) — wlog(|u/*))(@ —@))| < 4jv —u|* for all u,v € C.

Proor. Note that
Im ((vlog(|v|®) — ulog(Ju|®)) (@ — @) = 2(log |v| — log |u|) Im(vT — uD).
Assuming, for example, 0 < |v| < |u|, we see that

ol =l _ Jo—

L O]

|log [v] — log ful| <

and
| Im(ve — uD)| = |[v(@ —T) + T(v — u)| < 2|v|lv — ul.

Hence the result follows. m

LEMMA 9.3.6. Given k € N, set QO = Qn{z € Q: |z} < k}. Let (uU)pmen C
L>®(R,H}(Q)) be a bounded sequence. If (u™|q,)men is a. bounded sequence of
WLoo(R, H-1(Qg)) for every k € N, then there exists a subsequence, which we still
denote by (u™)men, and there exists u € L®(R, H}(Q)) such that the following
properties hold:

(i) ulg, € WH(R,H (%)) for every k € N.
(ii) u™(t) — u(t) in H}(Q) as m — oo for every t € R.

(ili) For everyt € R, there exists a subsequence m; such that u™(t,x) — u(t,x)
as k — oo for a.a. T € L.

(iv) u™(t,z) — u(t,z) as m — oo for a.a. (¢,z) € R x Q.

ProOOF. Fix k € N. (u™|q, )men is a bounded sequence of L>®((—k, k), H(Q%)) N
Wheo((—k, k), H~ (), so that (by Proposition 1.1.2) there exist a subsequence
(which we still denote by (u™)men) and u € L*®°((—k, k), H(Qx)) such that
u™(t)]q, — u(t) in H'(Q). Letting k — oo and considering a diagonal sequence,
we see that there exist a subsequence (which we still denote by (u™)n,en) and
u € L®(R, H(Q)) such that u™(¢t)|n, — u(t) in H(f) for every k € N and every
t € R. This implies in particular that v™(t) — w(t) in H'(Q). Therefore, u €
L*(R, H}(9)), and (ii) holds. In addition, since the embedding H* (%) — L?(Q)
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is compact, we have u™(t)|a, — u(t)|q, in L*(Q%) for every k € N and every t € R.
Applying the dominated convergence theorem, we deduce that

—
—k m-—oo

k
/ /Ium —ul? — 0 foreverykeN.
Q

In particular, there exists a subsequence m; for which «™ — u a.e. on (—k, k) x Q4
as j — oo. Letting kK — oo and considering a diagonal sequence, we see that (iv)
holds. Furthermore, givent € R and k € N, there exists a subsequence m; for which
u™i(t) — u(t) a.e. on Qi as j — oo. Letting kK — oo and considering a diagonal
sequence, we see that (iii) holds. Finally, it follows from (i) and Remark 1.3.13(i)
that ujq, € WH(R, H~1(Q%)). Hence (i) is established. a

ProoF OoF THEOREM 9.3.4. We apply a compactness method, and we proceed
in four steps. Consider ¢ € W. '

STEP 1. Construction of approximate solutions. We have V = V; + V5 with
Vi € LP(Q) and V; € L™(2). Given m € N, define the potentials V™ and V5" by
Vi@) if V() < m

re={y" Vy(@)| > m

for j =1,2.

Define the functions a,, and b,, by

if 2| > L b if
T B MAb WEEY S i

Finally, set
gm(u) = Vi™"u + V3" — @y (u) + b (u)  for u € HE(Q).

Since V™, Vi® € L*°(Q) and both a,, and b,, are (globally) Lipschitz continu-
ous C — C, we see that g,, is Lipschitz continuous L?(Q) — L?*(Q). It follows
from Corollary 3.3.11 that there exists a unique solution v™ € C(R, Hj(Q)) N
Cl(R, H~1()) of the problem

{ wul + Au™ + g (u™) =0

(9.3.5) (o) = o

In addition,

(9.3.6) ™2 = llellrz and Ep(u™(t)) = En(e) forallt € R,
where
_1 2 L fympe L [ympe L _1
Bn(w) = [1VuP =3 [Vl =5 [P+ 5 [ @ntiud - 5 [ 0n(ul),
o) Q ) . )

and the functions ®,, and ¥, are defined by

1 EH [}
O (2) = 5/0 am(s)ds and T,(z)= %/0 bm(s)ds for all z.€ C.
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STEP 2. Estimates of the approximate solutions. It follows from {9.3.6) that
u™ is bounded in L= (R, L%(2)). Note that, by the dominated convergence theorem,

(9.3.7) Em(p) — Elp).

Applying (9.3.6) and (9.3.7), we deduce that (note that ®,, > 0 and compare
inequality (9.3.4))

lu™ @z < C+ CIV™M Lo [u™ Ol 7 + 1¥m (@™ ()22 -

Note that |Vi™||L» < ||[Vi|lz». Note also that we may assume that ||V1|1» is arbi-
trarily small, by modifying V,. In particular, we may assume that C||V{"||L» < 1/4.
Finally, one easily verifies (see the proof of Lemma 9.3.3) that there exists C' such
that 1

Mm@ )]l < 1™ @ + Clu™@)]32
therefore,
(9.3.8) u™ is bounded in L™(R, Hj(Q)).

Finally, it follows from elementary calculations that for every £ > 0, there exists C.
such that

|gm (w)] < V™ lul + [V lu] + Ce(lul~* + [ul'**).
We deduce easily from Hoélder’s and Sobolev’s inequalities and (9.3.8) that, given
k e N,

(9.3.9) gm(u™) is bounded in L (R, L21 (),

where Q; = QN {z € Q : |z} < k}. In particular, (gm(u™))men is bounded
in L=®(R, H™ (%)), and it follows from (9.3.5) that (u™|g, )men is bounded in
Wheo (R, H™H ().

STEP 3. Passage to the limit. By Step 2, (u™)men satisfies the assumptions
of Lemma 9.3.6. Let » be its limit. It follows from (9.3.5) that, for every ¢ € D(Q2)
and every ¢ € D(R),

/(zui" + Au™ + g (u™), ¢>D,’D¢(t)dt =0.
R
This means that

(9.3.10) / (= (™, ¥)¢'(t) + (u™, Ay)d(t))dt + / /gm(um)w¢ drdt=0.
R R O
It follows easily from (9.3.8) and from property (ii) of Lemma 9.3.6 that
[ (g @) + W savee)a —

(9.3.11) R
[ (=t 0)8 @) + (. av)o0) .

R

Furthermore, the function hp,(t, ) = gm(u™)¥(x)¢(t) has compact support. We

therefore deduce from (9.3.9) that h,, is bounded in LT (R x ). By property (iv)
of Lemma 9.3.6, hyy — (Vu + ulog(|ul?))y¢ a.e. on R x Q. Since Ay, has compact
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support, it follows from Proposition 1.2.1 that hy, — (Vu+ulog(ju|?))pé in L1(R x
Q). Applying (9.3.10) and (9.3.11), we thus obtain

/ (—(iu, ¥)¢'(t) + (u, AY)p(t))de +//(Vu + ulog |u|*)ppdrdt =0,
R 0

R

which implies that

/ (e + Du + Vu + ulog [uf?, $)p, p$(t)dt = 0.
R

It follows that, for all ¢ € R,
(9.3.12) iug + Au+ Vu+ulog(|ul?) =0 in H~(Q) for every k € N.

In addition, u(0) = ¢ by property (ii) of Lemma 9.3.6. Finally, we deduce easily
from (9.3.6), (9.3.7), and (9.3.8) that || @y, (u™(t))]z1 is bounded (see Step 2).
Applying property (iii) of Lemma 9.3.6 and Fatou’s lemma, we deduce that u(t) € X
for all t € R and that

sup [|u(t)||lx < oo.
teR

Since X is reflexive, it follows that u is weakly continuous R — X. In partic-
ular, v € L®(R, X) (see Remark 1.2.2(i)). Therefore, u € L*(R,W), so that
u € WH(R,W*) by equation (9.3.12) and Lemma 9.3.3. In particular, equa-
tion (9.3.12) makes sense in W* for all t € R. Therefore, we may take the W — W™
duality product of it with iu, and we obtain that

(ug,wyw-w =0 forallteR,

which means that the function ¢ — ||u(t)||3. is constant; hence there is conservation
of charge. This implies that for every ¢t € R, [|u™(t)||z2 — ||u(t)[|z2, and so u™(t) —
u(t) in L?(Q). Therefore, by boundedness of u™ in Hg(S2) and Holder’s and So-
bolev’s inequalities, u™(t) — u(t) in LI(Q) for every 2 < g < # (2 < ¢ <
if N = 1,2). We now may pass to the limit in (9.3.6). We apply the weak lower
semicontinuity of the H! norm for the gradient term, we apply property (iii) of
Lemma 9.3.6 and Fatou's lemma to the term ®,,,, and we apply Hélder’s inequality
to the other two terms. Taking (9.3.7) into account, we finally obtain

(9.3.13) E(u(t)) < E(p) forallteR.

In conclusion, we have obtained the existence of a function u € L®(R,W) N
W1L°(R, W*) that solves problem (9.3.1) and for which there is conservation of
charge and the energy inequality (9.3.13).

STEP 4. Conclusion. Let us first prove uniqueness in the class L>°(R, W) N
WLeo(R,W*). Let u and v be two solutions of (9.3.1) in that class. On taking
the difference of the two equations and taking the W — W* duality product with
i(v — u), we obtain that

(v — Ut v — Wiwsw = —Im / (vlog(|v]2) — ulog(jul2))(T - 7).
Q
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In view of Lemma 9.3.5, this implies that

Io0) ) <8 [ ols) - (o) ds.
0

Uniqueness follows by Gronwall’s lemma. Next, let u be a solution of (9.3.1).
Considering the reverse equation and applying uniqueness (see Step 1 of the proof
of Theorem 3.3.9), we deduce that u satisfies conservation of energy. Furthermore,
by weak L? continuity and conservation of charge, u € C(R,L2()). Since u is
bounded in H} (), it follows easily that the terms

/V[ul2 and /B(Iu[) are continuous R — R.
Q Q

Thus, by conservation of energy,

(9.3.14) / [Vul? + /A(|u|) is continuous R — R.
Q 0

Since both terms in (9.3.14) are lower semicontinuous R — R (the second one by
Fatou’s lemma), we deduce easily (see Cazenave and Haraux [63], lemma 2.4.4)
that they are in fact continuous R — R. In particular, u € C(R, H}(2)) and
u € C(R,X) (by Lemma 9.3.1(ii)). Therefore, u € C(R, W), and by the equation
and Lemma 9.3.3, u € C1(R, W*). Finally, one proves continuous dependence by a
similar argument (compare Step 3 of the proof of Theorem 3.3.9). This completes
the proof. 0

REMARK 9.3.7.  Strangely enough, one can apply the theory of maximal mono-
tone operators to the equation (9.3.1). In particular, one can obtain stronger regu-
larity if the initial value is smoother, and one can construct solutions of (9.3.1) for
initial data in L?(2) (see Cazenave and Haraux [63] and Haraux [157]). Note that
one does not know whether the L? solutions are unique.

REMARK 9.3.8. At least in the case where Q@ = RY and V = 0, equation (9.3.1)
has standing waves of the form u(t,z) = e™!p(z) for every w € R. The ground
state, which is unique modulo space translations and rotations (cf. Section 8.1) is
explicitly known. It is given by the formula

[ .’1‘2
o(z) = " T e™ 9

and it is stable in the sense of Section 8.2 (cf. Cazenave [58] and Cazenave and
Lions [66]). Equation (9.3.1) has other interesting properties that are unusual with
regard to Schrédinger equations when @ = RY. For example, it follows easily
from conservation of energy that for every solution u of (9.3.1) (cf. Cazenave [58],
proposition 4.3)

tlgng 151;}5foo lu(t)liz» > 0.

Another interesting property is that every spherically symmetric (in space) solu-
tion of (9.3.1) has a relatively compact range in L?(Q) (cf. Cazenave [58], proposi-
tion 4.4).
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9.4. Existence of Weak Solutions for Large Nonlinearities

Let © ¢ RY be any open domain, and let 7 > 0 and o > 0. Consider the

following problem:
{ tuy + Au — nlu|®u = 0,
u(0) = .

We already know that if @ < 4/(N —2) (a < o, if N = 1,2), the problem (9.4.1)
has a solution u € L®(R, H}(Q)) N WL°(R, H~1(Q)) for every ¢ € H(Q) (see
Section 3.4). In addition, if @ = R, or if N =1, or if N = 2 and a < 2, the
solution is unique (see Corollary 4.3.3 and Remarks 3.5.4 and 3.6.4). However,
those results do not apply when a > 4/(N — 2). We present below a result of

Strauss [324] (see also [321]) that applies for arbitrarily large o’s. Before stating
the result, we need some definitions. Let us denote by V the Banach space

V = H}(Q) nLet2(Q)

(9.4.1)

equipped with the usual norm (see Proposition 1.1.3). Since D(2) is dense in both
H}(Q) and L22(Q),
V= HTYQ) + L& (),

where the Banach space H~ () + L%(Q) is equipped with its usual norm (see
Proposition 1.1.3). Since A is continuous H}(2) — H~1(Q) and u — |u|®u is

continuous L®*+%(Q) — Lg_jr'_?(ﬂ), it follows that the operator
{ V-V
u > Au — nu|%u
is continuous. Therefore, if u € L®(R,V) N WH°(R,V*), then equation (9.4.1)

makes sense in V*. Finally, we define

1
E(u) = §/|Vu|2 + a—%—2 / |ul[*t2 foralluc V.
Q a

We have the following result (see Strauss [324]).

THEOREM 9.4.1. Letn > 0 and a > 0. It follows that for every ¢ € V, there
exists a solution u € L®(R, V) N WL1(R,V*) of equation (9.4.1) that satisfies

(9.4.2) lu(®)llze = lloll L2
and

(9.4.3) E(u(t)) < E(p)
for allt € R.

REMARK 9.4.2. Note that, in particular, u € C(R,V*), and so u is weakly
continuous R — H}() and R — L**2(Q); in particular, u(t) € V for all t € R.
Therefore, u(0) makes sense (in V') and E(u(t)) is well defined for all ¢ € R.

REMARK 9.4.3. Note that when o < 4/(N — 2) (a < oo, if N = 1,2), then
H}(Q) — Lot2(Q), therefore, V = Hj(Q).
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REMARK 9.4.4.  As observed before, when a < 4/(N - 2) (a < oo, if N = 1),
Theorem 9.4.1 follows from the results of Section 3.4.

Before proceeding to the proof of Theorem 9.4.1, we establish the following two
lemmas.

LEMMA 9.4.5. V and V* are reflezive.

PROOF. We need only show that V is reflexive. By Eberlein-Smulian’s theorem,
we need to show that, given any bounded sequence (um,)men C V, there exist a
subsequence my and u € V such that u,,, ~uinV ask — oco. Let p=a+2. We
recall that if u € V and ¢ € V*, then

(u, P)v,y+ = (u, 501>H5,H—1 + (u, <P2>LP,LP’ )

where ¢ = @1 +p2 with 1 € H=1(Q) and ¢ € LP() (see Bergh and Lofstrom [28],
proof of Theorem 2.7.1). Note that there no ambiguity concerning the possible de-
compositions of ¢, since if ¢ € H~1(Q) N L* (), then (W W)y, a-1 = (W) Lo Lo -

If (4m)men is bounded in V, then, in particular, (um)men is bounded in H}(2)
and in L%2(Q). Since both spaces are reflexive, there exists a subsequence my, and
there exist v € HJ(Q), v € L*T2(Q) such that u,, — u in H}(Q) and uy,, — v
in L2*2(Q). In particular, tm, — u and up,, — v in D'(Q); hence u =v € V. It
follows that for every ¢1 € H™1(2) and ¢, € LP(Q),

(Umky(P1>H(1),H—1 + <umka‘P2>Ln,LP’ k——) (u, ‘P1>H&,H—1 + (u, ‘PZ)LP,LP' :
—o0

This implies that u,,, — v in V. O

LEMMA 9.4.6. Let (u™)men be a bounded sequence in L°(R, H}(Q)) and in
WhLeo(R,V*). It follows that there erists a subsequence, which we still denote by
(u™)men, and there ezists u € L™(R, H} (Q))NW1L2(R, V*) such that the following
properties hold:

(i) u™(t) = u(t) in H} () as m — oo for every t € R.
(ii) For everyt € R, there exists a subsequence my, such that u™*(t,z) — u(t, )
as k — oo for a.a. x € (2.

(iil) u™(t,z) — u(t,z) as m — o for a.a. (t,r) € R x Q.

PROOF. Let k € Nand let O = QN {z € Q;|z] < k} for k € N. Consider an
integer ¢ > N/2. It follows from Sobolev’s embedding theorem that H{(£%) —
Let2(Qy), from which we obtain by duality Lg_ﬁ(Qk) — H™%(Qy). Therefore,
u™|q, is bounded in L®((—k, k), H}(Q)) N Wh((—k, k), H"9(Q%)). Therefore
(by Proposition 1.1.2), there exist a subsequence (which we still denote by (u™)men)
and u € L®((—k, k), H(Q)) such that u™(t)|q, — wu(t) in H'(Q). Letting
k — oo and considering a diagonal sequence, we see that there exist a subsequence
(which we still denote by (u™)men) and u € L%®(R, H(Q)) such that u™(t)]q, —
u(t) in H1(Q) for every k € N and every t € R. This implies in particular that
u™(t) — u(t) in HY(Q). Therefore, u € L>®(R, H}(f2)), and (i) holds. In addition,
since the embedding H*(Q%) — L2?() is compact, we have u™(t)|o, — u(t)|q,
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in L2(Qy) for every k € N and every t € R. Applying the dominated convergence
theorem, we deduce that

k
/ /Ium —uf*> — 0 forevery ke N.
—k
Ok

m—o0

In particular, there exists a subsequence m; for which «™ — u a.e. on (—k, k) x Q4
as j — oo. Letting k¥ — oo and considering a diagonal sequence, we see that (iii)
holds. Furthermore, given t € R and k € N, there exists a subsequence m; for
which 4™ (t) — u(t) a.e. on )y as j — oo. Letting k — oo and considering a
diagonal sequence, we obtain (ii). Finally, it follows from (i} and Lemma 9.4.5
that u™(t) — wu(t) in V (hence in V*) for all t € R. By Theorem 1.2.4 and
Remark 1.3.13(i), u € L®(R, V) n WH(R, V*). This completes the proof. O

PrROOF OF THEOREM 9.4.2. We construct the solution u by a compactness
method, and we proceed in three steps.

STEP 1. Construction of a sequence of approximate solutions. Given an in-

teger m > 1, let
-nlz|*z if |z| <m

fm(z) = { —-nm®z if |z] > m.
In particular, f,, is globally Lipschitz continuous C — C. Let
(2]
Gn(z) = Fm(s8)ds.
0
Given u € H} (), let
gm(u)(x) = fm(u(x)) foraa. ze€Q

and

B (u) = -;-/|VU|2+/Gm(u).
Q Q

Applying Corollary 3.3.11, we see that there exists a unique solution u™ €
C(R, H}(Q)) N C*(R, H™YQ)) of

. m m my —
o4 (oo =0
Furthermore,

(9.4.5) lu™@lzz = llellz2

and

(9.4.6) E,(u™(t)) = En(p) foreveryteR.

STEP 2. Estimates of u™. Since Gy, > 0, it follows from (9.4.5) and (9.4.6)
that

(9.4.7) u™ is bounded in L®(R, Hy(2))
and

(9.4.8) Gm(u™) is bounded in L®(R, L} (Q)).
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On the other hand, one easily verifies that
Igm(z)]g—f <(a+2)Gn(z) forall z€ CandallmeN.

Applying (9.4.8), we deduce that

(9.4.9) gm(u™) is bounded in L°(R, L5 (Q)).
Therefore, it follows from (9.4.4) that
(9.4.10) ug" is bounded in L*(R, V™).

STEP 3. Conclusion. It follows from (9.4.7) and (9.4.10) that we may apply
Lemma 9.4.6 to the sequence u™. Let u be the limit of u™. By Lemma 9.4.6(i)
and (ii), the weak lower semicontinuity of the H' norm and Fatou’s lemma, we
deduce that u(t) € Lo+2(Q) for every t € R and that (9.4.3) holds. In particular,
u € L®(R, L%T2(2)), and so u € L®(R,V). Furthermore, it follows from prop-
erty (i) that u(0) = ¢. Finally, we deduce from the equation (9.4.4) that for every
¢ € D(R) and every ¢ € D(Q2),

[ G+ 8™ 4 g (™), ) (0 = 0.
R

This means that

0411 [ (G 98O + w, a000)d+ [ [ am(uppdeds =o.
R R Q
It follows easily from (9.4.7) and from property (i) of Lemma 9.4.6 that

[ (i 80) + m avio)dt .

(9.4.12) E

/ (= (iu, Y)' (t) + (u, Ayp)d(t))dt .

R

Furthermore, the function hp,(t,z) = ¢n(u™)Y(z)¢(t) has compact support.
Therefore, it follows from (9.4.9) that h,, is bounded in L%%(R x ). By prop-
erty (iii) of Lemma 9.4.6, h;, — —nju|*up¢ a.e. on R x Q. Since h,, has compact
support, we deduce from Proposition 1.2.1 that h,, — —nju|*u¢ in L}(R x Q).
Applying (9.4.11) and (9.4.12), we thus obtain

/ (=0, )60 + (w Aw)(0)dt ~n [ / b dzdt =0,
R R @
which implies that

/ (iug + Au — |ul*y, V) p p®(t)dt = 0.
R

Since u € L*(R,V), we obtain easily that u, € L®°(R,V*) and that u satis-
fies (9.4.1). It remains to establish conservation of charge. This follows easily by
taking the V — V* duality product of the equation with fu; € V*. This completes
the proof. |
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REMARK 9.4.7. In the case where o > 4/(N — 2), it is not known whether the
solution given by Theorem 9.4.1 is unique or not, even when Q = RY. We do not
know either whether the energy is conserved.

REMARK 9.4.8. Remember that Theorem 3.3.5 applies to the case n < 0 and
a < 4/(N —2). On the contrary, in the case a > 4/(N — 2), the method of proof of
Theorem 9.4.1 does not apply when n < 0. We do not know whether it is possible
to construct (local) solutions of (9.4.1) in this case.

9.5. Comments

The conservation laws that we used in these notes are conservation of charge
and energy, and the pseudoconformal conservation laws. They are related to the
invariance of the equation for some groups of transformations. On this subject,
consult Ginibre and Velo [139], Olver [285]. When N =1 and g(u) = Alu|?u, there
are infinitely many conservation laws (cf. Zakharov and Shabat [367]), while in
general, there do not seem to be other useful conservation laws (cf. Serre [310]). In
relation with the invariance properties of nonlinear Schrédinger equations, one can
construct families of explicit solutions for some nonlinearities (cf. Fushchich and
Serov [121, 122, 123]). Unfortunately, these solutions do not in general belong to
the energy space.

Nonlinearities of different types than those studied here were also considered.
See Baillon, Cazenave, and Figueira [9], Cazenave [57], Stubbe and Vazquez [328,
329], Adami, and Teta [2] and Adami, Dell’Antonio, Figari, and Teta [1], and
Colin [85, 86].

Quasilinear Schrédinger equations require in general completely different meth-
ods for proving the existence of solutions, making an essential use of the smoothing
properties of the Schrédinger group. See, for example, Biagioni and Linares [29],
Chang, Shatah, and Uhlenbeck [77], Chihara [79], Colliander et al. [88, 91],
Hayashi [166], Hayashi and Hirata [170], Hayashi and Kaikina [171], Hayashi, Kaik-
ina, and Naumkin [173], Hayashi and Kato [176], Hayashi and Naumkin [180],
Hayashi and Ozawa [190, 191], Katayama and Tsutsumi (201}, Kenig, Ponce, and
Vega [212, 215}, Klainerman and Ponce [217], Ozawa and Tsutsumi [292], Takaoka
[331, 333], and Y. Tsutsumi [346]. See also Lange [222] for a suggestive numerical
study.

Systems of Schrodinger equations or coupled systems with other equations
(Klein-Gordon, for example) are also of a great interest. See, for example, Cipo-
latti and Zumpichiatti [84], and Colin and Weinstein [87] (systems of Schrédinger
equations); Castella [54] (Schrédinger-Poisson system); Baillon and Chadam [10],
Bachelot [8], and Ozawa and Tsutsumi [290] (Schrédinger-Klein-Gordon system);
Ginibre and Velo [145], Guo, Nakamitsu, and Strauss [156], Nakamitsu and Tsut-
sumi [254], and Y. Tsutsumi [345, 347] (Maxwell-Schrédinger system); Schochet
and Weinstein [307], Lee [224], Ozawa and Tsutsumi [289, 291], Glangetas and
Merle [146, 147], Kenig, Ponce, and Vega [213], Merle [247], Ginibre, Tsutsumi,
and Velo [131], Bourgain [36], Bourgain and Colliander {40], Colliander and Staffi-
lani [92], Masselin [241], Takaoka [332], and Tzvetkov [349] (Zakharov system); and
Ghidaglia and Saut [124], Cipolatti [82, 83], Ozawa [288], Hayashi [167], Hayashi
and Hirata [168, 169], and Ohta [279, 280, 281] (Davey-Stewartson system).
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Stochastic nonlinear Schrédinger equations (i.e., with a probabilistic noise)
were also considered. They display interesting phenomena, in particular concern-
ing blowup. See de Bouard and Debussche [98, 99, 100, 101], and de Bouard,
Debussche, and Di Menza [102].
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