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Preface

This book presents various mathematical aspects of the nonlinear Schrodinger
equation. It is based on the notes ofthree courses, the first one given at the Federal
University of Rio de Janeiro and at the IMPA in 1989 [55], the second given at the
Federal University of Rio de Janeiro in 1993 [56], and the third one given at the
Courant Institute in 1997.

The nonlinear Schrcidinger equation received a great deal of attention from
mathematicians, in particular because of its applications to nonlinear optics. In-
deed, some simplified models lead to certain nonlinear Schrodinger equations. See

Berg6 [27] and C. Sulem and P.-L. Sulem [330] for the modelization aspects. Non-
linear Schrodinger equations also arise in quantum field theory, and in particular
in the Hartree-Fock theory. See, for example, Avron, Herbst, and Simon [5, 6,

7], Bialinycki-Birula and Mycielski [31, 30], Combes, Schrader, and Seiler [93],
Eboli and Marques 1109], Gogny and Lions [149], Kato [202], Lebowitz, Rose, and
Speer [223], Lieb and Simon 1229], Reed and Simon [301], B. Simon [313], and
C. Sulem and P.-L. Sulem [330]. The nonlinear Schrcidinger equation is also a good
model dispersive equation, since it is often technically simpler than other dispersive
equations like the wave or KdV.

Flom the mathematical point of view, Schrcidinger's equation is a delicate prob-
Iem, and possesses a mixture of the properties of parabolic and hyperbolic equa-
tions. Particularly useful tools are energy and Strichartz's estimates. We study in
this book both problems of local nature (local existence of solutions, uniqueness,
regularity, smoothing effect) and problems of global nature (finite-time blowup,
global existence, asymptotic behavior of solutions). The methods presented apply
in principle to a large class of dispersive semilinear equations. On the other hand,
we do not study quasilinear Schrodinger equations (with nonlinearities involving
derivatives of the solution). They require in general the use of specific linear (and
nonlinear) estimates, and most results of global nature are limited to small initial
data.

The book is organized as follows. In Chapter 1, we recall some well-known
properties of functional analysis concerning integration, Sobolev and Besov spa-

ces, elliptic equations, and linear semigroups that we use throughout the text. We
also introduce some useful compactness tools. In Chapter 2, we establish some

fundamental properties of the (linear) Schrodinger equation. The case of the whole
space IRN is studied in detail. Chapter 3 contains a few partial results of local
existence for the nonlinear Schrcidinger equation in a general domain of RN. The
rest of the book is concerned with the case f,) : IRN. Chapter 4 is devoted to the
study of the local Cauchy problem in various spaces, and in Chapter 5 we study
the regularity properties and the smoothing effects. Chapter 6 is devoted to the
study of global existence and finite-time blowup of solutions. In Chapter 7, we
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vlu PREFACE

study the asymptotic behavior of solutions in the repulsive case. The main results
are the construction of the scattering operator in a weighted Sobolev space and in
the energy space. In Chapter 8, we study the stability and instability properties of
standing waves in the attractive case. We establish the existence of standing waves,

and in particular of ground states, and we show that ground states are stable or
unstable, depending on the growth of the nonlinearity. Chapter 9 is devoted to
some further results concerning certain nonlinear Schrcidinger equations that can
be studied either by the methods used in the previous chapters or else by different
methods.

Bibliographical references are given in the text. In order to be informed of the
latest news, it is advised to have a look at the web page "Local and global well-
posedness for non-I'inear d'ispersi.ue and, waue equat'ions"r maintained by J. Collian-
der. M. Keel. G. Staffilani, H. Takaoka, and T. Tao. Let us also mention a few
monographs specialized in the nonlinear Schrcidinger equation: Berg6 [27], Bour-
gain [38], Ginibre [128], Kato [204], Strauss [326], and Sulem and Sulem [330].

I am grateful to my colleagues who reported misprints (and more serious mis-
takes) in previous versions ofthese notes, and in particular to P. B6gout, F. Castella,
J. Ginibre, T. Kato, and G. Velo. I thank my friend Jalal Shatah, who invited me to
publish these notes in the Courant Lecture Notes series. Finally, it was a pleasure
to collaborate with Paul Monsour and Reeva Goldsmith in their beautiful editine
work.

thttp : //www. rnath, ucIa. edu/-tao/Dispersive
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Notation

almost all

almost everywhere

if and only if

real part of the complex number z

imaginary part of the complex number z

closure ofthe subset E in the topological space X

space of continuous functions from the topological space E to the
topological space f'
characteristic function of -E defined by 1s(r) : I if. r € E and Ie(") :
0tfr/E
space of continuous functions E -- F compactly supported in .E

Banach space of linear, continuous operators from the Banach space

.E to the Banach space -F, equipped with the norm topology

: L(E,E)

(topological) dual of the (topological) space X

duality product of r' e X" and r e X (also "(r', r)x",x")

adjoint of the operator A

If X C Y with continuous injection

open subset of IRN

closure of 0 in RN

boundary of O, i.e., ACI : O \ CI

ifDCOandAiscompact
: {r e JRN : lrl < fi}, ball of radius .R and center 0 of IR.N
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NOTATION

1_: 
=r 

.Vu, where , : lrl
T

Aot 0o*: -=---;:... :;:; r<.rr a multi-index o € NNdrl' orii'
-()tu,...,dlru)

Nq-2

-.La*

Fourier transforml Fu(() : [ "-t"o''tr1r1d,"
R*

: f-l given by Tu(r) : [ ","0e'"r1q1aq
R*

:Fu
: C"(Q,R) (or C"(o,a))

space of continuous functions CI' -' R (or O -- C). When O is bounded,
C(O) is a Banach space when equipped with the -L@ norm

Banach space of uniformly continuous and bounded functions Q - R
(or O -+ C) equipped with the topology of uniform convergence

Banach space of functions u € Cb.u(O) such that Dou € Cs,,(O) for
every multi-index a € NN such that lol < rn. The space Cff,(O) is
equipped with the norm of W^'*({l).
closure of 2(O) in .L*(CI)

for 0 < a 1I, the Banach space of functions u € Ctr(O) such that
ll"llc^'- : llullw^,- + :yl" {1" - vl-"lDBu(r) - D1u(y)l} < x

: CI(C2), the Fr6chet J;"" * C@ functions f,) ---+ tR (or O --+ C)
compactly supported in f,), equipped with the topology of uniform
convergence of all derivatives on compact subsets of f)

space of distributions on O, i.e., the topological dual of 2(f,t)

Schwartz space; i.e., the set of all real- or complex-valued C* functions
on IRN such that for every nonnegative integer m and every multi-
index a,

p^,o(u) 
":&0"(t 

+lrl2)*/21n"u(r)l < m.

S(Rt) is a Fr6chet space when equipped with the seminorms p-,*.

S'(RN) space of tempered distributions on IRN; i.e., the topological dual of
S(RN). S'(RN) is a subspace of D/(RN).

lwith this definition of the Fourier transform, llFllrtr,"t : 1., F(u * r.,) : fufu, and
f(D'u) : (2rfltdtlTprrii r".

Da
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A

-

T

a

c"(ct)

c(o)

cu,"(CI.)

cfr"(o)

Co(CI)

c^''(a)

D(fl)

D',(A)

5(RN)
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conjugate ofp e [1,oo] given Or i * ] 
: t

Banach space of (classes of) measurable functions u : O --+ IR (or
Q---+ C) such that llullu < oo, with

( t r \r/P
l ( l 1"1ry1o a") irp < m

ll"ll.':{ \* /
I

I esssun lul if p : ee

w*'p(Q)

ll"llw^* : t llD.ull"" .

lal<m

Wtr'' (q (nz e N, I < p < oo) closure of 2(f,)) in W^'p(Q)

W-*'p' (Q) (rn e N, 7 < p < oo) dual of W{'e(A)

H*(A) : W*,2(Q). 11-(O) is equipped with the equivalent norm

/ r \1/2/._.t

ll"llrr-: [ )- lp"u1r112arl\ 1""g_ { /

H^({l) is a Hilbert space for the scalar product

(rn e N, 1 < p 3 oo) Banach space of (classes of) measurable func-
tions u : O --+ R (or fl ' C) such that Dou € ,p(C)) in the sense

of distributions, for every multi-index a with lal a *. 'ryn,n(Q) is
equipped with the norm

(u,u)p-, : | ^"{r{r1i@1ar.
{.)

: w{''(a)
: 14r-m,2 19) : (H5" (O))-

(s e R, | < p < oo) Banach space of elements u € S/(IRN) such that
f-tl(t + l€12)"/2Al e ff(RN). I/"'P(RN) is equipped with the norm

ll"lln",, : llf-l[(t + 161z;;6111r" .

: gs,z(lRN)

(s e JR, L < p < m) homogeneous version of the Sobolev space
rr"'p(RN)

: g"'z(RN)
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B;,q(RN) (s e R, 71p,q ( oo) Banach space of elements u € S/(IRN) such that
llzlln" < oo with

rr 
--1 

z ^r rr

llullr;." : ll/ -\qu)llL, +

t n-1 .t '+Lwnere f -\93u1 ls tne J""
composition of u

(s e lR, 1 ( p,S < oo) homogeneous version of the Besov space
B;,q(RN)

: C?(I ,X), the Fr6chet space of Cm functions -I - X compactly
supported in f, equipped with the topology of uniform convergence of
all derivatives on compact subintervals of .I

space of X-valued distributions on -f, i.e., the space of linear, con-
tinuous mappings D(I) -- X, where X is equipped with the weak
topology

Banach space of uniformly continuous and bounded functions 7 -- X,
equipped with the topology of uniform convergence

Banach space of functions u , 7 - X whose derivatives of order j
belong to C6,,(7,X), for all 0 < j < m. Cf."(7,X) is equipped with
the norm of W*'*(I ,X).
for 0 < a 1 1, the Banach space of functions u € C{:"(T ,X) such that

ll,llc-,. : llullw^ * * sup {1, - "l-"ll*Al- *f,lll} . *
s,t€r f' l at^ " dt^ ' 'll )

space of continuous functions i - X. When I is bounded, C(7, X) is
a Banach space with the norm of L* (I , X).

Banach space of (classes of) measurable functions u : I ---+ X such that
llrlll' < oo, with

( t r \I/p
| ( / llu(t)lf*dtl irpcoo

ll'llr': { \j /
I

I ess sup ll"(t)llx if p : ee
\1

Banach space of (classes of) measurable functions u ; I ---+ X such that
:# e Leg,X) for every 0 < j < m. W^'v(I,X) is equipped withdtr
the norm

|uilw^,:ill#ll
;_t | *"' ll Lp

I ( 8,r", nr-, @it)t ".ro)"I ':=t

[ :!?r",llf-'@it)|u
dyadic block of the Littlewood-

ifgcoo

ifq:ee,

Paley de-

a;,n{nN)

D(I,X)

D'(I,X)

c5,"(7,x)

CT"Q, X)

c^'.(i,x)

c(1, x)

LEQ,X)

1y*'nQ, x)
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except when otherwise specified, the group of isometries on .L2(O)

generated by the skew-adjoint operator i,4, where -4 is the Laplacian
with Dirichlet boundarv condition on dO



CHAPTER 1

Preliminaries

In this chapter we recall some basic properties of functional analysis, complex
and vector integration, Sobolev spaces, elliptic equations, and linear semigroups
that we use in the next chapters.

1.1-. F\rnctional Analysis

See, for example, Brezis [43], Brezis and Cazenave [44], Cazenave and Haraux
[64, 65], Rudin [304], Strauss [320], and Yosida [366].

We recall that if X and Y are two Banach spaces such that X ,- Y with dense
embedding e, then Y* ,--+ X* with embedding e*. Moreover, if X is reflexive, then
the embedding Y" .-+ X* is dense.

We will use repeatedly the following elementary properties of weak topologies.

(i) Let X --+ Y be two Banach spaces. Consider r €. X and a sequence
(rr)reN C X. lf. frn ^ xjin X as r, ---+ oo, then zr, .. r in Y as n --+ oo.

(ii) Let X ,--+ Y be two Banach spaces. Assume X is reflexive and consider
A e Y and a bounded sequence ("r)res C X. If xn^ U in Y as ?? --+ co,
then y € X and rn ^ A in X as zl ---+ oo.

(iii) Let X ,- Y be two Banach spaces and let 1 be a bounded, open interval of
R. Let u,7 '- Y be weakly continuous. if X is reflexive and if there exists
a dense subset E of I such that u(t) e X for all f € ,E and sup{llu(t)ll7g,f e
E\ : l< ( oo, then u(t) e X for all I e 7 and u :f - X is weakly
continuous.

(iv) Let X be a uniformly convex Banach space; let 1 be a bounded, open interval
of IR; and let u:T - X be weakly continuous. If the function t r-+ ll"(t)llx
is continuous 7 - IR, then z e C(7, X).

(v) Let X be a Banach space, let I be a bounded, open interval of IR, and let
u ,T -- X be weakly continuous. If there exists a Banach space B such that
X ,--+ B with compact embedding, then u e C(I,B).

We will construct solutions of the nonlinear Schrcidinger equation either by a
fixed point argument, or by a compactness technique. For the first method, we will
use Banach's fixed point theorem and for the second, we will use Proposition 1.1.2
below.

THEoREM 1.1. 1. (Banach's fixed point theorem) Let (X, d) be a complete metric
space and F : X -, X. If there erists a constant L <I such that d(F(r),f(g)) <
Ld(r,y) for all r,y e X, then F has a unique fired poi,nt rs e X; ,i.e., there erists
a unique ro e X such that F(rs) : ar.



2 1,. PRELIMINARIES

PnoposlrloN 1.1.2. Let X '-'+ Y be two Banach spaces and let I be a bound,ed,

open'interval o/ R.. Let (f.)^rp be a bounded sequence i.nC(7,Y). Assume that

f^(t) € X for all (n,t) e N x I and that sup{llf.(t)llx,(tr,t) € N x 1} : K < oo.

Assume further that f" i,s uni,formly equi,cont'inuous'inY (i,.e., Ve > 0,3d > 0,

Vn,s,t€ N x 1 x I,llf.(t)- /"(s)llv < € i'f l, - tl < 6). If X'is refleriae, then the

followi.ng properties hold:

(i) There erists a funct'ion f eC(T,Y) whi,chis weaklE continuousT - X and
a subsequence nk such that fno(r) - /(r) in X ask ---+ oo, for allt eT.

(ii) # there erists a uniformlg conuer Banach space B such that X '--+ B ''-+ Y
and, i,f ("f,),ex c C(7,8) and ll/,-(t)lls * ll/(t)lls as k -- oo, un'ifonnly
on I, then also f €C(T,B) and Ino - f i,nC(T,B) o,s k-- oo.

PRoor'. (i) Let (t,)",6ry be a representation of Q n 1. Using the reflexivity of
X and the diagonal procedure, we see easily that there exist a subsequence n7.

and a function / : Q n/ -- X such that /,r(ti) .. /(ti) in X (hence in Y) as

k ---+ oo, for all , € N. By the uniform equicontinuity of (/,)"6y and the weak

lower semicontinuity of the norm, / can be extended to a function of C(I ,Y).
Furthermore, f ,7 --+ X is weakly continuous and sup{ll/(t)llx, t € I} < K.
Consider now f € T. t'et (tr)ies C Qnl converge to t and let yt e Y*. We have

| \v', f n o (t) - f (t)) v.,v | < 
| 
(a', f .* (t) - f .u (t 1)) v',v I

* l(a', f (t) - f (t i)) v ",vl * l\a', f.* (t i) - f (t i)) v.,v|.

Given e > 0, it follows from the uniform equicontinuity that the first and second

terms of the right-hand side are less than e/3 for 7 large enough. Given such a j,
the third term is less than ef3 for /c large enough; and so

l(r',fnr(t) - f (t))v.,yl * 0 as k -' oo.

Thus /,*(t) - /(t) in Y; and so /"0(f) - /(t) in X. Hence (i).

(ii) Note first that / :7 - B is weakly continuous. Also, ll/116 :7 - lR is

continuous; and so f eC(T,B). It remains to prove that /,* - / in C(7,,B). We

argue by contradiction, and we assume there exist a sequenbe (fp)3ex c 7 and e > 0

such that llf.-(tn) - f(t*)lls ) e, for every & € N. We may assume that tp -+ t e I
as k --, oo. It follows from (i) and the uniform continuity that fno(tk) - /(t)
in Y as k -' oo. Since (/')'6p is bounded in C(7,8), we obtain as well that
f.^(t*) -. /(r) in B as k -* oo. F'urthermore,

lll/"-(to)ll" - ll/(t)llsl s lll/"-(tr)llr - ll/(tr)llrl+ lll/(tr)llr - ll/(t)llBl.
Therefore, llf".(t*)lln - ll/(t)lls, and so f"r(tn)-- f (t) in B as k --+ oo, which is
a contradiction. tr

Finally, we will use some properties of the intersection and sum of Banach
spaces. Consider two Banach spaces X1 and X2 that are subsets of a Hausdorff
topological vector space /. Let

X1) X2: {r e X : r € X1, r € X2)

and
X1 *X2:{r€ X:1r1 €X1,3r2e X2,r:rt*rz}.



1.2. INTEGRATION

Set

ll"llt,n", : llrllx, + llrllx, for r € Xl fi X2 ,

and

llrllx,+x, : inf{llrrllx, + llr2ll"z i r : rt + r,2} for r € Xr* Xz.

We have the following result (see lemma 2.3.1 and theorem 2.7.1 in Bergh and
Lcifstrcim [28]).

PRopostrIoN 1.1.3. (Xy o X2,ll llx,"x,) and (X1+ Xz,ll llx,+x,) are Banach
spaces. If furthennore X1oX2'is a dense subset of both X1 and X2, then (X1fr
Xz)* : Xi + Xi and (X11 Xz)* : Xi n Xi.

1.2. Integration

For real and complex integration, consult Brezis 143], Dunford and Schwar-
tz [108], Rudin [305], and Yosida [366]. For vector integration, see Brezis and Caze-
nave[44], Cazenave and Haraux [64,65], Diestel and Uhl [105], Dinculeanu [106],
Dunford and Schwartz [108], J. Simon [314], Yosida [366], and the appendix of
Brezis 142]1.

Throughout these notes, we consider ,Lp spaces of complex-valued functions.
O being an open subset of lRN, .Lp(O) (or -Lp, when there is no risk of confusion)
denotes the space of (classes of) measurable functions u : f,) -- C such that llull;" <
cowith 

( t r rr/p
| ( / tt"trlllo d*) irp € 11,oo)ll"llr":l\d /
I esssup llull if p : ee.
\f,

;a(A) is a Banach space and l2(f,)) is a real Hilbert space when equipped with the
scalar product

Below is a useful result of Strauss [321

PRoposI'rIoN 1.2.1. LetQ be an open subset o/ RN and letl < p < q. Cons'ider
u : f,) -+ IR and a bounded sequence (u,),ex of Ln(A). If un --+ u a.e. in A as
n + @, then u € Lp(A) and un --+ LL as n + oe in Lq(Q'), for euery fl' c fl o/
f,n'ite measure and euery q e ll,p). In part'icular, yn ---+ u o,s n ---1 99r in Lp(Q)
weak if p 1 @, and 'in r""(O) weak-* if p : x.

Consider now an open interval .f C lR and a Banach space X equipped with
the norm ll .ll. A function f : I -- X is measurable if there exist a set ly' C,I of
measure 0 and a sequence ("f")"ero c C"(I ,X) such that

,$/"{t; : f(t) for all t € 1\N.

We deduce easily from the definition that if f : I ---+ X is measurabie, then ll/ll : 1 *
lR is also measurable. Also, if f : I - X is measurable and if Y is a Banach space
suchthat X.--->Y, then/: I'-'+f is measurable. Moregenerally if f : I * X is

r_
(u,u) y" : Re / u(r)u(r) dr .

.J



4 L. PRELI\4INARIES

measurable, Y is a Banach space, and O : X --+ Y is continuous, then Qo f : I "-+ Y
is measurable.

Rnuenx 1 .2 . 2 . Pettis' theorem asserts that a function / is measurable if and only
if / is weakly measurable (i.e., for every r' € X*, the function t *-+ (rt,/(t))x-,x
is measurable 1-- JR) and there exists a set N C 1of measure 0 such that /(1 \N)
is separable. One deduces the following properties:

(i) If / : I --. X is weakly continuous (i.e., continuous from I to X equipped
with its weak topology), then / is measurable.

(ii) Let ("f')'en be a sequence of measurable functions I '--+ X and let f : I ---+ X.
It f"(t) - /(t) in X as ?r, --+ oo, for a.a. t € .I, then / is measurable.

(iii) Let X .-- Y be two Banach spaces and let f : I --, Y be a measurable
function. If /(t) € X for a.a. t €,I and if X is reflexive, then / :,I * X is

measurable.

A measurable function f : I -, X is integrable if there exists a sequence

(.f")"eN C C"(I,X) such that

(1.2.1) ,r5L / llf*(t) - f (t)lldt :0.
i

If f : I ---+ X is integrable, then there exists c(/) € X such that for any sequence
(.f,),ex C C"(I,X) satisfying (1.2.1), one has

tx I f-(t)dt: r(l)'

the above limit being for the strong topology of X. The element z(/) is called the
integral of / on .I. We write

fffr(f):Jf:Jf:Jfulat.
II

If I : (a,b), we also note

fb fbr(f): J"f : J"f{t)at.
As for real-valued functions, it is convenient to set

fp ro
I f(t)dt:- | f(t)dt

Ja J B

if 0 < a. Bochner'stheorem assertsthat if f : I - X is measurable, then / is

integrable if and only if ll/ll , 1 -+ IR is integrable. In addition,

ll r ll r
ll I f(t)dtll< l|tG)Mt.
ll Jr ll Jr

Bochner's theorem allows one to deal with vector-valued integrable functions like
one deals with real-valued integrable functions. It suffices in general to apply the
usual convergence theorems to |l/ll. For example, one can easily establish the



fn(t)dt .

t'f
J t{t)at:,4J
II

For p € 11,@], one denotes by Le(I,X)
functions f : I -- X such that the function
f e LnQ,X), one defines

( t r tl/P
| ( / ttrttltt"at; irp<m:1.? /

I esssup ll/(t)ll if p : e6.

nfusion, we denote ll llz,"1l,x; by ll
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following result (the dominated convergence theorem). Let (/r,)rrEry be a sequence
of integrable functions I + X,let g € Lt(I),and let f : I --X. Assume that

( llf"(t)ll S s(t) for a.a. r € 1 and all n e N
I
I lim f"(t) : f (t) for a.a. t € 1.
\ n+o

It follows that / is integrable and

the set of (classes of) measurable
I !-+ ll/(t)ll belongs to Lp(I). For

ll"f llz,"tr,xr

When there is no risk of co

llll".
llz,orrl or ll llr" ot

Rpueex 1.2.3. The space LeQ,X) enjoys most of the properties of the space
LeQ) : re(I, lR), with essentially the same proofs. In particular, one obtains easily
the following results:

(i) ll llr"fr,x; is a norm on the space Le(I,X). LeQ,,X) equipped with that
norm is a Banach space. If p < oo, then D(l, X) is dense in Le(I,X) (apply
the classical procedure by truncation and regularization).

(ii) A measurable function f : I-- X belongs to Lp(I,X) if and only if there
exists a function g € LeQ) such that ll/ll < g a.e. on 1.

(iii) Supposef :I *Xismeasurable. Itf e LpQ,X) forallJeland
it llflli,7,x) < C for some C independent of J, then f e LpQ,X) and

llf llms,xt a c.
(iv) If f eLvQ,X) and e€LsQ) with |+;: + ( 1,then 9f eL,(I,X) and

llpf llvs,xt < ll"f llr'rr,xrllpllr."rrr.
In particular, if / e LpQ,X) and if J is an open subinterval of 1, then
flr e Le(J,X).

(v) If f €. LeQ,X) and s € Ls(I,X*) with i*i: * < 1, and if
h(t) : (s(t) , f (t)) x. ,; , then

h e L'(I)) and llhllr"rrl S ll"fllz,"<r,xlllsllr"rr,x.r.

(vi) If f e LnQ,X)nLs(I,X)with p 1Q, then / e L'(I,X) for everyr elp,q],
and

ll/ll'tr,"t 3llf ll0r,tr,xrll/lll"&,"r where : :: +!-! .rpq
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(vii) If l/l < * and p < g, then

llfli',rr,x> < l/lH ll./llr"rr,xt for all / e Ls(I,x) '

(viii) if Y is a Banach space and if A e L(X,Y), then,4/ € Lv(I,Y) for every

f e Ln(I,X), and llAfl\.,tr,vt 3 llAllr.<x,vlll./llr"rr,xt. In particular' if
X,--Y and if f e LpQ,X), then f e LvQ,Y) (let A be the embedding).

(ix) If Y is a Banach space and if A e L(X,Y), then

f / r \
I Af (t)dt: Al I f@dt I1 \t, /

for every f e ['LQ,X). In particular, if X -' Y and if f e LI(I,X), then
the integral of / in the sense of X is also the integral of / in the sense of
Y (let A be the embedding).

(x) If / is an interval of JR, one defines the space Loro"(I ,X) as the set of functions

f : I -- X such that /1.7 € Lp(J,X) for all open, bounded intervals J c I.

We end this section by two useful criteria.
t-

Tueoneu 1.2.4. f\t S p S m. lef (/,),,6ry be abound,ed, sequencein y(I,X). t
If thereexi,sts f :I --.X suchthatfora.a.t€1, fn(t) -/(t) 'inX as n+oo, t
then f € Lp(I,X) and ll/llz,'tr,xl ( liminfn*rc llf.llL"e,x1. )

TueonoIra 1.2.5. Cons'ider two Banach spaces X '-- Y and ! < p,q < q. Let
(f")^>o be abounded, sequence in Lq(I,Y) andlet f : I -Y be suchthat "f'(t) -
f (t) i.nY as n--+ cto, for a.a. t € I. If (f^).>s i.s bound,ed, i,n LvQ,X) and if X i,s

refl.exi.ae, then f e Le(I,X) and ll"fllr'tr,xl ( Iiminf'-- llf.llr,"<r,xt.

1.3. Sobolev Spaces

For Sobolev spaces of real- (or complex-) valued functions, see, for example,
Adams [3], Bergh and Lofstrom [28], Brezis [43], Gilbarg and tudinger [127],
J.-L. Lions [231], Lions and Magenes[232], and T]iebel [338]. For vector-valued So-

bolev spaces, see the appendix of Brezis 1421, Brezis and Cazenave [44], Cazenave
and Haraux [64, 65], J.-L. Lions [2:t], and Lions and Magenes [232].

Consider an open subset f,) of RN. We recall that 2(fl) (: 2(O, C)) is equipped
with the topology induced by the family of seminorms dK,^, where K is a compact
subset of O and m € N, defined by

d,x,^(p) - sup l. lO",p(r)l for all tp € 2(ft).
*t.' lal:m

The set of distributions on S-), D'((l)), is the dual space of D(ft). If 7 e D'(C)) and
if a e NN is a multi-index, one defines the distribution

Bat AawDoT: df, WT e D'(A)
4

bv

\D"T,p) : (-1)lot\T,D"p) for all ,p €D(A).

I
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A function / e I,l"(O) defines a distributionTy e D'(C)) by

(rr,p): *" ( [ f AV@a"\ for alr e eD(a).\d /
It is well known that if T1 :Ts, then / - g a.e.A distribution ? € 2/(f,2) is said
to belong to Ip(O) if there exists / € re(O) such that T:Tf . In this case, / is
unique.

For rn € N and 1 ( p ( oo, the Sobolev space Wm'p(f)) is defined by

W*,p(Q): {u € Lp({l) : Dou € Lo(A) for lol < m} .

W*,p(Q) is a Banach space when equipped with the norm ll llw^," : ll llw-,"rol
defined by

llullw-., : r llD.ullr,<at.
0(lal<m

If p < oo, one defines the closed subset W{'o(O) of W*,p(Q) as the closure in
W^,p({t) of 2(CI).

When p :2, setW^'p(Q) : H^(A) andW{'e(Q) : Hf (0) and equip H^(a)
with the equivalent norm

/ r ''7/2
llulls-rcrr : ll"ll"* : ( f I llo""{")ll, dr)

'0<lol<m fi /

The space H*(a) (hence 116'(0)) is then a Hilbert space with the scalar product

(u,u)s., : I n" I n.up1n"u14ar.
0<lal<m 6

Reuenx 1.3.1. The following properties are well known:

(i) If 1 ( p { m, then the spaces W^'p(Q) andW{'e(Q) are reflexive.

(ii) If (r,),.x is a bounded sequence of l4l1'p(0), I 1p < oo, then (r,|.),ex
is a relatively compact subset of L\ (w) for every &r e fr. In particular,
there exists a subsequence (unu)a€N converging a.e. in ru. Therefore, one
constructs easily a subsequence of (ur)r6s converging a.e. in O.

(iii) Assumem>. l and1<p ( oo. If (u,,),6ryisaboundedsequenceof
W^'p(Q), then there exist u eW^'p(Q) and a subsequence (u,*)7.6ry such
that unr ---+ u a.e. as k -+ oo, and

llullw^,, S liminf llu.lls*,, .

If p < oo, then also ,ttrn*'uinW^'p.If p < oo and (u",)"rex CWtr'e(A),
then u ew{'e@).

(iv) Let m)0 andl <p < oo. Consideraboundedsequence(u,,),Esof
W^'p(Q) and assume that there exits z: Q ---i lR such that un +,tL a.e. as
?tr + oo. It follows that u E 1ryn,o(Q) and

ll"ll*^* < liminf llu^lls^," .
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If p < oo, then also u,,, .. u in W^'p. If p < oo and (rr)r.ru c Wtr'e(O),
then u eWtr'e(q.

(v) Let F : C -.* C be a Lipschitz continuous function such that F(0) : 0. We
may consider F as a function IR2 * IR2, so that F'(u) : DF(u) (which
is defined for a.a. u € C) is a 2 x 2 real matrix, hence a linear operator
C --' C. Let p e [1,*]. For every u e WL'p(Q), F(r) 6 ryt'r(O) and

lAiF(u)l ! Ll}iul a.e. for every 1 < ? S l/, where -L is the Lipschitz constant
of -F. In particular, llv,F(u)lll' < LllVully".If p < m and if u €W;'e(A),
then F(u) €W;'e@). If we assume furthermore that F, is Cl except at a
finite number of points, then VF(z) : DF(u)Yu a.e. for every u € Wl'p(A)
and the mapping u + F(u) is continous Wl'p(A) -- WL,n(Q) for every
p < 6. On these questions, see Marcus and Mizel [237,238,239] and the
appendix of Brezis and Cazenave [44].

(vi) In particular, if p € [t,oo] and u e Wr'p(Q), then lul e.Wt,n1f)) and

lvl"ll < lVul a.e. If p < oo and u € W;'e($, then lul < W['e($. More-
over, the mapping u,-- lul is continuous I,71'p(0) -- Wr,p(Q) if p < oo.

(vii) Let F : C + C satisfy F(0) = 0, and assume that there exists o ) 0 such
that l.P(u)-F(")l < L(lrl + lul")lu-zl for all u,a e C. Let 1 ( pt,q,r I oo

be such that | : fr+ f . l,et u €. Le(A) be such that Vu € ,s(CI). It follows

that IVF(u)l < 2LlullVul a.e., thus Vr'(z) € ,'(C)) and llV,F(u)llr. <
Lll"ll\,llV"llr". In particular,lf p: a.*2, then F(u) e Wt'p' (f)) for every

u e Wr'p(Q) (respectively, F(u) € W;'o (O) for every ?, e I,Zo''e(O)), and

llVF(u) llr", < Lll"llfi"llVrllr'.
(viii) If I 1 p,q < oo and m,j are nonnegative integers, then 2(JRN) is a dense

subset of l4l-'p(RN) n Wj's(RN). In particular, llzfl,e(RN) : Wm,p(lRN).

We recall below some well-known inequalities and embedding results.

THEoREM 1.3.2. (Poincar6's inequality) Assume l0l < - (orQ i.s bound,ed'in
one d'irect'ion) and let 7 I p < q. There erists a constant C such that

ll"llr" < CllYullp for euery u €W;'e(O).

In part'iculaa llVullr'fof is an equ'iualent norm to llullpy',"1n; onW]'e1A1.

Tuponev 1.3.3. (Sobolev's embedding theorem) If Q has a L'i,psch'itz cont'inu-
ous bound,ary, then the followi,ng propert'ies hold:

(i) If | 1 p 1 N, thenWr'p(Q)'+ rs(O) for euery s € lp, #+1.
(ii) If p: ly' ) l, thenw''p(a) -' rq(o) for euery s e [p,oo).
(iii) If p : .A/ : 7, then wl'p (a) '-* trq (o) for euery q e [p, m] .

(iv) If p> N, thenWl'p(O).--+ l,@(Q).

If Q has a uni,forrnlE Li,pschi,tz cont'inuous boundary, then:

(") If p> N, thenwl,p(A).-- Co,"(O), where a

Tsponnl,t 1.3.4. (Rellich's compactness theorem) If A i,s bounded and has a
Li.pschitz cont'inuous boundary, then the followi,ng propert'ies hold:
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(i) // 1 3 p f N, then the embed,ding Wr'p(O).- Iq(0) ,is compact for euery
q e lp, i!;).

(li) If p > N, then the embed,d.ing Wl,p(A).* l,*(O) ,is compact.

If we assume further that Q has a un'iformly Li,pschi,tz continuous bound,ary, then:

(iii) .I/ p > N,,,then the embeddi,ng W\n(Q) -.i C0'^(0) ,is compact for euery
) € (0, #).

THpoRBu 1.3.5. The conclus'ions of rheorems 1.3.3 andl.3.4 rema,in uati,d wi,th-
out any smoothness assumption on Q i,f one replaces Wl'p(A) bA W;'e(A) fuote
that Q st'ill needs to be bounded, for the compact embedding).

Rs\4enx 1.3.6. If p: fg ) 1, then WL,o(9) -* Iq(O) for every p < q < oo, but
W\p(Q) *' L*(A). However, Sobolev's embedding theorem can be improved by
Tludinger's inequality. In particular, if N : 2, then for every M z-cr., there exist
p)0andK<cnsuchthat

lk,wr_1) <K
h

for every u € ,F/01(C2) with llulls, < M (see Adams [3]).

THnone\4 1.3.7. (Gagliardo-Nirenberg's inequality)
let j,m be two 'integers, 0 < j < m. If

LetT<p,e,r1qand

1 j (r m\ (r-a),p:N*"(;-N)* 
n

for some a e [jlm,l] (o < | i,f r ] | and m - j - ry - 0), then there eyists
C (N, m, j, e, Q, r) such that

,f 
llr",llr, t "(,8llr",lb")" wllL;" for eueryu € D(RN).

For 1 ( p < oo and m € N, one defines W-^.p' (Cl) as the (topological) dual of
Wtr''@).One defines H-*(A):W-n'2(Q), so that H--(Cl) : (I/t(ft))-.

Rpuenx 1.3.8. Here are some useful properties of the spaces W-*'p'(Q).

(i) From the dense embedding D((.l) --+ Wtr'o(A), we deduce that W-*'p'(Q)
is a space of distributions on f,). Furthermore, it follows from the dense
embedding Wtr'o(O) -, Zp(O) that Lp' (f)) - W-*,p'(e). If p > I, then
the embedding is dense. In particular, 2(Q) is dense inW-^'p'(Q).

(ii) Assume that that 1< q < oo is such thatW{'p(O) * rs(O). It foilows
that Lq'(O) - W-^'p'(Cl). Furthermore, if p,q > 1, then the embedding is
dense.

(iii) Even though i16"(o) is a Hilbert space, one generally does not identify
H-*(O) with flfi"(O). One rather identifies L2(A) with its dual, so that



"ej"' *'{'{,'r',

1. PRELIIVIINARIES

A--(fl) becomes a subspace of 2/(f,1) containing I'(Cr). In particular, if
u e H{@) and u € .02(O), then

\u,u) sg,,p-^

It follows that llulll' 3 llullllrll"lls-- for all u € Hfl(Cl).

(iv) Like any distribution, an element of iI--(Q) can be localized. Indeed, if
T e H-^ (Q) and 0/ is an open subset of O, then one defines 7lo, as follows.

Let 9 eD(ft') and let Q eD(O) be equal to 9 on O/ and to 0 on f,l\Q'. It
follows that

iF(p) : (Q,T) nr <al,n--(o)
defines a distribution V e D'(Q').Since llrp'lls;,tn,l < llpllafl(o), it follows

that V € H-^(Q'), and one sets 7lo, : ilr. It is clear that the operator

: (u-^(q-H-*(e')
Pn':1

[?+71e,
is linear and continuous, and is consistent with the usual restriction of func-
tions.

(v) For every multi-index a of length j, Do is a bounded operator from I{--(O)
b H-*-i(Q) for every m € N. Since also Do is bounded from flft(O) to
Hk-i@) for every k > j, it follows easily that for every k € Z, D" is

bounded from -Ilk(Q) to "F/k-j(O).
(vi) In particular, A defines a linear, continuous operator Hl((-l) * I1-1(CI).

Note that for u € flt(f|), the linear form Au € l/-1(f)) on f161(f2) is defined
by

\a'u,u): - Re I v"1"1vi@ a" for o € rlot(ct) .

"a

This is clear for u € 2((-l) and follows by density for u € 14(CI).

Consider now an open interval I C lR and a Banach space X, equipped with
the norm ll ll. We denote by D'(I ,X) the space of linear, continuous mappings
D(I) - X, where X is equipped with the weak topology. It is called the space

of X-valued distributions on 1. An element f e Llo.Q,X) defines a distribution
Ty € Dt(I,X) by the formula

\z1,e) : I f{r)r{t)d, for every e € D(I).
i

One defines the nth derivative 7@) (or #) of a distribution ? by the formula

\T',p): (-1)" [ rc1ffi o, for everv e e D(I) '

i
For 1 ( p < oo, we denote by Wl'o1I ,X) the set of (classes of) functions

f e Le Q,X) such that /' e LP (I,X), in the sense of D' (I,X). For f € Wl'P Q, X),
we set

llfllpos,x) : ll"fllr'tr,x; * ll/'ll;'1r,x1 .

f_: Re / u(r)u(r) dr .

o

I
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When there is no risk of confusion, we denote ll llp.r,"1r,x) by ll llpy',,1ry or ll 111y,,,.

Rprvranx 1.3.9. The space W|,p(I ,X) enjoys many properties of the space
Wt'p(I) : WL,p(I 1R.), with essentially the same proofs. Here are some of them.

(i) ll llw',"tr,x; is a norm on the space W1'r(1,X). The space 1ryt,nQ,X)
equipped with the norm ll llst,"g,x) is a Banach space.

(ii) Let f e Ln(I,x). If f €wr'e(J,X) for au J c l and if llf,llus.xt < c
for some C independent of J, then / e Wt'p(I,X) and llf,llr,,1r,x1<C.

(iii) If Y is a Banach space and if. Ae L(X,Y), then for every / e Wl'eQ,X),
Af e Wt'n1I,Y), and

ll A f llw', (r,vl < 
ll / ll rrx, y 1ll f lly,'," 11, 211 .

In particular, if X .-+ Y and if f e Wr,o1I,X), then f ewr'n1l,y) (let A
be the embedding).

If l is an interval of lR, one defines the space Wrl":,!(t,X) as the set of functions
f : I -- X such that /1"7 eWl,p(J,X) for all open, bounded intervals J C I.

THpoRpvt 1.3.10. If I<p3crc and f eLnQ,X), thenthefollowi.ngproperties
are equ'iaalent.

(i) / e rrYt'nQ,X).

(ii) There eri,sts g €. Le(I,X) suchthat f (t):.f(s) + I S@)d,o for a.a. s,t e I.
(iii) / is weakly absolutely continuous (hence weakly di,fferentiable a.e.) and f, (i,n

the sense of the a.e. weak d,eriuatiue) i,s in Le(I,X).

In add'it'ion, if f sati,sf,es these properties, then the deriuatiaes of f i,n the senses
of D'(I ,X) and almost euerywhere co,incide and one may let g: f i,n (1i).

RoueRx 1.3.11. It follows easily from the above result that

w'''(I,x) - cb,u(7,x)

and that if p ) l, then Wr,pQ, X) * Co'o(7,X) with o : *.
The following result is also quite useful.

PRoposrrroN 1.3.12. Assume X ,i,s refleriue and let f e LnQ,X). n follows that
f eWt'n1I,X) i,tr there erist g € LeQ) and a set N of measure 0 such that

ll/(f) - /(s)ll < | [' ,Oarl for attt, s e 1\ /f .

lJs I

In thi,s case, llf'117,(1,x) < llpllL,gl.

RpuaRx 1.3.13. Applying Proposition 7.3.72, one can show the following results:

(i) Assume that X is reflexive and let f : I -, X be Lipschitz continuous and
bounded. It follows that / eWr,co(I,X) and llf'll"*<r,rl (.L, where.L is
the Lipschitz constant of /.
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(ii) AssumethatX isreflexiveandthat 7<p< oo. Let (/,),ex beabounded
sequence of Wr'p(I,X) and let f : I --+ X be such that "f'(t) - /(t) in X
as n --+ oo for a.a. t e I.It follows that / €Wr'p(I,X) and ll/llpy,,,1r,xy !
lim inf,,*- ll I n tt w,,p ( I,x't.

(iii) Assume that X is reflexive,lz-p ( oo, and let / € LvQ,X). If lK such

that for all Jel and all lhlcdist(7,41), ll/(.+h)- /(.)llz,"t"r,xl <Klhl,
then / e Wr'p(I,X) and llf'l},,tr,xt 3 K.

PnoposluoN 1.3.14. Let I be a bounded'i,nterual of R, letm be a nonnegat'iue
,integer, let Q be an open subset o/ RN, and let ("fr,)",es be a bounded sequence of
L* (r,f4 (o)) . w1'* (I,E-- (o)).

(i) There etist f e L*(I,fld(CI)) nW1,*(1,fI--(O)) and some subsequence

(/,u)rex such that for euery t e 7, [no(t) - /(t) zn I{j(O) as ft -- oo.

(ii) ff llf"-(t)llr,, - ll/(t)llz,' as k-- x, un'iformly on I, then also fn1" - f in
CG,L2(q) as k-* oo.

(iii) If (f")"ex c C(7,rid(O)) andllf.u(t)llr/' -- ll/(t)lla' ask-- oo, un'iformly
on I, then also f e C(I,HJ(O)) and fno + f in C(7,I/01(O)) os k----, oo.

PRoor. Part (i) follows from Proposition 1.1.2(i) applied with X : I1o1(A) ana
Y : H-n(Q) and from Remark 1.3.13(ii) (note that ("f,),eN is uniformly equicon-
tinuous in Y by Remark 1.3.11). Part (ii) follows from Proposition 1.1.2(ii) applied
with X : I1o1(f)), Y : H-*(Q), and B : ,2(Q). Part (iii) follows from Proposi-
tion 1.1.2(ii) applied with X : B: H;(CI) and Y: I/--(C)). n

One can define higher-order vector-valued Sobolev spaces as follows: For m € N,
set

( d,jf -)w*'p(I,x) : j f e Le(I,x),ffi e LeQ,X) for all j e tr,...,*) l.au"')
It is clear that

c--) Ctr;tj,x) and 1ry^,n(I,X) q Cn-r,a(I,X) with

1.4. Sobolev and Besov Spaces on IRN

For more detail, see, for example, Adams [3], Bergh and Lcjfstrom [28], the ap-
pendix to Ginibre and Velo [140], Lemari6-Rieusset [225], Shatah and Struwe [312],
and Tliebel [337, 338].

It is convenient to consider a function ? € Cf (R.N) such that

n(€):{; Ill:;
and to define the sequence (rbi)irz C S(RN) by

wL,p(I,n ,# ewr,p(I,x) for all j e {1,...,- - t}} ,W*'P(I,X) : 
{/.

so that W^,LQ,X)
o:T,ifp>t.

(1.4.1)

(1.4.2)
/i\ / t \,hi€):r(;)-4(#)
\- ,/ \- /
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in order to define the Littlewood-Paley decomposition. We see that

suppdj c{zi-r <l€l <2j+t}
and that *m (1 it€+o)- 'uo(e): {

ia* Lo if(:s,
where the above sum contains at most two nonzero terms.

Given s € lR, one defines

H"(RN) : {z € s'(RN) : (1+ l€12);A € ,2(RN)}

and

llrlla. : ll(t + 1612;;6;1r".
It is clear that I/'(JRN) is a Hilbert space and it follows easily from Plancherel's
formula that the above definitions are consistent with those of Section 1.3. More
generally, one defines

H,,p(Rl/) : {u€s,(Rt) :f-r[1t+l€lr)ta] € re(RN)]

and

ll"lla,," : llr-1[(1 + l€l');a] llr"
for 1 < p < @ and s € lR, so that l/"'p(RN) is a Banach space (reflexive if
1<p<m).

RsN{enx 1.4.1. Here are some fundamental properties of the space -tI"'p(RN).

(i) H"'2(RN) : f/"(lRN) and FIo'p(lRN) : rp(RN) (same norms).

(ii) Hsl'p(ntN\ ,-.+ Hsz,n(R.N) if sr ) sz.

(iii) If p ( oo, then [f1s'r(lRt)]* : H-",p' (RN) (see corollary 6.2.8 in [28]).
(iv) It follows from Mihlin's multiplier theorem (see theorem 6.1.6 in [2S]) that

if rn is a nonnegative integer and 1 < p ( m, thenW*'p(lRt) : Il-'p(RN)
with equivalent norms. By (iii), we also haveW^,p(RN) : gm'r(RN) when
m is a negative integer.

(") Sobolev's embedding: Il''p(RN) ,---+ Hst,pt(RN) if t - Nlp: st - Nlpr
and 1< pSpt ( oo, s1,s2 € IR (see theorem 6.5.1 in [28]). In particular, if
11p < oo and 0 < s < N/p, then

I1",P(RN) .-- Z& (Rt) .

Moreover, t"'r1RN) .* Z,-(lR.N) if p > 1 and s > I,{lp- See remark 2,
p. 206 in [337].

We now define the Besov space B;,q(RN) for 1 ( p,q < @ and s e IR by

B;,q(RN) : i" . s'(Rlr) ' llulls;. < *) ,

with

rurn;,,: ilF-t@a)ll;o1m"r -,_ I 
(,-I Qsjllr-L(1bja)ll'"o'l)n) ir q < m

[ ;]? "'llF-101'iillrP(*N) 
ir q : e6,
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where the functions 4 and ry'7 satisfy (1.4.1)-(1.4.2). It is understood that if / e

S'(RN) and 1( pS6,then ll/ll;" isthe,Lpnormof f it f ero(RN) andis*oo
otherwise.

RBuenx 1.4.2. Here are some fundamental properties of the space B;,q(JRN).

(i) B;,q(RN) is independent of the choice of the function 4 satisfying (1.4.1)

and two different choices of 4 yield two equivalent norms.

(ii) B;,'(JRN) is a Banach space. Moreover, B;q(IRN) is isomorphic to a closed

subspace of lq(N,ro(R")), so that B;,q(RN) is reflexive if 1 <p,g < oo.

(iii) B;lq(RN) + Bi;n(RN) if sr

1(gr1.q2<.oo.
(iv) If p,Q 1@, then [Bi,n(Rt)]" : Bp;"q,(RN) (see Corollary 6.2.8 in 128]).

(v) Sobolev's embedding (see theorem 6.5.1 in [28]): Bi,n(RN) "* Bii,n,(RN)
its-Nlp -s1 NfplandI<pSPr ( oo, L<q< 81 5oo, s1,s2 €lR.

Reltenx 1.4.3. Here are some relations between the spaces gs'r(lRN) and

A;,q(RN) (see theorem 6.4.5 in [28]).

(i) If 1 I p 12, then Bf,o(RN) '* H"'o1lRt) * B;,2(RN).

(ii) If 2 < p < oo, then B;,2(RN) .-- f/''p(lRN) -' Bi,o(RN).

(iii) In particular, Bi,r(RN) : If"'2(RN) : 11"(RN).

We now introduce the homogeneous Sobolev spaces A"(nt) utt6 g"'r(lRN) and

the homogeneous Besov space Bf,n(JR"). t.t fact, they are rather delicate to define,

since they can be considered either as seminormed spaces or as quotient spaces. It
will be sufrcient for our purpose to define only the (semi-) norms.

Let4andry'i satisfy(1.4.1)-(1.4.2) andletl ( P3crc ands e lR. Given

u € S'(RN), we set

ll *oo

ll"lla",": ll t r-'(l€1"/ia)ll
llj=oo llr,rlgl;

if the series ti:- F-t(l€f ,bid is convergent in S'(IRN) to a function of -Lr(lRN),

and llullp",, : oo otherwise. We define

llrllr" : llullg",,.

we note that l(1"rfua € s/(RN) so that the definition makes sense. Moreover, if 0
vanishes in a neighborhood of the origin, then l{l'0 € S/(RN), and so llrlle"," :
llf-t(l€l"A)llr,". Finally, we note that llullr;"., : 0 if and only if suppd: {0}; i.e.,

u is a polynomial.
Next, given s € lR and 7/-p,q ( oo, we define for u € S'(IR.N),

t ( i esiilr-'(/r0)llr."rm",)o)"n ir q < oo

ll"llo. :{ \1:-* /
-''s 

I sup2"r llF-rkbjt)llrp(RN) if g: eo.
\ iez

We again note that ll"ll;;" :0 if and only if supp0: {0}; i.e., u is a polynomial.

III
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Rpnaenx 1.4.4. Here are some fundamental properties of the semi-norms of
I/"'p(RN) and Bf,n (RN).

(i) The semi-norms ll ' lle"," and ll . ll.6;," ur" independent of the choice of the
function 4 satisfying (1.4.1) in the sense that two different choices of 4 yield
two equivalent semi-norms.

(ii) If s ) 0, then ll"lls;,, * ll"lft,, + llulls;," (see theorem 6.3.2 in [28]).
(iii) If0<s<1,then

( / r* il\l/s
I ( / (r-s sup ll"( -il-u(.)111"1e"))'+ ) ifq< m

ll"llu;.={ \/o lslSt L/

I ggpt-",sup llu(. - a) - u(.)llz,"<m"l if s : 6e.( r>0 lal<t

There are also similar (though more complicated) formulas for s ) 1 (see
theorem 6.3.1 in [28]).

1.5. Elliptic Equations

Consult, for example, Agmon, Douglis, and Nirenberg [4j, Brezis [43], Brezis
and cazenave [44], Gilbarg and rYudinger lr27l, J.-L. Lions [231], Lions and Ma-
genes [232], and Nirenbergl272l.

We recall below some of the results that we will use in the following sections.
In all this section we consider an open subset Q c iRN. we equip rr-t(o) vrith the
dual norm, that is

ll"lla-, : sup {(u, u),u € I4(O), ll,ullr", : 1} .

we recall that (by Lax-Milgram's lemma) for every / e rJ-l(o), there exists
a unique element u € Hd(O) such that

_L,u * u: f in .FI-r(e) .

In addition,

ll/llll-' : ll"llrl;.
It follows in particular that A -.I defines an isometry from rlol(f)) onto f1-1(f)).

By the same method, one shows also that for every ,\ > 0 and every / € ff -1(O),
there exists a unique element u € r/01(O) such that

_Lu * ),u : f in H-1(e) .

lll/lll : ll"lla;rol defines an equivalent norm on f/-1(Cl) and .\llulls-, < ll/ll71_,. If
f e L2(O), then Au e L2(Q), the equation makes sense in L2(e), and )llull1,1e1 <
ll/lL,,ror.

One shows also that if O has a C2 boundary and it f e L2(O\ then u € f/2(O)
and llullg, 3 Cllf llr". In particular, -A+/ is an isomorphism from I/2((-l)nff01(ft)
onto tr2(O). Concerning Zp estimates, we have the following result.

PRoposrrroN 1.5.1. Let )> 0, ue 1101(Q) , and f e11-t(O) sati,sfy -Lu+\u : f .

U f e Le@) for somepe [r,m), thenu€Le(Q) and),llullp Sllfllt,.
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If rp(s) < sP-2 for
Holder's inequality,

(1.5.1)
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PRoor. Let g : (0, oo) - [0, m) be smooth. Assume further that rp(s) and s9'(s)
are bounded on (0,m) and that e,g'2 0. It follows that rp(lul)u € l/01(ft) for all
Ilot(O) (see Remark 1.3.1 (v)). Moreover, one easily verifies the following identity.

Re (Vu . V(rp(lul)z)) : p(lrl)lV uP + Ml Re(uVu)12 a.e.

In particular, (-Aa, plul)u)11-,;r; > 0. Taking the f1-1 - I/1 product of the

equation -Az * \u: f with cp(lul)u, we deduce that
t^l\ | lul"e(lul) s / l/ll"le(l"l).

JJclc)

some p € [1,oo), then lule(lul) < (l"l'e(l"l))#; and so, by

ff

^o 
ll"l'p(|il< llfl'.JJoo

For p ( 2 and e) 0, let p(s) : (e + s2)V. By (1.5.1),

xp [tuP(e+tuP)# . Iltv.I ' -t""
Letting e J 0 and applying Fatou's lemma, we see that u e Lp and )llrllr" S ll/llr"'
For2(p<@ande>0, let

4e(s):(#)*
It follows from (1.5.1) that

^, 
[---W---==== [vr.
I tt + elul2)'i= - J"

Letting e J 0 and applying Fatou's lemma, we obtain ue Lp and )llull1," S ll/llr'. n

Next, we recall some convergence results. Given e ) 0, we define the operator

J, on f/-l(f)) by
J,u : (I - €A)-t .

In other words, for every / e }/-l(ft)t ue: Jrf e H[(Q is the unique solution
of u, - €Au,:,f. We deduce from what precedes that lld/1176 < ll/llx whenever

X : /1d(a), L'(Q),H-t(rl), or X :1,r(O)for 1 < p < oo. In particular, J' can be

extended by continuity to an operator of L(x) with llJ.llalx) < 1. Furthermore,

we have the following result.

PRoposrrroN 1.5.2. If X i,s ei.ther of the spaces I/ot(f)), L'(Q), f/-'(Q), or Le(Q)

forl<p1cn,then'.
(i) (J,f ,9)x,x. : (f ,J.9)x,x. for aII f e X, s e X".
(ii) J,f - f in X as e l0 for euery f e X.
(iii) # f,'isboundedi'nX ose J0, thenJufu-l€r0i'nX c,seJ0.
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Pnoop. (i) Let f ,g eD(q and let u: J,f ,u: Jeg.It follows that

(Jrf ,g)x,x, : (J,f ,g)r, : (u,-eL.u *u)72
: (-eAu iu,u)p: (f ,Jrg)r": (f ,Jrg)x,x..

(i) follows by density of 2(0) in X.
(ii) By density, we may assume f e D(Q. Let u,: Juf .One easily verifies

that
u, - f : J,(f - (1 -€A)/) : eJuLf ,

and so

llr. - "f llr-' < ellA"f ll71-, ; 0.

Hence (ii) is proven for X: H-t(Q). Furthermore, u. is bounded in flol(0), and
it follows from Remark 1.3.8 (iii) that

ll", - fll?.,S llu" - flln'\|", - flln-, S Cei 
= 

0.

Hence (ii) is proven for X : L'(O). Finally, one easily verifies that (/ - A)u, :
J,(I-L)f . Therefore, from the result for X : 11-1(CI), we deduce that (.I-A)u, -.-+

(/- A)/ in H-1(CI), which implies that z. - u in flot(O). Hence (ii) is established
for X - fI;(O). Finally, let 1 < q < p <r < oo. It follows from Hcilder,s inequality
that

ilu, - fllu S llr" - fllffiW, - fllffi .

Note that ll", - fllu S ll",llr, + ll/llr, <2llfll7 . If p > 2, we tet q : 2 and we
obtain

llu, - fll,, s ll,. - fllffi eilfllLa# I o.
EIU

rf p < 2, we let r : 2 and we obtain a similar conclusion. This completes the proof
of (ii)

(iii) Let uu : Juf,. We know that uu is bounded in X; and so it suffices to
show that u, - f, --+ 0 in D'(A). Given cp € D(Q),

(u, - f ,,9)o,,o : €(u,, L,p)o,,o - ,? 0.

Hence the result follows. n
Suppose now O: IRN. Applying the Fourier transform, we see that z : Juf ,

being the solution of u-eL,u: /, is given by (t+l,er2l(12)0,: ? In particular, ..Iu

can be extended to an operator S'(JRN) -, S'(IRN). We have the following result.

PnoposluoN 1.5.3. Suppose Q : IRN and let J" : (I - €A)-1 for e > 0.
G'iuen any s € JR, i.! follows that J, 'is a contracti,on of H"(RN) and that J, €
.c (H' (lRN ), H'+2 (RN ) ) wi,th ll J,ll \ss,H..+2 ) < max{ 1, (4er2 )- 1 

} .

Pnoor'. Let / € S'(Rt) and u: J,f ,so that 0: (1+ aerzlgl\-rf. We seethat
lal < lil and (i + l(l'?)lal < (1 + l€l')(1 + 4€7T2lel2)-'lfl < max{l, @er2)-t}lfl.
The result follows from the definition of II,(JRN) (see Section 1.4). !
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1.6. Semigroups of Linear Operators

Consult, for example, Brezis [43], Brezis and Cazenave 1441, Cazenave and

Haraux [64, 65], Haraux [158], and Pazy 1294]1.

Let X be a complex Hilbert space with norm ll.llx and sesquilinear form (.,.)x.
We consider X as a real Hilbert space with the scalar product (r,A) x : Re(r, g)x.

Let A: D(A) C X -- X be a C-linear operator. Assume that ,4 is self-adjoint
(so that D(,4) is a dense subset of X) and that,4 < 0 (i.e., (Ar,r) S 0 for all
r e D(A)). A generates a self-adjoint semigroup of contractions (,9(t))126 on X.
D(,4) is a Hilbert space when equipped with the scalar product

(r,A)ornt : (Ar, Aa)x + (",y)x

corresponding to the norm llull|, e1: llAull2x + ll"lll and D(A) '+ X ''-+ (D(A))",
all the embeddings being dense. We denote by Xe the completion of D(A) for the
norm llrll!, : ll"lll - (A*,r)x. Xa is also a Hilbert space with the scalar product
defined by (r, U)e: @,a)x - (A*,y);6 for r,a € D(A).It follows that

D(A),-- X.t ,- X ,--+ X).-+ (D(A)).,

all the embeddings being dense. Furthermore, it is easily shown that A can be

extended to a self-adjoint operator Z on (D(A)). with domain X. We have

Alorol: A,Aln\.q) € L(D(A),X),Alx^ € L(XA,X|), andAl, . L(X,(D(A))-)'
Since -4 is self-adjoint, iA : D(A) c X '-+ X defined by (i,A)r : iAr for

r e D(A) is also C-linear and is skew-adjoint. In particular, i,4 generates a group
of isometries (I(t))tem on X. We deduce easily from the skew-adjointness of zA

that
T(t)* :T(*t) for every, € R.

We know that for every t e D(A), u(t) : I(t)r is the unique solution of the
problem

Moreover,

llu(t + h) - u(t)ll5! Inlllarll for all t, r € IR .

Next, it follows easily from the preceding observations that (I(t))rem can be ex-

tended to a group of isometries f(Qr.o on (D(A))-, which is the group generated

by the skew-adjoint operator i,A. i(t) coincides with I(t) on X, and (I(t))r.e
restricted to any of the spaces X|, X, XA, D(A) is a group of isometries. For

convenience, we use the same notation for 7(t) ana 7(t). We know that for every

r € X,u(t):I(t)r is the unique solution of the problem

I 
u e C(R, D(A)) n Cr(R, X),

In**Au:o forallte JR,

lat
I u(0) :7.

Iu e c(R,x)n cl(R, (D(A)).),

I u* *Au: o for all / € lR,

lat
I u(0) : 7.
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In addition, the following regularity properties hold:

If r € Xa, then u € C(lR, Xe) n C'(R., X|) ;

if x e D(A), then u€ C(tR, D(A)) nCl(tR.,X).

Concerning the nonhomogeneous problem, we recall that for every u € X and
every / € C([0, T],X) (where ? e R), there exists a unique solution of the problem

(1.6.1)

Indeed, u e C([0,7], X) is a solution of the above problem if and only if u satisfies

( u e c(o,T), x) n c' ([0, T], (D(A)). ),

lt#.Au + 7 : s for all t € lo,rl,

I u(o; : '.

I 
u e L1((0, T), x) nwr,l((0, T), (D(A)).),

1o* *Au+ f :s a.e. on lo,?1,ldt
I u(0) : 1.

(1.6.2)

Formula (1.6.2) is known as Duhamel's formula. It is well known that if, in addition,
f eWL'l((0,7),X) or / e trt((0,?),D(A)), then

u € c([0,7], D(A)) n Ci([0, T],X) .

Rpnanx 1.6.1. For every r e (D(A))* and / € ,1((0,T),(D(A)).), (1.6.2)
defines a function u € C([0,f1,Q@))"). A natural question to ask is under what
additional conditions u satisfies an equation of the type (1.6.1). Here are some
answers.

(i) If, inaddition, r€ X and u € l4lt't((0,f),(D(A)).)) or u€ r1((0,7),X),
then u satisfies (1.6.2) if and only if u satisfies

ft

u(t) :T(t)t +i I I(t- s)/(s)ds for all, € [0,?].
JO

or

if

If r € X and f e C([0,f1,@@)).), and if ?, € C1([0,"],(D(,4))"))
u € C(l0,Tl,X), then u satisfies (1.6.2) if and only if u satisfies (1.6.1).

Similarly, if r e Xa, / e I1([0,7],XA) and if u e Wr't((0,7),X])) or
u e Lt((0,7),Xe), then u satisfies (1.6.2) if and only if u satisfies

( u e rt 1p,T), xe)n wi'1((0, T), xi),

I ,*, *Au + f : s a.e. on fo, ?1,
lo,
I u(0) : r.

(ii)

(iii)
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(i")

if(")

Letr € Xnandf € C([0,"],X;). If u € Ct([0,7],X])) or

u e C([0,7],Xe), then z satisfies (1.6.2) if and only if u satisfies

( u e c (lo,T1, x e) n cl([0, Tl, xi),
|.du,-
|n; 

*Au* f :0 for all t € [0,?],

I u(0) : a'

Also, if r e D(A) and / e ,11([0,7],X), and if ueWr'r((0,?),X)) or
z e .Ll((0,7),D(A)), then z satisfies (i.6.2) if and only if u satisfies

( u e r,r11o,r),D(A)) n Wr'1((0, T),X),
| .d,
|n; 

* Au+ f :s a.e. on [0,?],

I u(0) : 7'

(vi) Suppose r € D(A) and f e C([0,7),X). If u € Ct([0,7],X)) or
u e C([0, T],D(A)), then u satisfies (1.6.2) if and only if u satisfies

( u e C ([0,:t], D(A)) n cl(10, Tl, x),

4 
r#. Au+ f : s for all t € [0'"],

[,,(o) : r.

l-.7. Some Compactness Tools

It is well known that the embedding fIt(RN) '-- 1,2(lR.N) is not compact. In
order to pass to the limit in certain problems, we will use some specific tools that
take into account the lack of compactness. The first one is due to W. Strauss [323]
(see also Berestycki and Lions [25])'

PRoposIrIoN 1.7.1. Let (un)n>s c }11(RN) be a bounded sequence of spheri'cally

symrnetri,c funct'ions. If N > 2 or i'f u"(r) is a non'i'ncreasi,ng functi'on of lrl for

"r"ry 
n ) 0, then there etist a subsequence (uno)k2s and u e flt(Rt) such that

'tln* 4 u ask---+ crc'in rp(RN) for euery2 <p<2Nl(N -2) (2 <p <@ i'f
lf: 1).

Proposition 1.7.1 is an immediate consequence of the following two lemmas.

LE;,l.rv.A, 1.7.2. Let (u;n>s be a bounded sequence zn A1(nN). Suppose un@) "+ Q

as lrl -- x, un'iformly i'n n > 0. n foilows that there erist a subsequence (r'u )*to
and,u € flt(RN) suchthatltrno 1u ask --+ crc'in rp(Rl/) for euery2 < p <
*512(p(oo if N:r).
Pnoor'. It follows from Remark 1.3.1(iii) that there exist u € HI(RN) and a

subsequence (rn*)x>o such that ltrn* ^ u as n -+ oo in rlt(RN). Fix e ) 0 and let
,R > 0 to be chosen later. Given p as in the statement, we have

llu-o - ull;'1p'; : lluno - ull7o6ol * llr'. - ull;r111el2n))

< llu^n, - ullu@o) * llu** - ullff<rct>"i;llr,* - ull1z1p,v1.

I
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Let d > 0. We first fix R large enough so that (by uniform convergence)

llun, -ullfft'znllllr"^ -zll1,1e"1 < f,.

Next, since (unoln^)*>o is bounded in HL(Bp), it follows from Rellich's compact-
ness theorem that un*|"^ - uls* in Lo(Ba). Therefore for k large enough we
have

llu,u - ullr,,<Bai-7,
and so llunr -ull;n1pry ( e. This proves the result. n

Leltun 1.7.3. 1/ u e f/l(lRN) zs o radi.ally symmetric function, then

(1.7.1) sup.lzl#1"(")l < cll"lli"llv"ll2".
c€lRN

If, in addi.ti.on, u(r) 'is a nonincreas'ing function of lrl, then

(t.7.2) sup lrl#1"(")l < Cllully".
r€RN

Pnoor'. Suppose first u € Cf (RN). We have

rN-lu(r)2: - l,* f{rt-tr{r)\ar<z f,* ,*-,u(s)u'(s)ds,

and (1.7.1) follows from the Cauchy-schwarz inequality. rt u(r) is a nonincreasing
function of lrl, then

llull2", 2 t fu@)zldr> l{l"l <,R}llu(r)12,

{t"t'."}

proving (I.7.2). The general case then follows by a density argument. n

The other type of compactness argument we will use does not require radial
symmetry. It is due to P.-L. Lions [235, 236] and is known as the concentration-
compactness method. That method is designed to pass to the limit in variational
problems with lack of compactness. It can be formulated in many ways, but we
describe only the form which we will use (Proposition 1.7.6 below). We begin with
a first lemma concerninq the concentration function.

Lputr,ta 1.7.4. Let u e ,'(Rt) with llull;, : a ) 0 and let the concentration
funct'ion p(u,.) be defined by

(1.7.3) p(u,t) - sup t fu@)12 d,r for t > 0 .

y€lRN -. J 
.tlr-sl<t)

(i) p(",t) i,s a nondecreas'ing funct'ion of t. p(u,O) : 0, 0 < p(u,t) < a for
t > 0, and liml*- p(u,t) : q.
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(ii) There erists y(u,t) € IRN such lhat

Ip(u,t): | 1u1412ar.

Ib-atd.t)t<tj

(iii) #ue ,L'(RN) forsomer>2,then

lp(u,t) - p(u,s)l ! cllull2""ltt - r"l+ for alts'r > 0 wi'th C: c(N,r).

Pnoor'. Property (i) is immediate. Next, given t ) 0, there is a sequence

(yn)'ex c IRN such that

p(u)(t): lim t W@)l'd,r > o.
n+m J

{1,-v,,1<t}

We claim
sequence
and so

which is absurd. Therefore, (An)n>o has a convergent subsequence, and its limit

A(u,t) satisfies (ii). Finally' consider 0 < s ( t < m. We have

lp(u,t)-p(u,s)l: t fu!- t @fJ '' J
{lr*y(u,t)l<t} {lc-s(a,s)l<s}

that the sequence (an)->o is bounded. Otherwise, there exists a sub-

(yno)i>o such that {1, - y.,l < t} n {1" - un,l I t) : a for j I l',

f .n s f ,,,,r,
I lul'>- \ | lu(t)|" dr: l_cn,

5{'" i?o {1,-i.,l.r}

: I wf+ |
{s<lz-s(u,t)l<t} {lo-s(u,t)l<s}

s f tuf,J"
Is< lz-s(z,t)l <t]

by (ii) and the definition of p(u, s). Therefore, by Hcilder's inequality,

lp(u,t) - p(u,")l < ll"ll?"1{'< l" - a(u,t)l < t}l+ ,

and (iii) follows. n

We next study the limit of a sequence of concentration functions.

Lour're 1.7.5. Let (un)n>6 c Hl(R.N) be such that

(r.7.4)

(1.7.5)

f

lul2 - I lul2I"
.J

{lz-s(z,s)lcs}

and let p(un,t) be d'efined by (1.7.3). Set

llu.ll*:o)0,
sup llVz,ll1,z ( oo,
n)O

/-l: lim liminf p(u,,t).
t+m 2+@

(1.7.6)
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Then there etist a subsequence (uno)xro, a nondecreas,ing function l(t), and, a
sequence fk --l oo wi,th the followi,ng properties:

(i) p(u"^,.) * f(.) e [0,a] as k.--+ x uni,formly onbound,ed sets of [0,*).
(ii) p: liml-- "l(t) : limr-oo p(uno,tr) : limr, * p(uno,tpf2).

PRoor'. We deduce from (1.7.6) that there exist t6 --r m such that

(r.7.7) P : AI1L P(uno,tn).

Note that p(un,t) < llunllz"" < a. Since f/l(Rt) .-- ,"(RN) for some r t 2,
it follows from (1.7.4), (1.7.5), and property (iii) of Lemma t.T.4that p(u,,.) is
uniformly Hcjlder continuous. Therefore, (i) follows from Ascoli's theorem (after
renaming the sequence ni"). Note that we do not loose property (l.T.T) by passing
to a subsequence. Since p(u",.) is nondecreasing, it follows from (1.7.2) that

/1 7R\

Next, for every t ) 0,

liminf p(u,*,t) 2l;1igf p(un,t),

so that, by letting I ---+ oo and using (1.7.6) and (i),

(1.7.e) Iim'v(t) > s.
t+m" -

Finally, given t ) 0, we havetpf2 ) t for,k large, so that

/ l,-\
ttfl.Jo olu.r,; ) = 

limzup p(unu,t*): t".

,(u.r,T) . p(un*,r) *= r(t).

Letting t ---+ oo, we obtain

(1.7.10)
,/r\

liminf p{ unu,* ) > p.
rc+oo \ z/

Part (ii) follows from (1.7.8), (1.7.9), and (1.7.10).

PRoposIuoN 1.7.6. Let (un),,66 C r11(RN) sati,sfy (L.7.4)-(1.7.5), let p(un,t)
be defi,ned by (1.7.3), and let p be d,efi,ned by (1.7.6). There erists a subsequence
(u",u)r>o that satisfies the followi,ng properties.

(i) If p: a, then there erists a sequence (y*)n>o c IRN ond u e III(RN) such
thatu,o( -yx)---+ LL as k-- oo Zn trp(lRN) for aII2 < p < *5 fZ ( p ( oo

if N:7).
(ii) 1/ F:0, thenllunnllr,--0 ask-4 @ for alt2 <e < #N--2 Q <p< @ i,f

N: 1).

n



(1.7.11)

(1.7.r2)

lr.i.rrJ

11 7 1^\

(1.7.15)

(1.7.16)
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(iii) There etist (rr)*>0, (rr)r>o c /r'1(nN) such that

suPPug OsuPPwP: b ,

lu;l+ltu;,l Slu,*1,

llr*llr' + llrrll1r' < Cllun*lls' ,

llrrll'", .- p, llrrll?,, .+ a - F,
R+m K+rc

( r ^ r ^ r ^]ro.I'ul,Jf 
{ / lvu"^ l'- J lvu*l'- J lYwnl' 

,
lf f r I

I J |".-le - J l"xlo - J lwxlel*= o

for alt2 < p < # tZ<p < oo if N : 7).

For the proof, we will use the following Sobolev-type inequality.

Lpnrue 1.7.7. There erists a constant K such that

I wt'r" < Kp(u,rr (l lYul2 +r' I "P)(1.7.r7)

RN [RN

for atl u e f11(R.N) and allt > 0, where p i,s defined bg (1.7.3).

PRoor'. Let (Qi)i>o be a sequence of open, unit cubes of IRN such that

Qi 
^Qn: 

a if j I k and : IRN. It follows that

[ fur*' :i I luY*' and llull'n, :i [l"f +wf).
JnRN i:o dt i:o dt

We now proceed in two stePs.

Srnp 1. There exists a constant C independent of j such that

(1.2 1s) lwo ="(lt,l') (l tr"t'*t,t') rorau uenL(s,1.
Qi Qi Qi

Indeed, suppose first l[ > 3. it follows from Sobolev's embedding that

ll"llr*+ @i)s cllulls'p 1,

and (1.7.18) follows by using Holder's inequality. Suppose now N : 2. It follows
from Sobolev's embedding that

' llullr,"<e) ! C(llVullr,'(ei) * llrllrre,l).
Changing u to lul2 and using the estimate lvl"l'l ! 2lullVul together with Hcilder's

inequality, we obtain (1.7.18). Suppose now l/: 1. Sobolev's embedding yields

NRN

llrllr*(er) < C(llVully,s yy + llzllr'1q,r).
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Therefore, changing u to lul2, we deduce as above that

ll"ll7* <q ) < c llull v, @, I ( ll vull 1, 1q, y; * ll u ll 1, 1o-, ;,

and (1.7.18) follows from Hcilder's inequality

ll "ll9,"ro, I 
< llull'r" re )ll"llL* @ s .

Finally, the fact that in the above calculations the constant is independent of j
follows from translation invariance.

Srsp 2. Proof of (1.7.L7). Summing on 7 the inequality (1.2.1S), we obtain

I zN+s / t ^r# r ^I Wl-'r < c( sup I l"l'l I lv"l'+lul',J \resJ '/ J
RN Qi IRN

and (1.7.17) for t = 1 follows easily. The general case of (r.T.rT) is obtained by
changing u(n) to u(tx). !

PRoor or PRoposrrroN 1.7.6. We use the functions 7(.) and gr(.,.) and the
sequences (un*)nro and (t7r)7r2s constructed in Lemmas 7.7.4 and 1.7.5. Fix ?
sufficiently large so that 7(?) > af2 andlet yp: U(uno,7). By possibly extracting
a subsequence, we may assume that there exists u € H1(JRN) so that

(1.7.1e) unu(-y*) -u in}lr(JRt) * k--+ oo.

We now proceed in three steps.

Srnp 1. Proof of (i). Suppose F : a. We claim that if u is given by (1.7.19),

llull2;" : a,

from which (i) follows. We now prove the claim (1.7.20). Note that, since the
embedding H'(Bn),-- L2(Bp) is compact,

r-r(1.7.21) | l"(")l' dz : ,lim I tunu(r)12 dn for every R > 0.
J K-@./{lc-Ekl<R}

{l"l<n}

On the other hand, it follows from what precedes that p(un^,T) > al2 for k large.
Fixe < af2 and let r be large enough so that p(uru,r)> a-e for k large. Since

t,af.oa
J lu"ul'-l J lunul")r+a-e>a forklarge,

{lr-cul<"} {lx-afu..0,,")l<"}

we see that { lr - y6 I < 7} n {1" - a(un^,r) I < r} I a. In particular, if .R : T + 2r,
then {lr - A(uno,r)l < r} c {1" - yxl < R}, and so

then

(r.7.20)

f ,). f ,2
1 lu"of > I lu.ul">a-e forklarge.
JJ

{lr-gLl</a} {1"-a@-x,")l<"}
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Applying (I.7 .21), we deduce that
f
I

llull2y, 2 I l"@)l' dr ) a - e.

f t"t'."t

(I.7.20) follows by letting e J 0.

Step 2. Proof of (ii)' Suppose F:0. It follows from Lemma 1'7'5(ii) that
p(un^,l) -+ 0 as k -+ oo, and (ii) follows from (1.7.17).

Srnp 3. Proof of (iii). We fix 0,<p e C*(10, m)) such that 0 3 0,9 ( 1 and

0(t)=1 for0<tSt, \ft):0 fortaX,

elt)=0 for0St<+, 9Q)=1 fort)7,
=

and we set

where

Up : qpuno , 1J)k : gkUnx ,

ot"(r) : t (W), pn(") : r(@fu4)|)
Properties (1.7.11)-(1.7.13) are then immediate. Next,

,(u-r,l;) : I\ -' 
{lr-ofu^u,iu1z11<to/z}

lunol' s | ,O'

so that

(t.7.22)

NRN

s I lu,*l'
J

{lt-y(u^u,tk /2)l<tk}

{ls-s(u-*,t* ) l<tr }

z1l<tx/2)

l,-ul'
l<tk /2j

tJ
{ls-sfu^r,tr"/

f

I
J

{lr-a@^u,tx /2)

llrrll'", .+ t-r
fi+@

by Lemma 1,.7.4(ii). Set now zk : 'unr" - utr * t k, so that in particular lznl 3 lu.*|.
We have

[v*f< t tun*12.t J
IRN {tx /2<lr-u@-k,tk /2)l<tk}

: I lunrl'
{lr-s(unu,ty /2) | <t} }

{lr-s(u^ *,tr )l<tr }

: p(un*tx) - ,(".^,7) ,

lunul'
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so that

(1.7.23) llt,,ll'"" *= 0

by Lemma 1.7.4(ii). We deduce from (1.7.11), (L7.22), and (1.7.23) that

llrnllr"" x_!a_ ,,
which proves (1.7.14). Next, one easily verifies that

llu^J, - lrnlo - l.nlol 1 clunr"lo-rlr,,l,

and (1.7.15) follows. (Note that zp is bounded in fli and converges to 0 in L2,
hence in .Lp.) Finally, it follows from an easy calculation that

lY r.ol" - lY rxl' - lV, *l'
: lyunolrG - e? - eZ)

- lunul'(veuf + lvprlr) - Re(u*Vu^_).v(01+ 921,)

C. C.
> -;lrn*|" - |lu^ollVr,ul,+2,Li Lk

from which (1.7.16) follows. n



CHAPTER 2

The Linear Schriidinger Equation

This chapter is devoted to the study of some fundamental properties of the
(linear) Schrodinger equation. We study in particular the dispersive properties and

the smoothing efiect of the equation in lRN.

2.1. Basic Properties

Let Q be an open subset of IRN (f,) does not need to be smooth or bounded).
We define the operator -4 on l2(fl) by

( n@) : {u e Hd(cl), Au € ,2(f,)},

\eu: nu for u € D(A)

Evidently, D(A): H'(0) n}ld(Q) if C) is smooth enough. It is well known that
A is self-adjoint and ( 0, and so we may apply the results of Section 1.6. Observe

that the space Xa is nothing other than Hd(Q). Indeed ll ' lla : ll ' llan" ana

D@) C D(A), so that Hd(Ct) C X.t. Since also D(A) is a subset of ,Asl(O),

we see that Xn c .I101(Q), and so XA : rfot(Q) with equality of the norms. It
follows that X): .ff-l(Q). On the other hand, note that D(A) + Hfi(fl), and so

D(A). + H-'(q.The operatorA e L(L2(C2), (r(,4)).) is simply defined by

(Au,a)ppry',D(A) : (u, Lu)y" for u € ,L2(f,1) and u € D(A) .

Let us denote by (I(r))tem the group of isometries generated by iA in any of the
spaces D(A), f/ot(Cl), L2(Q),1{-t(Cr), (D(A))".We have the following result.

PRoposruoN 2.1.1. G'iuen g e L2(Q), u(t) :T(t)g is the un'i,que soluti,on of the
problem

ReNlenx 2.1.2. It follows from Section 1.6 that J(t)" :T(-t) for every, € IR.

On the other hand, with the notation of Proposition 2.1.1, let u(t) : d(-r). We

have
lt"+Ao:o'
Io(0) : e'

and so T(-t)q:TW for everY I e L2(A).

f u e c(R, L'(9)) n cl(tR, (D(,4)).),
I

\ n"t * Au : o i'n (D(A))- for euery t € IR,

[ "(o) 
: ,P.

Moreouer, ll"(t)llu : llpllr,, for euery t € lR. If p e f/ot(f,1), then for euery t eR-,
u € c(R, I4 (o) ) n C1 (lR, f/-' (o) ) and llY u(t)ll 7z : llY ell yz .
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2.2. Fundamental Properties in RN

In this section we consider the case c) : lRN. In this case, r(t) can be expressed
explicitly in Fourier variables. Indeed, let g e S(RN) and let u e C-(lR,S(Rt))
be defined by

ilDtgl : "-ar2dct2trrq 
for all r € tR. and € e RN.

We have ffi1- +r2l1l2d : 0 in IR, x lRN, and so,iut* Au: 0 in lR, x IRN. Since
u(0): rp, we deduce that u(t):T(t)p.Thus we see that

(2.2.r) fQ@@$): 
"-+n2ilel2t6rq

for all cp € S(R.N), t € lR, and { e IRN.

Rpvanx 2.2.1. Formula (2.2.1) has the following simple applications:

(i) We deduce from formula (2.2.1) thatT(')9 € C(lR,S(RN)) for every rp €
S(RN). By duality, 7(t) can be extended to S/(JR.N), and

T(.)p e C(R.,S'(RN))

for every (p € S/(RN). It follows in particular that if gn + g in S'(IRN) and
if. tn --+ f , then

T(t^)p. - T(t)p in .S'(RN).

Indeed, given 0 € S(IRN), we have T(-t;e --+ y(-t)O in S(R.N), so that

\T (t^)p., 0) s,,s : (9., T (-t.)0) s,,g

;J \P,T(-t)9ls,,s : (T(t)e,O)s,,g

by theorem 2.17 ot p} l.
(ii) It follows from (2.2.1) that lf(I(t)e)(€)l : ltp(€)l for all t e lR. and € e iRN.

In particular, we see that for all s € lR and t € lR,

llT(t)elln": llplls" .

Since S(IRN) is dense in I/"(IRN) for all s G lR, we deduce that for any
s € IR, (I(r))ren can be extended to a group of isometries in fI"(lRN),
which we still denote by (I(t))rem. The generator of (7(t))reo in ,F/,(lRN)
is the operator A, defined by D(,4") : -p"+2ilRN), and A"u, : iAu for
u e D(As).It follows easily that if 9 e 11"(JRN), then u(t) : I(i)rp satisfies
u € fli>o cr(lR,lrs-2j(Rt)).

(iii) Let l be abounded, openinterval of R with0 e .I. Let s € IR, p € FI'(IRN),
f € Ltg,H"(Rt)), and u € C(1,II"(RN)). W" deduce from (ii) above and
the results of Section 1.6 that u satisfies

rt
u(t) :T(t)p + t I rp- s)/(s)ds

JO

for t € 1 if and only if u e WL'|(1,H"-2(RN)) and

(lur+Au+/:6 fort€1,

I u(o) : r'
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If, in addition, f € C(.r,.Ff"-2(RN)), then u e Cr(I,gs-z1pr)).

Rnvlenx 2.2.2. Here are some comments on the scaling properties of I(t). Let
(p € ,2(R.N), ? ) 0, and set ,h@) : 9(1r) so that tlt € ,2(R.N). It follows that for
all t e IR,

(2.2.2) [r(t)tl\(r) : lT(12t)e]Qr) a.e.

Indeed, let u(t) :T(t)P and set u(t,r):u(^l2t,7c). Since iull Lu:0, it follows
that 'iu1* Au : 0; and since u(0, r) : p(lr) : ,h@), we see that g(l) : y(t)|,.
Similarly, let / e ,1(lR,r2(lRN)),'y > 0, and set g(t, r): "y2f (tzt,1u).If

ft pt
u(t) : o 

Jo 
,Q - s)/(s)ds, u(t) : u 

Jo 
,Q - s)e(s)ds ,

then for all t e lR,

(2.2.3) u(t,r) : u(^l2t,1r) a.e.

Indeed, both o and tu defined by w(t,r):u(j2t,^lr) are solutions of the equation
iz1 *Lz*f :0withtheinitial condition z(0):0, sothat 1):'11). These

calculations are justified when g and / are sufficiently smooth (cp e //2(JR.N) and

/ € 11(R,fl'(Rt)), say). Then (2.2.2) and (2.2.3) follow in the general case by a
density argument.

The following well-known result is the fundamental estimate for I(t).

PRoposrrroN 2.2.3. If p e 12,oo) and,t + 0, thenT(t) maps LP' (R.N) conlinu-
ously to;r(RN) ond

(2.2.4) llr(t)pllr"<nN) < (4?Tlrl)-N(+-;)llpllr,",rn,l for altI €,p'([RN).

The proof of Proposition 2.2.3 relies on the following lemma.

LeMMl 2.2.4. G'iuent 10, define the functi.on Kt bA

.*/ 1\'? il2
K1@) : IEA) e!+r /or r e IRN'

It follows that T(t)P : Kt x Ii 'i.e.,

(2.2.5) T(t)p(r) : (Atrit)-E | "4 *tr)a,
RN

for all t I 0 and all g eS(RN).

PRoor'. Slnce Rr(€) : 
"-i+n21112t, 

the result follows from (2.2.1). !

Lemma 2.2.42.2.3. Let g e S(RN). It follows from

lll(t)ellp < (+trlt11-tllpll"' .

Pnoor op PRopostrtott
that
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By density, y(t) e 4(r1(RN), trm(R.N)) and

lly(t)llrt;,tn,v;,7,*(RN)) S (azrltl;-# .

The general case is obtained by interpolation between the cases p:2 and ?: oo
(use the Riesz-Thorin interpolation theorem). n

Rnulnx 2.2.5. It follows from formula (2.2.5) that

N

T(t)e@) = r+)' "";1" 
f -st. ttvt2

\Arzt) J" 
2Le4t?\A)dy'

In other words, up to a rescaling and to multiplication by a function of modulus 1,
7(t) is nothing but the Fourier transform. More precisely, if we define a multiplier
Mtby Mr(r) : 

"iltl2 
/at and dilation operator Dlby Dp(r) : @trifl-E w@lAtrit),

then

T(t)p: MtDtF(Mtp).
In particular, estimate (2.2.4) is optimal in thesensethat if T(t) e L(Lq,Le),then
necessarily 2 1 p < oo and {! : p'.

Conorrenv 2.2.6. If t I 0, then

lll(t)plln"* < (arltl)-N(i-*)llpllr,,,, for arlp € s/(tRN),

where s € lR ond 2 < p < oo. The same est'imate hold,s wi,th the norrns o/ fIs,r(IR.N)
and Hg,p'(F.N) reptaced by the norms o/ I/"'r1nRN) and,II"'p'(IRN). Moreouer

llT(t)plls;,"5. (arltl)-N tt_ illlpll";,,n fo, att s €S'(RN),

wheres € lR ond2<p1oo and 1< q < oo. The sameest'imateholdswith
the norms o/ Bi,n(RN) and B|,'(RN) reptaced by the noTms o7 A;'(WN) ana
a;,,n(RN).

PRoor'. Fix t l0 and let u : t(t)p. Given tu € S(IRN), it follows from (2.2.1)
that

(2.2.6)
F- t (.i(t-)) : F - L (w 

"- 
an2 e1€12 t 

61

: y-11"-4r2e1ql'zt yy-t lwQD : T(t)@-t eog\ .

In particular, it follows from (2.2.4) that

llr-l(wi,)lly, < @nltl)-N(+-i) lla-t(r\llr.p, for any 2<p < oo.

The result follows immediately from the above estimate and the definitions of the
various Sobolev and Besov norms (see Section 1.4). tr
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2.3. Strichartz's Estimates

Estimate (2.2.4) is remarkable but it is not quite handy for solving the nonlinear
problems, since the .LP spaces are not stable by I(t). However, we will derive

from (2.2.4) space-time estimates that are essential for solving the nonlinear Schrci-

dinger equations. The first estimates of that kind were obtained by Strichartz 13271

as a Fourier restriction theorem. Strichartz's estimates were generalized by Ginibre

and Velo [136], who gave a remarkable, elementary proof. Strichartz's estimate for
the nonhomogeneous problem was generalized by Yajima 1364] and by Cazenave

and Weissler [68]. Finally, the endpoint estimates were established by Keel and

Tao [210]. We begin by introducing the notion of admissible pair.

DprtNtrtoN 2.3.1. We say that a pair (q,r) is admissible if

(2.3.1)

and

(2.3.2) 2( r I (2<r (mif -ly':1,21r<mif N:2).

Rouenx 2.3.2. If. (q,r) is an admissible pair, then 2 < q ( oo. Note that the
pair (oo,2) is always admissible. The pair (2, #) is admissible if If > 3.

rr-
TsBonBrr,t 2.3.3. (Strichartz's estimates) The following propert'ies hold:

(i) For euery I e .L2(lRl/), the functi,ontr'+T(t)p belongs to

,s(nR, rr(tRN)) n c(R, r',(Rt))

for euery admi,ssi,ble pair (q,r). Furthermore, there erists a constant C such

that

llv(.)pllpe,n 3Cllplltz for euery e € 12(R.N).

Let I be an interual of R (bounded or not), J :I, andts e J. If ('y,p) is
an ad,m'iss'ible pa'ir and, f e L1'(I,rp'(RN)), then for euery adm'i'ssi'ble pair
(q,r), the functi,on

(2.3.4) 7(t-s)/(s)ds fortel

belongs to Lq(I,r'(RN)) nC(J,r'(Rt)). Furthermore, there erists a con-

stant C 'independent of I such that

(2.3.5) llArllr"rr,r-l < Cllfll7,,11,r.,,1 for-euery f e L'" (1,rp'(RN)).

?:.(;-i)

(2.3.3)

(ii)

2N
N-2

t,- A1Q1: 
f'"
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Rouenx 2.3.4. Theorem 2.3.3 deserves a few comments. One is easily convinced
that property (i) describes a quite remarkable smoothing effect. Indeed for all t € IR,

YQ)L2 : L2. In particular, given f I 0 and p ) 2, there exists a dense subset -Eo

of .L2 such that I(t)rp / Lo for every g € Eo. However, it follows from property (i)
that for every I € L2,T(t)p e Lp for a.a. f € IR and all2 <p < # if l/ > 3.
Note that by the preceding observation, the restriction "for a.a. t e. lR" cannot be
reduced to "for all t 1 0" in general.

Concerning property (ii), note that the definition of Oy makes sense. Indeed,
Lp' ,---+ f/-1, and so / e LtQ',H-r) for every bounded interval I' c I.In par-
ticular, Qy e C(It,H-').Evidently, properties (i) and (ii) give an estimate of the
solution of the nonhomogeneous Schrcidinger equation in terms of f and g,

Rpvanx 2.3.5. The estimates of Theorem 2.3.3 are called endpoint estimates in
the case r : {- ar p :,-4. Not" also that an estimate similar to (2.3.3) but
with the space and time integration reversed holds. More precisely,

for every p € ,2(lRN) ;

that is,

ll"ll fi*(RN,z, (R)) 
< cllpli,,

(see Ruiz and Vega [306]).

Pnoor oF THEoREM 2.3.3. We only-give the proof away from the endpoints,
i.e., for r, p + #. The proof in the case, . *+ or p - ffi ir more delicate and
the reader is referred to Keel and Tao [210]. Note that we will make an essential use
of the endpoint estimates only in the proof of Propositions 4.2.5, 4.2.7 , and 4.2.73.

We divide the proof into five steps, and we first establish property (ii). For
convenience, we assume that 1 : [0, T) for some 

" 
€ (0, oo) and that to : 0, the

proof being the same in the g *"
way as O, the operators {r and 01 (where , € (0, ?) is a parameter) by

T(s -t)f (t)dt Vs e 10,7)

and

In"r*Au*/:s
I z(0) :,p.

/ r/ f+* ^ 1r5 r*#
(/ ( J_* l"(r,r)|'zdt) o,) Scllptt,

RN

L vr('): l"

(^ rt

L o,,rt") : 
Jo 

rG - o)f (o)do vs e [0,?).

It is clear that both V and 01 are continuous rL.([0,7),H-t) -- C([0,7),H-t).

Srnp 1. For every admissible pair (q,r), the mappings @, i!-and 01 are

:g"t':u?u. l';!{9.1.:!''(ry ) ^ 
w. offiiEfi" 

",-timate tor Q, the other ones being obtained similaily. By density, we need only
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consider the case f e C.(10,T),L'). In this case, Proposition 2.2.3 shows that
Oy e C([0, T),L"), and that

1t ^,t1 r\ fT -2
llor(t)llr" s / lt - s1-rv1;-.') lU(')llr., as s I lt - sl# ll/(s)llr,, ds .' Jo Jo

It follows from the Riesz potential inequalities (cf. Stein [319], theorem 1, p. 119)

that

llar llr"tto,rl,L,) < c ll f ll Ls' ((o,r),1-' )

where C depends only on q.

Srep 2. For every admissible pair (9, r inss O. Itrr. and

Ls'((0,7), rr'(Rry . We only prove the estimate
foiE]h-other ones being obtained similarly. By density, we need only consider

the case / e C"([0, T), L'). By using the embedding Lr' '-- H-L and applying the
operator (/ - eA)-1, one may thus assume that / € C"([0, T), L'' ) n C.([0, T), L\.
It follows that Oy € C([0, T),L'), and so

^ lft fL \
llor(t)lli, : ( /, I(t - s)/(s) ds, 

Jo 
T(t - o)f (o)do 

) 
""fiot: 

J, J"gG- s)"f(s), T(t- o)f (o))7zd,od,s

ft tt ft.: 
J, Jr(/(s),7(s - 

o)f (o))7, d,o d,s : 
Jo 

{t@,o1,1(s))1, ds ,

where we used the property T(t)* : y(-t). Applying H<ilder's inequality in space,

then in time, and applying Step 1, we deduce that

lloi(t)ll?, < ll"fl[,"'110.ry,i,''yllot,vlllc((0,"),L') <cllfll?."'uo,r),1-')'

This proves the result, since I is arbitrary.

Srpp 3. For every admissible pair (q, r), O is continuous ,1((0, ?), r2(RN))-
Ln((0,"),r'(R.N)).Let f e ,1((0, T),L') and consider p € Cc([0,"),D(RN)). We

have
rT fT ft
/ (or(t), p(t))r, at : I I g(t - s)"f(s), e(t))7, dsd,t
Jo Jo Jo

rT rT: | / 1y1s), r(s - t)ee)) 7, dt ds
Jo J s

: ['uG),v,(s)),, ds,
JO

and so, by the Cauchy-Schwartz inequality and Step 2,

lrrl
| | (or(t), e(t))1, dtl < llf ll"'<(0,"),r,) llwo111,-110,r),r,)
lJO I

< Cll / ll ;, llo,ry,uyllell 
"", 

((o,r),1", )

(2.3.6)
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On the other hand, one shows easily by choosing appropriate test functions that

llell;'110,r;,r,'y :
( fT -^r. )

sup I / k(t),p(t))tz dt;e € Cf ((0,?) x RN), Ilrllr,,,i1o,r;. r.,t: rltJo )

for all g € ,1((0, 
"), 

12(R.lr)). The result follows from (2.3.6) and the above relation
appliedwithg:iPt.

Srnp 4. Proof of (ii). Let (?,p) be an admissible pair. We deduce from
Steps 1 and 2 that O is continuous /,1'((0, T),Lo' (RN)) * r*((0,f),,L2(RN)) and
,'y'((0,?),rp'(RN)) -, tr1((0,T),Ip(R.N)). consider an admissible pair (q,r) for
which 2 1 q I p, and let d e [0, 1] 'be such that

( !:!+r:e and !:!+r-o
rpzq.yoo

By applying Hcilder's inequality in space, then in time, we obtain

ll@rll'tto,rl,z,"t s llorlll?((0,"),rp)11oillf;d11o,r),12) < cllf llr.,,uo,rt,ut-

Thus (D is continuous tr1'((0, T),Lo' (RN)) * Ln((0,?),r'(RN)).
Let now (q,r) be an admissible pair for which p 1r, and let /, € [0,1] be such

that
] u l-u I u I-u
',/;:1* d and'7:t*;'

By Steps 1 and 3, rD is continuous trq'((0,f),r''(Rl/)) ---+ trs((0,?),.L'(JRN)) and
,t((0,"),12(RN)) --+ trq((0,"),r'(RN)). By interpolation (see Bergh and Lof-
strom [28], theorem 5.1.2, p. 107), O is continuous

L" ((0,"), 16(RN)) -+ trq( (0, 
"), 

r'(RN))

for every pair (a,d) such that for some d € [0, 1],

| 0.r-0 1 0 r-0
;:1n E ano 6:t* , .

The result follows by choosing 0 : p.

Srpp 5. Proof of (i). The proof is parallel to the proof of (ii), and we describe
only the main steps. Let

/+* /o+-
A/(r) : I T(t - s)/(s)ds and tr : I y(-t)f (t)dt.

J-a J-a

One shows (see Step 1) that

llAr llr"rro,rl ,1") < cllf llLs' ((o,r),1.,)

for every admissible pair (q,r). Deduce (see Step 2) that

llfrllr, < Cllf llr.",<to,r),1,.,) t



|** elilr,,tt(t))r., otl: (*, |-J ,"r',t@dr) 
""3 c llpll * llrbli.", 1p,r1, r., y

for every ,p € ,2(RN) and tlt e C"([0, 
"), 

2(R'N)). Assertion (i) follows (see Step 3).

This completes the proof. tr

Conolr,nnv 2.3.6. Let I : (7,!o) for some ? ) -oo (respecti'uely, 1: (-m,7)
for some ? < *) and let J : I. Let (1,p) be an admi,ssi,ble pa'ir, and let f e

L1'(I,rp'(RN)). It follows that the function

f@/t-*\t,- Ay(t): I I(t - s)/(s)ds lrespectiuely, At(t): I I(t - s)/(s)ds 
)-Jt\"/t./

for euery t e J, rnakes sense as the uniform li,mi,t i,n r'(Rt), as n'L ---+ *x (respec-

t'iuely, as m - -@), of the functi,ons

aiQ) : [* ,A- s)/(s)ds for euery t e J .

Jt

In add,i.tion for euery adm'iss'ible pai,r (q,r), Qr e Ls(I,r'(Rt)) nC(J,r'(Rt)).
Furthermore, there erists a constant C such that

ll@rllr"tr,r"l SCllfllr.,,tr,r,,,t for euery I e L"t'(I,r''(RN)).

Pnoor. We consider, for example, the case I: (T,m). Let j,mbe two integers,

T < j < m. For everyt€J,

llof rrl - o!(t)llr" : llv(^ - t)(@T(t)- oi(r))llr, :ll [^ r(^ -s)/(s)asll-^ .

ll Ji llL2

By (2.3.5), there exists a constant C(7) such that

ll of' (t) - ai (t)lb," < c ll f ll r.,, <<j,6),1p, ) .

Thus O- is a Cauchy sequence in,L6(1,r'(Rt)), and so Qy €C(J,.12(nN)) ana

(2.3.7) lliDlll;-1r,r,,t < cllf llr,,u,Lp').

Finally, given any admissible pair (q,r), it follows from (2.3.5) that there exists a

constant C such that

2.3. STRICHARTZ'S ESTIMATES

from which one obtains that

(2.3.8) llaillus,r."t 3 Cllf lft.,'e,rc'1.

Forje N, j>?,define fieL''(1,Lo'(R.N)) by

,^,rr:If(') irt<j
rJ\' 

lo ift>i.
Since /i ---+ / in L1' (I )Lp' (Fit)) ut i - x,we deduce from (2'3.7) that

(2.3.9) @/, * O/ ln ,12(m.N) uniformly in t € J.
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Note that for m > i, AT is independent of m. It follows from (2.3.8) that
Qy, € L1'Q,rp'(RN)). Furthermore, letting f < j ( k, we deduce from (2.3.8)
that

llor, - Q1u ll;"1r,r,'y S cllf i - f rllr,,'(r,r.,'l 3 cllf llrr,((j,k),1p,) .

In particular, iD1, is a Cauchy sequence in Lt(I ,r'(RN)), which possesses a limit
Ty' such that, by (2.3.8),

(2.3.10) llrl'llt" s,r.,t < Cllf 117,, 11,7,,1 .

Therefore, there exists a subsequence, which we still denote by fi, such that
o/j(t) --1hQ) inZ'(IRN) fora.a.te 1. Applying(2.3.9),weseethatr/(t) :Ar(t)
a.e. on f, and the result follows from (2.3.10). n

Conorl.q,nv 2.3.7. ,I/ 9e 111(R.N) andr€(2,r-A) ("e (2,m] if N:t),then
llY(t)ellr ---+ 0 os I --+ too.

Pnoor'. Let q be such that (q, r) is an admissible pair. It follows from Gagliardo-
Nirenberg's inequality that there exists C such that for every f,s € JR,

llr(t) - r(")llr- 3 cllu(t) - u(")llh,ll,rr(t) - "G)llT .

Since rp € F/1(lRN), u(t) is bounded in I11(lRN), and so

llr(t) - r(s)llr' ! cllu(t) - "@llff .

Furthermore, by Proposition 2.1.1, u1 is bounded in .F/-I(IRN), and so u is glob-
ally Lipschitz continuous lR --+ II-l(RN) (see Theorem 1.3.10). Therefore (see

Remark 1.3.8(iii)), there exists C such that

ll"(t) - u(s)111, < Clt - sli
and so

ll"(t) - u(s)llr' < Clt - 'lE .

In particular, u : IR -- Z'(JR.N) is uniformly continuous. The result now follows
from the property u € ,c(lR,r'(Rt)) (Theorem 2.3.3), since q ( oo. n

Rruenx 2.3.8. The estimates of Theorem 2.3.3 (and Corollary 2.3.6) can be
generalized to various spaces involving derivatives. For example, for every m ) 0,
we may replace g by Dog in (2.3.3) with lal : m. Since D'Y(t): X(t)Do, we
deduce that

llY(.)pllz,,rm,s,^.1 S Cllellr* .

Similarly, applying (2.3.5) to D" f , we see that

Since

ll0 rll u s,w^'.t < C ll f ll rr, (r,w^,o, 1 
-

T(t)lf-|(Q + l€I'?);,4)l : f-rl(l+ 142); FFQ)dl
by (2.2.1), we obtain as well

llv(')pllz,"<m,n,,") s cllelln', llolllz'1r,n"'.) s cllflh.,,s,n",,,t.

Using the Littlewood-Paley decomposition, it is easy to establish similar estimates
in Besov spaces. (See Corollary 2.3.9 below.) Such estimates are useful to study the
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nonlinear Schrodinger equation in the fractional order Sobolev space 11"(lRN); see,

for example, Cazenave and Weissler [70], Kato [206], Pecher [295], and Section 4.9

below.

CoRot lenv 2.3.9. G'iuen any s € lR, the followi,ng propert'ies hold:

(i) I/ (q, r) i,s an admissi,ble pa'ir, then there eri,sts a constant C such that

llY(')plL,"rn, Bi.") 3 cllpllB;,,

foreueryp€ff'(RN).
(ii) ff (q,r) i,s an adm'iss'ible pa'ir, then there erists a constant C such that

llY(.)pllz," e,6;,,) S C llpll h,,

for euery p € .S/(IR.N) such that llf llr;,, < *.
(iii) LetI be an'interval of R (bounded ornot),let J :7, andlettn € J. If (l,p)

and (q,r) are adm'iss'i,ble pa'irs, then there erists a constant C 'independent
of I such that

ll or llr"tr,r;, ) < c ll f ll r.,' (r, B;,,2)

for euery f e Lt'(I,B;,,2(RN)), where Qy i's defined, by (23.$.
(iv) Wi.th the notat'ion o/ (iii) aboae, 'it follows that

llor llz,'1r,e;, s < C llf ll r"' s,n;,,")

for some constant C i'ndependent of I.

Pnoor'. We only prove the homogeneous estimates (ii) and (iv), the proofs of (i)
and (iii) being similar. Also, we assume I ( @, the necessary modifications to
treat the cds€ Q: oo are obvious. Let 4 andT/i satisfy (1.4.1)-(1.4.2).

StBp 1. Proof of (ii). We set u(t) : T(t)p and we observe that (see (2'2.6))

r-' (l€f I' jG)) : r (t) (r-' ( l€1",/r O)),

and so

,, ,,2 : ( [ (rrr,,lly(t)(r-11€1".piO))ll?.);dr);llulli"rm,r;,,): \/ \ ?" 
llJ\',. \,r, ,J ' 't,,L, ) 

*')

setting aj(t):2z"illT(t)(f-t(l{l"di0))ll2r. and p: q12 ) 1, we obtain

ll,ll?,rn,s:,,r : (l ( T',t'l)"") 
i

J

:lllr,,.''ll
llLt r"ll
il ; ilI,p(lR)

< I lloi(.)llr"ror
J

: lzz"i llvr.l (r-' t t tf ,biaD)ll ?,,o,r,,o^ ;; .

i
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Applying (2.3.3), we deduce that

llullz,n 1n,;;,r < c (, 22" 
j lll- 1 (l€f ,! idll ?, ) 

* : clle u a; 
",) - \7 

il \,-' J' 'rL-/

which is the desired estimate.

Sr:pp 2. Proof of (iv). We set u(t) : @y (t) and we observe that (see

2"i '--t (lel,r1,i@) = [' 11, - s)(2"i r-Lg€1,rpjflE)) d,s: eoo(t) ,
Jto

where
u j(t) :2"i F-l(l{;"/ifrD) .

Therefore,

llullr""r,,n,,) : ( t 
,!,llo,, 

(r)ll?") 
t 

or\'u'\z'uf2' \1 \7 ' -/ /

Arguing as in the proof of (ii) above, we obtain

llull2," 17,6".,1 < I llo", (')ll?,, 1t.t, y .

J

Applying now (2.3.5), we deduce that

11u1127,11,6","1= "t llrill?',v,"o'' : cI (l o,ovt)' 
'

JJI

where b1(l) : llri@lll,", and p : 2ll' > 1. It follows that

z llt ll

11"11i",,,6.,", < 
"ll I 

ui@atll. 
,-.,t ", lltp(Z)

fs" J llbift)ll2"p1dt
I

f /- ^ r4: c | ( ! ll,r(t)ll'",, )' dt : cllfllL, (r.r \ ; / - "'E;'.r)'JJ

(2.2.6))

which completes the proof. n

2.4. Strichartz's Estimates for Nonadmissible Pairs

It is natural to wonder if (2.3.3) or (2.3.5) hold for nonadmissible pairs (q, r)
and (7,p). Concerning (2.3.3), the answer is no. One sees easily that the con-
dition (2.3.1) is necessary. Indeed, assume (2.3.3) holds for some pair (q,r) with
e,r) 1. FixP € r2(RN),e +0 and,givenT ) 0, letg@):0(lr).Setting
w(t) : T(t)0 and u(t) : T(t)p, it follows trom (2.2.2) that z(t, x) : w(^r2t,7r), so

that (2.3.3) implies that

{Z-+ ll.llz,"rm,r.l < ct-tllol1., .
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Since this holds for arbitrary 7 ) 0, we obtain (2.3.1). In particular, we see that
r > 2 (otherwise q < 0). If N:2 and (g,r): (2,oo), then the estimate (2.3.3)
is false, even if one replaces I* by BMO. (See Montgomery-Smith [252]. Note
that (2.3.3) with (q, r) : (2,oo) holds for radial functions; see Tao [334].) The case

N ) 3, r > 2Nl(N - 2) is more easily eliminated (see Keel and Tao [210]).
Assume now that (2.3.5) holds for some pairs (q,r) and (1,d. Changing /

to 02f (o2t,oz) and applying (2.2.3), we obtain by arguing as above the necessary

condition

(2.4.1)

This is clearly satisfied if. (q,r) and (7,p) are admissible, but (2.4.I) allows many
more choices. We present here a simple case where (2.3.5) holds for nonadmissible
pairs. This case corresponds to P: r in (2.4.1).

PRopostrtoN 2.4.1. Let I be an'interaal of R (bound,ed or not), set J :I, let
ts € J, and consi.derQ defi,nedby (23.\. Assume2 <r <2NlW -2) (2 ( r ( ss
if N : 7) and let 1 I a,6, < oo sati.sfy

(2.4.2)

It follows that Qy € La(I,r'(Rt)) for euery f e La'(I,r''(Rt)). Moreouer, there
esists a constant C independent of I such that

(2.4.3) llOrllr"tr,r.l < Cllfll,u,g,t,1 for euery f e La'(I,f/(mt)).

Pnoor'. By density, we need only prove (2.4.3) for / e C"(/,S(R.N)). It follows
from (2.2.4) that

and so (2.4.3) is an immediate consequence of the Riesz potential inequalities
(Stein l3i9], theorem 1, p. 119). !

Rpuanx 2.4.2. It seems that no necessary and sufficient condition is known for
the validity of (2.3.5). The best available results are obtained in Vilela [353]. (See

Montgomery-Smith [252]. Note that (2.3.3) with (q, r) : (2,oo) holds for radial
functions; see Tao [33a].) The case N 2 3, r ) 2N lW -2) is more easily eliminated
(see Keel and Tao [210]).

2.5. Space Decay and Smoothing Effect in IRN

We still assume in this section that Q : lRN. We have seen in Proposition 2.2.3
and Theorem 2.3.3 that I(t) has a smoothing effect in some.Lp spaces. On the other
hand, one easily verifies with the formula of Lemma 2.2.4that for every p € ,1(R.N)
supported in a compact subset Q of IRN, the function (t,r) ,--. T(t)g@) is analy'tic
in (0, +oo) x IRN. In other words, I(t), being essentially the Fourier transform (see

Remark 2.2.5), maps functions having a nice decay as lrl --* co to smooth functions.

'a-.G- i) . :-.(;- i) :'

*.::'(; - i)

fL

llor(t)llr' < | 1+"1t- sl)-N(4-*)ll/(")llr",,
Jto
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In this section we establish precise estimates describing this smoothing effect, which

enable us to prove similar results in the nonlinear case. Let us first introduce some

notation. For j € {1,...,.1/}, let Pi be the partial differential operator on RN+l
defined by

(2.5.1) Piu(t,r) : (ri * 2it01)u(t,r) : riu(t,d + ff{t,r) .

For a multi-index o, we define the partial differential operator Po on JRN+I by

N

(2.5.2) P,:nPr' .

i:L

Furthermore for r € JRN, we set

N

(2.5.3) ,":firf,n .

i:1

Consider a smooth function u ' RN+l '-+ C. An easy calculation shows that

.t"P I . trt2
Piu(t,r) :2'ite"ai 

Ek-"tu) 
,

from which we deduce by an obvious recurrence argument that

(2.5.4) Pou(t,r): (zt)laluo* D,@<WQ .

On the other hand, a formal calculation shows that

(2.5.5) lPa,iat f Al : 6,

where [.,.] is the commutator bracket. In other words, if u is a smooth solution
of the linear Schrcidinger equation, then so is Pou. In particular, if we consider
p € S(R.N) and if we set z(t) : T(t)g, then uo : Pou, is a solution of Schrodinger's
equation. It follows that

(2.5.6) u"(t): I(t)u"(0) :T(t)r"P;

and so llu.ll* : llr'pll1z. By (2.5.4), this implies that

(2.5.7) (2lrl)l"l llo"1"-o*u(t))llr, : llraellyz .

By density, we immediately obtain the following result.

PRoposlrloN 2.5.1. Let o, be a multi,-i,nder. Let ip € S'(R.N) be such that rag €
,'(RN). If u(t):y(t)9 € c(R,.'',(RN)), then

D" e-i* u(r) € c(R \ {o}, r2(RN))

and formula (2.5.7) holds for euery t 10.
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CoRor,r,.rRv 2.5.2. Let g e tr'(R"), and assume that (l + l*l*)p e l2(nN) lor
sonxe nonnegat'iue 'integer m. It foltows that e-iW u(t) e C(R\ {0}, }1*(lRN)), ond

i,f k i,s the'integer part of mf2, then

u e n ci(R \ {o},Hff;'i (p')) .

0< j<k

In particular, i,f (7 + lrl*)p € .L2(RN) for euery nonnegat'iue 'integer m, then

ueC-(R\{0}xRN).

PRoor'. The H* regularity of e-i*u$) follows from Proposition 2.5.1. Since

d4 e C-(R \ {o} " IRN), we see that u e C(lR \ {0}, f/ft(RN)). The regularity
of the time derivatives follows from the equation. !

Rpnnnx 2.5.3. Formula (2.5.6) means that P"T(t)p : T(t)(rorp) or alter-
natively, by setting p : T(-t)th, T(-I)P"V : r"T(-t)tb. In particular, (r *
2itV)T(t) : T(t)r, or equivalently I(-t)(r + 2itV) : rJ(-t).

Conorlenv 2.5.4. Let tp e ,t(Rt) be such that | .le(.) e .Lt(Rt), and let
u(t) : T(t)p.

(i) The funct'ion t * (r -l2itV)u(t,r) betongs lo Zq(lR., r'(RN)) for euery ad-

mi.ssi,ble pai,r (q, r).
(ii) u e c(R/{0},r'(RN)) for euery r € ,2,*51 (" e [2,m) if N : 2, r €

[2,x] i,f N : 1), and there eri,sts C, depend'ing onlg on r and N, such that

ll"(t)llr' < C(llplft." + llrellT)ltl-N(i-*l for euery t + 0.

PRoor'. By (2.5.1) and (2.5.6), (r 1- 2itY)u(t,r) : T(t)rh, where ,b@) : r9@),

and so (i) follows from Theorem 2.3.3. Next, let u(t,r): e-iWu(t,r). By (2.5.6)

and (2.5.7), Vu e C(R/{0},,12(JRN)) and

llVu(t)ll1' < Cltl-'llrpli., .

The result follows from Gagliardo-Nirenberg's inequality, since ltrl : lul. !

2.6. Homogeneous Data in RN

In this section we study the action of the Schrcidinger group (I(t))r€R on homo-
geneous functions. The resulting estimates are useful for constructing self-similar
and asymptotically self-similar solutions of certain nonlinear Schrridinger equations.
They are also useful to describe the possible decay rates of llT(t),pllr.

For simplicity, we only consider functions of the form lrl-e, so that the proofs

depend only on explicit calculations with the gamma function and analytic contin-
uation arguments. We refer to [73, 74,286,298, 302] for more general results.

We observe that if p e C and 0 < Rep ( lf, then ,h@): lrl-p does not
belong to any space /,o(lRN). However, Tp e -fl"(m.N) and r/ € S/(IR.N). Since the
Schrcidinger group operates on S'(IRN) by Remark 2.2.1.(i), it follows that T(t)r/ is

well defined as a tempered distribution for all t > 0. In fact, much more can be

said.

l
I

I

I
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TuponBnt 2.6.1. Let$(r):lrl-n wi,thp€C and 0<Rep <N. Itfollowsthat
T(t)$ e tr'(Rt) for all t t 0 and all r such that

(2.6.1) r > max {+, =. 
t= } .

I Rep' l/ - RepJ '

For suchr,

(2.6.2) lly(t)'bllu :1#-Y lly(r)?,llr for t > 0 .

Moreouer, if u(t,r) :T(t)t!(z), then u € C€((0,m) x IRN).

Before proceeding to the proof, we make some simple observations. Given
) ) 0, let D1 be the dilation operator

Dlw(r): .\Ptu()r) .

D1 is defined on S(RN) and is extended by duality to S'(IRN) by

(Dxr, th) s,,s - 
^2P-N 

(w, D i$) s,,s

for all t € S/(IRN) and all t/ e S(RN). It is immediate that

(2.6.3) llDxwllr.,: )ReP-g ll.ll""
whenever u € ,r(lR.N). Moreover, it is easy to check, first by applying (2.2.2) tor
?, € S(RN), then by duality for u € S'(Rt), that I(t)ur : D>,T()2t)Dtw. In
particular, letting ),: t-L,
(2.6.4) T(t)w: DtT(L)D"cw

for all t > 0. Now if {: lrl-r, then DXb: Ty' for all 
^ 

> 0. Therefore, it follows
from (2.6.4) that

(2.6.5) T(t){: DtT(r)l'.
In view of (2.6.5) and (2.6.3), all the conclusions of Theorem 2.6.1 follow if we show
that

(2.6.6) Y(\)lb € C-(RN)

and that

(2.6.7) T(I)rlt e ,'(lR.N)

for all r satisfying (2.6.1).
We next establish some notation and recall some well-known facts. The samma

function satisfies the following relation

(2.6.8) c-"I(z) : [* "-ct7z-7 
6,7,

Jo

valid for c ) 0 and z eC with Rez ) 0. Also, if (2 denotes the domain of the
standard branch of the logarithm; i.e.,

O : {z € C : z is not a negative real number or 0} ,

then for a fixed complex number p, the function f (z): zp : eptosz is analytic in
(?. Notethatif r)0,then (rz)n:rpzpforallze (?. Also, lrnl:vRen if r>0.
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Another function that plays a central role in the analysis is given by

(2.6.e)

(2.6.11)

H(y;o,q : lo "turra-L(t - r)b-l dr,

where a,be C with Reo > 0 and Reb > 0, and y € lR (or C). Note that H(g;a,b)
is separately analytic as a function of E,a, and b in the domains just specified.

Lnuun 2.6.2. Let$(r):lrl-n with0 <Rep z-N. Fort)0 andr€lRN,

(2.6.10) tt@(tl(r) : (4ir-Er(pl2Y'H(+,;,{1),
/

where the funct'ion H i,s defi'ned by (2.6.9).

Pnoor'. The basic idea is to express lrl-p using the gamma function, then change

variables so that the Gauss kernel

G,(r) : @nl-t 2-4*

appears in the integral. It will then be possible to apply the operator e"^. By
formula (2.6.8), \f r lO

lrl-, :t(pl2)-t [* u-l*l"tE-'dt
JO

:4-Er@14-' [* "-* r-E-' 4,
JO

: 4-E @t)Ey1r14-, [* G"(t)s|-E-t d,s.
Jo

This integral, in addition to being absolutely convergent for each r f 0, is an

absolutely convergent Bochner integral in 11(nN) + Cg(RN). In other words,

l):4-E @flEv61r)-' /- G"(.)si-E-r as.. 
Jo

Next, we apply the heat semigrouP, €tA for t ) 0, which gives (since etLG r: Gr+")

er^rb : a-E latrltr@12)-t [* c"*r(.)r|-E-t d,s.

This integral now is absolutely convergent irlCo(n"), where pointwise evaluation
is a bounded linear functional. Making the change of variables , : ff, we see that

forallrelRN
. N-P-2

r@12)(et^t,)(") : a-E1+ryt 
Ir' "r 

(,) (T) ' io,

We next claim that formula (2.6.11) is valid not only for t )'0, but for all t e C
with Ret > 0. Indeed,if q € S(RN), then (et^tl,t,4) is an analybic function of t
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on the open half plane Ret > 0, and continuous on the closed half plane Ret > 0.
Next, if we integrate the right side of (2.6.11) against 4(r) over R.N, the result is
also an analytic function of t on the right half plane Ret ) 0, continuous at least
on the closed half plane with t : 0 removed. By the identity theorem, these two
functions are equal on the open half plane. By continuity, they are equal also for
t: ir, r € IR, r + 0. Since 4 is an arbitrary Schwartz function, (2.6.11), as an
identity between two tempered distributions, has been proved for all complex t I 0
with Ret ) 0. This establishes the proposition. n

Conoruny 2.6.3. Let tl,t(r) : lrl-n wi,th 0 < Rep < N . It follows that T(t){ e
c-(RN) n r*(RN).

Lprtua 2.6.4. If a> 0, Reo > 0, and Reb > 0, andi,f n andn'L are nonnegat'iue
'integers such that

n*2>Rea and, m*2>Pteb,

then

(2.6.72)

where

(2.6.13)

Pnoop. For the moment, we assume that

H (a; o, b) : y- " L c r @, b)e!tP! r- *
ft:0

I C*a1(a rr"-a-m-l rn * ttu)e l@+r4
.oo tL / , \ -a-m-l

" | | O-s)-(-;-{) 4r"-t7m+1-b41Jo Jo' \ a/
-L eiao,-b$.' ," ^t^- 

(r+*)r; -.-6-rc-g ).rrk\o1a,)e 2 A
fr:0

* Cnal(b, a)eiu o-a-n-t =- "'11-.f(n*2-o)
46 7l / ^r \ -b-n-lx I I tt-s\'(t-"''l 4r"-L1n+7-a47Jo Jo' \ a)

n,_ L\ f(a+k)f(k+1-b)
Uk\a,0) - -----.-f 

(1 _ b)-

0<Rea<1, 0<Reb<1.
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Using formula (2.6.8) twice, first with c : r) z : I - a, and then with c : I - r,
z :7 - b, we rewrite formula (2.6.9) as follows:

(2.6.r4)

We therefore consider the integral

f* s-op\w): 
Jo 111 trrds,

where u e 0 and 0 < Reo < 1. It is known (by changing variables in the beta
function) that p(i) : f(1 - o)f(o). Next, if tu is a positive real number, we set

s : 'u)t. and so

f(1 - a)f (1 - b)H(y;a,b)
r'@ roo 11

: I I I "iar"-rsr-a"-(1-r)tfbdrd,sdtJo Jo Jo
roo /'OO 71

: I I | "Qu-s*t)r 
dr s-"e-tt-b drdt

Jo Jo Jo

: [* [* "o,n-"*' .. ,, ,-a"-t7-b 4141
Jo Jo zy-slt

fm f@ ^-A: I I o 
e-'t-bdsdt-lo lo -i,y-t*s"

r€ f& t-b
+ 

"no 
I I --: -e-"s-" 

dtd,s
Jo Jo xA-s+t

rCO rCO ^-a: I I " dse-tt-bdt
Jo Jo -iy-t*s

foo /'oo ^-b
+ 

"ro I I --:- ds e-tt-" dt .

Jo Jo xA-t,+s

f* (wt)-"
o@): Jo ffi1-dt:w-"t(L-o)f(o)' u)o'

H(y;o,r) : d% lo* 
eo, - t)-ae-t:b dt

+ d%"oo lo* 
{n, - t)-be-la dt.

f(k)Q) : a(a *1)'.' (o + k - 1)(-ia - t)-"-k,
s(k)Q) : b(b + 1)...(b +,b - 1)( da - t1-u-t' .

f (r) : i *.t,n,,0)r* + 4 [' e -s;-1(-+r) 1s; ds ,r \") 
?ukl" 

\-/" mt Jo

(2.6.15)

Since p(tr) and w-o : e-atosu are both holomorphic in O, (2.6.75) is true for all
w e 0. Substituting (2.6.15) back into (2.6.14) with tr., - Iiy * t, we see that

The next step is to replace (-ia - t)-" and (ia -t)-b in (2.6.16) by their finite
Taylor formulas around I : 0 with integral remainder terms. If /(r) : (-ia - t)-"
and 9(t) : (iy - t)-b, then

(2.6.16)

Since
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and similarly for g(t), we see that

H(y;o,b) : r#b: qP 
fo* "-,t-u*o 

at

. d% Ir* # I,'U -s)-y(-+r)1s)dse-tt-b dt

* ffi"',I 4P fo* "-,t-"+x 
dt

+ f(b) ,". f* r tt
7fi 

"7"o lo a J"$- s)ne(a+t;,$dse-tt-" dt;

and so

H(y;a,b)

:,,+o).- f a(a+ t) ": (a+,b - t) ?41-"-t,r(,k + I - b)r(r-b)? kt' ,c:u

r(o) f* I
-ryl -b)/o *t

ft
" I (t- s)*a(a+ 1)...(a+m)(-i,a - s)-a-m-r 6t"-t;b 41

JO

+ _ r_(b)__"csi b(b+ 1).. t(b+ k - i) 14)-b-krge* 1 _ a)'r(1 -a)" fu kt

* f(b) 
"no[*,f(l -a)' Jo nt

ft

" | (t- s)"b(b +1)...(b+n)(iy -s)-b-n-r dse-tt-"dt.
JO

Furthermore, since a ) 0,

r* ft
I I V - s)*(-iu- s)-a-m-r ds e-tt-b dt :

Jo JO

o-a-n-l. [* ft (t - r)- (-n - 
st)-a-m-t 

4r"-t7m*r-b 47.Jo Jo \ y)
and so we obtain the formulation (2.6.12)-(2.6.13).

Formula (2.6.12) has been proved only for A ) 0,0 < Rea < 1, and 0 <
Reb < 1. On the other hand, the right-hand side is an analytic function in a for
0 < Rea < n*2, with y > 0 and b such that 0 < Reb < m*2 fixed, and
also an analytic function in b for 0 < Reb < m*2, with y ) 0 and a such that
0 < Reo < n12 fixed. (Recall that llt(z) is an entire function.) It follows
that (2.6.12) holds for all A ) 0, and all a, b in the region stated in the lemma. D

PRopostr:tox 2.6.5. Let r!(r) : lrl-n where 0 < Rep < N. It follows that
T(I)rlt € I'(RN) for att r sati.sfyi,ng (2.6.1). Moreouer, T(t)g(r) ,is gi.uen bg the
erpli,ci,t forrnula (2.6.17) below for r + 0.
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Pnoor'. We apply the asymptotic expression from Lemma 2.6.4to formula (2.6.10)

inLemma 2.6.2witha:p12, b: (N -p)12,">ry -2, and *u *-*"o -2.
We see that if r f 0, then

(2.6.17)

[r(t)/](r)
n zr r9r -k: @lnD-orto,o)""* (+)

/c:0

* A^a1(a,b)lr7n rry) 
-^-' 

9= Pu7,\ 4 / r(m+2-b)
f* ft .t* ( _;_ ast \ 

-a-m-7 
."r_t1m+t_b 41" Jo Jo0- ')-(,.-o-Ee)

+ "4lrl-N+ria;# 
-ria1"1b,a1e-stFE f ry) 

--

k:o \4 /

+ u+lzl-N+r1a; # -p Bn+t(b,r, (+) 
-"-' 

ffffi
r@ rt 

il, ( t. - g) -'-"- 
d,s e-ttn*t-o dt ,"Jo Joa- '\ txt"l

wnere

A,-/^ L\ - 
Cx(a,b) 

- 
f(o + k) f(/t + 1 - b)

-_rc\a,o)_ 
rya,) 

: TGF!_ tT:E_
and

81"@,a):ffi:+#H#
By Corollary 2.6.3, T(I)',1) € C*(R.N). Therefore, to determine whether T(t)tlt e

I,"(RN), it suffices to consider lrl large. Proposition 2.6.5 now follows immediately
from formula (2.6.17). n

PRoor or TspoRnxn 2.6.7. As observed before, we need only establish prop-
erties (2.6.6) and (2.6.7). They follow from Corollary 2.6.3 and Proposition 2.6.5,
respectively. !

Rru,q,nx 2.6.6. Here are some comments on Theorem 2.6.1.

(i) Note that.46(c.,b): Bo(a,b) : t. Therefore, the term with slower decay
in (2.6.77) is either of order l"l-o ot of order lrlt-', depending on p. Thus,
if r does not satisfy the condition (2.6.1), then I(1)r/ e ,"(RN). If Rep <
Nf2, then T(l)',lt behaves like lrl-r as lrl -- ee. If Rep > Nf2, then
T(l)rlt behaves 1i1*. 

""tlrl2/alrl-ru+r 
as lzl -* oo. And if Rep : N12,then

Y!)r! behaves like lrl-r * 
"utlrl2/al/ 

-N+e as lrl -- m. In particular,

ly(1)ri | = lrl- 
min{Rep,N-ReP}, so that the decay is at most l"l-N/'. thl.

is justified by the fact that y!)tlicannot be in any .Lq space with q 12 for
otherwise we would have r! e Lq .

(ii) The conclusions of Theorem 2.6.1 hold for the more general homogeneous
function ,!@) : w(r)lrl-n with 0 < Rep < ,A[ and ru homogeneous of degree
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0 and "sufficiently smooth." See Cazenave and Weissler [23, Z4], Oru [286],
Planchon [298], and Ribaud and Youssfi 1302].

(iii) In view of (2.6.5), u(t) : t(t)t! is a self-similar solution for the group of
transformations u;(t, r) : \pu(\zt,Ar). This can also be seen indepen-
dently by observing that ,ry' is homogeneous of degree -p.

CoRolranv 2.6.7. Let tlt(r) : lrl-o wi,th 0 ( Rep I N. Suppose g e ril"(Rt)
satisf,es I - $ elr'iPr) for some

(2.618) r)min{#,"fu}
It follows that

(2.6.1e) f?-+lly(t)(e - 0llr". S r-e"$eil llp - rhlb.. - 0 as t ---+ oo.

In part'icular,

(2.6.20) try-#lv(t)elb,, -, lly(r)/l[,. as t ---+ oo.

Pnoor'. By (2.2.4),

llY(t)(e -,Dllr" < r!+2llp -,l,llu, .

Hence (2.6.L9) follows by using the assumption (2.6.18). The result (2.6.20) now
follows from (2.6.19), (2.6.18), and (2.6.2). !

Rpuanx 2.6.8. In view of (2.6.2) and (2.6.20), we can determine the possible
decay rates as t ---+ oo of llf(t)rpll;" for 2 < r ( oo.

(i) The decay rate (as t ---+ m) given by (2.2.\ is optimal, since

(2.6.2r) liminf ,r9;a lll(t)ell'. > o

for every rp € S/(JRN), I * 0, with the convention that ll(tll7,- : *oo if
,h / L'. (See Strauss [322] and Kato [205].) Indeed, let cp € S(RN), p*0,
and set u(t):Y(t)p.It is easy to check that u defined by

u(t,r) : ;t "#a(1, +)\t' t /
for t ) 0 is also a solution of Schrodinger's equation in S'(IRN). By duality,
the same holds for p € S/(RN). In particular, u(t) : T(t)V for some
?, € S'(RN). Now, assuming by contradiction that

Nrr-2)
tn " llT(t")9117, - 0 for some tn + oo,

we deduce. setting sn : I/tn, that

lll(r,)rbllu : tf;;t fiT(t,)pllv '- 0 as ?? ---, oo.
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In particular,T(s.)$ --, 0 in S'(Rt). By Remark 2.2.I(i), we conclude that
,h : 0, thus cp : 0, which proves the claim. Note also that the maximal
decay rate is indeed achieved if cp e ,L''(RN).

(ii) Let 0 < u . *(;;') . If 9@) : lrl-2u-L, we deduce from (2.6.2) that

ll7(t)elly x t-". Thus all decay rates slower that the maximal decay

f o+' are achieved for some p € S'(IRN).

(iii) ,2(RN) being of particular importance for Schrrjdinger's equation, and even

more for its nonlinear versions, one may wonder what are the decay rates

achieved for initial values in .12(nN). To see this, let 0 < v a y#
and r/(r) : lrl-2u-[. Consider rp € C."(RN) with p(r) : tlt(r) tor lrl
large. Since g - 4, has compact support and the singularity lrl-2"-#, we

see that I - lr. 1''1pn;. Thus llT(t)rpll", = 1-". Next, cp e ,L2(IRN) for

" > y-P. In particular, all possible decay rates between the maximal

decay t-g#2 and t-vi? are achieved by Z2 solutions. On the other
hand, the lower limit y+2 is optimal (in fact it is not even achieved), at
least for r <2Nl(N -2) (, S m if ly':1, r < oo if N:2). Indeed, it
follows from Strichartz's estimate that for such r's,

lly O ell ,'1*r,((0,oo),.1" (RN ) t 
< c llpll u

liminf r{li'a llr(t)ell;, : o.
so that

2.7. Comments

As we will see in Chapter 4, Theorem 2.3'3 is an essential tool for the study
of the nonlinear Schrcidinger equation in IRN. Therefore, it is natural to ask if
Theorem 2.3.3 can be generalized to a wider class of equations. In fact, a careful
analysis of the proof shows that it uses only two properties. The first one is the
identity y(t)* : T(-t), which is valid for every skew-adjoint generator. The second

one is the estimate (2.2.4), which itself follows from Lemma2.2.4. Therefore, such

an inequality holds whenever 7(t) has a kernel K(t) whose -L--norm behaves like

Itl-# (at least near 0). In particular, we have the following result (see Keel and

Tao [210] for more general results).

THeonpu 2.?.1. Let A be a setf-adjoin, < 0 operator on X : L2@). Assume

that there erists ts ) 0 such that for euery t €-(-t0,0) U (0, to), Y(t) : eitA maps

Lr(A) tu r-(O), wi,th a norm less than Kltl-t. The followi,ng properti'es hold:

(1) For euery I € L2(Q), the funct'ion t r--+ T(t)p belongs fo ,Lfu"(1R.,r"(Cl))

for euery admi,ssible pair (q,r) wi'th Q ) 2, and there erists a constant C,
dependi.ng only on K and q, such that

llY(')pll r" rt- r,r),1") ='(-j)*
for euery p € ,2(RN) and euery T > 0.

llpllz"
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(ii) Iet 0 < l7l < oo. If (l,d'is an adm'issi,ble pai,r wi.th 1 ) 2 and

f e Lt'((0,7),Lo'(Q)), then for euery ad,mi,ssi,ble pai,r (q,r) wi,th Q ) 2,
the functi.on

r ++ O1(i) : [" r1t- s)/(s)ds
JO

belongs to Lq((0,7),L'(O)). Furthermore, there erists a constant C, de-
. pendi.ng only on K, 1, and q, such that

ll@rll",rro,rl ,"-1 < c(1-!lrl\ i" 
'",. 'o-,/ 

llJ llLl'((o"r)'LP')

for eaery f e Lt' ((0,D, Lp' @)). In ad,d'ition, iDy e C([0, f], L2(AD.

Pnoor. Repeating the proof of Theorem 2.3.3, one shows that estimates (i)
and (ii) hold for T : to. In particular, assuming Q ( m,

fto

J" llv(t)pllL. dt 3 cllpllqr., .

It follows that for every positive integer k,

r(k+r)to
I llv(t)pll\., dt s cllr(kto)pll1." s cllpllL".

J kto

In particular,
rkto

I llv(t)pllL. dt s ckllellqL, .

J -kto
Hence (i) is established. One proves (ii) by a similar argument. !

In view of Theorem 2.7.1, it is interesting to know when eitA satisfies esti-
mate (2.2.4) (for possibly small times). In the next remarks, we collect some results
in that direction.

Rpvranx 2.7.2. Estimate (2.2.4) does not hold in a bounded domain f,) c IRN

for any p > 2. The reason is that in this case, trz(Q) ,- Lp' (O), and so if such an
estimate held, then I : T(t)Y(-t) would map

,12(o; -* r21a1,- Lp'(q -, ,e(cl).

This is absurd, since this would mean that ,2(O) .-- ff(O). However, note that
estimate (2.2.4) might hold if, for example, O is the complement of a star-shaped
domain. Unfortunately, such a result is apparently unknown (see Hayashi [i60]).
On the other hand, estimate (2.2.4) (hence those of Theorem 2.3.3) hold in certain
cones of IRN. For example, they hold if O : Rf . To see this, consider p € D(Rf ),
and let p be defined by

, I P("r,...,rn) if nn ) o
9(rt'"''rn):\' 

l-p("r,...,-r,) ifr, <0.

It follows that rp € 2(RN). Let u :76Q, where n4 ir the group of isometries
generated by iA in IRN. One easily verifies, by uniqueness, that ZlmI : t(t)p,
where 7(t) is the group of isometries generated by zA in nf . fhis proves the result,
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by Proposition2.2.3 and density. This applies in particular to the case where Q c IR

is a half-line. One can repeat this argument and obtain the estimate (2.2.4) when
0 is a cone of IRN of a certain type. For example, (2.2.4) holds when f,) c R2 is
defined by O : {p"ne, p > 0,0 < e < 

"12^} 
for some nonnegative integer rn.

Rsl4anx 2.7.3. The estimates of Theorem 2.3.3 fail in a bounded domain f,) c
lRN. In the case where f,t is a cube of IRN there are, however, substitutes to these

estimates that can be used to solve the Cauchy problem for the nonlinear equation.
(In fact, this holds in the more general case of periodic boundary conditions.) On
these questions, see Bourgain [35, 38].

REMARK 2.7.4. Estimate (2.2.4) holds when one replaces the Laplacian by a more
general pseudodifferential operator on IRN (see Balabane [11, 12], and Balabane and
Emami Rad [13, 14]).

Rs\4A.nx 2.7.5. We note that the results of this chapter have been stated for
the equation iu1 I Lu: 0. It is clear that similar results hold for the equation
'iut I aLu : 0, where a € IR, a, + 0, which is equivalent by an obvious scaling.

RBIr,taqx 2.7.6. Consider the operator A : L -V, where V : IRN -- lR is a
given potential. If the negative part of I/ is not too large, then A defines a self-

adjoint operator on ^L2(RN) (see for example, Kato [202]). If V is small enough in
LrnL*,then it follows from a perturbation method that I(t) : sitA satisfies (2.2.4)

(see Schonbek [308]). More general cases are considered in Journ6, Soffer, and

Sogge [200].
If V e C-(RN) is nonnegative and if. D"V € ,-(lRN) for all lol ) 2 (the model

case is V(r): lcl2), then also 7(t) : 
"itA 

satisfies (2.2.4) (see Fujiwara [115, 116],

A. Weinstein 13551, Zelditch 1368], and Oh 1277,2781).
On the other hand, such estimates do not hold in general for several reasons.

First of all, A may have eigenvalues. Therefore' if ) is an eigenvalue of A and

if 9 is a corresponding eigenvector, then T(t)p : ei^tg, and so T(t)p does not
decay as ltl -' co. But there is a more subtle reason that prevents estimate (2.2.4)

from holding. Even if one removes the eigenvectors' that is, if one works in the
supplement (in L2) of the space spanned by the eigenvectors, then a resonance

effect can occur, even for short range (i.e., localized) potentials. The reader should
consult on that subject the very interesting papers of Rauch [300], Jensen and

Kato [197], and Murata [253].

Rovanx 2.7.7. Estimates of the form (2.2.4) hold for the Schrcidinger equation
with an external magnetic potential. See Chapter 9.

Revrenx 2.7.8. In addition to the smoothing effects of Sections 2.3 and 2.5, a
third kind of smoothing effect was discovered. It says that for every rp € f,1ry),
then u(t) : T(t)p belongs to I/#"'(Rt) fot t *as discovered inde-
pe Sjdlin [315], and Vega [351]. See also

Ben Artzi and Devinatz 1271, Ben Artzi and Klainerman [22], and Kato and Ya-
jima [207] for further developments, as well as Kenig, Ponce, and Vega [211] for a
related smoothing effect. A typical result in this direction is the following (see Ben



Artzi and
such that
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Klainerman l22l tor a rather simple proof): There exists a constant C
for every cp € ,2(RN) , u(t) :I(l)rp satisfies

f+*f It t . t_alPu(t,r)l2drdt<cllgll2y,,I I 'l J- trr-J-@J-rl-l
RN

-where P : (I - Al/a is the pseudodifferential operator defined Uy Fir(e) : (1 +
4r2l€12)t/4A({). One can obtain similar estimates for the nonhomogeneous problem.
More precisely, if. f e L2(10,f], 12(RN)), then for every bounded open set B c IRN

u e L2(10,7),HL/2(B)) (see Constantin and Saut [94,95]). Therefore, there is
Iocally a gain of half a derivative. As a matter of fact, if one is willing to reverse
the time and space integrations, then the gain is one derivative. More precisely, if
{Qo}oezN is a family of disjoint open cubes of size R such that IRN : l)oEv*Qi,
then (see Kenig, Ponce, and Vega [212])

t: q" ll* t"a''11'ata')r ="^ 2.q l-: 61t'r112atar)i

See also Ruiz and Vega 1306] for related estimates. Similar estimates hold for
A : L - V, under appropriate assumptions on the potential V (see Constantin
and Saut [95]). Estimates of the above type are essential for solving the Cauchy
problem for quasi-linear Schrcidinger equations (i.e., with nonlinearities containing
derivatives of u). See the comments and references in Section 9.5. 

.

RsN{anx 2.7.9. Strichartz's estimates similar to those of Theorem 2.3.3 hold
in certain exterior domains f,) C R.N under the geometric assumption that Q is
nontrapping. See Burq, G6rard, and Tzvetkov [47].

Reu.q.Rx 2.7.70. Strichartz's estimates similar to those of Theorem 2.3.3 hold
for the Schrodinger equation on certain nonflat manifolds. See Burq, G6rard, and
Tzvetkov [49].



CHAPTER 3

The Cauchy Problem in a General Domain

In this chapter we consider a class of nonlinear Schrddinger equations in a

general domain O C RN. In the case f,) : lRN, the Strichartz estimates are an

essential tool for the study of the Cauchy problem. In the case of a general domain
O C JRN, Strichartz's estimates do not hold and fewer results are known. Our goal

is to obtain, using energy techniques, a rather general existence result of solutions
in the energy space, which can be adapted to many situations where Iocal existence

in that space is known. There is a wide literature on this subject. The study of the

Cauchy problem in the energy space was initiated by Ginibre and Velo [133, 132]

for local nonlinearities, and by Ginibre and Velo [134] for nonlocal nonlinearities of
Hartree type.

In Section 3.1, we introduce various notions of solutions and in Section 3.2 some

typical examples of nonlinearities to which we will apply our results. In Section 3.3,

we prove our main local existence result and in Section 3.3, we establish some global

existence results via energy estimates. In Sections 3.5 and 3.6, we apply the results

of Sections 3.3 and 3.4 to the nonlinear Schrcidinger equation in some subdomains
of lR and R2. The results of Section 3.3 will also be applied in Chapter 9 to some

generalizations.

3.1. The Notion of Solution

In this section we make precise various notions of solution that we will use

throughout the text. Let fl C IRN and, given a nonlinearity g, consider the initial
value problem

(3.1.1)

In order to motivate our definitions, we first consider the model case of the pure
power nonlinearity S@): )lulou with ) e lR and a ) 0; i.e., consider the model
eauation

{i,i:^j-'s@):0

I 
u", * Au * '\lulou : o

Uffr;
(3.1.2)

55



3, THE CAUCHY PROBLEM IN A GENERAL DOMAIN

We first observe that, multiplying the equation by Z, integrating over Q, and taking
the imaginary part, we obtain formally the conservation of charge

(3.1.3)

Therefore, the L2 norm of the solution is constant. Next, multiplying the equa-
tion by u1, integrating over f,), and taking the real part, we obtain formally the
conservation of energy

(3.1.4) !o61111: o,
dt

where the energy -E is defined by

E(w): [ {*to.al,' - -) tu(c)l'+2}az.
{lz a+z )

Finally multiplying the equation by Vd, integrating over f,), and taking the real
part, we obtain formally the conservation of momentum

(3.1.5)

When N : 1 and o : 2, equation (3.1.2) is completely integrable and there are
infinitely many conservation laws. When a : 4lN and f) - RN, there is the
pseudoconformal conservation law (see Section 7.2). In general, however, the only
known conservation laws for (3.1.2) are (3.1.3), (3.1.4), and (3.1.5). Since (3.1.5)
does not involve any positive quantity, only (3.1.3) and (3.i.4) can possibly provide
useful estimates of the solutions.

The above conservation laws suggest two possible "energy spaces,t' namely,
,L2(O) associated with (3.1.3), and r/01(Cl) associated with (3.1.4). The point in
working in an energy space is that, if there is a "good" local existence result, then
the global existence of solutions follows from a priori estimates. These in general
follow from the conservation of energy under some relevant assumptions on the
nonlinearity.

We will study the local Cauchy problem in L2 in Chapter 4. For the moment, we
restrict our attention to solutions in flj(Cl), and we make the following definition.

DpprNrrroN 3.1.1. Consider g € C(H|(O), }1-1(f))), tp € f101(Q) and an interval
1> 0.

(i) A weak H]-soluti,on u of (3.I.7) on I is a funct'ion

u e L*(I,11;(CI)) nWL,*(I,H-t(O))

suchthatiut+ Lu+S@):0'in H-l(C,) for a.a. t e I andu(O):9.
(ii) A strong H[-soluti,on u of (3.1.1) on I 'i,s a function

u e c(r,Hd (0)) n cr (r ,H-t (o))

such that iut * Au + S@) :0 'in f/-t(Q) for all t € I and u(0) : p.

d f .

= I lu(t,r)1" dx : O.atJ
o

nt
;I^ I u(t,r)Vd,(t,r)dr : 0.atJ

o
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Rsltenx 3.1.2. Here are some comments on Definition 3.1.1.

(i) The boundary condition ul6p:0 is included in the assumption z(t)€ H01(CI).

(ii) If u e L*(I,frd(o)) nwr'*(I,r/-t(cr)), then u e c(T,rt(o)) so that the
condition u(0) : I makes sense.

(iii) Let u e L*(I,Hot(CI)). If s(u) e L*(I,rr-t(O)) (which is automati
cally the case if 9:,F/01(Cl) -* I{-1(O) is bounded on bounded sets), then
Au + g(u) e Le(I,H-t(CI)). Therefore, if u satisfies i,u. * Au * 9(u) : g

in the sense of distributions, then u € Wr'6(I,H-t(f))). In addition, if
u e C(I,Hd (O)) satisfies iu1 + Lu + S@) : 0 in the sense of distributions,
rhen u e cr(1,f1-t(o)).

(iv) We gave the definitions of weak and strong }I6l-solutions of the Cauchy
problem at t:0, i.e., with the initial condition z(0) : g. Of course, given

any t6 € IR, one can give similar definitions for the Cauchy problem att : to,

i.e., with the initial condition u(to1 : r.
On applying the results of Section 1.6, we deduce the following property.

PRopostuoN 3.1.3. (DuHeunl's FoRMULA) Let I be an'i,nteraal such that
0 e I; let g e C(Hl(q,r/-t(Cl)) and g e ffd(O). If g i's bounded on bounded sets

and u € L*(I,rId(O)), then u 'is a weak H]-solution o/ (3.1.t) on I i'f and only i'f

(3.1.6)

A functi,onu e C(l,r4(O)) 'is a strong H$-soluti'on o/ (3.1.1) on I i,f and only i,f
'it sat'isfies (3.1.6) for aII t e I.

We now introduce the notion of uniqueness in -F11.

DorrnrrroN 3.1.4. Consider g e C(H|(O),f/-l(f,))). We say that there is

uniqueness in I/1 for problem (3.1.1) if, given any g € f/01(Ct) and any interval
/ ) 0, it follows that any two weak f/or-solutions of (3.1.1) on l coincide.

Finally, we introduce the notion of local well-posedness for problem (3.1.1).

DBrrNtttox 3.1.5. Consider g e C(Hi(q,H-t(Cl)). We say that the initial-
value problem (3.1.1) is locally well posed in f/61(O) if the following properties
hold:

(i) There is uniqueness in If1 for the problem (3.1.1).

(ii) For every g e H01(Cl), there exists a strong I1el-solution of (3.1.1) which is
defined on a maximal interval (-?.rir, ?n.*), with 7lor.* : T^"*(g) e (0, oo]

and fti' : T*in(g) e (0, co].

(iii) There is the blowup alternative: If fl'.* ( oo, then lim117*"* llz(t)lls' :
*oo (respectively, if ?-1. ( m, then we have liml1-7.,,, ll"(t)lls' : *oo).

(iv) The solution depends continuously on the initial value; i.e., if gn n;!P in

Hd(CI) and if 1 C (-T^i"(p),7'."'(p)) is a closed interval, then the maximal
solution u, of (3.1.1) with the initial condition u'(0) - enis defined on 7
for rz large enough and satisfies un + u in C(7,HJ(O)).

fL

u(t) :T(t)e+i I T(t- s)e(u(s))ds for a.a. t e I.
JO
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REMARK 3.1.6. Here are some comments on Definition 3.1.5.

(i) The property that (-["1",?.nu*) is the maximum interval of existence means
that if ,r ) 0 is an interval such that there exists a strong frj-solution
of (3.1.1) on f, then I C (-4ni,,?-l,u*).

(ii) If T^u* 4 oo (respectively, T-i. ( *), then by the blowup alternative
lim1i7,""* ll"(t)lla' : +oo (respectively,limlg-7,,,,,, ll"(r)lllr' : +oo). In this
case, the solution u is said to blow up at flrr.* (respectively, -?ii"). if
4.r* : oo (respectively, [.1. : m), the solution is said to be positively
(respectively, negatively) global. Note that in this case the blowup alterna-
tive does not say anything about the possible boundedness of llu(t)lls, as
t ---+ oo.

(iii) Note that the continuous dependence property implies that the functions
4|o.* and ?6s. are lower semicontinuous Hd(Q) --- (0,m].

(iv) There are various notions of well-posedness in the literature. We adopted a
quite strong notion of well-posedness by requiring uniqueness, the blowup
alternative, and continuous dependence.

3.2. Some Typical Nonlinearities

In this section, we introduce various classical models of nonlinearities.

Exeltptc 3.2.1. The external potential. Consider a real-valued potential
V : {l -., lR. Assume that

(3.2.1)

with

(3.2.2)

Let g be defined by

V e Le(A)

(3.2.3) e(u) : Vu

for all measurable u : Q * C, and G be defined by

p>r, o, +

(3.2.4)

for all measurable u
result.

PRoposrrroN 3.2.2.
by (3.2.3) and (3.2.4),

(3.2.5)

1fG(u):^ lv1r11u1r)l2drzJ
r,

: O --' C such that Vlul2 € ,1(O). We have the following

and (3.2.2), let gLet V sati,sfy (3.2.1)
respect'iuely, and set

o-1P

m-1

The followi,ng properti,es hold

(i) G € c1(f/01(c)),R), g e c(r/d(CI),H-t(o)), and G, : e.
(ii) 2 < r < ++ (2 Sr < @ i,f.^{ : 1).t\ -z \

and G be def,ned,
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(iii) g e C(L' (Q),r''(CI)) and lls(u)ll y", S llVllr.,llullp, for all u e I'(O).
(iv) Im9(u)u:0 a.e. i'n{l for allue 14(O).

PRoor,. Part (ii) follows from (3.2.2) and (3.2.5). (iii) is a consequence of (ii)
and Holder's inequality. In particular, I/$(Cl) '-+ I'(O) and L'' (O) * f1-1(O) by

Sobolev's embedding theorem, which implies that g € C(Ht(9),I1-1(O)). Next,

it follows from Htilder's inequality that 2llG(ull S llyllr"ll"ll?.", so that G is well

defined on Hsl(O). Furthermore,

G(u * u) - G(u) - (sfu),u) s-,,nJ : f, [ rrf
f)

for all u,u € f101(O), and one deduces easily that G e Cr(H[(O),lR) and G' :9.
Hence (i) is established. Finally, (iv) follows from the fact that V is real valued. fl

Rouenx 3.2.3. Let V be a real-valued potential, V € lp(ft) + I-(O). If p
satisfies (3.2.2), then we may write V :Vt * V2, where V1 satisfies (3.2.2) andV2
satisfies (3.2.2) with p replaced by m. In particular, we may apply Proposition 3.2.2

to both V1 andV2.

Exeltplr 3.2.4. The local nonlinearity. Consider a function f : 0 x IR. ---+ IR such

that f (r,u) is measurable in r and continuous in u. Let F : f) x IR -' IR be defined

by

(3.2.6)

Assume that

(3.2.7) /(r,0):6 fora.a.r€f,),

and that for every K > 0 there exists L(K) < oo such that

(3.2.8) lI@,u) - f (r,u)l < L(K)lu - ul

for a.a. r € Q and allu,u such that lt l,lrl S l(. Assume further that

fu
F(r,u): 

Jn f @,s)as for all u ) 0.

(3.2.e) { 
t . C([0, m)) if .ry' : 1

lr,rl <ctowitho(a( ;= ir N > 2.

Extend / to the complex plane by setting

(3.2.10)

Finally, set

(3.2.11)

for all measurable z: O -' C, and

f (r,u) : !,11r,1u11 for all z € C, u + 0.
lul

s@)@): f (r,u(r)) a.e. in Q

t
G(u) : I F(*,lu(r)l)dr

o

(3.2.r2)
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for all measurable u: {l---+ C such that F(.,u(.)) € ,t(fr). We have the following
result.

PRopostrtoN 3.2.5. Let f satisfy (3.2.7), (3.2.8), and, (3.2.9); let g and, G be
def,ned by (3.2.L0), (3.2.1L), (3.2.6), and (3.2.12), and set

(3.2.13) ,:{' ifN:7
lo+2 ifN>2.

The following propert'ies hold;

(i) c e C1(f4(O),lR), g e C(I/O1(O), fr-t(O)) anct G, : s.
(ii) // Nt2,then2<r<*+.
(iii) e e C(L' (Q), L/ (q).
(iv) For all M ) O, there eri,sts C(M) < oo such that llg(u) - g(a)ll/ 3

C(M)llu - ulln" for all u,u e H[(Q) with llrl[r', llalls, < M .

(v) Img(u)z:0 a.e. i,nQ for allue HJ(CI).

Pnoor'. (v) is an immediate consequence of (3.2.10). Let now K ) 0, and let
u,u € C be such that lul, lrl < K. Suppose for definiteness that lzl ) lul. It follows
from (3.2.7), (3.2.8), and (3.2.10) that

(3.2.14) lf (r,u)l ! L(K)lul.

On the other hand, we deduce from (3.2.10) that

lul lul(f (x, u) - f (r, u)) : ulul[f (", l" | ) - f (r, lrl))
+ [u(lul - l"l + l"l(" - u))]/(r,lul),

and so

lullullf (r,u) - l@,o)l S lul lrllf (r,l"l) - f (",lrl)l + 2lullu - ol l/(r,lul)l
< 3lullulL(K)lu - ,1,

where we used (3.2.8) and (3.2.14) in the last inequality. Therefore, replacing .L(,K)
by SL(K), we have

(3.2.15) lf (x,u) - f (r,u)l < L(K)lu - ul

for all u,o e C such that lzl,lrl < K.
We first consider the case N > 2. (ii) follows from (3.2.9) and (3.2.13). In par-

ticular, f/d(O) .--+ l'(O) by Sobolev's embedding theorem. Therefore, by (3.2.15),
(3.2.9), and Hcilder's inequality,

llg(") - s@)llr.,, < c(ll"lli, + ll"llfl")ll" -,11"" .

Hence (iii) and (iv) are proven. Next, it follows from (3.2.7), (3.2.8), and (3.2.6)
that

(3.2.16) lf (",")l < Clrl'-' , lF(r,l"l)l < Clul' ,

so that G is well defined on f/01(O). We now deduce from (3.2.6) and (3.2.16) that

Itflu+"| | r
lG(u+u)-G(u)l:ll J^, f(r,s)d.sarlsc J u(u* l,l)"-',

r,fl



3,2. SOME TYPICAL NONLINEARITIES 61

so that G e C(/r'Ol(ct),R). Fix now u,U e flol(O). Given 0 ( t ( 1, (3.2.i6) implies

that
,|

llr(", u*ta) - F(r,u) - tRe(/(r,u)o)l S clul(lul + lul)'-' € ,1(o).
L

Since clearly

\W@,u * ta) - F(r,u) - t Re(/(r, u)o)l --- 0 ,t,- .- ' , ,' Llo

it follows from the dominated convergence theorem that
I

:[C(" * tu) - G(") - (g(u),u) s-'.nll --= 0.
t' " '"o' tlo

Therefore, G is giteaux differentiable and Gt :9. Since g € C(H01(Q),I1-t(O)),
(i) follows.

We finally consider the case -lf : 1. Since f/ol(O) '--+ l,@(O), we deduce

from (3.2.15) that, after possibly modifying the function tr,

lf (*, u) - f (r,u)l ! L(M)lu - ul

for all u,?r € F/01(Q) such that llrlln" llrlla' < M. The rest of the proof is then an

obvious modification of the argument used in the case N > 2. !

Rpuenx 3.2.6. A typical / to which we may apply Proposition 3.2.5 is /(u) :
lul'u with Q ( a ( t5 (0 ( a ( m if -l[ : 1).

Rpnenx 3.2.7. Let g(u) - "f 
(',u(')), where / satisfies (3.2-7) and (3.2'8) with

I

I

I

I

I

I

I

(3.2.r7)

If N > 2, define the functions fi and /2 by

( f(x.u\ if o<u<1
flr,u): i "^. 

.' l./(r,1) ifz2l
and (o ifo<u<l

fr(r.u\ : 1

[ /("' u) - f (r,r) if z > 1'

We have f : h * /2, and /1 and /z both satisfy (3.2.7). Fhrthermore, one easily

verifies that /r satisfies (3.2.8) and (3.2.9) with o replaced by 0 and that /2 satis-
fies (3.2.8) and (3.2.9) with a as in (3.2.17). In particular, we can write I : gr*gz
where both !1 and 92 satisfy the assumptions of Proposition 3.2'5.

Exelrple 3.2.8. The Hartree nonlinearity in IRN. Let Q : IR.N and consider a

real-valued potential I/ : IRN -+ IR. Assume that

(3.2.18)

flor some

(3.2.1e)

I4l e 
'p(RN)

( L(t) € C([0, oo)) if N : 1

lr,r, <cG*r') withoso<;= irN>2.

,Arf

T,P)-L, P>
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and

(3.2.20) W is even.

Let 9 be defined by

(3.2.21) g(u) : (W * lul2)u

for all measurable u : IRN --+ IR such that W * lzl2 is measurable, and let G be
defined by

(s.2.22) G(u) : I [ ,, * lul2)(r)lu( r)12 d,r
^gt"

for all measurable u : IRN --' lR such that (w *lul2)(r)lu(r)12 is integrable. we
have the following result.

PRopostrroN 3.2.9. LetW sati,sfy (3.2.18), (3.2.79), and (8.2.20), and let g and,
G be defined, by (3.2.21) and, (3.2.22), respect'iuely. Set

(3.2.2g) ,: 
^n'' 2p*l'

Then the followi,ng properties hold:

(i) G e cl(Hr(RN),tR), I € C(r/1(Rlr),H-t(RN)), and, Gr : s.
(ii) 2 <, < ffi (2 < r < @ if.l{ : 1).

(iii) I € c(r'(RN),r''(RN)).
(iv) For all M > 0, there eri,sts C(M)_ < co such that llS(") - g(u)ll'a S

C(M)llu - ullr,. for all z, u e I/1(JR.N1 wuh llull",,llullr.. < M.
(v) Img(u)u :0 a.e. zn.IRN for alt u € lRN.

PRoor'. Part (ii) follows from (3.2.19) and (3.2.23). Next, we deduce from
(3.2.19), (3.2.23), and Hcjlder and Young's inequalities that

ll(w " 
(uu))wll"", < llwllnll"llr" llrllr.llrll7. .

Statements (iii) and (iv) follow easily. On the other hand, we deduce in particular
from (ii) that llr(RN) .- I'(RN) and trr'(nRn) .--+ I/-1(RN) by Sobolev's embed-
ding theorem, which implies that g € C(Hl(RN),ff-t(RN)). It also follows from
Holder and Young's inequalities that

I(3.2.24) | (w * (uu))wz < llwllull"llullolft,, llwlly"llzllu,
J

RN

so that G is well defined I/t(RN) -+ iR. Since I,7 is even, we see that

ff
|(W*p)t!: |(w*rb)p.JJ

IRN RN
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Therefore,

G(u + u) - G(u) - (s@),u)n-r,nl :
r ^ /lul2+lul2 .\ f .---
| (w *lrl')( t:l;I +Re(uD) | + | (W*Re(ud))Re(ud).
J "'\ 4 / J

IRN RN

Applying now (3.2.24), we obtain

lclu + u) - G(u) - (sfu),u)a-,,ntl s cllwllz,(ll"ll'"" + llrll?,)llrll""" ,

and so G e Cr(Ur(RN),R) and G/ :9. This proves (i). Assertion (v) follows from
the fact that W is real valued. n

RnunRx 3.2.10. LetW be an even, real-valued potential, W € Lp(A) +r*(f)).
If p satisfies (3.2.19), then we may write W :WtlW2,whete I4l1 satisfies (3.2.19)

andWz satisfies (3.2.19) with p replaced by oo. In particular, we may apply Propo-
sition 3.2.9 to both W1 and W2.

ExeuplB 3.2.11. Let

g(u) : vu -r f (',u(')) + (w xlul2)u,

where V, f , and W are as follows:

o V is a real-valued potential, y € rp(RN) + r'"(RN) for some p ) I,
p > Nl2.

o /:1RN xlR -+ IR ismeasurableinr € IRII andcontinuousinu e IR and

satisfies (3.2.7), (3.2.8), and (3.2.17). / is extended to IRN x C by (3.2.10).

o W isan even, real-valued potential; W € ,q(RN)+r-(RN) for some q ) 1,

q > Nl4.

Applying Remarks 3.2.3,3.2.7, and 3.2.10, we see that we may write

g:gr*"'*90'

where each of the g3's satisfies the following conditions:

(i) gi : G', for some Gl € cl(,FI1(]RN),lR),

(ii) si e c(Li (RN),I'; (RN)),

(iii) for every M ( oo, thereexists C(M) ( oo suchthat ll97(u) -gi@)llfi S

C(tt)llu - ull* for all u, u e at(mN) such that llullp, + llulls, < M,
(iv) Im(g1(u)z) : O a.e. in IRN for every u € HI(RN)

for some ri e [2,**) (rt,pi el2,oo] if ,n/:1).

3.3. Local Existence in the Energy Space

We begin with an abstract result for which we use the notation introduced in
Section 1.6.

Tuponpu 3.3.1. Let X be a compler Hilbert space with the real scalar product
(.,')x. Let A be aC-l'inear, self-adjoznt, 10 operator on X w'ith doma'in D(A).
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Let Xa be the completi,on of D(A) for the nonn llrll2xo : ll"lll - (Ar,r)y, X) :
(Xn)", andA be the ertension of A to (D(A)).. Finally, letl(t) be the group
of isometries generated on (D(A))- , xA, x, xa, or D(A) by the skew-adjoint
operatoriA. Assume that g : X -- X i,s Lipschi,tz continuous on bounded, sets of
X and that there erists G e Ct(XA,lR) such that Gt(x) : g(r) for all r € Xt.
Assume furlher that

(3.3.1)

ForreXa,set
(g(r),i,r)* :g for all r e X .

(3.3.2) E(r) :|{na*^- ll"lll) - G(,): -}@,,r)y - G(r)

so that E e CL(XA,IR) and E'(r) : -Ar-g(r) e X) for eaery r € Xt. It follows
that, for euery r € X, there es'ists a un'ique solution u of the problem

(3.3.3)

In add'it'ion, the followi,ng properties hold:

(i) llu(t)ll; : llrllx for euery t e 1R (conservat'ion of charge).

(ii) If r € Xe,, then u € C(lR, Xe). Cl(R,X;) and E(u(t)) : n@) for euery
t e IR (conseruat'ion of energy).

(iii) If r e D(A), then also ?, € C(lR, D(A)) n CI(R, X).
PRoor. We proceed in five steps.

Step 1. It is well known that for every rD € X, there exists a unique, maximal
solution u e C((TL,Tz), X) of (3.3.3), Tt < 0 1?2. u is maximal in the sense that
if l",l < m (for i: I,2), then llu(r)llx -+ oo as t--. Tt. In addition, if r e D(A),
then u e C((Tr,f2), D(A))nCt((Tr,Tz), X). Furthermore, u depends continuously
on r in X, uniformly on compact subsets of the maximal existence interval. This
follows essentially from Segal [309] (see Cazenave and Haraux [64, 6b], Brezis and
Cazenave [44], and Pazy [2941.

Srpp 2. Assume r e D(A), and take the scalar product of the equation with
,iu. We obtain that

(ur,u)x - (iut,'iu)y : -(Au,iu)* - (g(u),i.u)y .

The first term of the right-hand side vanishes by self-adjointness, and the second
by (3.3.1). Therefore,

fiU"Anfr- 
:2(ut,z)x : o.

Hence the conservation of charge follows. Multiplying the equation by u1, we obtain

0: (iu1,ut)x : (-Au,ut)x - (S(u),ur)x .

Therefore,

(3.3.4)

I u e c(R, x).cl(R, (D(A))"),
la,
\u * 

* Au* s(u):Q /or ollt e IR,

I u(0) : a.

fiusp.s 
: o



3.3. LOCAL EXISTENCE IN THE ENERGY SPACE

This establishes the conservation of energy.

Srpp 3. By Step 2 and continuous dependence, we obtain conservation

of charge when r e X. Therefore llu(t)ll;g is uniformly bounded on the maximal

existence interval, and so the solution exists on (-*, *). Hence (i) and (iii) follow.

Srpp 4. Let' r e Xa, and let o' € D(A) converge to r in Xa as rz ---+ oo. We

denote by u, the solution of (3.3.3) with initial value r'. By (i), u,, is bounded in
,o"(R,X), and so G(u') is uniformly bounded. We deduce from the conservation

of energy (3.3.4) that un is bounded in .L-(lR.'Xa), and from the equation that
(ur,)s is bounded in,L-(lR,X|). On the other hand, it follows from continuous

dependence that for every f e IR, u"(t) -- u(t) as n --+ oo, strongly in X, hence

weakly \n Xa. Therefore, u € ,oo(lR, Xa) n Wt'*(R, X|) and E(u(t)) < E(r) for
every t € JR.

Srpp 5. Let t e 1R., let g : u(t), and let o be the solution of (3.3.3) with
initial value g. We deduce from Step 4 that E(u(-t)) 3 E(A). On the other hand,

u(-t) : r by uniqueness so that E(u(t)) : n@) for every t € R. Hence there
is conservation of energy. In particular, the function t r--+ ll"(t) ll1" is continuous.

Since u: IR -* Xa is weakly continuous, we obtain u € C(lR,X,a), and so ?, €

Cr(R,Xl) by the equation. Hence (ii) is proven. n

Rnuenx 3.3.2. Note that the assumption (3.3.1) is only needed to ensure con-

servation of charge, which implies that all solutions of (3.3.3) are global. Without
that assumption, we would have a local version of Theorem 3.3.1 (without the
conservation of charge).

Theorem 3.3.1 is not applicable in general for solving the local Cauchy prob-

lem in the energy space for the nonlinear Schrodinger equation (3.1.1) for "large"
nonlinearities. Indeed, we must take X : L2(Q), and so we need g to be locally
Lipschitz continuous on 12(Q). If g is of the form 9(u)(z) : /("(")) for some func-

tion / : C * C, then / needs to be globally Lipschitz continuous, and in particular
sublinear. Thus, we need to improve Theorem 3.3.1 under weaker assumptions on 9.

We now use the notation of Chapter 2. In particular, Q is an open subset of
IRN, .4 is the Laplacian with Dirichlet boundary conditions, and so X : Lz(Q),
xA: Ilot(O), and x\: I/-l(Q). We want to go as far as possible under fairly
general assumptions on g. The main results of this section are Theorems 3.3.5

and 3.3.9. In Theorem 3.3.5, we show the existence of local weak I/i solutions. In
Theorem 3.3.9, we show the local well-posedness of the Cauchy problem in Iler(A)'
provided we have the "a priori" information that solutions are unique. The reason

we proceed that way is that in order to apply Theorem 3.3.9, we will only need to
show uniqueness, and the known techniques for proving uniqueness depend heavily
on the the type of nonlinearity and on geometric properties of 0.

We make the following assumption on the nonlinearity g:

(J.J.o,l 9 : G' for some G e Cr (Hd(CI), R) .

In particular, g e C(Ht(CI),H-t(fl)). We assume that there exist r, p € [2,#)
(r, p e [2, oo] if N : 1) such that

(3.3.6) s e c(Ht1.o),rp'(o))
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and such that for every M ( oo there exists C(M) < oo such that

(3.3.7) lls@) - s(u)ll r.,, s c (M)lla - ull u
for all u,u e,Ild(0) such that llzlls, + llrlla' < M. Finally, we assume that, for
every u € I1o1(Q),

(3.3.8) Im(g(u)z) : O a.e. in O.

We define the energy -E by

(3.3.e) E(u): foreveryu€F101(O),

so that E e C|(H](O), R) and E'(u) : -Lru - S@) for every u € 7101(0).

Rpuenx 3.3.3. Assumptions (3.3.5)-(3.3.8) deserve some comments. The energy
space being here f1o1(Q), it is natural to require that 9 : f/j(O)-- A-t1Cl;, as
the Laplacian does. The assumption that g is the gradient of some functional G is
stronger. It allows us to define the energy, and the conservation ofenergy is essential
in our proof of local existence. Note that most of the classical examples from
theoretical physics possess this property. However, in the case oflocal nonlinearities
in Q : lRtr, local existence can be proved without conservation of energy (see
Kato [203, 204, 205,206] and Chapter 4). Assumptions (3.3.6) require that 9 is
slightly better than a mapping f/d(O) -' f/-r(Q), and assumption (3.3.2) is a type
of local Lipschitz condition. Finally, assumption (3.3.8) implies the conservation of
charge. It is essential for our proof, but may be replaced by other hypotheses on g
with different proofs (see Kato 1203,204,205,206], and Cazenave and Weissler [68]).

RsN4anx 3.3.4. Note that all the nonlinearities introduced in Section 3.2 satisfy
the assumptions (3.3.5)-(3.3.8).

We begin with the following result.

THEoREM 3.3.5. Let g : h*...* gn, where each of the gi,s satisfi,es the as-
sumpt'ions (3.3.5)-(3.3.8) for sorre erponents ri,pi. Set G : Gr +...+ Gp and,
E: Et-f ...*En. For euery M > 0, there eristsf(M) > 0 wi,ththe fotlow-
'ing property: For euery p e .F/01(CI) such that llplls' < M, there erists a weak
H]-soluti,onu of (3.7.I) on I : ef(M),T(M)). In addition,

1r
1 llV"l'd,r-G(u)zJ

o

(3.3.10)

Furtherrnore,

(3.3.1i)

(3.3.i2)

llull r,- u-r <,,r),r (M)),Hl) < 2M .

llu(t)llr, : llplft., ,

E(u(t)) < E(p),

for alt t e (-T(M),T(M)).

Before proceeding to the proof of the proposition, we establish two elementary
Iemmas.
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Lprr,tue 3.3.6. Let I c lR 6e on, interttal. It follows that for euery u €

L* (I,Hd (0)) n wr,* (I,H-t (o)),

ll"(t) - u(s)ll7,,1ny < Clt - s1i for all s,t e I,

where C : max{ llullr* (1,}/1 ), llu' ll;- 17,s-' I }.

PRooF. The result is a consequence of Remark 1.3.11 applied with X : I1-1(O)
and p - oo, and of the inequality llull2p" 3llrlla-'llulls; (see Remark 1.3.8(iii)). n

Leuvrr 3.3.7. If g sati,sfies (3.3.5)-(3.3.8), then, after possibly modi'fying the func-
ti,on C(M),

(3.3.13) llg(.,) - s@)llr.,, 3 C(M)llu - ullL., ,

(3.3.14) lc(r) - G(")l < c(M)llu - ulll," ,

for euery u,u e H$(Q) such that llullp' + llrlla' I M, w'ith a :1 - N(; - l) ana

b:r-N(*-;).
PRoor'. (3.3.13) follows from (3.3.7) and from Gagliardo-Nirenberg's inequality

ll, ll r. < CllwllL," llu)ll|, .

(3.3.14) follows from the identity

G(r) -G(u) : lr' *"rrr+ (1- s)u)ds

: [' \n{rr+ (1 - s)u),u - u) 7c,,yp d.s
,^

and the inequality
llwllr." 3 cllwllf,lbllwllb"" .

n

PRoor or TuooRptr,t 3.3.5. We give the proof in the case where g satis-
fies (3.3.5)-(3.3.8). The proof in the case g: gt + "'+9; is trivially adapted.

The proof proceeds in three steps. We first approximate g by a family of
nicer nonlinearities for which we may apply Theorem 3.3.1 in order to construct
approximate solutions. Next, we obtain uniform estimates on the approximate
solutions by using the conservation laws. Finally, we use these estimates to pass to
the limit in the approximate equation.

Note that the proof of Theorem 3.3.5 requires at some stage a regularization
procedure. Indeed, construction of solutions could be made, under appropriate
assumptions on g and in the case f,) : lRN, by a fixed point argument (see Kato {203,
204,205,206f , Cazenave and Weissler [70]). However, the energy inequality (3.3.12)

is obtained, at least formally, by taking the scalar product of the equation with i4.
Note that for a solution with values in Hj(O), u1 is only in H-l(Q), and so one
cannot multiply the equation by u1. Hence the necessity of the regularization.

Now, in principle, we have the choice on the type of regularization. For a given
type of nonlinearity, a natural regularization appears, but which is of a different
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nature according to the nonlinearity. For example, for a local nonlinearity (Exam-
ple 3.2.4), the most appropriate thing to do would be to truncate / for large values
of u. For a linear potential (Example 3.2.1), it would be natural to truncate the
potential; and for a Hartree type nonlinearity (Example 3.2.g) it would be natural
to use the convolution with a sequence of mollifiers. Since we want a proof that
applies to these different nonlinearities, and that works as well when o : IRN or
when Q is bounded, we find it convenient to regularize the nonlinearity by applying
(1- etr)-t'

We obtain estimates on the approximate solutions by using the conservation
of energy for the approximate problem. For that purpose, we need g to be the
gradient of some functional G (assumption (3.8.5)).

As usual, the difficulty is to pass to the limit in the nonlinearity. The crux is
that for the limiting problem there is conservation of charge (Lemma 3.3.g). Note
that there is necessarily a little bit of technicality at that point. Indeed, we make a
local assumption on g (assumption (3.3.8)), we apply a global regularization, and
eventually we recover a local property at the limit. This seems rather unnatural,
but there does not seem to be any obvious way of avoiding that difficulty.

From now on, we consider (p € H01(O) and we set M: llplln..
Srpp 1. Construction of approximate solutions. Given a positive integer rn,

let

6: (r- la)
\ m/

In other words for every / € //-r(CI), J*f e H;(o) is the unique solution of the
equation

u _ lyu: f in H-1(cl).
rn

we summarize below the main properties of the self-adjoint operator J- (see sec-
tion 1.5).

(3.3.15)

(3.3.16)

llJ*llr.<n-',nt) { nL ,

llJ^llrO,,r,") <1 for 1(p< oo.

Moreover, if X is any of the spaces I/ot(Q), L,(Q), or fI-1(O), then

(3.3.17)

(3.3.18)

(3.3.1e)

We define

J^llcrx,n 57,
J*u 

^-?*u 
in X for all u € X,

if supllu-1176 ( oo, then J^u*-u^^ 0 in X as rn ---+ oo.

g^(u) : J*(g(J^u)) and G^(u) : G(J^u) for every u € }101(cr).

It is clear from (3.3.15) that the above definitions make sense. It is easy to verify
by using (3.3.15) and (3.3.7) that g^ is Lipschitz continuous on bounded sets of
L2(Q), and by (3.3.15) and (3.3.5) thatG* € C1(.Ir'01(O),IR) and Gl:9*. In
addition, we deduce easily from (3.3.8) that, for every u € 12(Q),

(g*(u),iu)p : @(J*u),iJ^u)p :0.



(3.3.20)

Furthermore,

(3.3.21)

and

(3.3.22)

(3.3.27)
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Therefore, we may apply Theorem 3.3.1. Hence there exists a sequence (u-)-ex
of functions of C(R, F/d(O)) n Cl(iR., H-t(fi)) such that

I n"f t Lu* I g^(u*) : g

L u-(0) : p.

ll"*(t)llu : llvl6,

- G^(p)

foralltelR.

Srop 2. Estimates on the sequence u-. We denote by C(M) various con-

stants depending only on M. Let

(3.3.23) 9m : sup {t > 0 : llu^(t)lll' 12M on (-t,t)}
Note that, by (3.3.17) and (3.3.16),

(3.3.24) g- satisfies (3.3.6) and (3.3.7) uniformly in rn e N.

Therefore, by (3.3.20),

(3.3.25) sup lluill;* (_e^,e;,H-') < C(M).

It follows from (3.3.23), (3.3.25), and Lemma 3.3.6 that

(3.3.26) ll"^(t) - u*(s)lly, 3 C(M)lt - s1i for all s,t e (-0*,0^).

Applying (3.3.21), (3.3.22), (3.3.24), (3.3.14), (3.3.23), and (3.3.26), we obtain

llu^(t)ll'r' 3llpll?., + llYell21" + 2lc*(u*(t)) - c-(dl
s llPll2n, + c(M)l4t

for all t e (-0^,0*). If we define f (M) by

C(M)T(M)E:2M2,

then

llr-llr-tt-r,r),Ht) < 2M
for T : min{T(M),0*}, by (3.3.27). This implies that T(M) ( d-, and so

(3.3.28) llu^llpg-r(M),r(M)),Ht) < 2M ,

and by (3.3.25),

(3.3.29) llrtllpu-r@),,r(M)),H-') < C(M).

Stpp 3. Passage to the limit. By applying (3.3.28), (3.3.29), and Proposi-
tion 1.3.14, we deduce that there exist

u e Le (eT (w,r w D, Hd (f)) ) . w 1'* ((-T (M ), tf (M )), H-' (f2) )

! [ lvu*(r)l'd,, - G-(u*(t)) :: I lvel2 d.r2J' 2Joo

I

I

I

I
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and a subsequence, which we still denote by (u*), such that, for all t e
[-r(M),r(M)],
(3.3.30) u^(t) ^ u111 in f/j(O) as rn ---+ oe.

In addition, by (3.3.28), (3.3.29), Lemma 3.3.6, (3.3.24), and (3.3.14), g^(u*) is
bounded ln C0,""(ef@),T(M)),Lp (AD. Therefore, we deduce from proposi-
tion 1.1.2 that there exist a subsequence, which we still denote by (9-(u-)), and

f € co,t (erw),T(M)),Lo' (0)) such that, for all t e [-T(M),T(M)],
(3.3.31) s^(u^(t)) - /(t) in Ip'(O) as ?n. -+ oo.

On the other hand, it follows from (3.3.20) that for every ur € H01(O) and for every
$ eD(-T(M),7(M)),

fT(M)
I L-$,u^,w) u-,,ui6'(t) + (a,u* + e*(um),w)n-,,nt $(t)ldt : 0.
J_T(M\ -

Applying (3.3.30), (3.3.31), and the dominated convergence theorem, we deduce
easily that

rT(M\

| ^.. -. l- (tu, w) n-,,nt 4' (t) + (Au + f , w) u-,,nA lift))dt : 0 .

J -1'(M\

This implies that u satisfies

(iur+Lu*f:e,(3.3.32) { -

I u(0) : cp,

where the first equation holds for a.a. t € ef (M),T(M)). Now the crux of the
proof is the following result.

Lruua 3.3.8. For al| t e er(M),r(M)),Im(/(t)t([) : 0 a.e. on (t.

PRoor'. It suffices to show that for every bounded subset B of 0,

(f (t)l a , iu(t)l3) 
",, 

,u1,r,c @) 
: 0 .

To see this, we omit the time dependence and we write

(f , iu) yc, 6l,Lo (B) : U - J^9 Q*u*), i,u) + (J*g (l *u^) - g (J^u*), iu)

+ (sQ*u^),i(u - u^)> + (s(J*u*),i(u^ - J*u*))
+ (oQ^u*),iJ*u^)

;:i"*b+c-td+e.
Note first that J^g(J*u*) : g*(u^) - "f in Lo'(Q),.hence in Lp'(B).Therefore,
o : 0. Next, observe that g(J*u^) is bounded in Lp'(A). It follows from (3.3.19)

and (3.3.16) that J*g(J*u^) - 9(J^u*) - 0 in rI-t(O), hence in Lp'(B). There-
fore, b:0. Since sm s u in Ilol(O), we have 1L* --+ uin Lp(B). Since g(J^u^)
is bounded in Lp'(B), we deduce that c: 0. By (3.3.19), Lrm - J*um converges
weakly to 0 in I/d(O). It follows that u* - J*Ir^ -+ 0 in Lp(B). Since g(J*u*)
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is bounded in Lp'(B), we obtain d : 0. Finally, e : 0 by (3.3.8)' and the result

follows. !

ENn or rHE pRooF oF THEoREvT 3.3.5. Taking the I1-1 - I/6r duality product

of the first equation in (3.3.32) with riu, we find

d

*ll"(t)ll?., 
: o for all I e (-T(M),r@))

and so

(3.3.33) ll"(t)llr." : llplE .

It follows from (3.3.21), (3.3.33), and Proposition 1.3.14(ii) that

(3.3.34) ,t.!,^ - u in C (l-T(M),7(M)1,rt(O)) .

Applying (3.3.28), (3.3.34), and Gagliardo-Nirenberg's inequality we deduce that

(3.3.35) ,u,* -'tL in C ([-T(M),7(M)),ro(O))

for every 2 S p < f$. tt follows easily from (3.3.7), (3.3.16), (3.3'13), and (3.3.35)

that

s^@* (t)) - s (u(t)) : J*[(g(J*u*(t)) - g(J*u(t))]
-t J^ls(J^u(t)) - s(u(t))l + J*s(u(t)) - g("(t))

-:;0
in Ip'(O) for all t e (-T(M),:I(M)). Therefore, f : S(") and so u satis-

fies (3.1.1). (3.3.10) follows from (3.3.28) and (3.3.11) from (3.3.33). It remains to
prove (3.3.12). This is a consequence of (3.3.22), the weak lower semicontinuity of
the fll-norm, and the fact that G*(u^(t)) --+ G(u(t)) as rn---+ oo. This completes

the proof. !

We now show that the initial-value problem (3.1.1) is locally well posed in
/4(f)), provided we have the a priori information that weak .F/i solutions are

unique.

Tsponpu 3.3.9. Let g : 9r*. . .*gx where each of the gi's sat'isfies (3.3.5)-(3.3.8)

for some erponents ri, Pii and set G : Gt+ "' + Gp and, E : Er * " "1 Et.
Assume, 'in add'it'ion, that there 'is uniqueness for the problem (3.1.1). It follows
that (3.11) i.s locally well posed i'n H](A), and that there'is conservat'ion of charge

and energy; i.e.,

xu(t)lly" : llpllu and E(u(t)) : s(p)

for all t € (-?,ni,,T^u*), where u i's the soluti'on of (3.1.1) wi'th the'init'ial ualue

e € f4(f)).

PRoor'. The proof proceeds in three steps. We first show that the solution u given
by Theorem 3.3.5 belongs to

c (Gr @),r (M)),HJ (f,)) n cI (eT (M), T (M)),H-' (o) ),
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and that there is conservation of energy. Next, we consider the maximal solutions
and show that 7'.i" and flo'* satisfy the blowup alternative. Finally, we establish
continuous dependence.

Srep 1. Regularity. Let .I be an interval and let

u € L* (I,f/ot (O)) n W1'* (I,f/-t (f)))

satisfy iut*Lu*g(u) : 0 for a.a. , € 1. We claim that u satisfies both conservation
of charge and energy, and that

u e c(I,Hot(O)) nClQ,H-t(O)).

To see this, consider
M : sup{llu(r)lla', t e I},

and let us first show that ll"(t)llr," and E(u(t)) are constant on every interval J C 1
of length at most T(M), where T(M) is given by Theorem 3.3.5. Indeed, let J be
as above and let o,r € J. Let 9: u(o) and let o be the solution of (3.1.1) given
by Theorem 3.3.5. u(. - o) is defined on J and, by uniqueness, u(. - o) : u(.) on
J. Applying (3.3.11) and (3.3.12), we deduce in particular that

(3.3.36) ll"(r)llt, : llu(o)llu, E(u(r)) < E(u(o)) .

Let now g : u(T) and let t^u be the solution of (3.1.1) given by Theorem 3.3.5.
w(. - r) is defined on J and, by uniqueness, trr(. - r) : u(.) on J. From (3.3.12),
we deduce in particular that

E(u(o)) < E(u(r)).

Comparing with (3.3.36), we see that both ll"(t)llr" and E(u(t)) are constant on
J. Since J is arbitrary, we have

(3.3.37) llu(t)ll1z: llu(s)ll;: , E(u(t)): E(u(s)) for all s,t € L

Furthermore, note that by Lemma 3.3.6, u e Co,t/2(T,L'(AD, and so the function
t r-+ G(u(t)) is continuous 7 --+ p by Lemma 3.3.7. In view of (3.3.37), this implies
that llu(t)lls' is continuous 7-- IR. Therefore, u e C(T,Aot(O)), and, by the
equation, u € Cr(T,H-1(Cr)).

S'rpp 2. Maximality. Consider p € H01(fr) and let

T^u*(p): sup{? ) 0: there exists a solution of (3.1.1) on [0,?]],
T*i"(p): sup{? ) 0: there exists a solution of (3.1.1) on [-7,0]].

It follows from Step 1 and the uniqueness property that there exists a solution

u e c (er",., ?*,*), fld (o)) n ct ( (-z;i,, 4.,*), H- t (o) )

of (3.1.1). Suppose now that 4.r" ( oo, and assume that there exist M ( oo and
a sequence ti I T^u, such that ll"(ti)llri' 1M. Let k be such that t1 +T(M) >
T^"*(g). By Theorem 3.3.5 and Step 1, and starting from z(t;), one can extend z
up to t6 + T(M), which contradicts maximality. Therefore,

llu(f)lls' - m ast t4nu*.
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One shows by the same argument that if ?l.i"(rp) < oo, then

llu(t)lls. -* oo as t J -?'"i".
Therefore, so far we have established the existence of a maximal solution, the

blowup alternative, and the conservation of charge and energy'

Srpp 3. Continuous dependence. Suppose qrn + I in i/ol(Q) and let

M : 2sup{llu(t)lls, : t e [-71,Tb)] .

Since llrp-llst 1M for m large enough, l-T(M),7(M)) c (-7'*i'(p)'7"'"*(p)).
Thus u- is bounded in

L* ((-T(M),T(M)),I/J(O)) nwr,*((-T(M),rwD, H-t (CI)) .

Applying the argument of Step 3 of the proof of Theorem 3'3.5, we obtain that
rtrm + uinC([-T(M),T(M)],rt(O)). By Lemma 3.3.7 and conservation of energy,

this implies that llu-lls1 converges to llulls' uniformly onl-T(M),f W)l.Apply-
ing Proposition 1.3.14(iii), we deduce that rln + u in C(-f (M),7(M)l,H0t(f))).
Since T(M) depends only on M, we may repeat this argument to cover the interval

l-Tt,Trl.This completes the Proof. n

Rpu,tRx 3.3.10. By Theorem 3.3.9, if g is a finite sum of terms gj, where each

of the g1's satisfies the assumptions (3.3.5)-(3.3.8) for some exponents rj, pj, then
problem (3.1.1) is well posed in Hot(O) provided there is uniqueness. Unfortu-
nately, the techniques that are used to prove uniqueness depend on the problem
(see the following sections). However, we give below a general sufficient condition
for uniqueness.

CoRor-reRv 3.3.11. Let G e Cl(I/J(ft),R) and let 9 : Gt. Assume that g(0) e
L2(Q) and that there eri.sts C(M) for euery M such that

(3.3.38) llg(u) - s@)llr,, S c(M)lla - ullt,

for alt u, u € HI(Q) such that llullp'+ llulls' I M . Assume furiher thatlm g(u)a :
0 a.e. for euery u € H;(O). It follows that the conclus'ions of Theorem3.3.9 hold'

PRoor'. We need only show uniqueness. Let .I be an interval containing 0, let
p € 113(()), and let LL1,1r2 € L*(I,HJ(O)) nWr,*(I,H-t(Cl)) be two solutions
of (3.1.1). It follows from Remark 1.6.1(iii) that

ft
uz(t) -u1(fl:i I T(t - s)(s(ur(")) -e(u1(s)))ds for all d e .I.

Jo

Therefore, there exists a constant C such that
ft

lluz(t) - u1(t)117, S C I ll"r(") - u1(s)11i" d,s,
JO

and the result follows from Gronwall's lemma. tr

RpuaRx 3.3.L2. Theorem 3.3.9 (and also Corollary 3.3.1i) is stated for one

equation, but the method applies as well for systems of the same form. More
precisely, consider an integer p ) 1 and set ?1fr : (Ir''l(f,|))p,71-1 : (I/-r(O;;t',
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and Lp : (rp(CI))t'. Let (aa)s2ar, (0t)tg3, be two families of real numbers such
that a2 I 0 and fu I 0 for every I < t <,p. Set AIJ : (o1Au1, ...,arLur) for
U : (ut,...,up) € Ht, and BU : (/rut,...,gpur) for every U e C.r". Suppose
g : gr * . . . I gt, where each of the g;'s satisfies the assumptions (3.3.5)-(3.3.3) for
some exponents ri, pj, but with f/61(f)),f/-t(Q),.Le(Q) replaced by '11[,']I-r,Xn.
It follows that the conclusions of Theorem 3.3.5 and, under uniqueness assumption,
those of Theorem 3.3.9 hold for the system

where iD is a given initial value in ?/fi.

Rnuenx 3.3.13. Let g be as in Theorem 3.3.9. Consider g € .H01(O), and let u be
the maximal solution of (3.1.1). Let um be the approximate solutions constructed
in Step 1 of the proof of Theorem 3.3.5. Following the argument of the proof of
Theorem 3.3.9, one shows easily that un --+ u in C([S,f],]/d(O)) as rn - oo for
every interval [.9,"] C (-?,,i,,?,,,*).

3.4. Energy Estimates and Global Existence

Given g as in Theorem 3.3.5, there exists a local weak f/ol-solution of the
problem (3.1.1) for every initial value ,p e Ht(q. In this section we use the
conservation of charge (3.3.11) and the energy inequality (3.3.12) to show that,
under appropriate assumptions on the nonlinearity g, there exists a global solution
of (3.1.1) for some (or every) initial value p e f/'r(C)). Our first result is the
following.

Tuponpu 3.4.1. Let g be as in Theorem 3.3.5. Assume further that there erist
A > 0, C(A) > 0, and, € € (0, I) such that

(3.4.1) G(u)<rjllulr*,+c(A)

for all u € /J01(O) such that llully, < A. If p e ffot(O) satisfies llpll* 3 A,
then there erists a (global) weak H[-solut'ion u o/ (3.1.1) on ]R. 1n addition, u €
,-(R,Hd(CI)) and u sat'isfies the conseraation of charge (3.3.11) and the energy
i,nequality (3.3.12) for all t € lR..

Pnoor'. Let I > 0 be an interval of lR. Consider a weak .F/s1-solution u of (3.1.1)
on 1. Assume that u satisfies the conservation of charge (3.3.11) and the energy
inequality (3.3.12) for all t e 1. Since

yu(t)ll21r' : E(u(t)) - zc(u(t)) + llu(t)112", ,

we deduce from (3.3.11) and (3.3.12) that

ll"(t)ll2n, s llell?t, - 2G(p) + 2c(u(t)) for all t e .I.

Assuming llpllu a 1., we deduce from (3.4.1) that

{tnut+AU+s(u):o
I t/(0) : ,6,

ll"(t)ll2u, s llellL, - zc(p) + (1 - e)llo(t)11fu, + 2c|lell7") ,
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and so

(2.4.2) ll,(t) ll?r, 
= I [ltrtt?, - zc(p) + 2c(lle11"'11 ror all t e 1.

a

We observe that the right-hand side of (3.4.2) depends on the initial value rp but
neither on t nor on the weak l/sl-solution u.
' We now proceed as follows. Let g e H6t(fl) satisfy llpllr., S A and set

*:4rM.
\/€ ,

Since in particular llpll4 S M, it follows from Theorem 3.3.5 that there exists a

weak f/sl-solution u of (3.1.1) on [0,?(M)] which satisfies (3.3.11) and (3.3.12) for
all f e [O,r(M)). We deduce in particular from (3.4.2) thatllu(T(M))1ftt, S M.
Setting Q : u(T(M)), *" may apply again Theorem 3.3.5 and we see that there
exists a weak I/'l-solution fr of (3.1.1) (with the initial value r/) on [0, 

"(M)] 
which

satisfies (3.3.11) and (3.3.12) for all t € [0, f W)]. We now "glue" u and d by
defining the function u(t) on 10,27(M)l as

if0<r<T(M)
ito<T(M)<t<27(M).

It is clear that u defined by (3.4.3) is a weak llol-solution of (3.1.1) on !O,2T(M)].
Moreover,

ll"(t)llr, : lli,(t -r(M))ll* : llQll* : llu(T(M))|fu : llpll*

and
E(u(t)): E(i(t -r@D) s E(e): E(u(r(M))) < a(e)

tor T(M) < t < 2f (M). We deduce that u satisfies (3.3.11) and (3.3.12) for all
i e [0, 2T(M)]. In particular, we deduce from (3.4.2) that llu(27(M))lln, S M. We

can then repeat the above argument and construct a weak }Igr-solution u of (3.1.1)

on [0, oo) which satisfies (3.3.11) and (3.3.12) for all t > 0. We also can argue
similarly for t ( 0, so that we obtain a weak f/j-solution u of (3.1.1) on lR which
satisfies (3.3.11) and (3.3.12) for all , € IR.. Finally, we deduce from (3.4.2) that
supteR ll"(t)lla' ( oo, which completes the proof. tr

The following corollary is an immediate consequence of Theorem 3.4.1.

Conolleny 3.4.2. Let g be as 'in Theorem 3.3.5. Assume further that for euery
A ) 0, there erist C(A) > 0 and e € (0,1) such that (3.4.1) holds. It follows that
for euery p e Ht(A), there erists a (global) weak H[-solut'ion u o/ (3.1.1) on R..

In addi,ti,on,u € roo(IR,14(CI)) andu sati.sfies the conservat'ion of charge (3.3.11)
and the energy i,nequali,ty (3.3.12) for all t € R..

Corollary 3.4.2 provides a sufficient condition on the nonlinearity so that for
all initial values p € f101(f,)), there exists a global weak f/'l-solution of (3.1.1). We
next show that, under a different type of assumption on g, there exists a global
weak f161-solution of (3.1.1) for all sufficiently small initial datag e f161(f,)). Our
result is the following.
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TnpoRura 3.4.3. Let g be as 'in Theorerr 3.3.5. Assume further that G(0) : 0 and,
that there ed.st e > O and a nonnegatiue funct'ion 0 e C(10,€),R+) wi,th 0(0) : O

such that

(3.4.4)
1-c

G(r) < j:ll"ll'n, + 0 (llull 7z)

for all u e H01(CI) such that llrlla' < e. It follows that there etists 5 ) 0 such that
for euery (p € //01(O) wi,thll9ll11, 15, there erists a (global) weak H[-solutionu
o/ (3.1.1) onR. In add,ition, llulll-1e,s'; { e andu sat'isfi,es the conser"uati.on of
charge (3.3.11) and, the energy inequali,ty (3.3.12) for atlt eR.

Pnoor'. Let 1 ) 0 be an interval of IR. consider a weak f/j-solution u of (3.1.1)
on /. Assume that z satisfies the conservation of charge (3.3.11) and the energy
inequality (3.3.12) for all t € 1. Assume that ll"(t)ll.r, ( e on some interval J c I
with 0 e .I. It follows from (3.3.11), (3.3.12), and (3.4.4) that (see the proof
ot Q.a.2))

llu(t)ll"u, s llrll"r, - 2G(p) + 2ltlellL,)J for al t e J.

Note that the right-hand side of (3.4.5) is a continuous function of 9 (in frot(fl)),
which vanishes for rp:0, and so there exists 0 < 6 < e/2 such that

1f,, ,) ,, '
;L|eilH' - 2G(p) + 2l(llellL')l 

= T if llells' < d.

Therefore, if we assume that llglls' ( d, we deduce that

(3.4.5) ll"(t)llH' < ;
on every interval J C I, ..I > 0 on which llu(f) llrr' ( e.

We now proceed as follows. Let 9 € IIj(O) satisfy llpll", < d with d > 0
as above. Since in particular llpll;;' < ef2, it follows from Theorem 3.3.5 that
there exists a weak f/sl-solution u of (3.1.1) on[0,7(el2)] which satisfies (3.3.11)
and (3.3.12) for all t e [0,f@lZ)] and such that, llulll- (o,r:(e/z)),H1; < e. We de-
duce in particular from (3.4.5) that llu(?(el2))lln, < €12.Setting Q:u(T(el2)),
we again apply Theorem 3.3.5. We see that there exists a weak flsl-solution d
of (3.1.1) (with the initial value r/) on [0,f@/Z)] which satisfies (3.3.11)-(3.3.12)
for all t € [0,f@lZ)] and such that lldlll-1@,7(e/z)),H1) ( e. We now "glue" u
and fr by defining the function u(t) for 0 < t < 2T(el2) by (3.4.3). It follows that
u defined by (3.4.3) is a weak flol-solution of (3.1.1) on 10,2?,(el2)] which satis-
fies (3.3.11) and (3.3.12) for all t e [0,27(el2)]. (See the proof of Theorem 3.4.1.)
Moreover, llull"*Uo,"rt€/2)),H1) < €. In particular, we deduce from (3.4.2) that
llullp*qo,zr1e/2)),H1) < €12.We can then repeat the above argument and construct
a weak fIj-solution u of (3.1.1) on [0, oo), then on JR, which satisfies the conclusions
of the theorem. f]

Reunnx 3.4.4. The assumption (3.4.4) is very similar in form to the assump-
tion (3.4.1). The major difference is that (3.4.4) is assumed only for small llzlls'.
If g is a local nonlinearity, then (3.4.4) corresponds to a condition on g near 0,
while (3.4.1) corresponds to a condition on g for large u.
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3.5. The Nonlinear Schrd,dinger Equation in One Dimension

In this section we assume that the dimension N : 1. Without loss of generality,

we may also assume that O is connected. Therefore, Cl is either IR, or a half line'

or a bounded interval. The case O is either R or half line falls into the scope of

Theorem 4.3.1 or Remark 4.3.2. Therefore, the local cauchy problem in ,F/sr(ft) is

well posed, for example, for the type of nonlinearities considered in Corollary 4.3.3.

On the other hand, if O is a bounded interval, we know (Remark 2'7.2) that esti-

mate (2.2.4) does not hold. However, one can obtain a fairly general result for local

nonlinearities by using the embedding f/ol(Q) '-- tr-(Ct).

THEoREM 3.5-1. II s@): .f(',u(')) as 'in ErampleS'2'4 Anith N : r), then

the i,ni,ti.al-ualue problem (3.1.1) is locallE well posedi,n H](Q. Moreouer, there'is

conseraat'ion of charge and energy;'i.e.,

11u(t)ll1' : llpllu and E(u(t)) : n@)

for au t e (-?-i", T^u*), where u i,s the soluti,on of (3.L7) with the i,ni.ti,al ualue

p € I{01(C)).

PRoor.. It follows from Proposition 3.2.5 that g satisfies (3.3.38)' and the result

follows from CorollarY 3.3.11.

Conolranv 3.5.2. Let g be as 'in Theorem 3'5'1. If
F(r,u) S C(t + luld)lul2 for some 6 < 4,

then for eaery I € H;(fr), the mari,mal strong H[-soluti'on o/ (3.1.1) i,s global and

uni,formlg bounded, i,n H|. If 6 : 4, the same conclus'ion hold's prouided llgll}z i's

small enough.

PRoor. We have G(u) < Cllull2", + Cllulls"+],. Using Gagliardo-Nirenberg's in-

equality, we deduce that

G(u) < cllull2y, + cllull!,r,|"ll7Ig .

If 6 < 4, then it follows from the inequality ab I ea" + C(e)b'' that

G(u) < *Wlfr,+ c(llulll, ) .

The result then follows from Corolla ry 3.4.2' If d : 4, then

G (") < cll"llL"ll"ll?r, + c (ll"ll 
""),

and the result follows from Theorem 3.4.1. n

Conolleny 3.5.3. Let g be as 'i.n Theorem3.5.1. It follows that there erists 6 > 0
such that, for euery I € Ht(O) ui,th llglls' { 5, the marirnal strong H}-soluti,on
o/ (3.r.1) i,s global and un'iformly bounded'in Hl.

PRooF. There exists a constant K such that if llrllr. < 1, then ll"llr* < f<.

Therefore,
G(u) < C(K)llullzy, ,

n

I

I

I

I

I

I
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and the result follows from Theorem 3.4.3. tr

Reruenx 3.5.4. In particular) one may apply Theorem 3.5.1 to the case
g(u) : Vu * ),lulu, where 7 is a real-valued potential V e L*(e), ) e IR,
and 0 < a < oo. solutions with initial value of small rr1 norm are'global by
corollary 3.5.3. If ) < 0 or if o ( 4, then, for every initial va-lue in I1or(o), the
corresponding solution of (3.1.i) is global, as follows from corollary 3.b.2.

Rurrenx 3.5.5. Like Theorem 3.3.9, Theorem 3.5.1 is stated for one equation,
but the method applies as well for systems of the same form (see Remark 3.3.i2).

3.6. The Nonlinear schr6dinger Equation in Two Dimensions

In this section we assume that the dimension N : 2. Note that Hl{Sl) /.,-(o), and so one may not apply the method of Section 3.b. However, one still
can do something by using the fact that I/or(CI) is "almost" embedded in tr-(f,)),
or more precisely by using Tbudinger's inequality (Remark 1.3.6).

we have the following result, due to vladimirov (see vladimirov [354], ogawa
[273], and Ogawa and Ozawa [274]).

Tuooepv 3.6.1. LetQ be an open subset of R2 and tet g be as'in RemarkB.2.T
with a < 2. It follows that the i.ntti,al-ualue problem (3.1.1) is locally well posed, ,in

flot(Cl). Morouer, there'is conseruation of charge and, enei,rgy; ,i.e.,

ll"(t)llz" : llplft., and E(u(t)) : n(p)

for allt € (-2-l,i,,T^"*), where u i,s the soluti.on of (J.1.1) wi,th the,initial ualue
(p € IIol(CI).

PRoor'. By Theorem 3.3.9 and Proposition 3.2.5, we need only show uniqueness.
F\rrbhermore, since this is a local property, we need only establish it for possibly
small intervals (see Step 2 of the proof of Theorem 4.6.1 below) . Let I be an interval
containing 0, and let u,u e L*(I,H[)nl4tt,*g,H-t) be two solutions of (8.1.1).
Setting u) : r.) - u, we have

iw1+ Aw + g(u) - S(u) : 0.

on multiplying the above equation in the H-r - frol duality by,iw, it follows that

tr4,n-alu?, : rm I ur,all - s@(t)))w(t) dr.2dt,'\/"L- --_-J\r\-\

Therefore, if we define the function h e L*(I,Aor(Cl)) by

h(t) : lu(t)l + lu(t)l for all r € 1,

then
11 

, I r

lSfrllw(t)llL,l = " I tt 
+ h(s)2)lw({12 ar .

r,
Integrating the above inequality between 0 and t € 1, we obtain

(3.6.r) |,(t)|zr, s zcl l,' (tt,f ,ltt?, + | n1,1,1.t,it, a")a"l .
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Consider any number p e (2,m). We deduce from Holder's inequality that

(3.6.2)
I n',.,'a*: l{nowf1?pf#r" = ( | n',*,'o,)a u.nT
ftoCl

/ r r* ! 2p-4

= (/ n2nar) il*|L^|.ltT .

o

Note first that tu(t) is bounded in,F/61(O), hence in In(O). Furthermore, h(i) is also

bounded in.H01(Ct). Therefore (Remark 1.3.6), there exist two positive constants

K, pl such that

(3.6.3) l1"untt1'-ld:r<K.J'
O

(3.6.4)

Let now

It follows from (3.6.2), (3.6.3), and the elementary inequality

/-\ p

,'rs(P) pu"" -t)- \t't/
that

f , 2p-4

I n'l.l'dx < CpKill*ll{ for some constant C.
J
ct

Since K* < 1 + K, we deduce that

f 2p-4

I n'l*l'dr s cellwll"{ .

fi

Let now dQ) : ll-ll't,.Applying the above inequality and (3.6.1), we obtain

rft
dft) < cl I roll + e6l)+)dsl.

r Jo I

Note that @ is bounded, so that O(t) < pd(il+ for p large enough. Therefore,

o(t) < 
"ol l,' 6p1# a,l ror ar r e /.

.t

oe(r) : l' OG)# a' .

JO

It follows from (3.6.4) that O;(t) < Cplboft){p-z)/pl for all t e .I. Integrating this

inequality yields loo(t)l3 (zC1t11nt 2. Therefore, if. 2clrl ( 1, we obtain

l,p_'":f oo(7) :s,

which implies that
rT
I AG)as: o.

Jo

Thus u:0 on [-T,T).This gives the result. tr
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coRor,leRv 3.6.2. LetQ be an open subset of R2 and,let g be as in Theorem3.6.r.
If llpllr," i,s small enough, then the morimal strong H]-soruti,on o/ (3.1.1) giuen by
Theorem 3.6.1 zs global and uni,forrnly bounded in Hl. If

F(r,u) < C(i + l"16)1"1" for some 6 < 2,

then the same conclusi,on holds for euery 9 e Hol(O).

PRoor'. The assumption on g immediately yields F(r,u) < c(r+lul2)lul2, so that
G(u) < cll"ll\, + cllulla"". Using Gagliardo-Nirenberg's inequaiity, we deduce that
G(") S Cll"llL" + Cllull2s'll"llL,. Global existence for small data in L2 then foilows
from Theorem 3.4.1. Assuming now .F (r, u) < C(t + luf )lul2 for some d' < 2, we
obtain by arguing as above that G(u) S Cllull2", + Cllull6u,llullL".Applying the
inequality ab 1 ea'+ C(e)b'' we deduce rhat G(u) 3 *ll"llrr, + Cfllulll,). The
result then follows from Corollarv 3.4.2. n

Rnuanx 3.6.3. A global existence result for f12 solutions (i.e., solutions with
values in H2((^)) n f101(CI)) was obtained by Brezis and Gallou6t [4b].

Roll.qnr 3.6.4. In particular, one may apply Theorem 3.6.1 to the case g(u) :
Vu+\lul'u, where I/ is a real-valued potential V e .L-(CI), ) € lR, and 0 S crS2.
In addition, global existence for initial values with small -L2 norm follows from
corollary 3.6.2. Furthermore, if ) < 0 or a < 2, then for every initial value in
//d(o), the corresponding solution of (3.1.1) is global. This follows again from
Corollary 3.6.2.

Rpuanx 3.6.5. Like Theorem 3.3.9, Theorem 3.6.1 is stated for one equation,
but the method applies as well for systems of the same form (see Remark 3.3.12).

3.7. Comments

Theorem 3.3.9 admits a generalization in the setting of Theorem 3.3.1. More
precisely with the notation of Theorem 3.3.1, consider a C-linear, self-adjoint < 0
operator A on X : L2(Q). Assume that

Xe'- L'(A) for all 2 <e. #\(3.7.1)

Assume further that for everv

2N 2N
N+2 <Ps N-2'

(I - eA)-r is continuous lo(ft) ---+ ,e(CI) for all e ) 0, and

(3.7.2) sup {ll(1 - eA)-rllcop,Le) i € > 0} < *.
Consider a function g e C(XA,Xi) such that

(3.7.3) g: G' for some G e C1(X4,R),

and assume that there exist r, p e[2,*\) (r,p €l2,oo] if N:1) such that

(3.7.4) e e c(xa,Ll (q)
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and such that for every M ) 0, there exists C(M) < oo such that

(3.7.5) lls(r) - s@)llr.", ! c (M)llu - uli.,

for every u,u € Xa such that ll"llx, + llrllx, < M' (Ot, more generally, assume

g : gr + ...+ g/c, where each gi satisfies the above assumptions for some ri, Pi')
Finallv. assume that for every u € X.q,

(3.7.6) Im(g(u)z) : 0 a.e. on f,),

and let .E be defined bY (3.3.2).

We consider the Problem

(3.7.7)

foragivenreXa.

THponsN4 3.7.1. Let A and g be as aboue. Assume, i,n add,i,tion, that there i's

uniqueness for the problem (3.7 .7). It follows that the i,ni,ti,al ualue problem (3.7 .7) is

locally well posed, i.n Xa. Moreouer, there'is conseraat'i.on of charge and energyf i.e.,

ll"(t)llr' :llnll;z and E(u(t)): E(r)

for att t € (-?r,i, , T^u*) , where u 'is the solut'ion of (3.7 -7) wi'th the initi'al ualue r €

X a. (Here, the notions of un'iqueness and local well-posedneEs are as i,n Section 3'l).

PROOF. The proof is an adaptation of the proof of Theorem 3.3.9. We only point

out the modifications that are not absolutely trivial. Lemma 3.3.6 is easily adapted

with the duality inequality ll"ll'" S ll"llx^ll"llx;. The proof of Lemma 3.3.7 is

adapted as follows. Consider 2 3 p < s < #\. By Holder's inequality and (3'7.1),

there exists 0 € (0,1) such that

ll u ll r" S ll"ll?," 11"11,r.," 5 ll u llill u ll l, ",
and the rest of the proof is unchanged. To adapt the proof of Theorem 3.3.5,

we need inequalities of the type (3.3.15)-(3.3.16). They follow easily from the
self-adjointness of A, except for (3'3.16), which follows from (3.7.2). The rest

of the proof, including Lemma 3.3.8, is unchanged except that one has to apply
Proposition 1.1.2 instead of Proposition 1'3.14. n

Rovranx 3.7.2. Corollary 3.3.11 is easily adapted to the above situation.

Rouenx 3.7.3. Like Theorem 3.3.9 (see Remark 3.3.12), Theorem 3'7.1 is stated
for one equation, but the method applies as well for systems of the same form. More
precisely, considering an integer P ) I, one may assume that A is a self-adjoint
operator on (I2(O;;t' and replace ever)'where Lo(O) by (Ir(C)))e. It follows that
the conclusions of Theorem 3.7.1 remain valid.

Rouenx 3.7.4. Using Strichartz-type estimates (see Remark 2.7.3), it is possible

to solve the local (or global) initial value problem for certain nonlinear Schrcidinger

equations in a cube of IRN with periodic boundary conditions. See Bourgain [34,
35, 37, 38] and Kenig, Ponce, and Vega [214].

( iu1 + Au + s(u) :0
(

lu(0) :s
We have the following result.
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Rnnanx 3.7.5. For 9(u) : -lul2u in the unit disc of IR2, it was shown that the
initial value problem is ill-posed in }Is(o) for s ( 1/3. More precisely, given ? > 0
and a bounded subset B of 11"(o), the map 9 e BnH](o) r-* u € c([0,"],fr"(c)))
is not uniformly continuous. see Burq, G6rard, and rzvetkov [4g, bOl. Note that
the case of a disc is therefore different from the case of a square; see Bourgain [3g].

Rovenr 3.7.6' Nonlinear Schrcidinger equations are sometimes considered in
exterior domains. when N : 1, or when N : 2 and under some growth condition
on the nonlinearity, local (or global) existence follows from the results of Sections 3.5
and 3.6. In some other cases, one can still obtain global solutions for small initial
data and study their asymptotic behavior. see, for example, chen [28], Esteban
and Strauss [111], Hayashi [164, 165], M. Tsutsumi [339], Y. Tsutsumi [340], and
Yao [365]. Recently, by using a family of strichartz estimates (see Remark 2.7.g),
it was shown that in the exterior of a nontrapping obstacle in JRN, there is local
well-posedness in ,FIj(O) if o ( 2l(N - 2) and in I2(O) if o < 2/.t/ when the
nonlinearity is, for example, g(z) : \lulu. See Burq, G6rard, and Tzvetkov [47].

Rsx,{enx 3.7.7. Using a family of Strichartz estimates (see Remark 2.2.10), it is
possible to solve the local (or global) Cauchy problem for certain nonlinear Schr<i-
dinger equations on nonflat manifolds. See Burq, G6rard, and Tzvetkov 146,491.



CHAPTER 4

The Local Cauchy Problem

4.1. Outline

In this chapter we study the local Cauchy problem in the case Q : lRN. There-

fore, we consider the Problem

(4.1.1)

We note that if .I > 0 is an interval and g € C(,FIl(RN),ff-t(Rt)) is bounded on

bounded sets, then u e L6(I,Hd(f,))) is a solution of equation (4'1.1) on I if and

only if u satisfies the integral equation

(4.r.2)

(see Proposition 3.1.3). A special case of (4.1.1) is the pure power nonlinearity
g(u): \lul'u with ) e C and a ) 0. (4.1.1) then takes the form

(4.1.3)

We observe that if a <  l(N -2) (" ( oo if N: 1,2), then u e L@(I,I/d(Q)) is
a solution of equation (4.1.3) on I if and only if u satisfies the integral equation

(4.1.4) I(t - s)lul"u(s)ds for a.a. t € 1.

Of course, the results of Chapter 3 apply in particular to the problem (4.1'1). The
essential particularity of the case f) : IRN is that we may use Strichartz's estimates.

They are the main tool for obtaining uniqueness results. They also can be used

for showing existence results in various spaces by fixed-point arguments or other
methods.

In Section 4.2 we establish various uniqueness properties based on Strichartz's
estimates. In Section 4.3 we apply the results of Chapter 3 combined with those

of Section 4.2. In Section 4.4 we apply a fixed-point argument of Kato to derive
existence results. They apply in particular to nonlinearities for which there is
neither conservation of charge nor conservation of energy, so that the results of
Chapter 3 do not apply. Section 4.5 is devoted to a critical case in Ht(Rt).

The next sections are devoted to existence results in spaces different from
the energy space I1r(JRN): ,12(nN) (Sections 4.6 and 4.7), I{2(lRN) (Section 4.8),

H"(RN) for s ( N/2 (Section 4.9), and fI-(lRN) for m> N12 (Section 4.10).

It
I

u(t) :t(t)e +i | 7(t -s)e(u(s))ds for a.a. t € I
JO

I iu, + Lu + s(u) :0,
(

I u(0) : e.

I uu, * Au + )lulou : o,

I "(o) 
: p.

u(t):r(t)tn+*lo

I

I 83
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Section 4.11 is devoted to a nonautonomous Schrridinger equation that is de-
rived from (4.1.1) by the pseudoconformal transformation. We will use that eoua-
tion in Section 7.5.

Finally, we observe that the results of this chapter are stated for one equation,
but similar results obviously hold for systems of the same form. See Remark 3.3.12
for an appropriate setting.

4.2. Strichartz)s Estimates and Uniqueness

As we have seen in Section 3.3, uniqueness is a key property for the local well-
posedness of the initial-value problem (4.1.1). In the present case where e: IRN,
Strichartz's estimates are a powerful tool to establish uniqueness. We note that
most of the results of this section are due to Kato [206]. we begin with the model
case of the pure power nonlinearity; i.e., we consider the problem (4.1.3). We
note that if o ( al@ _ 2) (a < oo if l/ : !,2), then 9(u) : Alul"u. satisfies
9 € C(Hl(RN),fI-t(RN)) so that we may consider weak.Fll-solutions of ( .1.3).
It turns out that they are unique, as the following result shows.

PRopostr:IoN 4.2.7. Assume,\ e C and0 <a<al(N -2) (0 < a < oo z/
N : 1,2). Il p e flt(Rt) and u1,u2 are two weak HL-solutions of (4.1.J) on
some interaal I > 0, then u1 : t12.

PRoor'. We may assume without loss of generality that .I is a bounded interval.
It follows from (4.1.4) that

(4.2.1)

Since

llutl"u, - luzl" uzl S c (lu:1| + lu2l)lut - uzl,
we deduce from Holder's inequality that, setting r : q, ]2,

| | l"' l" "' - lurl" rrll 
"", 

3 c (llu'll?., + ll"rll7,' ) ll "' - uzll u .

Let now q:ArlN(r - 2) so that (q,r) is an admissible pair. Applying H6lder's
inequality in time, we deduce that if J is an interval such that 0 e J C 1, then

(4.2.2)
ll lrt l'"r - luzl' uzll 

r.a, (t,r.,, 7 3

c(llutlll*o,4 + llu2lli*el4)llq - uzli.,,(t,r.1 .

It follows from (4.2.i) , (4.2.2), and Strichartz's estimate that

(4.2.2) llul - u2ll7"1r,L.) < C(llurlli*s,r.") + lluzll|.*ur,/,,))llu1 - uzllrn,e,r,,).

Since ffl(JRN) .* tr'(lRN) and l/l < oo, (4.2.3) yields

llq - uzll u <r,1") 3 cllut - uzll 7n, 11,7,1

for some constant C independent of J. The result now follows by applying Lem-
ma4.2.2 below with k:I,ft(t): ll"r(t) _ u2(t)llL., ar: Q,, and b1 : q. tr

(uv * u2)(t) : i^ 
fo' 

x(t - s)(lu1 lou, - lu2l'u2)(s)ds.
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I L"rve.4.2.2. Let I )0 be an'interaal. LetI < ai 1bi 1x and,$i e Lbi(I),

- .for I < .i < k. If there erists a constant C > 0 such that

Il*k (4.2.4) lttoillr.o, t.r) < cLll,illm s)

I '=' 
j:l

I fo, euery interual J suchthat0e J C I, thendr: "' : Qx:0 a'e. on I.

I Pnoor. We first consider the case /: [0,?] for some 0 <T < oo. Suppose that

I dr: "': Qn:0 a.e. on some interval (0,r) with 0 ( z ( ?. Letting;r: [0,t]
with z 1t 17, it follows from (4.2.4) and Hcilder's inequality that

lkkk
t f llo,ll",, (,,t) s cLlloillL"i 1r,t1 s cD$ - ,)+-i lldillzoo <o,q 

.

j:t i=l i:r

I Therefore, if we let t - r besufficiently small so that
I

C max (t - r)4-6; < l,- l<j<k'

I *" deduce that ll/1ll1or(o,t) + "'+ lldtllz,r(0,r) :0. We now let

I G.2.s) d : sup {o . , . ";i ll1111",,ro,ty : 0} .- t r:r )

I We deduce from what precedesthat 0 ) 0 (startingwithz:0). If 0 <T,then we

I let r: d andwe deducethat /1 : rr': dx:0 a.e. on (0,d+e) for some s ) 0,

which contradicts (4.2.5). Thus 0 : T which shows the desired conclusion. The

I case 1 :l-7,01 is treated similarly (by changing t to -t). In the general case' we

I apply the above results to all 7 > 0 such that 10,"] c f, then to all 7 ) 0 such

that [-?,0] c -I, and wededuce that dr: "'i: d*:0 a.e. on 1. tr

I Proposition 4.2.1 can be extended to more general nonlinearities. In particular,I 
we have the following result'

I PnoposrrroN 4.2.3. Cons'id,er grt...tgk eC(HL(Rt)),f/-t(lR.N)) and ler
T

g:gtt...+gr.

I Assume that each of the gi's sat'isfies the assumption (3.3.7) for some erponents
' ri,pi €l2,2NlW -2)) (ri,pi el2,oo] z/lf :7)l i.e., there eristsCi suchthat

I e.2.6) llsi@) - si@)ll 
",i 

3 ci(M)llu - uli',
I

for all u, ?, € F/1(lR N) such that llulls', llrllr' < M . If p € I{1(RN) and u1,u2 are

I two weak Ht-solutions of (4.7.I) on some'interual I >0, thenrlt:'u,2.
t

Proposition 4.2.3 is a consequence of the following simple lemma.

I
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Lnvwa 4.2.4. Let I ) 0 be an interaal and k ) | be an ,integer. For euery
1_S J, 1k, Iet (qi,ri) and (1i,pj) be admi,ssi,ble pai,rs and, fi e Lti(I,rp;(R]V)).
F'inally, set

knt
(4.2.7) w(t): oD l^ I(r - s)f (s)ds

j=1 ru

for all t e I (so that w e Lqi (1, L'i(RN)) /or aII | < j s k by strichartz,s
esti,mates). If foreueryr< j <k thereeri,str/-ai 1ei andaconstantci such
that

(4'2'8) llf ill 
"1rr,r,tt 

3 Cill.llz"o <t,r,"')

for allbound,ed,,interaals J suchthat0e J c I, thenw:0.

Pnoop. Letting

wiQ): t [' rp- s)/i(s)ds
Jo

and applying k times Strichartz's estimate, we see that there exists a constant K1
such that

k

I llri llr.o,(,t.t",) < Krllf ;ll -t, . - -o, .

t:1
for all bounded intervals J such that 0 e J c I. It follows from (4.2.7) that there
exists a constant C such that

kk

I ll.llr", 1t,t i1<ct ll* llr.,!u.2,!t
j:l j =r

for all bounded intervals J such that 0 e J c I. Applying (4.2.8) we deduce that

f ,,r,,r", 1.r,r'iy s 
"f,",llwllr", (t,r', ) ,

j:t j:L

and the result follows from Lemma 4.2.2. tr

PRoor or PRoposrrroN 4.2.3. Let u1,u2 € L6(I ,flt)n1ry\ae,H-t) be two
solutions of (4.1.i). By (4.1.2),

krt
ur(t) - u2(t): nL l^ T(t - s)lsi@,(")) - sj@2(s))lds for a.a. t e r.

j:lrv

The result follows from Lemma 4.2.4 applied with tu : ,ut - u2t f i : gi@r) - gi@z),
and (lr)r<is7' and (q1)1q3<r defined by

2 /1 t\ 2 --/r 1\
t:"(;-;) and 

;:r(;-;),
so that (qi,ri) and ('yi, pi) are admissible pairs. (4.2.8) is indeed satisfied with
ai : ^yl since by (4.2.6)

llf oll ^, ^, < Cllwll ^,""'" L',i (J,L'i) - ,, 
" L'i (J,L,i) '
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andl!.2<%. n

We note that the technique of proof of Proposition 4.2.I does not work in the
limiting case a : 4l(N -2), -n'/ > 3. Indeed, we would be lead to apply Lemma 4.2.2

with o,1 : br, in which case the conclusion of the lemma is clearly false. In fact,

we do not know if the conclusion of Proposition 4.2.1 holds in the limiting case

a : 4l(N -2). A slight modification of the method of proof, however, shows

uniqueness of strong ,Flr-solutions. More precisely, we have the following result.

PRoposrrroN 4.2.5. Assume AI > 3. Let A € C and a: al(N -2). If p e
Ht(RN) and,u1,u2 are two strong Hr-solutions o/ ( '1.3) on sonle interual I >0,
then u1 :11r.

PRoor'. We may assume without loss of generality that 1 : [0' 7] for some 0 <
? < oo. Given M ) 0, set

7M : 7 11url+luzl> M\ (lt,l, | 
#t', - lurl# ur),

1, : l1prl+luzl<M\ (l,rtl#rt - lurl# ur),

so that
lutl#u, - lu2ll'=:.u, : fu * fM .

One easily verifies that there exists C independent of M such that

In order to show that ur :'tlz,we use the endpoint Strichartz's estimate. We have

(u1- u2)(t) : i^ [ Tft - s)(f 11a + fM)ds,
Jo

so that for every Q I r 17,

llu, - uzllr"r1o,";,2,#5; + ll't - uzllr-*((o',),r'') 3

c(llf mlft"uo,r),12) + llf'll*<o,"y,rf#y) '
(4.2.70)

(4.2.e)

Using (4.2.9), we see that

(4.2.1r)

and that

llf'll-".^. uru (
tA r.tr\ "L2((o,r),LFTz) -\a'''L'r c11111,,1+t,,1>u1(lurl + l"rl)llr-tt o,r),rfig,1llq - uzll *{io,"y.r,#Sy 

.

Finally, we observe that lull + luzl € c([0,"],fl1(RN)), so that we have

lutl +luzl € C([0, Tl,L#+ (RN)). It follorns easily by dominated convergence that

(4.2.t3) ll1{t,,1+t,,t> d4(url + l"zl)llr_rro,ri,r,#51 ]\1?_ 
0.

( ltrl S gv/Ir+alut - uzl,t'"*'-
t lf'l ( c11;,,1+1, zt>u\(lul + l"zD#lut - uzl

111r ll1r11o.r),y1 < C Mfu llul - u2lly,1(o,r),L2) t

I
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Applying (4.2.13) we see that, by choosing M large enough, we can absorb the
right-hand side of (4.2.12) by the left-hand side of (4.2.10). Therefore, we deduce
from (4.2.10)-(4.2.12) that there exists C such rhat

llu l - u2ll y* (o,r), L2 ) < C llu,, - u2ll D @,"1, r," 1

for every 0 ( r ( ?, and the result follows fromLemma 4.2.2. D

Reulnx 4.2.6. Note that it is precisely for showing (a.2.13) that we use the
assumption that u1 and. u2 are strong frl-solutions. For weak .Fr1-solutions, we
only know that lull+l"rl € roo((0,f),.F11(RN)), which does not imply (4.2.13).

Proposition 4.2.5 can be extended to more general nonlinearities. We will not
study the general case. Note, however, that an immediate adaptation of the proof
of Proposition 4.2.5 yields the following result concerning local nonlinearities.

PRopostrtoN 4.2.7. Assume If > 3. Let g € C(C,C) wi,th g(0):0 satisf1

lg("') - sQz)l S c(t + lrrl"\ + lz2ln\11r, - "zl
Jor all 21, 22 € C. If p € Hl(RN) and, u1,lr2 are two strong Hr -solutions of e.l.I)
on sorne 'inter"ual I > O, then ?.1! :,t!2.

We will construct in the following sections solutions of (4.1.1) that are not 111-
solutions, and we now study uniqueness of such solutions. we begin with a lemma
about the equivalence of (4.1.1) and (4.1.2) for such solutions.

Lplraua 4.2.8. Let I ) 0 be an,interual, let s,o € JR, ond let g : II"(JRN) --+
ff'(RJV) be cont'inuous and bounded on bounded, sets. If u e L@e,A"1m.t;;, ilr",
both equations (4.1.1) and, (4.L.2) make sense Zn flr(RN) for p,: min{s -2,o}.
Moreouer, u sat'isfies equat'ion (4.1.1) for a.a. t € I if and only i.f u sati,sfies the
integral equat'ion (4.1.2) for a.a. t e I.

Pnoor'. Let u € L*(!,H"(Rt)). Since A € f(I/s(lR.N),F/"-r(R^r)), we see that
A,u e L*(I,l/"-'(Rt)). Moreover, 9(u) is measurable 1 -+ flo(lRN) because
9 € C(fI"(Rt),FI'(RN)), and bounded because g is bounded on bounded sets,
and so S@) e L*(I,II"(RN)). Thus we see that both equations make sense in
Au(RN). Since (7(t))16p is a group of isometries on //p(lRN), the equivalence
between the two then follows from the results of Section 1.6. tr

According to the above lemma, under appropriate assumptions on g, we can
address the question of uniqueness of solutions of (4.1.1) in ,L-(I,H"(RN)). We
have the following result, which is an easy application of Lemma 4.2.4.

PRopostrtoN 4.2.9. Cons,ider s ) 0. Let

(4.2.14) 91,. . . ,9k € c(H"(lRt)), a"(nt)) be bound,ed on bound,ed, sets,

for some o € IR, and let g : 97 * ... + g*. Assume that there erist erponents
ri,pi e l2,2Nl(N -2)) (ri,pi € [2,oo] a/ N :1) and functions Ci e C([0,oo))
such that

(4.2.15) llsi@) - si@)ll r,, 3 ci (M)llu - all 7, i,
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for atl u, u € I/"(lRN) such that llulls", llrllt' 3 M. Let p € F/s(RN) and u1,u2 €

L*(I,H"@N)) be two solut'ions of (a.I.l) on sorne'interual I > 0. If
k

ut - uz e ) lot (1, L'i (R")) ,

;-1

where qi 'i,s such that (q,ri) i,s an ad'mi'ssi'ble pair, then LLt:112.

Rur,tnRx 4.2.10. The assumptions (4.2.14), (4.2.15), and (4.2'16) deserve some

comments. (4.2.14) ensures that equation (4.1.1) makes sense for a function u €
L*(I,H'(RN)).(SeeLemma4.1.8.) Assumption (4.2.15) isaLipschitzcondition
for the gi's on bounded sets of I/"(RN). It is rather natural, since a Lipschitz

condition of some sort is necessary for a uniqueness property. Finally, (4.2.16) is a
regularity assumption on the difference of the solutions u1 and u2. In practice, it
is verified by requiring that I/"(IRN)'- L'o (lRN) for all j's, so that both u1 and

u2 belong to the prescribed space and in particular the difference ?.r1 - u2. Note,
however, that (4.2.16) is in principle weaker than assuming that both u1 and u2

belong to the prescribed space. For example, for the Navier-Stokes equation, the
difference of two solutions has a better regularity in certain spaces than each of the
solutions (see, e.g., [225]). However, it seems that no one could use such a property
for the Schrodinger equation to take advantage ofthe fact that (4.2.16) concerns the
difierence of two solutions (see Furioli and Terraneo [120] for interesting comments

on this problem).

(4.2.16)

Pnoop oF PRoPoSITIoN 4.2.9.
tion 4.2.3.

(4.2.17)

The proof is identical to the proof of Proposi-

RplteRx 4.2.77. Given s ) 0, we apply Proposition 4.2.9 to the model case

g(u): )lul'u where o ) 0 and ) e C. There are three conditions to be checked,

namely (4.2.14), (4.2.15), and (4.2.16). We note that, since 9 is a single power' we

do not need to decompose g: gr *..'+ gr.
Weinvestigatethecondition(4.2.l4).Supposefirsts>

H"(RN) .-' .Lp(lRN) for every 2 < p < co. It follows easily that (4.2.14) is sat-
isfied with o :0. Suppose now s < Nl2, so that f/"(RN) ._' .Lp(lRN) for every

2<p<2NlW -2s). Wededuceeasilythat if (N-2s)(o+1) ( 2N, then

9 € C(Hs (RN;, z,rm--*fi;=ru (RN)) .

Condition (4.2.14) is then satisfied, for example, with o < -N12. If, on the other
hand, (N -2s)(a + 1) < 2-lf, then 9(u) (which is a measurable function) need not
be locally integrable, so that g does not map I/"(Rt) into any space of the type
H"(RN). Therefore, we see that (4.2.14) is satisfied if and only if

I/(o - 1).s) ' '-- 2(a+i)

(In particular, there is no condition if o ( 1.)
We next investigate the condition (4.2.16). As observed in Remark 4.2.10,

we require that ,F/"(RN) -+ L'(RN), where r is as in (4.2.15). This is obviously
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satisfied if s > N12. If s < Nl2, then we need

(4.2.r8) 21r 1 2N
- N -2s

we now turn to the condition (4.2.15) and we first study the case s> Nl2by
using the inequality

llsfu) - s@)llr." Sc(llull-* + llrlli,s)ll" - rllr,.

We note that I/'(RN) .--+ Le(lRN) for all 2 < p < oo) so we see that (4.2.15) is
satisfied with p : r for all r > 2 sufficiently close to 2.

We then study the case s < Nl2, so that II"(RN) .-- trp(lRN) for every
2 < p < 2NlW - 2s), and we use the inequality

lls(z) - s@)llr.,, < c(ll"ll7., + llrllt") llu - r\ft." ,

where 1< p S oo satisfies
Q:l-1 

-1ppr
We begin with the case.ly': 1. Since the admissible values of. p are 2 S p < oo
and the admissible values of r are (by (a.2.18)) 2 < r < 2l$ - 2t), we see
that the admissible values of p are zalQ + 2s) ! p < oo. of course, we want
H"(RN) '+ ,e([RN), and this is compatible with the above restriction provided
2lQ - 2s) 2 2alQ+ 2s). We note that this is exactly (since s < tl2) the con-
dition (4.2.17). we now assume N > 2 and we begin by assuming s ) 1. In this
case (4.2.18) is not a further restriction on r, so that the admissible values of r and
p are2l r,p <2Nf(N - ?). Thus the admissible values of p are Nal2 <p < oo.
We want f/"(RN) - .Lp(lRN), and this is compatible with the above restriction pro-
vided 2N/(N-2") > Naf2, i.e., o ( al@ -2s). If s < 1, then we have the further
restriction (4.2.18) on r, so that the admissible values of p are NcrlQ*s) < p ( oo.
We want f/'(Rt) * .Lp(lRN), and this is compatible with the above restriction pro-
vided 21t((,n[ -2t)> NalQ *s), i.e., o < (2+2s)l(N -2s).

In conclusion, we see that if s
L*(1,I1"(Rt)). If s < Nl2 and N : 1, then there is uniqueness as soon as
the equation makes sense, i.e., as soon as (4.2.17\ holds, that is

N+2saslu'-zs'

If s < N12 and l[ ) 2, then there is uniqueness provided the equation makes sense,
i.e., provided (4.2.19) holds, but under the additional assumption

(4.2.20)
min{4, 2 + 2s}

N -2s

Rnv.q,Rx 4.2.12. Suppose g e C(C,,C) satisfies 9(0) : 0 and

ls|r) - g(zz)l < C(1 + lrtl" + lz2l')lz1 - z2l

for some a > 0. It follows that the conclusions of Remark 4.2.11 hold. More
precisely, there is uniqueness in tr@(.I,f/"(Rt)) provided s ) Nf2, or provided

(4.2.7e)

a<
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s < Nf2, (4.2.t9), and, if N ) 2, (4.2.20). To see this, we decompose 9:9r* 92,

where gr(0) : gz(0) :0, 91 is globally Lipschitz, and 92 satisfies

lgz("r) - s2(22)l < C(l"tl' + lz2l')lzt - zzl.

(See Section 3.2.) We may apply Proposition 4.2.9, since gz is handled with exactly
the argument of Remark 4.2.11 and 91 clearly satisfies (4.2.15) with 11 : Pt:2'

We now state an analogue of Proposition 4.2.7 in the case of fI' solutions.

PRoposrrroN 4.2.13. Assume,^/ > 3 and ! 1 s < Nl2. Let g € C(C.,C) with
g(0) : 0 sati,sfY

ls7) - sQz)l3 c(r + l"rl# + l"rl#)lq - "zl

for alt 21,22 e A. If p € H"(RN) and u1,u2 are two solutions o/ (4.1.1) in the

class C(l,//"(RN)) for some 'inter"ual I ) 0, then ur : It2.

PRoor'. Since N ) 3 and s ) 1, (4.2.17) is satisfied. This implies that equa-

tion (4.1.1) makes sense for a function u € C(I,fI"(RN)) (see Remarks 4.2'11

and 4.2.12). The proof is similar to the proof of Proposition 4.2.7. Note that we

use the same admissible pairs (oo,2) and (2,2N1@ - 2)), and that we use the

property u e C(I,r#1nN)), so that

11111,,1+1,,1r u1(a1+ l"rl)llr-rro,fl,zrg;) - 0 as M -+ oo'

tr

RBlteRx 4.2.14. The observations of Remarks 4.2.11 and 4.2.72 and Proposi-
tion 4.2.13 are part of the work of Kato [206]. In the single power case, we observe

that when -l{: 1 or when s > Nl2 there is always uniqueness in,L-(/,}I"(Rt))
assoon astheequationmakessense. WhenN ) 2 and0 ( s ( lf2, thereare
some cases where the equation makes sense; but uniqueness is not a consequence

of Remark 4.2.11, namely when

min{4,2+2s} N+2s
A/-2" \u \ rrr-2"

In fact, we will see in Section 4.9 that when a S 4l@ - 2s), one can construct f/s
solutions, while for a > 4l(N - 2s) the existence problem is open. Even if one is
willing to consider the restriction o ( 4lW - 2s) as essential, there still are cases

when uniqueness in L*(I ,fl"(Rt)) does not follow from Remark 4.2.11, namely
whenly')2,0(s<1and

2*2s 4

A/-2"(u(A/-2"
This has been an open problem since the work of Kato [206] but there was a recent

breakthrough by Furioli and Terraneo [120] who were able to fill part ofthe gap by
using in particular negative order Besov spaces.
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S2 4. THE LOCAL CAUCHY PROBLEM

4.3. Local Existence in II1(RN)
Consider 9r,. . . ,gk e C(Ht(RN)),1/-1(RN)) and let

9:9t*...+go.
the 93's satisfies the assumptions (3.3.5)-(3.3.8) for some

G : Gr *...1 Gp,

1fE(u): i / lvulr)1zdr-G1u\
NRN

for u € flt (Rt). We will apply the results of Section 3.3 to establish the followine
result.

Tnponpu 4.3.1- Il S i's as aboue, thenthe'in'it'ial-ualue problem (4.1.1) i.s locally
well posed in H1(IRN). Furtherrnore, there,is conseraati.on of charge and energy;
'i. e.,

ll"(t)lln, : llpllu, E(u(t)) : E(p),
for all t e (-?-t,,7^u*), where u'is the solut'ion of (4.1.L) wi,th the,in'itial ualue
(p € H1(RN).

PRoor. By Theorem 3.3.9 we need only show uniqueness, which follows from
Proposition 4.2.3. n

Rruanx 4.3.2. Note that the only ingredient that we used for proving unique-
ness (in Proposition 4.2.3) is Strichartz's estimate. In particular, it follows from
Remark 2.7.7 that Theorem 4.3.1 still holds if one replaces IRN by R{, or by certain
cones of IRN.

We now give some applications of Theorem 4.3.1 to the nonlinearities intro-
duced in Section 3.2.

Conot,r,.qnv 4.3.3.
Set

where

'(t r1r11u(z)12+ F(r,u(t i ^ (r\p\ar.G(u) : J \;r?lp(")l'+ F(r,u(r)) + ;(w *lul2)(r)lu .. 
,

NRN

It follows that the i,ni,ti,al-aalue problem (4.1.1) i.s locallg well posed en f/l(m.N).
Moreouer, there'is conseruat'ion of charge and energy; ,i.e.,

ll"(t)llu : llpllp,, E(u(t)) : E(p) ,

for atl t € (-4,in,T^u*), where u is the soluti,on of (4.1.1) wi.th the i,ni,tial ualue
(p € HI(RN).

Pnoor. Apply Theorem 4.3.1 (see Example 3.2.11).

Let s(u) : Vu* f (',u('))+(W*lul2)u be as 'i,n Example 3.2.1J.

1f
tlE(u):i llv"l,dr-G(u),zJ
RN

n
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CoRor,r,RRv 4.3.4. Let g(u) \lul'u wi'th ), € R and 0 (
(0<o<@i,f l{:1). Set

E(u):

93

a

| | v"f d'r - G(u),

RN

where

E(u) :| | tva, o, - # | ,"t"*, o*,
RN [RN

It follows that the initi,al-ualue problem (4.1.3) r,s locally well posed, in Hl(RN).
Moreouer, therei,s conseraat'i,on of charge and energy; 'i.e.,

ll"(t)llr., : llpllt, E(u(t)): n@)

for all t e (-?,,ir,,4,."), where u'is the solut'ion of (4.I.3) wi'th the'init'ial ualue
(p € frl(lRN).

4.4. Kato's Method

It g(u): \lulou with Im) f 0, then we may not apply Theorem 3'3.9 because

g satisfies neither (3.3.5) nor (3.3.8). T. Kato [203] introduced a method, based

on a fixed point argument and Strichartz's estimates' by which one can solve the
problem (4.1.1) for g as above. Besides, that method provides a simple, direct proof
of the local well-posedness result for a certain class of nonlinearities. We begin with
a typical result based on the fixed point method (see [203, 204] and Theorem 4.4.6

belorr for more general results).
Let f e C(C, C) satisfy

(4.4.r)

and

(4.4.2)

for all measurable u : IRN

for all u,o € C such that lul,lul < I{, with

(4.4.3)

Set

(4.4.4)

( L(t) € C([0, m)) if ,^'/ : 1

tr(t) <cG*io) witho<a<f,=2 ifN>2.

/(o) : o

l/(") - /(r)l s L(K)lu - ul

s@)@): f (u(r))

-+Canda.a.r€lRN.

THEoREM 4.4.1. Let f e C(C,C) sati'sfy (4.4.I)-(4.4.3) and let g
by (a.a.Q. If f (considered as a funct'i,on lR2 -* IR2/ zs of class Cl
i,ni,ti,al-ualue problem (4.1.1) i,s locallg well posed ?n fll(lRN).

be defined

, then the

Rouenx 4.4.2. Since we assume neither (3.3.5) nor (3.3.8), we cannot expect
conservation of charge and energy. If, in addition to the hypotheses of Theo-
rem 4.4.I, we assume (3.3.5) (respectively, (3.3.8)), then there is conservation of
energy (respectively, conservation of charge). See [203, 204] and Theorem 4.4.6
below.

I
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PRoop op THBonnv 4.4.r. we consider the case N > 2, the proof in the case
Itr : 1 being easily adapted. Let 0 € Cf (C, R) be such that 0(z) : 1 for l"l < t.
Setting

h@) : o(u)f (u),

fz(r):e-e(u))f(u),
one easily verifies that

(4.4.s) lh@) - /r(u)l < clu - ul 
'

lfz@) - fz(u)l3 C(1"1" + lul')lz - r'1,

where a is given by (4.4.3). Set g2(u)(r): fs(u(r)) for L:1,2 and let

r:a*2.
Using (4.4.5), we deduce from Hcilder's inequality that

llsr@) - u@)llv, Scllu-ullt,,(4.4.6\

llsz@) - gz(a)\i., 3 c(llullt. + Ilrll?")llu - rllr. ,

and from Remark 1.3.1(vii) that

(4.4.7) llvgr@)llr < cllYull;' 
'

llvgz(")llu, s cllulli"llv"llz" .

We now proceed in three steps.

Srnp 1. Local existence. Frx M,T > 0, to be chosen later, and let q be such
that (q, r) is an admissible pair. Consider the set

E : {u e L*((-7,"),I11(RN)) n Lq(eT,?), tyl''(RN));(4.4.8) (

ll rll r- tt-r,t),r/l ) < M, llul}." <<-r,r),w t,r) S M I
equipped with the distance

(4.4.9) d(u, u) : llu - ully"g-r,ry,t l + llu - ull;-11-r,r),1,).

We claim that (.8, d) is a complete metric space. Indeed, we need only show that
E is closed in Lq((-7,"),r'(RN)). Consider (un)n>o C E such that un -+ u
in Lq((-T,"),r'(RN)). In particular, there exists a subsequence, which we still
denote by (r,),r0, such that un(t) -. u(t) in ,"(RN) for a.a. t e (-7,?). Applying
Theorem 1.2.5 twice, we deduce that

u e L"((-7, ?), r11(tRN)) n ,Lq((-", ?), wl,'(Rl/))

and that
llull p* gr,r1,s' ) S tt"qtgf llu.ll p- _r,11,n t 1 I M,

llrll t 
" e r,rl,yv t,, 1 a t*$*f llunll u 6 r,r1,w t, * 1 < M ;

andsou€8.
Consider now u e E, Since 91 is continuous ,2(lRN) -' tr2(lRN), it fol-

lows that gr(u) , (-T,T) -- tr2(lR}i) is measurable, and we deduce easily that
sr(u) e L* ((-7,"), ,2(RN)). Similarly, since 92 is continuous .L'(R.N) * tr'' (lRN),

we see that s2(u) e Ls((-T,T),L'' (RN)). Using inequalities (4.4.6) and (4.a.7)
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and Remark 1.2.2(iii), we deduce the followinC: 91(u) e L*((-7,?),-Hl(R.N)),
sz(u) € Ls((-T,T),I4rt''' (RN)),

Ilsr(")llr-tt -r,r),Ht) < Cll"llr-tt -r,r),Ht) t

llgr(")llz,"r<- r,.r),w.,,') < cll"lli-<< _r,r),1,) ll'11r,"11-z,r; ,wlrJ),

and

llst(") - gr(u)llr-t er,r),12) 3 Cllu - ull;-1i-r,r),12) t

llszfu) - sr@)ll 
"' u-r,r1,ra 1 

1

C(ll"ll?-rr- r,r),1,) + llullf-11-r,D,L") ll, - ,llr,tt-r,D,L")'

Using the embedding Ht(Rt) '-+ tr'(lR.N) and Holder's inequality in time, we

deduce from the above estimates that

(4.4.10) llgr(r)ll6rr- r,r1,n,1*llsz(u)llr",u-r,r),wr,,,1 S C(r+rffi)0+M")M
and

llsr(") - gr(u)ll4rr -r,r),12) + llsz@) * gz(a)llu,tGr,r1,7.,11
(4.4.11)

C (r + r#)(1 + M')d(u, o) .

Given p € HI(RN) and u € E,let Tt(u) be defined by

(4.4.12) 11(u)(t) : v(t)e * o l" TQ - s)s(u(s))ds.

It follows from (4.4.10) and Strichartz's estimates that

(4.4.L3) 11(u) e C(l-'-r,"1,r/r(RN)) n Ls((-7,?),wr'"(lRN)),

and

ll11 (") l}, * u - r,r ), H 1 ) + ll11 (u) ll 7" x - r,r1,w t, 
" 1 3

(4.4.r4)
cllplln' + c(r +TW)G + M")M .

Also, we deduce from (4.4.11) that

lltl(") - 1l(u)ll7* x-r,r),12) + llTt(u) - H(r)|ft.,u-r,r1,t -1 1
(4'4'15) 

c(T +r#1g * Mo)d(u,u).

Finallv. note that

n-f':t-?:
qq' q

We now proceed as follows. Given p e

M:

and we choose 7 small enough so that

--a- (N -2)arv;*;;i > u

//t(RN), we set

1

26llvlln,,

c(r +r#16 + M") <
I
,
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Note that 7 depends on rp only through llpllar. It then follows from (4.4.14)
and (4.4.15) that

ll1{(u)llr-rr- r,r:),H,) + llH(u)117,1(r,r1,wt,.1 1 M ;

i.e.,71(u) € E and

d(11(u),11(r)) < ]a1r, r; .

In particular, '11 is a strict contraction on -8. By Banach,s fixed-point theorem,
7l has a unique fixed point u e E; i.e., u satisfies (4.1.2). By (4.4.13), 11(u) e
C{-f ,"],f/r(lRnI)), and so u e C(l-?:,"],Hr(RN)). Applying proposition 3.1.3,
we deduce that u is a strong f/r-solution of (4.1.1) on [-?,?].

Step 2. Uniqueness and the blowup alternative. Uniqueness follows from
Proposition 4.2.3. We then proceed as in the proof of Theorem 3.3.9: using unique.
ness, we define the maximal solution; and since the solution u of Step 1 is con-
structed on an interval depending on llplla', we deduce the blowup alternative.

Srep 3. Continuous dependence. Let g e f/l(RN); consider (gn)n>o C
Ilt(Rt) such that gn + rp in.F/1(IR.N) as n -' ooi and let u, be the maximal
solution of (4.i.1) corresponding to the initial value gn. We claim that there exists
T > 0 depending on llglls' such that u,, is defined on [-?,T]for n large enough
and un ---+ u in C(l-T,"],I/r (RN)) as rr ---+ oo. The result follows by iterating this
property in order to cover any compact subset of (-4nin,"r""").

We now prove the claim. Since llp^lln, t 2llplln' for n sufficiently large, we
deduce from Step 1 that there exists f :f (llplln') such that u and u, are defined
on [-?, Tl for n ) n6 and

(4.4.16) llulll-11-r,r;,rr; * ll".ll p u-r,"),n' ) < c llpll n' .

Note that u.(t) - u(t) : T(t)(p^- 9) +H(u-)(t) -71(u)(t). Therefore, apply-
ing (4.4.15) we obtain

llu" - ull 7* 1 r,T),L2) * llu. - ull p g-r,r1,u 
1

< cllP. - Plln'

+ C(r +r"#1(ll,r, - ull2*11-r,r1,7,1*llu- - ull7n11-r,r),1.)) ,

where C depends on llrplls'. By choosing 7 possibly smaller, but still depending

on llpllg,, we may assume that C(T +f#1 < l12 and we conclude that

(4.4.17) llu" - ullp1er,q,L2) * llr" - ull7"1-r,q,r.,1 < 2Cllgn - plln,.

Note that V commutes with I(t), and so

sup
n?no

7t
Vu(t):T(t)Ve+i I

JO
T(t - s)Ys(u)ds.
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A similar identity holds for u,,. We now use the assumption / e Ct(R',1R2), which

implies that Vg(u) : fI(u)Yu. Therefore, we may write

Y (un - u)(t) : T(t)Y (u*- u) + t [' rp- s)/'(u')V (u. - u)d's

7t 
Jo

+ i 
Jo 

T(t - s)(.f'(u") - f'(u))Yuds.

Note that fi and f2 are also Cl, so that f' : f! * /{. Therefore, arguing as in
Step 1 and using (4.4.16), we obtain the estimate

ll V (r, - u) ll z- rt-r,r1, r,z1 * ll V(r, - u)ll 7" q-r,r1, ul
< clllP" - Plln'

+ (" + r#)(llV(,r, - u)ll2*11-r,r7,r,21* llV(,r, - u)117'"11-r,r),La)

+ ll 
(fl (u") - f!(u))vull 

", 11_r,r1,",1

+ llui@; - f2@\vull""'11_r,r1,"n1) '

where C depends on llplls'. By choosing ? possibly smaller, but still depending
on llglls', we deduce that

llV("' - u)llr-tt-r,r1,u1* llV("' - u)lluu-r,n,rt
3 c lllp " - pll n' + ll (/i ("") - f i@Dv ulb,' (er,n, r,")

+ llUl@) - f2@\vullLs,((-r,r),1,,)f .

Therefore, if we show that

llff i("") - f 't(u))V ulh", s-r,r1,u1
+ llffl@.) - f[(u))vull7n,s-r,r1,r,') ,;] 0,

we obtain that

(4.4.1e) llV("" - u)llr-rr-r,ry,u1t llV(r' - u)lluu-r,r),r) n+ 0,

which, combined with (4.4.17), yields the desired convergence. We prove (4.4.18)
by contradiction, and we a.ssume that there exist e > 0, and a subsequence, which
we still denote by (u")",20 such that

ll U i("") - f i@))v ull u (-r,n, r,)
+ llUl@i - f!2@))v ull 7e, s-r,\,,., ) >, .

By using (4.4.LT) and by possibly extracting a subsequence) we may assume that
'un + u a.e. on (-T,T) x IRN and that there exists tu e Ln((-7,?),r'(RN))
such that lu*l < ?, a.e. on (-T,T) x lRN. In particular, (fi(u.) - /{(u))Vu and

ffi@) - ft(u))Vu both converge to 0 a.e. on (-T,f) x lRN. Since

lffi@) - f i@\vul < ClVul e Lt(?7,?), r2(RN)) ,

and

lffl@) - f!2fu))vul < c(lu.l + lul")lvul
< C(lrl'+ lul")lVul e Lq'((-T,T),L'' (RN)) ,

(4.4.i8)

(4.4.20)
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we obtain from the dominated convergence a contradiction with (4.4.20). D

Rnltenx 4.4.3. It follows follows easily from (4.4.10) and Strichartz's estimates
that

u e Ll""((-T^i,, ?L.*), wl'o(Rjv))
for every admissible pair (7,p).

REMARK 4.4.4. (4.4.19) and (4.4.17) imply that the solution depends continu-
ously on the initial value not only in C(f,.Hl(RN)) but also in rs(/,W1''(IRi/))
(and more generally in L1(1,Wl'p(RN)), where (f,p) ir any admissible pair).

Rpurnx 4.4.5. Let f e C(C, C) satisfy (4.4.I)-(4.4.3) (i.e., / is as in Theo-
rem 4.4.1 except that we do not assume that / is C1). Since we used the Cl
assumption only at the end of Step 3 of the proof of Theorem 4.4.1, there is local
existence and the blowup alternative. The full statement of continuous dependence
might fail. However, there is a weaker form of continuous dependence. First, with
the notation of Step 3, 2," is defined on an interval l-T,?] for n large, with ?
depending on llplls'. Also, we still have estimates (4.4.i6) and (4.4.17). Using
Gagliardo-Nirenberg's inequality and a covering argument, we deduce that un ---+ 11

in C([-7,"],re(R.N)) for all 2 < p <2Nl(N -2).

The method of proof of Theorem 4.4.I can be applied to more general non-
linearities. More precisely, let g € C(.F/l(Rt),ff-t1nqt)) and suppose that there
exists 2 1r,p 12N/(N -2) (2 1r,p 1 oo if lf:1) such that

(4.4.21) llg(u) - s@)llr.,, ! c (u)llu - allr"

for all u,u e .F/1(RN) such that llrlln',llrlls' < M. Suppose further that

(4.4.22) lls@)\\w,,,, s c(M)(r + llullw',)
for all u € f/1(RN) n W!,'(IRN) such that ll"lln' < M.

THpoRBu 4.4.6. Let g : $ *'..* gx, where each of the gi's satisfies (4.4.2I)-
(4.4.22) for some erponents rj,pj. For eaerA g € .Hl(RN), there erists a un'ique,
strong Hr -solut'ion u of (4.7.l) , defined on a marimal time 'inter:ual ( -4,i, , ?,,.* ) .

Moreouer,
u e Lio.(eT^i,, T-u*), Wt''(Rt))

for euery admi,ssi,ble pa'i,r (a,b). In addit'ion, the followi,ng properties hold.

(i) There i.s the blowup alternat'iue; i,.e., llu(t)lls' - x as t I T^u* if
?-.* ( a and os t J -7-L6 'if T^in <-oo.

(ii) u depends continuously on g i.n the followi,ng sense'- There erists T > 0
dependi,ng on llplln, such that if pn - 9 zn fIl(RN) and i.f un is the

correspond'ing solut'ion of (4.I.1), then un i,s defined on [-T,T] lor n large
enough and un---+ u 'in C(l-f ,"], rp(RN)) for all2 3 p < 2Nl(N - 2).

(iii) # (s@),'iw)p-r,s',:0 for allw € Hr(RN), then there'is conservati,on of
charge; i,.e., llu(t)llyz : llgllp for all t e (-4,i.,4..*).

(iv) ffeachof thegi'ssat'isfies (3.3.5), thenthere'isconseruati,onof energy;'i.e.,
E(u(t)) : E(d for all t € (-floi,, T^u*), where E is defined by (3.3.9) wi,th

G:Gr*"'*Gx.



4.4. KATO'S METHOD

PRoor. We set
r : max{rr, . . . ,Tk, ptr. .. , Pnl. ,

and we consider the corresponding admissible pair (q,r). Given M,T ) 0 to be

chosen later, we consider the complete metric space (E, d) defined by (4.4.8)-(4.4.9).

We now proceed in three stePs.

Srnp 1. Existence, uniqueness' regularity, the blowup alternative, and con-

tinuous dependence. We first claim that if I e I/t(lRt), then the mapping 7l
defined by (a.AJ2) is a strict contraction on -E for appropriate choices of M and,T.

Given 1 S f S k, we consider qj,'lj such that (qi,ri) and (?i, pi) ate admissible

pairs. It follows from Hcilder's inequality that
2(r-r:i) ?(r j -2)

llwllw,,o < ll*llTa llwllffl,
so that

!+g "1i_?!
ll*ll r,", ((- r.,r),w t, jl < I l, | | ffi 'l r,r), r, )ll, llZ|[t ]i,r),w,,, 1 

.

In particular, if u € .8, then u e Lsi ((-T,T),1y1'"(RN)) for all 1 S j < k and

(4.4.23) llrllu, <<-r,r),w,,,i) 3 uTB xaffi : u .

Next, it follows from (4.4.2I)-(4.4.22) that gy is continuous al(mN) -* rp;(lRN).

We deduce that if u € E, then gi(u) : (-7,.7) -* ,p;(RN) is measurable, and

it follows easily that si@) e L*((-T,T),Lo'i(RN)). Applying Remark 1.2.2(iii)

and, (4.4.22)-(4.4.23),we conclude that gi@) e Lqi((*T,T),WL'I'i(RN)) and

11

llgi@)ll 
",, 

(-.r,r),w,,0i, 3 cu(rG + llzllr", (er,r),w'\''j,) < c*1ra + M) ,

where Cu depends on M. It follows that

' 
qi-t'l

llsi@)ll t,i (er,r),w,,o'i ) < c * (r " + M)T' ei' i

Applying now Strichartz's inequalities, we deduce from (4.4.24) that if ? ( 1, then

71(u) e Lo(?r,?), wr''(iRN)) n c([-", 
"], 

f/l(RN))

and

llft(")llr'rr- r,r),w1,,) + llTl(u)llp*(-r,r),H,) < Kllplln, * KCy(7 + M)7" ,

where
o._Jj_sg.

": '?i2oAti
We now choose M,T so that M > 2Kllplln' and KCy(l + M)7" S M and we

see that 11(u) e.E for all u e E. (Note that 7 depends on p through llplls'.)
Applying now (4.4.21), it is not difficult to show by similar estimates that' by
possibly choosing T smaller (but still depending on lltplls')'

(4.4.24)

(4.4.25) d(H(u),11(,)) <|a6,r1
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for all u1a e E. So ?l has a fixed point z € E. This proves the existence part.
Uniqueness follows from Proposition 4.2.3. The 2fr"((-7],i., ?-.*), Wl'b1RN)) reg-
ularity follows from (4.4.24) and Strichartz's estimates. The blowup alternative is
proved as in Theorem 4.4.I and continuous dependence as in Remark 4.4.b.

Srsp 2. Property (iii). Since equation (4.1.1) makes sense in ff-l(RN) for
a.a. t € (-?rni.,,7,,.*), we may multiply it (in the H-1-Hr duality) by iu, and we
obtain

(u1,u)s-t,s' - (-Au,iu)p-',s, + k(u),,iu)s-',11t :0.
Since u e fff" ((-z;i,, ?-.*), If t (RN)) and u1 € rf"((-I"i,, ?,,.*), H- t (RN) ),
we deduce that

d..
*llult)111,, 

: 2(ut, u) I - t,pt : 0,

and the result follows.

Srep 3. Property (iv). We first assume that p e H2(IRN). Given e ) 0, we
set 1, - (I -eL)-2. The reader is referred to Propositions 1.5.2 and 1.b.3 for all
the relevant properties of 1r. We define

gl,(w): Irgi(I,w)

for 1 ( j < k and?.u € FII(RN), and we set

k

g,:l 9i,, and G,(w): G(I,w).
j:1

We observe that the gj.,e 's satisfy the same estimates as the g3's, uniformly in e > 0
and that

(4.4.26) 9, : G',.

We denote by u. the solutions of (4.1.1) with 9 replaced by 9,. It follows from
the estimates of Step I that there exists f :f(lplln') such that u. is defined on

[-7, T] and

(4.4.27) _;ll=, llu.(t)llri, 1M:M(llplln,).

Since u, is continuou, t-;,?] --'Hl(nN) so is 7"ur. There fore, g(Irur)is con-
tinuous l-T,Tl -* g-t(ftiv), thus g.(u,) is continuous [-?,"] --+ f12(RN). Since

I € IJ2(RN), we deduce that

u, € c(-7, ?1,.rr'2(RN)) n cl([-", 
"], 

r2(RN)) .

Therefore, we may take the .L2 scalar product of the equation with

\tue € c([-7,"], r2(RN))

and obtain

(i01u*i01us)u * (Aur,01u,)p * \gr(ur),01u)yz :0.

Using (4.4.26), we deduce that

d (1 f ^ l;t; I lYu,l' - G,(u,)l : 0,
uL \z J )

RN
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so that

I tn.n.x) ![rvu.t'-G,(u"):;Ilvpl'-G,(p)
I 'J,' RN

; for all t e l-T,Tl. We claim that, after possibly choosing ? smaller (but still

I aupending on ll,Plls'),

(4.4.29) u, ,i u

I
I in C(-f ,"], re(RN)) for all 2 < p < 2NlW - 2). Indeed for every j we write

. si,u(r') - gi(u) : gi,,(u,) - gi,,@) -l I,(s1Q,u) - gi(")) + (1. - I)si@) ,

I rna we deduce that, with the notation of Step 1,

llsil,(u,) - si@)ll L,i ({_r,r1,r.o'i1T-
I < llsi,,(u,) - l1,,fu)ll 

""'i 
11_r,r1,r."'i1

+ ll s i Q,u) - s i (")ll r." ! 11_ r,r1, r,i 1 
+ | | 

(/. - I ) s i @) ll 

",-'i 
11_r,r1, z,'i ; 

.

I
I Sitt"e si@) e L1i((-T,T),Lo'i(RN)), we have

I ll!, - I)%(u)ll 
"411_r,r1,",',t 

,i o .

I N"*t, since I,u-- u in C(l-l,"], Hl(Rl/)), we deduce from (4.4.21) that

I llsi!,r) - gi@)ll",i(er,r),r.0'i) 
= 

o.
It 

W" also deduce from (4.4.21) applied to gj,, and, (4.4.27) that (see the estimates of

, 
Sten 1)

I llgi,,(u,) - 91,,@)ll,,ii 
11_r,r1,r,,'i1 

< cr"llu, - ullrni1.-r,n,r) .

; 
Using the above estimates and Strichartz's inequalities, we conclude that

I ll", - ullt *rt-T,r),L2) * llr' - ull7"g-r,r1,7,y 1 a, * CT"llu, - ullu(-r,D,r."t

, 
with ae + 0 as e J 0. By choosing ?r sufficientlv small, we deduce that

I llu, - ull1*g-r,ry,u1 ---+ 0 as e J 0,

- and (4.4.29) follows by applying (4.4.27) and Gagliardo-Nirenberg's inequality.

I 
ttext, we deduce easily from (4.4.21)-(4.4.22) that (see the proof of (3.3.14))

(4.4.30) lG(") - G(r)l S C(u)(llu - ull* + llu - t'll;')

I for alIu,u € HI(RN) such that llrlls',llrllr' < M.In particular,
I' 1a.a.sr; lc"(p) - c(dl S C(lll,p - p\ft." + lll,v - elb,,); 0.

I
I Sit"ilarly, one shows using (4.4.29) and (4.4.30) that

(4.4.32) lG,(u,) - G(u)l ;0
II
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for all -? < t < T. We now let e J 0 in (4.4.28). Since

llVu(t)lly" 1. Iiminf llYu.(t)117" ,

we deduce by using (4.4.31) and (4.4.32) that

(4.4.33) E(u(t)) < E(p)

forall-?<t<7.
We now consider g € III(IRN). We approximate g in Ill(JRN) by a sequence

(pn)n>r C I/2(IRI{), and we denote by u, the corresponding solutions of ( .1.1).
we note that un satisfies (4.4.33). Letting n ---+ 6, using continuous dependence
(property (ii)) and the argument just above, we deduce that u satisfies (4.4.83).
This means that E(t^r,(t)) has a local maximum at t : 0. The same property
applied after replacing p by u(ts), where to € (-?,"t",?-1,.*) is arbitrary, implies
that E(u(t)) has a local maximum at t : to. since E(u(t)) is a continuous function
of t, it must be constant. This completes the proof. fl

Conol,reny 4.4.7. Let g be as,i,n Theorern 4.4.6. If each of the 9i,s sat'is-
ytes (3.3.5), then the'in'itial-aalue problem (4.1.1) is locally well posed ?n Ifl(RN).

Pnoor'. By Theorem 4.4.6, we need only prove the continuous dependencel i.e.,
that if gn + 9 in ,I/l(lR.N) and if un and. u are the corresponding solutions
of (4.1.1), then for every interval [-,9,f] c (-%in(9),7^^*19)), un---+ u in
C(l-l,"],Hr(RN)). We claim that there exists ? > 0 depending on llgllgr such
that un is defined on [-7, Tl for n large enough andun --r z in C([-7,"], f/l(Rl[))
as n ---+ oo. The result follows by iterating this property in order to cover any com-
pact subset of (-?-i,,?,"u*). We now prove the claim. By Theorem 4.4.6(ii), we
know that there exists ? > 0 depending on llrpllpr such that un is defined onl-T,Tl
fornlargeenough andu, -i u in C([-1:,"],re(R.N)) for all2 Sp <2NlioV-2).Ii
follows that (see (4.4.27)) G(u^) --, G(u) in C([-7,7]). By conservation of energy,
llVu"lllz --+ llVulllz in C([-?,?]), so that (see Proposition 1.3.14) Yun -, Vu in
C([-7,"], r2(RN)). This completes the proof. n

Rpuanx 4.4.8. We may apply Theorem 4.4.6 to the case

g(u) : vu + f (u(.)) + (w * lulz)u,
where V,VV € r6(RN) + r-(R/v) for some d > 1, 5 > Nl2, / is as in The-
orem 4.4.1 (for example, f(z) : Alzloz with ) € C and (N - 2)a < 4), and
IZ e .L"(IRN) + Z-1nN; for some o ) I, o > N/4. This follows easily from the
estimates of Section 3.2. Note that in this case, even though the assumptions of
Corollary 4.4.7 are possibly not satisfied, the initial-value problem (4.1.1) is, how-
ever, locally well-posed in f/l(JRN). We need only prove the continuous dependence,
and this follows from the argument used in Step 3 of the proof of Theorem 4.4.1.
The term Y[V(u" - u) + (W * lu"l2)u. - (W x lul2)u] is easily estimated by using
the formula

Y[Vu + (W *lul2)u] :
VVu-tVVu* (W *lul2)Vu* (W *uY-u)u+ (W *V.u-lu)u

together with Holder and Young's inequalities. Note, in addition, that there is
conservation of charge provided V and W are real valued and Im(/(z)Z) : 0 for
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all z € C. Moreover, there is conservation of energy provided V and I4l are real

valued, I4l is even, and f(z): z0(lzl)llzl for all zl0with d: (0,m) -+lR'

4.5. A Critical Case in ,Fft(Rt)

In this section we assume N > 3. If we consider the model case 9(u) : \lulu
with ,\ € lR and 0 ) 0, then it follows from Corollaty 4.3.4 that the initial-value
problem (4.i.3) is locally well posed in Hl(RN) if. a < 4l(N -2). It a > 4l(N -2),
it"r,9 does not map I/I(R.N) -+ I{-l(Rt), ro we may consider the problem out

of the reach of our method. (See Section 9.4 for some partial results in that case.)

In the limiting case o :41(N -2), g € C(Hl(lRN),f/-t(RN)), the energy is well

defined on I/1(IRN), and the various notions of f/l-solutions make sense. On the

other hand, the methods we presented do not apply at several steps. However,

since this is a borderline case, we may think that an appropriate refinement of the

method will yield some local well-posedness result. This is indeed the case, and

below is such a result. (See Cazenave and Weissler [69]')

THsonpN'{ 4'5'1' Assume N > 3' Let g(u): 
^lul#u 

wi'th A e R' For euery

p € r/l(RN ), there egi'sts a un'ique strong Hl -solut'ion u of @.1.3) defined on the

marimal'interval (-?..i., T^^*) with 0 ( 4'.*,?"*i' ( q- Moreoaer, the following
properties hold:

(i) There'is conseraat'ion of charge and energy.

(ii) u e Llo"(-T^in,4n,*),W1'p(RN)) for euery admi,ssible pai,r (q,r).

(iii) # ?,.* ( a (respect'iuely, T^in ( *), then llVullTc((0,"*"*),/,') : +oo
(respectiuely, llVrllr"tt-?616,0),/.') : +oo) for euery admi'ssi'ble pair (q,r)
wi'th2<r<l{.

(iv) u depends continuouslg on (p as follows. The functione 4'u*' T^in are lower

semrcont'inuous HI(RN) -' (0, oo]. Moreouer, if gn - cp zn, f/l(RN) and i,f

un is the mari,mal solut'ion of ( l3) wi'th the i'nitial ualue gn, then un --+ u
,i,n Lv((-5,?),H1(R.N)) for euery p < oo and eueryi'nter"ual [-,S'"] c
(-4ttin, T^u*)'

Rpu,q,nx 4.5.2. Here are some comments on Theorem 4.5.1.

(i) We do not know whether there is uniqueness in the sense of Definition 3.1.4,

i.e., uniqueness of weak -I/1-solutions. In our proof of uniqueness' it is

essential that we consider strong fll-solutions.

(ii) We do not know whether the usual blowup alternative holds (i.e., the blowup
of llu(t)llp'). In particular, we cannot deduce global existence results from

the a priori estimates of llu(t)llg' that follow from the conservation laws

when ) < 0.

(iii) The statement of contjnuous dependence is weaker than usual, since u, ---+ 11

in Le((-5,?),,41(lRN)) for every p ( €, but possibly not for p : q. In the
case ) < 0, then there is also convergence for p : oo; see Remark 4.5.4(iii)'

There are at least two methods for proving the existence part in Theorem 4'5.1.

One can use a variation of Kato's method. This provides a simple proof, but it is

then delicate to establish the conservation of energy. Instead, one can truncate
the nonlinearity g and obtain solutions of the truncated problem for which there is
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conservation of energy. Next, one uses the Strichartz estimates to pass to the limit.
This is the method we follow here.

We begin by introducing the truncated problem. Given n € N, let

(4.5.1) sn(u): { 
t.'2"_ if lul s n

[ .\n w= u if. lul > n.

In particular, gn i C --- C is globally Lipschitz. Set

(4.5.2) G,,(s) : [' s*@)ao ,
Jo

so that lc"(s)l I Cns2 for all s ) 0, and let En€ C1(.F/1(R.N),lR) be defined by

(4.5.3) E.(u) :: I lvul, - [ 
".@)'o'* i"

for all z € I/I(RJV). Given ? > 0 and u: [0,7) -'-Fft(lRN), define ?1,,(u) by

(4.5.4) vt^(u)(t) : v(t)e * o [' I(r - s)e,(u(s))ds
JO

for 0 ( t <7. ?l is defined similarly, by replacing gnby g in ( .b. ). Finalty, let

(4.5.b) o: *rffi, .y:#,
so that (1, p) is an admissible pair. We will use the following lemma.

Lnnua 4.5.3. If (q,r) 'i,s any admi,ssi,ble pa'ir, then

1111"(u) -'t7*(u)ll u r(o,r),r,) <(4.5.6))
C(llVull1,"((0,r),r,p) + llVullr,11o ,r),t l)# ll, - ull7.1e,r1,r,o1,

(4.5.7) ll7 11, (u) ll y" ((0,7a), L. ) t C llT (.)V ell r." 11o,ry, u y + C ll Vu 
I I ffi o,r), r. o y t

1171"(u) - 17(u)llz"to,"),r,.; (
(4.5.8) N-2 a _-3__ N2-2N+"

cr+# n- NT^==r, 
ll v"ll ffio,ry,r,y llrllffifr,o, y,

for some constant C i,ndependent of n, T, and, p.

Pnoor. It is clear that ls,(u) - s,@)l S C(]{lt'l- + @lw*:,)|" - ,l for some
constant C independent of rz. Therefore,

llg"(")-g"(u)llr,,,t@,7),Lp,) 
. _A_

< c(ll"ll - ,r- + llull -ry.-. ) 
* 

llu - ?,111((0 ,r),Lp) ,1" " 1,r (10.r-) ,Lffi ) " " La ((0,-r\,LN-z ) / Ir --

by Hcilder's inequality in space, then in time. Since lltrll,#g S CllVwllp, by

Sobolev's inequality, (4.5.6) follows by applying Strichartz"is estimate. ( .b.Z) is
proved similarly, by using the inequality lVg,(u)l < Clultt=z lVul. Next,

lg,(u) - g(u)l < Clulr+z 1111.,1y,1,rl,1.



4.5. A CRITICAL CASE IN III(RN)

We deduce that

(4.5.e) lls'@) - sfu)llL,,uo,r),1p,) < CllVulltr o,,r),Le) 11111,11,,1u11r, 1((0,.t),Le) .

Finally,

o N2 -zN +t 
^ 

N2 -2!J!
(4.5.10) 11111,11,1u11; p < n-rrrt-z'll"llrkiM I Qn-LN1n-21ll"lll@ .

(4.5.8) follows from (4.5.9), (4.5.10), and Hcilder's inequality in time. n

Pnoor oF THEoREvT 4.5,1. We consider only positive times, the problem for
t < 0 being treated by the same method. We proceed in six steps.

S:rBp 1. Uniqueness. This follows from Proposition 4.2.5.

Srsp 2. Approximate solutions. Since 9,, defined by (4.5.1) is globally Lip-
schitz C --r C, there exists a unique, global solution un e C([O,m), }1 1(m.N)) of the
problem

(4.5.11) un(t) : U"(u)(t)

for all t ) 0. Moreover, there is conservation of charge and energy,

(4.5.r2) llun(t)llL' : llplln, E"(u"(t)): E^(p)

for all t ) 0. See, for example, Corollary 4.3.3 and Corollary 6.1.2 below. F\rrther-
more, it follows from Remark 4.4.3 or Theorem 4.4.6 that

(4.5.13) un € Ls((0,?), wl''(lRN))

for every admissible pair (9, r) and every 7 > 0. Consider now any admissible pair
(q,r) and any T > 0. We deduce from (4.5.13), (4.5.11), and (4.5.7) that

(4'5.14) llv.,2ll;o11o,r ),1,) < Ilv(')vpllr"r(0,"),r.) + cllvu'llffi o,r),Lp).

Similarly, we deduce from (4.5.6) that

(4.b.1b) llu2ll;c11o,r) ,4 3 Cllellp -t CllVunllftp,rt,",tllunlly,1p,r1,r.,1.

Finally, given / ) n, we may write

ltn - Itr : l'11.(u") - 71^(uD) + 171.(ua) -'\l(udl + [11(u) - lldud],

and we deduce from (4.5.6) and (4.5.8) that

llu. - usll7"1e,T),L,)

(4.5.16) <c(llvu'll L1((o,r),Le)+llvuslli,'1e,r'1,2"7)#
/ .. N -2 4 .. N-3;? N*o \
( I I 

u" - u sll p go,r. L e 1 * T -7N- n- xTF-:z) ll" ell 

"'Jl 
rio.il, n, ) ) .

Note that the constant C in (4.5.74), (4.5.15), and (4.5.16) may depend on the
admissible pair (q,r), but is independent of n, (., andT.

Srnp 3. Passage to the limit. We will solve the equation (4.1.4) (which is

equivalent to (4.1.3)), by letting ?? --+ oo in (4.5.11). Consider K larger than the
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(4.5.18)

then

(4.5.1e)

and

(4.5.20)
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constant C appearing in (4.5.14), (4.5.15), and (4.5.16) for the particular choice of
the admissible pair (q,r): (7,p). Fix 6 > 0 small enough so that

Ke6)# <!.
We claim that if 0 < T ( oo is such that

llY(')vpllr'r @,r),roy 4 6,

sup llVu" lll t (0,\;,c1 I 26

sup 11u,111"110,"),w1,r) < oo

for every admissible pair (q,r). (Note that, given (p € f/l(RN), (4.5.1S) is satisfied
if 7 > 0 is sufficiently small. Indeed, T(.)V e € ,L"((0, oo), Le(lRN)) by Strichartz's
estimate, so that by dominated convergence llf(.)V,pllr,,1g,r1,ro1--+ 0 as 

" 
J 0.)

Set d,(t) : llVu,ll;'1 3,t),Lp).It follows from (4.5.14) that for every 0 1t 17,

e.(t)<t+ce^61{E''-...

fi. 0.(t) : 26 for some t e [0, ?], then

25<6+c(2fi#4 a25,

by (4.5.i7), which is absurd. Since d, is a continuous function with d,(0) : 0,
we conclude that 0.(t) < 25 for all t € [0,?), which proves (4.5.19). Applying
now (4.5.14) for any admissible pair (g,r), we find that

(4.5.2r) sup llVun llz,n((o,rt,r.,l < m .

n)0

Applying (4.5.15) with (q, r) : ('t,p) and using (4.5.17) and (4.5.19), we obtain

ll u, ll ;, 110,r;,u> < C llpll 
"" 

* ;llunll 7, 11s,71,2o 1,

and so ll?r,? llr'((0,") ,r,,1 < 2Cllgll1,. We then applv (4.5.15) for anv admissible pair
(q,r) and we deduce that

(4.5.22) sup llu"ll1"1i0,"),r,) < oo.

(4.5.20) now follows from (4.5.21) and @.5.22). We now deduce from (4.5.19),
from (4.5.20) applied with (q,"): (oo,2), and from (4.5.16) applied with (q,r):
(7, p), that

llun - uslll.((o,a),Lp) 
= |{tt"^ - u2llp110,r),r.c1 r g,# r-olri=zJ1

for all ( ) n and for all 0 ( r ( T, r I m. (Note that we used again (4.5.17).)
It follows that (u,,)",>6 is a Cauchy sequence in ,L1((0,r),Ie(RN)). Applying
again (4.5.16), but with an arbitrary admissible pair (q, r), we conclude that (un)n>o



4.5. A CRTTTCAL CASE rN rrl(RN) 107

is a Cauchy sequence in,Lq((0,r),r'(RN)). If we denote by u its limit, then for
every admissible pair (q,r), u € ,s((0,?), W1''(lRN)) by (4.5.20) and

(4.5.23) Un ----a un+m

in .Lq((O,2),I'(RN)) for all 0 ( r ( T, r 1 oo. By using Lemma 4.5.3 we may
let ru --+ m in (4.5.11), and we obtain that u satisfies (4.1.4) for all 0 < t < ?,
t<oo. Sinceg(u) eL1'((0,?),Wl,p'(lR")),*"deducefromstrichartz'sestimate
that u € C([0,r],.F/l(Rtr)) forevery0 < r ( T,r 1oo. Inparticular, u is astrong
I/l-solution of (4.1.3) by Proposition 3.1.3.

Stnp 4. The conservation laws. We deduce from the conservation of mass

for un (see (4.5.12)) and from (4.5.23) applied with (q,r): (oo,2) that llu(t)111, :
llpllu.We now show the conservation of energy. Applying (4.5.23) with (q,r) :
(oo,2) and using (4.5.20),we deduce easily that un + 'u in .Lq((0, r), L** (RN)) for
everyr ( @, T (7, andeveryq( oo. In particular, thereexists asubsequence,

which we still denote by (r",)",r0, such that un(t)--. u(i) in.ft5(mN) for a.a. f €
(0,"). It follows thaL Gn(un) --+ G(u) in .11(nN) for a.a. t € (0,?). Using the
conservation of energy f.or un and the lower semicontinuity of the gradient term,
we deduce that E(u(t)) S O(e) for a.a. t € (0, ?), hence for all i € (0,7) by
continuity of u(t) in fIl(lRN). Considering the reverse equation, one shows the
converse inequality.

Stpp 5. The blowup alternative. By uniqueness) we may consider the max-
imal solution, defined on the interval [0,4r"*). We show the blowup alternative by
contradiction, so we assume that ftu* < oo and u e Lq((0,?rr"*),W1''(RN)) for
some admissible pair (q, r) with 2 < r < l[. Let b e (2, *5) U" defined by

2-1- 4 f1 - 1\
N -2U - r//'

and let o be such that (o,b) is an admissible pair. Since lvg(")l < Clul#zlVul,
one easily verifies by using the Sobolev inequality ll"llr* < CllVull;" that

(4.5.24)
___3_

ll s(r) ll r", rr,, t),w L,b, ) 3 cll Vull i41s,t), L") ll ull ;. 11",1;,w',0 y,

with C independent of 0 < s ( f < 7-*. Since

(4.5.25)

we deduce from Strichartz's estimate that

llullL"<<",r),*,,,; < cllu(s)llr, + cllvullF& ,r),L.yllullr,"1(s,t),wt,b) t

with Cindependentof 0 ( s ( f ( 4nax. Fix s closeenoughto ft.* sothat
___!_

cllvulli4i",ro,u*),1,) S L 12. It follows that

llullr.tt,,tl,rry',uy < 2Cllu(s)llp'

forall s 1t 1T^u*, andso u e La((s,?.,,u*),Wt'u(Rt)). Therefore, u €
L"((0,?.,.*),tr'a1RN)) and, applying again (4.5.24), we conclude that 9(u) e

u(s+r) :I(z)u(s) +i I Tk-o)s(u(s*o))d,o,
JO
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La'((0,7^u), wl'b'(RN)), so that u e L1((0,?,,.,), Wl'p(RN)) by Strichartz's es-

timate. We finally deduce from (4.5.25) and Lemma 4.5.3 that

lly(')z(t)llz,'((0,?*"*-r),lv',,,; < llulll'((r,?-,*),wr,p) + Cllullffi t,rmax),wL,p) 1

where C is independent of t € [0, ?rn.*]. Therefore, we may choose t close enough to
?',,'* so that llI(')u(t)llz'((0,r,,,". -t),wt,p) ( 6 with d given by (a.5.17). Therefore,
there exists e ) 0 such that llI(.)z(t)llr'((0,r,""*+€-t),w',p) < d. We deduce from
Step 3 that the solution u can be extended to the interval [0,?-,* * e], which
contradicts the maximality.

Srnp 6. Continuousdependence. Fix0 < T 1T^u* andletd > 0sat-
isfy (4.5.17). Since u e C([0,"],11r(RN)), Uo5rsr{r(t)} is a compact set of
f/t(Rt). Therefore, it follows from Strichartz's estimate that there exists r > 0
such that

(4.5.26) llI(.)u(t) ll1,'((o,z),wr,p) (
6
;z

Suppose flow pn ---+ tp in Ht(Rt). It follows in particular from (4.5.26) and
Strichartz's estimate that llI(.)pnll7,qo,,1,wl,o) ( d for n, large enough. There-
fore, by Step 3, the solution u. of (4.1.3) with the initial value p, exists on [0, r]
and llVu"llr,t(o,r),rc1 126. Arguing as in Step 4, we deduce that un + u in
Ls((0,r),,L'(RN)) and that u, is in a bounded subset of .Lq((0,r),I4l1''(lRN)) for
every admissible pair (q,r). Therefore (see (4.5.6)),

(4.5.27) Un-+u

in C([0,r],r2(RN)). Choosing r ] 2 arbitrarily close to 2, so that g ( oo is
arbitrarily large, and applying Gagliardo-Nirenberg's inequality, we obtain that
un +,tL in.Lq((0, r),L#\(RN)) for every g < oo. Since E(u,,(t)): E(p,)--
E(p): E(u(t)), we see that llVu,lll, -* llVulllz in "Lq(0,r) for every g < oo. on
the other hand, since u, is bounded in C([0,?],H1(RN)), we deduce from (4.5.27)
that un(t) - u(r) in /r'l(Rtr) for every, € [0,r]. Using the .Lq convergence of the
norm, one concludes easily that un a Lt in -Lq((0,7),Hl(RN)) for every q < oa.

In particular, there exists (t,),>s c frl2,z] such that llu,(t,) - "(t")llnr 
* 0.

Repeating the above argument (using (4.5.26) and (4.5.27)), we deduce that un
exists on [O,3r12] for n large enough and that un + 'tt in .Lq((0, 3r 12),ar(nN)) for
every g < oo. We may now iterate the same process to cover the interval [0,"]. tr

Rplte,nx 4.5.4. Here are some further comments on Theorem 4.5.1.

(i) If llvpllrz is small enough, then we may take ? : oo in Step 3 of the proof
of Theorem 4.5.1. Indeed, llT(.)V9ll;,1p,2,o; < CllVpllp. Therefore, the
solution is global in that case, i.e., T^^*: ?-Li. : oo.

(ii) It is clear from Step 5 of the proof of Theorem 4.5.1 that the blowup al-
ternative can be improved, in the sense that if T,.a* ( oo, then for every
admissible pair (q,r) with 2 <r < N, llrll1"11o,?,""*),r#) : oo. In ad-

dition, using the same type of estimates as in the proof of uniqueness (see

Step 1), one can show that if T^u* ( oo, then

sup
0<t<?

,/in- #iL ll"' ll 

"*({,,r*"*),r#5 ) 
t o'
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where uM : u!11u1>rv). In fact, the limit is not only positive, but bounded
from below by a positive ngmber in9^gWndent of the solution. This indicates
a concentration phehomenon in lt'3(RN).

(iii) In the case ) < O,.th.e continuous dependence statement (iv) can be im-
proved. More precise\y, un --+ u in C([-S,?-],/11(RN)) for every interval
[-S,"j C (-?rrir,4""*). In other words, there is the usual continuous de-
pendence property. The proof is in fact simpler. We have u^(t) --+ u(t)
strongly in .L2(IRN), weakly in II1(RN), and E(u,(t)) -- E(u(t)) for all
t € [0,r]. Since ) ( 0, both terms in the energy are lower semicontinuous
so that indeed 11u"(t)ll"** -' llu(t)llr*E and llVu"(t)llz,, * llVu(t)111,.
Thus zr,(i) -- u(t) strongly in fll(RN) and one concludes as above.

(iv) In the case ) < 0, one would expect that the solution is global for every
initial value. This is only known if we assume further that llVrplli,z is small
(see (i) above) or if g is spherically symmetric (see Bourgain [39]).

(nu Fii-..,:J
In this section we construct solutions of pome nonlinear Schrridinger equations

for initial data in ,'(RN). Such results were first obtained by Y. Tsutsumi [343]
(see also Cazenave and Weissler [69, 70] and Kato [204]). We assume that

(4.6.1)

for some

(4.6.2)

Furthermore, we assume that there exists a > 0 such that, for every M ) 0, there
exists K(M) < oo such that

(4.6.3) ll 
g(") - s @)ll r." ! x (tttr ) (llull 3, + | l, ll ?. ) llo - "ll 

r.
for all u,?r € ,2(lRN)nr'(lRN) such that llullr.,,llrllz,, < M. We have the following
result.

THnonsNI 4.6.1. Assume (4.6.1)-(4.6.3) and set

, ?:rf*_l)
' 

, -1, 
r,r.-t r-! l.- 1-- ' . S \2 r )

so that (q,r) i,s on oai&ribtdpatr. If a I 2 < q, then for eueryp € r2(lR.N), there
eri,stT^u*,T-i, € (0,n1 and a un'ique, marimal solut'ion u e C((-T^ir,?*ur),
Z'(Rt)) nLl".((-T^i,, ?-.*), r'(R}{)) of problem (4.1.1). Moreouer, the followi.ng
proper-t'ies hold:

(i) (Blowup alternative) If T*u* < x (respect'i.uely, if T^in < a), then

ll"(t)llr, -+ oo os t I T^ * (respectiuely, as t ! -?-i").
(ii) u e Iil"((-Z;'",4,.*),rp(Rri )) for euery admissible pai,r (7,p).
(iii) u depends continuously on g 'in the following sense; The mapp'ings 9 e

T^in,T^^* are lower sem'icont'i,nuous.L2(1RN) -' (0,oo] . If gn - g i,n

,'(RN) and i,f un denotes the solut'ion of (a.L.\ wi,th the i,niti.at ualue gn,

g : z2(nN) n r'(R.N) -* r'1nql;

| 2l'I \r € L2,'-) @ el2,ml if lf :1).
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then un - u in L1((-5,?),rp(lRN)) for euery ad,rnissi,ble pair (1,p) and

(i") 1/ k(w),iw)"", ,p, : 0 for all w e r'(Rt) n ,'(lRN), then T^in: 4na* :
tx and,llu(r)llr, : llpl}., for all f € IR.

euery -7, <-s<o<?<7h.*.

RBuanx 4.6.2. Consider u as in Theorem 4.6.1; i.e., u e C((-Tmi.,,?-.*),
I'(Rt)) n rfl""((-ZLi.,?**),r'(RN)). It follows that Au € C((-?,,i",?-,*),
H-,(RN)) and 9(u) € rr*t((-?-,",7^"*){' (Rt)) bv (4.6.3). Since,L''(tRN)
.-- g-z1ng|), we see that Au + s(u) € rl:T((-?."i",?,.,*),H-z1nqn;;.r'It fol-
lows that equation (4.1.1) makes sense in D'((-T^in,4r,.*),rl-2(mrv;;. In partic-

ular, u1 e L# ((-?*i",4,.*),I/-2(RN)) and (4.1.1) makes sense in I/-2(RN) for
^^L--t ry m--#ii.il. , e t-lminr.tmax.l.

For the proof of Theorem 4.6.1, we will use the following lemma.

LsN4I\4r 4.6.3. Let g satisfy (4.6.1)-(4.6.3) and let I be an open interval o/ R. ,I/
u is measurable both as a funct'ion I -- r'(RN) and as a function / -* .L'(IRN),
then g@) is measurable 1 -- Z'' (lRN).

PRoor'. Note that for a.a. t e I, u(t) e ,t(Rt) n r'(RN), so that g(u(t)) e
/'1prv) is well defined. Consider a function (p € D(RN) such that 9(z) : 1 for
lzl < l andset pn(r):p(xln) forn ) l andr € IRN. Usingthedominated
convergence theorem, we see that p.u(t) -* u(t) in ,L2(]R.N) and in l,'(lRN) as

n -+ oo for a.a. t e L In particular, g(gnu) -- S(u) 1tr lr'1nqlv) &s n ---+ oo for
a.a. t e I. Therefore, we need only show that for any given n ) 7, g(gnu) is
measurable 1-- /'lnqlr). To see this, we observe that, since u is measurable
1--+ trr(lRN), there exists a sequence (un)x>o C C(I,I'(Rnr)) such that u;,(t) -+
u(t) in ,'(Rlr) as k -* oo for a.a. f € .I. Since p.ux(t) is supported in a fixed
compact subset of Kn c IRN and L'(Kn) ,--+ L2(Kn), it follows that g,u; is
continuous / -' tr2(RN) n,L'(RN), and so g(pnux) is continuous .I -- I''(ntv;.
Since gnu1, + gnlt +s-k -* m in ,L'(IR.N), hence in 2,2(reN) nr'(RN) for a.a. t e I,
we have g(pnun) - g(p.u) in r''(RN) for a.a. t € I. So g(g.u) is measurable
1--+ fr'(frn), which completes the proof. !

Pnoor oF THEoREM 4.6.1. For the existence part, we use a fixed point argu-
ment as in Section 4.4. For the conservation of charge, we need a regularization
process. We proceed in five steps.

Stpp 1. Existence. Fix ?, M > 0 and set Qp,

(4.6.4)
E : {u e L6' ((-T,r), 12 (RN)) . Ls ((-7,"), r' (RN)) ;

llulll*s-r,ry,u1* llullnU-r,n,L,) < Mj .

It follows that .E is a complete metric space when equipped with the distance

(4.6.5) d(u, u) : llu - ullT-pr,ry,71 * llu - ullTng-r,r1,ut.

Consider ue E. It follows from Lemma4.6.I that 9(u) : I --+ L' (nN) is measur-
able. Moreover, we deduce from (4.6.1) and (4.6.3) that for a.a. f € (-T,T),

llg("(t))llz,., < llg(0)l[,' + K(M)llu(r)ll;l'
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Therefore, by Holder's inequality in time,

lls@)llr."'r-r,r),r,'7 < crt llg(o)llr"' + cK(M)llulli,*-t*,,",11-r,"1.r"1

s cri lls(o)llr", + cr'g=#z x@)llulli[rt _7:,r),1,);

and so

(4.6.6) lls(r)llr",rr- r,r),r.,y < Cri llg(o)llr,, + CrE+z K(M)t4'+r .

Similarly, one shows that for ulu e E1

(4.6.7)

Applying (4.6.6), (4.6.7), and Strichartz's estimate, we see that

A@)(t) : i I I(t - s)s(u(s))ds
JO

is well defined, that 9(u) e C(l-T,fl,r2(lRN)) . L1((-7,"),rp(RN)) for every
admissible pair (7,p), and that

(4.6.8) llQ(r)llz,s-r,r),Lp) < cri llg(o)llz., + crtfa K(M)M'+t ,

(4.6.e) llg(u) - 8(u)1ft,,u-r,7.),r.01 I cr-*e x(M)M" d(2, u) .

Given g € ,2(RN), set now 11(u)(t) : T(t)p + A@)(t). We deduce from (4.6.8)
and Strichartz's estimate that for every u e E j

ll 1l (") 
| | r- r r - r,r), Lz ) + ll1l(u) ll y" 1er;:), L" ) <

cllpllu + cr+ lls(o)llr., + crY=+ta K(M)M'+I .

Choosing tW:Zcllplltrz,we seethatif ?issufficientlysmall(dependingon ll9ll1,),
11(u) e -E for all u €. E. Moreover, we deduce from (4.6.9) and Strichartz's estimate
that, by possibly choosing ? smaller (but still depending on llglllr),

d(tl(u),r1(r)) s Ia1r, r;

for all u,u e E. Thus ?l has a uniqu" n*"a point u € .8. Note that S@) €
tro'((-T,T),r''6iv;; '-+ L!'((-7,?),11-1(lRN)). It follows (see section 1.6) that
u € C([-7,?],11-1(RN))-n wt't1,-?,?),F/-3(IRN)) ana u satisfies (4.1.1) in

{jR") for a.a. t e (-T,T). This proves local existence.

SrBp 2. Uniqueness. We first note that uniqueness is a local property, so

lhatwg: s. @rgue
for positive ti-ffi, the argumenilEr-n-egative times being the same. Suppose we

know that if u,u € C([0,"],12(RN)) n rq((O,"),r'(RN)) are any two solutions
of (4.1.1), then z :'tr ofr (0, z) for 0 < r ( ? suffciently small. We may then define
0<d<7by

d : sup{0 < r < T;u, : 1) en (0, 
")} .

It follows that u : u on [0, d]. If 0 : 7, uniqueness follows, so we assume by
contradiction that 0 <7. We see that u1(.) : u(0 *.) and rt(.) : u(0 +.) are
two solutions of (4.1.i) with cp replaced by u(0) : u(0) on the interval (0,7 - 0).
By uniqueness for small time, we deduce that u1 : ul on some interval [0, e] with

llg(r) - s@)llLa .-r,r),I,,) < cr'=+z K(M)M'a(r, r) . I 
r\J'\

I

I=,

I

I

I

I
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0 < e ( T -e. This means that u: u on [0,d+e], contradicting the definition
of 0.

We now show uniqueness for small time. The proof of (4.6.9) indeed shows that

llg(u) - 8(u)llr"s,r",) < Clrl'r#2 K(llullT*s,r.zy + llulll-17,1:1)
, (llullr"g,r.,l + llullr"tr,r"l)"llu - ully"g,r.,1.

Since 9(u) -9(u):1t - u, we deduce that if l/l is sufficiently small; i.e., if ? is

sufficiently small, then

ll, - rllr"s,r") < ; lu - ullr"e,r.,),

i.e,, 'u, : a on I.

SrBp 3. The blowup alternative and continuous dependence. Arguing as in
the proof of Theorem 3.3.9, we define the maximal solution by using the uniqueness
property; and since ? depends on llcplllr, we deduce the blowup alternative. Next,
using again (4.6.9), we deduce easily that, if p,rlt € ,2(RN) and if u,u are the
corresponding solutions of (4.1.1), then for some ? depending on ll9lllr,llrhll;,z,
d(u,u) < Clle - rbll",. @binuotrs dependence (property (iii)) follows easily (see

the proof of Theorem 3.3.9). ----€

Srnp 4. Proof of property (ii). Let 1 > 0 be a bounded interval and let
u €. L*(I,I'(RN)) n Lc(I,r'(RN)) be a solution of (4.1.1). We need to show that
u e L't(I,rp(RN)) for every admissible pair (q,r). We note that the argument of
proof of (4.6.6) shows that

llsfu)llLd (a,u'1 < cllli llg(0)llz,-' + cgfrfz K(llull'*1r,r")ll"ll1ti,rt-

In particular, g(u) € Ls'((I ,I''(nar;; and the result follows from Strichartz's esti-
mates.

Stpp 5. Proof of property (iv). Fix e ) 0 and let Ju - (I - eA)-l. (The
reader is referred to Proposition 1.5.2 and 1.5.3 for all the relevant properties of
Jr.) W" define the nonlinearity g, by

gu(w) : J,g(J,w))

for all ?rl € ,2(lRN). We observe that J,w € HI(RN) c I2(RN) o.L'(IRN) so

that g(J,w) € r''(RN). Since.Lr'(Rt) * I/-1(RN), we have g"(u) e IIt(Rt).
Moreover, since ,/. is a contraction"in ,p(RN) for all 1 < p ( co, we see that g.
satisfies the assumption (4.6.3) uniformly in e ) 0. Morecfi,/er,

(g,(w), iw) p : (g,(w), i,w) 7,,,y, : (g (J,w), i J,w) 7,,,y : 0 .

We now proceed as follows. Consider g € I11(IRN) and let u be the corresponding
solution of (4.1.1). Let uu be the solutions of (4.1.1) with g replaced by 9,. Since g.
satisfies the assumption (4.6.3) uniformly in e ) 0, we deduce from the estimates
of Step 1 that u, is defined on some interval l-f ,Tl with ? independent of e )
0. Since g(J"u,) e Lq'(-T,T),L' (RN)) (see the estimates of Step 1), it follows
that g,(u,) e Lr((-7,7),fil(RN)). This implies that u. € C(l-7,"],Hl(RN)).
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Therefore, we may take the H-l - 111 duality product of equation (4.1.1) (with 9
replaced by S,) by iu", and we obtain

rd..
Ufill", {t)ll'", - - (Lu.., iu,) s - t,s, - (g u(u,), iu 6) s - r, p t : 0,

so that

(4.6.10) llu"(t)llyz : llpll*
for ltl < ?. We claim that, after possibly choosing ? smaller,

(4.6.11) Ue-)U
el0

in I*((-?, 
"), 

12(RN)). Indeed, we write

s,(u,) - s@) : e,(uu) - g,(u) * J,(s(J,u) - s@)) * (J, - I)s(u),

and we deduce that

lls,@,) - g (u)ll r,"' u-rt,r;,r,' 1

< llg, (r,) - S,(u)ll L", ((r,r1,7,, 1

+ ll s (J,u) - s @) ll 1", ((-r,r),r"., 1 + ll (./' - I ) s @)ll 1,, (-r,r),1,, ) .

Since s(u) e Lq' ((-7,?), r''(RN)), we have

ll(J' - I)s@)ll r."' u-r,r),r,' 1 = 
o -

Next, since Jru -- u in Lq((-7, ?), r'(lRlI)), we deduce from (4.6.7) that

llsQ,") - sfu)ll r,"' u-r,r),r,,' 1 = o .

We also deduce from (4.6.7) (applied to 9.) that

lls' o') - s,@)llL,'rGr,r1,u'7 < cr'=+!Lllu, - ullt "<<-r,r),1'1 '

Using the above estimates and Strichartz's inequalities, we conclude that

llu, - rll r,* re r,r), L2 ) * l l,r' - ul},n (-r,n, r )

1 a, * crE+!2:L llu, - ulll,11-r,T),L,-) t

with a,, --+ 0 as e | 0. Choosing ? sufficiently small, we obtain the claim (4.6.11).

We then deduce from (4.6.10) and (4.6.11) that llu(t)llu : llpll* for ltl < ?.
Replacing 9 by u(ts) for any to € (-4"u", ?o,i'), we obtain that llu(t)ll;z is locally
constant, hence constant. Finally, in the general case g € ,2(RN), we approximate
cp in 12(RN) by (p)n>o c Hl(RN) and we use the continuous dependence to obtain
the conservation of charge. Global existence follows from the blowup alternative. !

TuBonpira 4.6.4. Let g : h * "'t gt", where each of the gi's sat'isfies (4.6.1)-
(4.6.3) for some exponents ri,ai. Set

!: wfi - 1).
qi \2 ri/'

andletr: max{rr, ...,r*} and,q - min{q1 , ...,Qx}. If 2*ai < qi for j : I,...,k,
then all the conclus'ions of Theorern 4.6.1 hold.
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Pnoor'. Fix M ) 0 and consider (E, d) defined by (4.6.4)-(4.6.5). We see (cf. the
proof of (4.4.23)) that

z(r-ri) r?i -2)

I l, | | r,", ( ( -r,n, L' j ) 5 1 I 
tu 

| | 
j{ 

111 r,r1. 
""111, 

ll i,i []i,rt, 
", 

t'
In particular,llullr",(-r;r1"i) < M for all u € .E and llu- ull1qg-r,r,r.i) S
d(u,u) for all u,u e E. We deduce (see the proof of (4.6.6)*(4.6.7)) that

ll.q.r(u)ll -q, . ^-. ,,1, s cr+ llgi(0)llr,, + crE+fz Ki(M)Mai+r ,(-'r,T),L i) -
q q -(a1*2)

llgi@) - si(r)ll 
"",0 

t_r,r1,[i1 
< CT*-G- K j(M)M'i d(u, t,) .

It follows that

lifu)Q) : n 
Io' 

r(t - s)s1@@))ds

is well defined, that Q1(u) e C([-7,"],r2(Rn/)) n L't(-7,"),rp(R^/)) for every
admissible pair ('y,p), and that

ll81@)ll",r-r,r),Le) s cr+ llsi(o)llr,, + cr'td9 Ki(M)Mai+r ,

llli",) - 9i@)ll",<-r,r),Lp) <crzdTtz Kj(M)Mai d(u,u).

Given tp € ,2(lRN), set now 11(u)(t) :T(t)p+gr(")(t) +..-+]n(u)(t). We deduce
that for every u € E1

ll11 (u) ll 7* ;r3), L2 ) + ll17 (u) ll 7' 1- r,\, r., 1 1
It 1 o:-Ia:+2\

cllpl}., + cI1r411er1o111 
"., 

+T"d- Kj(M)M'i+r) .

j:r

Choosing tW : Zcllpll1z, we see that if ? is sufficiently small (depending on ll9ll1, ),
77(u) e.B for all u e E. Similarly, one shows that, by possibly choosing ? smaller
(but still depending on llcpll1,,), d(11(u),71(r)) 3d(u,u)12 for all u,u € -8. Thus
'17 has a unique fixed point u e E. The rest of the proof of Theorem 4.6.1 is easily
adapted. !.

Let us now give an example, of application of Theorem 4.6.4. Consider I/ e
,6(RN) +r.'(R.N) for some d > 1, d > N 12 and W € r"(RN) +r*(RN) for some

o ) I, o > Nl2. Let / : IRN x C --r C be measurable in r € IRN and continuous in
z eC. Suppose that f (r,0) :0 for all s € IRN and that

lf (r, r) - f (r, "r)l < C(1 + lal + lz2l)plzr - zzl

for some 0 < P < 4ff. Set

g(u) : vu -r f (.,u(')) + (w * lul2)u.

We have the following result.

Conolunv 4.6.5. If g i,s as aboue, then the conclus'ions of Theorem 4.6.4 hold.
Moreouer, i,f V and W are real ualued and i.f f (r, z)z € IR /or all z e C and
z € lRN, then there'is conseruati.on of charge and all solutions are global.
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Pnoor'. We let V :Vr*I/2 with yl € r6(R.N) andV2 € r-(lRN), W -WttWz
with IVr € ,"(RN) and W2 € ,-(RN). We need only show that each of the terms
V1u,V2u, "f(.,"(.)), (W1*lul2)u and (W2xlul2)u satisfies the assumptions of The-
orem 4.6.4. It is immediate that V1u (respectively, V2u) satisfies the assumptions
withK(M) : C,e:0, and r:261$ -1) (respectively, r:2). Applying
Hcilder's and Young's inequalities, one easily verifies that (l4zr *lul2)u (respectively,
(W2* lul2)u) satisfy the assumptions with K(M) : M2, o : 0, and r : 2o I @ - 1)

(respectively, r:2).Finally, one may write /(r, z): fy(x,z)+ f2(r,z),where f1
is Lipschitz continuous in z, uniformly in r, and

lfz(r, rt) - fz(r, z2)l < C(lz1l? + lz2la)lzr - zzl

for a.a. r € IRN and all 21,22 € C. One easily verifies that fi(',u(.)) (respectively,

Iz(,u(.))) satisfies the assumptionswith K(M): C and with a:0 and r:2
(respectively, a : 0 and r : 0 +21.

4.7. A Critical Case in Z'(R.N)

If we consider the model case 9(u) : )lulou with ) e C and a ) 0, it follows
from Corollary 4.6-5 that the initial-value problem (4.i.3) is locally well posed (in
an appropriate sense) T ,2(RI) if .rr <, 4/{V. In the limiting case a :41N, the
method we presented doeS not apply at several steps. However, an appropriate
refinement of this method yields local well-posedness, and below is a typical result.
(See Cazenave and Weissler [69].)

Tnponen 4.7.1. Let g(u) : \lul"u wi.th ), e C and a : 4lN. For euery
g € ,2(lR.l{), there erist T^u*,?61n € (0,m] ond a un'ique, max'imal solut'ion

u €C((-Tni,,4,,*),r2(RN))nrfll'((-z-1"r",?,,,*),,L"+2(RN)) of (a.L.3). More-
ouer, the followi,ng propert'ies hold:

(i) (Blowup alternative.) If T^u*

llull;c11o,r-*),L,): a (respect'iuely, llully"g-?..i,,0),.1") : q) for euery ad-

mi,ssi,ble pai.r (q,r) with r 2 o * 2.

(ii) u e I,n""((-f*r",4,.*),r'(RN)) for euery admissi.ble pair (q,r).

(iii) If,,i,n add,ition, p € Hl(lRN), thenu € C((-?,"i",?-"*),Ht(RN)).
(iv) (Conservation of charge.) If ) e R, then ll"(t)ll* : llpllr" for all t e

(-4'in,4""*)'
(v) (Continuous dependence.) The mappi,ngs g e flri.,?*r* are lower-sem'i-

cont'inuous r'(Rt) --+ (0,m]. If pn- 9 i,n L2(RrN) andi,f un denotes the
corcesponding solut'ions of (aJS), then ur'--+ u'in rs(/,r'(RN)) for euery
'interaal l G (-T-i",7^u*) and, euery ad,m'issi'ble pair (q,r).

Rnvenx 4.7.2. Arguing as in Remark 4.6.2, we see that if u is as in Theo-
rem 4.7.1, then equation (4.1.3) makes sense in A-2(RN) for a.a. t € (-T-s.,4,,*).

Pnoor oF THEoREM 4.7.7. Consider an interval .I c IR. with 0 € -I and let u,u €
L"+2(I ,r.+2(RN)). It follows from the estimate

!

llul"u - lrl"rl < (a + 1)(lzlo + lul')lu - o'l
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and Holder's inequality that

lllul'u - lrl'ull "+z -+z I
(4.7.1\ "r;fi(r,r;Fr) -

(a + t)(llulli a+2(r,La+2) + llolli,+,17, ;-*")llu - ul17-+211,1-+21 .

Setting

Afu)e) : [' r1r- s)lu(s)l"u(s)ds,
JO

it follows from (4.7.i) and Strichartz's estimates that

g (u) e c(/, r2(RN) ) n Ls (I,r'(RN))

for every admissible pair (q, r), and that

(4.7.2) ll?(")llt"s,r,t scllull\!]2u,Ld+2)

and

,. _ n\ llAfu) - Q(u)llL"s,r-"t S
(4'l'oJ c(ll"ll?.,*"v,7.+21*llulli-+,g,r..*,y)ll, -ullL-+2(r,La+2)

for some constant C independent of .I. We now proceed in four steps.

SrBp 1. There exists d ) 0 such that if p € r2(RN) satisfies

(4.7.4) ll7(')9111.+z (r,La+\ < 6

for some interval .I c IR containing 0, then there exists a unique solution u €
C(/,12(RN)). Lo+2(I,r'+2(R]V)) of (4.1.3). In addition, u e Ls(I,r'(R"N)) for
any admissible pair (q,r). Moreover,if 9,r/ € r2(RN) both satisfy (4.7.4) and if
u,u denote the corresponding solutions of (4.1.3), then

(4.7.5) llu - ullps,7"1+ llu - ullp+,s,r.+z; ( Kllp - thllu

for some constant K independent of T, u, and u.
Indeed, fix d > 0, to be chosen later, and let tp e ,'(Rt) satisfy (4.7.4).

Consider the set

E : {u e L"+2(1,tr'*'(nt)); llullp+21r,r,.+"1 < 26} ,

so that (E,d) is a complete metric space with d(u,u) : llu - ull1-+"11,7-+z;. For
ueE,set 

7t
H(u)(t) : T(t)e * o^ 

Jo 
x(t - s)lu(s)l'u(s)ds

for t € 1. It follows easily from (4.7.2), (4.7.3), and (4.7.4) that if d is small enough
(independently of tp and 1), then 7t is a strict contraction on ,O. Thus 7! has a
fixed point u, which is the unique solution of (4.1.3) in ,8.

Applying (4.7.2) and Strichartz's estimates, we see that u e C(l,r2(RN)) n
,s(1,r"(RN)) for every admissible pair (q,r). (4.7.5) follows easily from (4.7.3)
and Strichartz's estimates.

We now show uniqueness (without any smallness assumption). Let .I > 0 and
consider two solutions LL)u e L"+2(I ,r"+2(RN)) of (4.1.3). Uniqueness being a
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local property, we need only show that if 0 € J C 1 with lJl sufficiently small, then
'tL: u on J (see Step 2 of the proof of Theorem 4.6.1). We note that

(4.7.6) llulli'+"11,r,-*r; + llulli-+z(r,7.+21--+ 0 as lJl J 0'

It follows from (4.7.3) that

llu - ull7.+"1r,La+2) <

C (ll"ll|-*,tt,7o+zr, * llulli-+,11,r"*,;) llu - ullp-+211,y.+21 .

We deduce from (4.7.6) that if lJl is sufficiently small, then

C (llulli,- +, 1t, 1. +z 1 * llu lli- +" s, r.+, ; ) ( 1,

and we conclude that lla -ullp-+r1t,to+r) :0, i.e., u:u on J.

Srpp 2. For u as in Step 1, we show that if g € I1r(lRN), then u e
C(/,,H1(RN)). It follows from Corollary 4.3.4 that (4.1.3) has a solution o e
C((-T^in,?,,.*),f/t(Rt)). This o is in particular an -L2 solution, so that by
uniqueness u and a coincide as long as they are both defined. Therefore, we need

only show that 1C (-T,'.i',,7'""*). Assuming I : (o,b), suppose b > 7lr,5*. Since
the equation (4.1.3) is invariant by space translations and since the gradient is the
limit of the finite differences quotient, we deduce easily from (4.7.5) that

llVollr,*110,r- ^*),1\ < CllVellyz ,

which contradicts the blowup alternative for the Ifl solutions. Thus !.,* > b and
one shows by the same argument that o ) -?pya.

Srsp 3. For z as in Step 1, we show that there is conservation of charge.

Indeed, Let gn ---+ 9 in r'(Rt), with g, € H1(IRN). It follows from Strichartz's
estimates that for n large enough, rp, satisfies (4.7.4), so that by (4.7.5), un'-+ 1)

in C(I ,r2(RN)), where u,,. is the solution associated tro gn.On the other hand, we
deduce from Step 2 that u, is an I11 solution, so that llu.(t)11;z : llp.llu for all
t € /. Passing to the limit as ??----) oo, we obtain ll"(t)llr, : llpllu for all t e f.

Srep 4. Let g e r'(Rt). Since 7(.)9 e tro+2(lR, r"+2(RN)) by Strichartz's
estimates, we have llT(.)pllu*r((-T,r),L.+2\ -+ 0 as 

" 
I 0. Therefore, (4.7.4) is

satisfied for ? small enough, and we can apply Step 1 to construct a unique local
solution. Using uniqueness, we define the maximal solution u e C((-Tni.,7-"*),
,t(Rt)) (as in the proof of Theorem 3.3.9). It remains to establish the blowup
alternative and the continuous dependence. We argue for positive times, the ar-
gument for negative times being the same. We show the blowup alternative by
contradiction. Suppose that fi".* < oo and that llulll.+2((0,?","*),L.+:; ( oo. Let
0 < t < t *s ( %.*. It follows that

t(s)u(t) : u(t +s) - iA [" ,G - o)lu(t * o)l'u(t * o)d,o .

Jo

By (4.7.2), there exists C such that

lly(.)u(t) ll r-+2 ((0,?*"*-r),La+2\ <

| | 
u 

| | r,. +z 
1 1t,z- "*), 

Lo +z 1 + C llulli! ]"( (r,?*"* ),r.+2 ) 
.
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Therefore for t close enough to ['u*,

ll7(.)u(t)111,.+2((0.?-"*-r),r-+,) < * .
a

By Step I, u can be extended afber ?|ru*, which is a contradiction. This shows that

llull1,.+z11o,r-ax),ro+2) : oo .

Let now (q,r) be an admissible pair such that r ) a* 2. It follows from Hcilder's
inequality that for any T ( ?,..*,

llulll.+'116,7),t".+21< ll"llf-rro,"r,",,ll"llt""(p,r).1,)< llelli,ll"lll;ft0,r),1,)1
2(r-a-2\with p : ftffi. Letting T I T^u*, we obtain llullr,n((o,r-"*),r,") : oo.

Finally, we show the continuous dependence. Consider T I T^u*. Since
u e C(l},T],r'(Rt)), it follows from Strichartz's estimates and an obvious com-
pactness argument that there exists r > 0 such that

llI(.)u(r)11r,. *"rro,"r,"-*,, . I
for all t € [0, ?], where d is as in (4.7.4). Fix an integer n such that ? l nr,let K )
1 be the constant in (4.7.5), and let M be such that ll7(.)ullr,a+2(n,ra+2) < Mllull7,.
Let e > 0 be small enough so that MKn-re < 512.We claim that if llp-$ll;.: < e,

then I|,,"*(ry') > ? and llr-rllctfo,r],L\+llu-ull7-+z1e,r),r.+21 < nKnllp-rb\ft,",
where u is the solution corresponding to the initial value ry'. Indeed, it llp-tlll1z < e,

then
llT (') rlt ll r,-* " 

((o,r / n), La + z) S | | 
y(. 

) p ll r" +2 ((o,r / n), La +2 )

+ llt(.Xe - 1p)ll 2.+z 11o,r / n),1-+21

s** Me<6.
Therefore, it follows from Step 1 that f^ *@) > Tlnand that

llu - rllc<p,r/nl,L\ * llu - ull1-+"1(o,r/n1,p.+21< Kllp - rbllr" .

In particular, llu(Tln) - uQ/n)llpz I Ke. The claim follows by iterating this
argument n times. This completes the proof. n

Rs\4enx 4.7.3. The blowup alternative in Theorem 4.7.1 is not very handy, since
it does not concern the L2 norm of u. In fact, despite of the conservation of charge
when ) € lR, 7,n1r, and [,'r* can be finite in some cases. For example, assume .\ > 0
and let p € Hr(lRN) be such that | . le(.) e ,'(Rt) and ,CI(g) < 0. It follows from
Theorem 6.5.4 below that u blows up in .F/1 for both i > 0 and t < 0. Therefore,
4nu* ( oo and fi,; ( oo, by Theorem 4.7.1(iii).

ReN,l,cnx 4.7.4. We conjecture that if ) < 0, then 7-i, : Trru* : oo for all
p € ,2(iRN). However, we only have the following partial result. Assume ) ( 0,

and suppose that g € ,2(Rl/) is such that r9@) € ,2(RN). It follows that
T^ * : ?-r, : oo and, in addition, u € ,s(lR,r'(RN)) for every admissible
pair (q,r). Indeed, consider a sequence (g)nr_o c f/l(lRl/), with tp, *:J g

in I2(Rtr) and rgn(r) bounded in ,L2(IRN). The corresponding solutions satisfy
u,? € C(lR,f1t(Rt)) and l.lu, e C(lR,r'(Rt)) (see Lemma 6.5.2 below), and
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from the pseudoconformal conservation
that llu"(t)ll|!1" S Ct-z for all t e IR.

(see Theorem 7.2.1 below), we see

continuous dependence, this implies
law
By

that llu(t)lli:?, < Ct-2 for a.a. t € (-4,i,,?,.""*). In particular, we see that if
T^u, 1oo, then u e L"+2((0,4,.*),r'+'(Rt)), which contradicts the blowup
alternative (note that u e L+2((0,7),Lo+2(nN)) for all 0 < T 1T^u*). We
see as well that [-"1n : oo. In addition, it is clear that the above estimate implies
that u € ,"+2(lR, r"+z1RN)). The estimate for an arbitrary admissible pair follows
easily from Strichartz's estimates.

Rnuanx 4.7.5. There exists 4 > 0 such that if
(4.7.7) llI(.)9111"+r(m,r,+2) < ?,

then ?-|r'1r, : Tmax: oo. Moreover, u € ,s(lR,r'(RN)) for every admissible pair
(q,r). This follows easily from Step 1 of the proof of Theorem 4.7.1 (see in par-
ticular (4.7.4)). However, this conclusion does not hold in general for large data.
Indeed, if I > 0, there exist nontrivial solutions (standing waves) of the form
u(t,x) : ei't6(n), with d € }Il(lRN), 0 + 0 (see Section 7.2). These solutions
obviously do not belong to .Lc(lR, r'(Rt)) if q < m. On the other hand, by
Strichartz's estimates, (4.7 .7) is satisfied it llpllv ( p for p small enough.

4.8, II2 Solutions

In this section we construct I12 solutions by a fixed-point argument, and we
follow the proof of Kato [203, 204]. See also Y. Tsutsumi [340]. We note that
obtaining I12 estimates by differentiating twice the equation in space would re
quire that the nonlinearity is sufficiently smooth (see Section 4.9 below). Instead,
we differentiate the equation once in time, and then deduce f12 estimates by the
equation.

Let g: /1'(Rt) -' r2(lRN). Assume there exist 0 ( s ( 2 and 21r,p I
2N/(N - 2) (2 1 r, p 1m if N : 1) such that

(4.8.1)

and

(4.8.2)

9 € C(fI"(lRt),1'(mt)) is bounded on bounded sets

llg(") - s@)llu, t L(M)llu - ullr
for all u,? € fI2(lRN) such that llullg" ,llulln" < M.

Tunonpu 4.8.1. Let g:9r * "'* gx, wherv each of the gi's sat'i,sf,es the con-
diti,ons (4.8.1)-(4.8.2) for some erponent Ej,rj,pj and some funct'ion Li(M). For
eaery g € FI2(1RN), there ex'ist ?.rr*,?.ri, > 0 and, a un'i,que, rnari,mal solut'i,on

uec((-T^i.,4,,*),f/'(RN))nCt((-Z;t,,?.nu*),r'(Rt)) of @.1.1). Moreouer,
the following propert'ies hold.:

(i) u e Wrt;!(?f^t,,4,,*),r'(R")) for euery admissible pai,r (q,r).
(ii) (Blowup alternative) If T^u*

ll"(t)lln, ---+ oo as t I T^u* (respectiuely, as t ! -7*i").
(iii) u depends cont'inuously on g 'in the following sense. There erists T >

0 depending on llglls" such that if pn - 9 in H2(RN) and if un i.s

the corresponding soluti,on of (4.t.7), then un'is defined on [-T,Tl for
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n large enough and llu^lly*(-T,n,H2) i's bounded. Moreouer un + u 'in

C(l-l,"], f/"(RN)) as n --+ oo for all0 < s < 2.

(iv) f (g(ur) ,,iu)7, :0 for allw e I/2(RN), then there'i,s conseraation of charge;

i.e.,llu(t)llL" : llpllt" for aII t € (-?."i'-,,?-.*).
(v) If for euery j there erists G1 e C|(H2(RN), R) such that gj : Gr, then there

'is conseraati,on of energy; i,.e.' E(u(t)): n@) for all t € (-?'.i.,7^u*),
where E i,s defined bg (3.3.9) wi,th G: Gr * "'* Gr.

For the proof of Theorem 4.8.1 we will use the following lemmas.

Lpuur 4.8.2. Let g € r/'(Rt) and set u(t) - T(t)p. It follows that u e
C(lR,I/2(IRN\ and llull;-1s,a'y S llplln". Moreoaer, il k,r) is any adnissible
pair, then o € Cl(lR,r'(RN))n Wr,s(R,r'(RN)) and there esists C 'independent
of g such thatllull,,y,,o(R,2.; < Cllplla".

Pnoor'. The result follows from Strichartz's estimates and the identity ut : iLu -
i.T(t)Ap. !

Lprr,rirra 4.8.3. Let g satisfy (4.S.1). It fottows that g(u) e L*(J,22(RN)) lor
euery interaal J c lR and euery u e L*(J,I1"(RN)). Moreouer, there erists a

cont'i,nuous funct'ion K : (0,oo) t (0,oo) such that

(4.8.3) lls fu)ll I'* rt,"') < K (M)

for euery u € L@(J,H"(RN)) uith llull1*1t,a"y < M.

Pnoor'. This is an immediate consequence of (4.8.1). n

Lnuur 4.8.4. Let g sati,sfy (4.8.1)-(4.8.2). Let q and,1 be such that (q,r) and

(t, p) on ad,missi,ble pai,rs. It follows that ft3@) e L1' (J,rp'(RN)). Moreouer,

(4.8.4)

and in part'icular

(4.8.5)

for euery intental J c lR and euery u e L'' (J,.F/"(Rt)) wi,th u1 € ,s(Jr"(RN))
and llully*11,H') < M.

Pnoor'. (4.8.4) is a consequence of (4.8.2) and Proposition 1.3.12 (applied to

f (t) : s(u(t)) - g(u(td), where ts € J is fixed). n

Leuue 4.8.5. Let J ) 0 be a bounded'interanl, let (1,p) be an adm'issible pair,

and, consider f e L*(J,r'(Rt)) such that fi e Lt'(J,rp'(RN)). 1/

ll*t *rll 
", 

(r, ro, 1 
< L (M)ttu1tt,,, 1r, L, 1,

ll 11 llll*stulll s L(M)lrl-+-illu,ll""u."-t
llub ll n' (t,tp' )

u(t): t 
lo" 

rtt- s)/(s)ds for allt € J ,



(4.8.6)

(4.8.7)

(4.8.8)
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thenu € L*(J,I/'(Rt)) nCt(J,r'(RN)) nwL,"(J,rb(RN)) for euery adm,iss,ible
pa'i,r (a,b), and

llrllr,.<t,r.ot < cllf 117,s,7"1,

llo'llus,r,t < cll/(o)llr, + CllftllL,,1r,L,,y ,

ll L,ull 7* s,t"l < ll/ llr- r"r.L\ + Cll f (0)ll L"

+ Cllftllr.,,rr,Lp,),

where C i,s i,ndependent of J and f . If, i.n additi,on, f e C(J,L2(RN)), then
a e c(J,fI'(RN)).

pnoor. Since trp'(lRt) .- I/-t(RN), we see that / € WL,1(J,f/-1(RN)) .--
C(J, H-1(Rt)). It follows that

at(t): o+ ['r4)f ft- s)ds : iT(t)f (0) *i [' r(s)fi(t - s)ds
dt Jo ,or,

: i,T(t) I (0) + i 
J o 

T(t - s)fi (s)ds .

(The above formula is trivial it f € C1(J,f1-1(RN)) and follows by density for
f eWL'l(J,I/-t(Rt)).) The result is then a consequence of Strichartz's estimates.
Note that we use the equation dru1l Lu * f : 0 to obtain (4.8.S) and the ,F/2

regularity. n

Pnoor on TunoRpu 4.8.1. We first note that by Lemma 4.2.8, the prob-
Iems (4.1.1) and (4.1.2) are equivalent. We then proceed in four steps.

Srpp 1. Local existence. We construct local solutions by a fixed-point ar-
gument. We set

s:max{st,...rsp}<-2,
r : max{rr, ... rTk, pt,..., pf},

and we consider the corresponding admissible pair (q,r). Given M,T > 0 to be
chosen later, we set 1 : (-T,T) and we consider

(4.8.e)
E: {u € L*(I,fr'(Rt)) nwr'*(I,r'(Rt)) nwr'q(I,I'(mN));

u(0) : 9 and llull;*1r,a.) * llzllqT',-17,q * llullyp,e(r,1,) < Mj .

It follows that (E, d) is a complete metric space, where the distance d is defined by

(4.8.10) d(u,a): llu - ulll*g,r."7 + llu - ull1ug,r.,1.

(This is established by the argument of Step I of the proof of Theorem 4.4.1, using
Remark 1.3.13(ii) in addition to Theorem 1.2.5.) Moreover, E + a since u(t) : I
clearly belongs to -8. We now consider 1l defined by

11(u)(t) : T(t)e + 9(u)(t) ,

where rt
9(u)(t) :;, I Y(t - s)e(u(s))ds

JO

for all u € ,E and allt e I. Since 9(rr) e L*(I,r'(RN)) by Lemma 4.8.3, it follows
that g(u) e C(I,r'(R")) is well defined.
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We first note that by (4.8.3),

(4.s.11) llgi(")llr-rr,L\ < K(M)

for every u e E (with K : max{K1,..,1(k}). Next, given 1 S j S k, we consider

Qi,7i such that (qi,r1) and (li,pi) are admissible pairs. It follows from Hcilder's
inequalitY that 

2(r-ri) r(ri-2)

ll, ll 
"", 

(r, L, j ) < 11w llfiflu tll.llfr3,, t

In particular, if u € .8, then u €Wl'qi(I,L'i(RN)) for all 1 < j < k and

2(r-r;) r(r;-2)

(4.8.12) llullrar,,"11,,7.i1< M;ics Mi-cz -- M .

Therefore, we deduce from (4.8.5) and (4.8.12) that

(4.8.18) ll*n,t"lll S F(M)r'-i- uL

ll dt""' ll r,"'i (r,ro'i \ -

with r'(M) : Mmax{Lt(M),'..,L*(M)}. Applying now Lemma 4'8.5 to each

of the gi's, we conclude that Q(u) € L@(1,II'(RN)) nW1,"(I,rb(Rt)) for every
admissible pair (a, b) and every u € -8. Moreover, it follows from (4.8.6) and (4.8.11)
that

(4.8.14) llQ(u)ll1*s,t") < CyTK(M)

for some Ce independent of M and 7. Similarly, it follows from (4.8.6), (4.8.7),
(4.8.11), and (4.8.13) that, by possibly choosing C6 larger,

ll9 (u)llw,'* s,rz1 * ll8 (u)llw,'" (1, L") <

(4'8'15) co(rxg1+ f lvitr) llr, + F(M)f r'-"-o)\7'j:r/
Also, it follows from (4.8.8), (4.8.14), (4.8.11), and (4.8.13) that, by possibly choos-
ing C6 larger,

llQ(u)llL*u,H\ <

(4'8'16) co(o + r)Kw)+ f ttoi(r) llr" + F(M) f "'-"-n)7:' /
with C independent of M and ?. Applying now Lemma 4.8.2, we deduce from
(4.8.14)-(4.8.16) that, by possibly choosing C6 larger,

(4.8.17) llTr(")ll7*s,L,) < co(TK(M) + llplln,),
llH (u) ll yv,, * 

1 r, t z y * llTt (u) ll ys', 
" 1r, L" ) <

(4'8'18) 

"o(llrll", 
+fttsiu.,)llr, +rK(M) + r1u1fr'-r-n),

J_L
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llT7(u)lly*s,Hz) <

(4'8'1e) 
"o(ilril,,

We now let

M :Aco(llrllr,+ i ltoi(r)llr,)
\ j:7 ./

It follows from (4.8.18) that, by choosing 7 sufficiently small,

ll'H (u) llw,, * (r, L2 ) + llH (u)llw,,, r,, 
", 

) S + .

Next, using (4.8.17), (4.8.19), and the elementary interpolation estimate

(4.8.20)
.. 2- s

ll"lla' S ll"lli'"ll"ll7,
we see that, by choosing T possibly smaller,

ll11(u)ll;*s,u") < + .

It follows that 11 : E ---+ E. A similar, though simpler, argument shows that,
after choosing ? possibly smaller, H is a strict contraction on (.E, d). Therefore,
'17 has a fixed point u € E, which is a solution of (4.1.1). It remains to show
that u e C(I,H'(RN)) n Cr(1,r2(RN)) and that u €. WL,"(I,rb(Rt)) for every
admissible pair (a,b). This follows from Lemmas 4.8.2 and 4.8.5. The only point
which is not immediate is that g(u) e C(f,r2(RN)). To see this, we observe

that u € C(I,r'(Rt)). Moreover, by (4.S.19), u e L6(I,H'(Rt)). Applying the
inequality (4.8.20), we deduce that u € C(I,rf"(RN)), so that S@) € C(/, 12(RN))
by (4.8.1).

SrBp 2. Uniqueness, the blowup alternative, and continuous dependence.
Uniqueness follows from Proposition 4.2.9. For the blowup alternative, we pro-
ceed as in the proof of Theorem 3.3.9: using uniqueness, we define the maximal
solution; and since the solution u of Step 1 is constructed on an interval depending
on llglls, (as is easily verified), we deduce the blowup alternative. Arguing as in
Remark 4.4.5, we see that there is boundedness in I-((-?, ?),,t/2(R]V)) and con-
tinuous dependence in Z@((-?,"),12(RN)) for some ? > 0 depending on lltplls'.
Applying (4.8.20), we deduce the continuous dependence in .L*((-?, ?),Il"(lRN))
foreverys(2.

Srnp 3. Property (iv). Since equation (4.1.1) makes sense in.L2(IRN) for all
t € (-?*i.,?,.,"), we may multiply it (in the L2 scalar product) by iu, and we

obtain
(u1,u)72: (-Au, i,u)72 t (g(u),iu)yz : g.

Therefore,

fill"@ll'"" 
:2(ut,u)p-,,11, : o,

and the result follows.

kk
. S-"+ Llsi\e)ltz, + (r +T)K(M) + F(M)f rt-'i -a)

j:1' j:1 /
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Stpp 4. Property (v). Since equation (4.1.1) makes sense in r'(RN) for all
t e (-T^in,T^^*), we may multiply it (in the.L2 scalar product) by ut, and we

obtain
(,iu1,u1)yz - (-Ar, ut)r,, * (g(u),u1)y, .

Since (i4, u1)72 :0, we deduce that finiru1t)1:0 and the result follows. Note
that the identity

4"O): (s(u),u1)7"
dt

holds in principle for u € Ct((-4r,t,,,?.,.*),fl2(RN)). However, it is equivalent to

G(u(t)): G(u(0)) + ['@fu(r)),u1(s))v"d,s for all t € (-?.'i',?,.'*).
JO

This last identity is easily established for u as in the statement by an obvious
density argument. This completes the proof. n

We now give an application of Theorem 4.8.1 in a model case.

ConorreRv 4.8.6. LetV e ,d(RN) +r-(RN) for some d ) 1, 6 > Nl2 and
I,I/ e Z"(]RN)+r-(R.N)forsomeo)1,o> Nl6. LetJ e C(C,C) satisfy

f(o):o and

lf (") - /(u)l s L(lul+ lul)lu - ul

for allula €C luith L € C([0,oo),R) i,f N <3 and L(t) < C(7*to) wi.th q ) 0

and (N - 4)a < 4 il N ) 4. FinallE, set

s@) : vu + f (u(-)) + (W * lul2)u.

It follows that all the conclus'ions of Theorem 4.8.I hold. If, i,n addit'i,on, f e
C'(C,C) (in the real sense), there'is cont'inuous depend,ence,in a stronger sense

as follows. The mapp'i,ngs g = ?r.ir,?,rr* are lower sem'icont'inuous f/2(RN) -*
(0,*]. If gn - 9 ln Hz(RN) and if un denotes the solut'ion of @J\ wi,th the
i.ni.ti,al ualue gn, thenun ---+ u in C([-S,f],,H2(R^r)) and,'inWr,n((-5,"), r'(RN))
for euery admissi,ble pai,r (q,r) and, euery -T^in < -,S < 0 < ? ( 4..*.

Pnoor'. The fact that g satisfies the assumptions of Theorem 4.8.1 follows easily
from the estimates of Section 3.2. The stronger continuous dependence property
when / is Cl is proved by the argument used in Step 3 of the proof of Theorem 4.4.1,
except that we differentiate the equation in time instead of space. Doing so we first
obtain continuous dependence inW\q(I ,r'(Rro)) for every admissible pair (q,r),
then in C(1, ff2(lRN)) by the equation. Note that the term O{V(u, - u) + (W x

lu^12)u*-(W*lul2)ul is easily estimated by using the formula 0{Vu*(Wxlulz)ul:
V 01u * (W * lul2) 01u * (W * u}g,)u + (W * 01rn) u together with Hcjlder and Young's
inequalities. tr

Rpv,q.nx 4.8.7. Here are some comments on Corollary 4.8.6.

(i) If 9 is in Corollary 4.8.6, then there is conservation of charge provided V
and W are real valued and Im(/(z)Z) : 0 for all z € C.

(ii) If g is in Corollary 4.8.6, then there is conservation of energy provided V
andW are real valued, I,7 is even and f (z): z0(lzl)llzl for all z l0with
I : (0, m) -' R..
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(iii) Corollary 4.8.6 applies in particular to the case 9(u) : \lulu with ) e C,
a ) 0, and (N - 4)o < 4. A similar result holds in the ff2 "critical" case

N > 5 and o : Al(N - 4); see Cazenave and Weissler [70], theorem 1.4.

4.9. H' Solutions, s 1N/2
In this section we study the existence of solutions of the nonlinear Schrtjdin-

ger equation (4.1.1) in the Sobolev space f/"(lRN) for s ) 0. (We note that the
cases s : 0, I : 1, and s : 2 have been studied in the preceding sections.) In
principle, a local existence result can be established by a fixed point argument by
using Strichartz's estimates in the Sobolev spaces gs,rlnq|) (see Remark 2.3.8)
along with estimates of llg(u)11s,,.. This is the program carried out by Kato [206]
and it makes use of a delicate estimate of llg(u)lls,,' (Lemma A3 in [206]). Here,
we rather use the Besov space Bi,r(RN) as an auxiliary space because estimates
of llg(u)lls,,, are much simpler to obtain (see Cazenave and Weissler [70]). We

also note that, regardless of the auxiliary space? the case s > 1 tends to be more
complicated as it requires more regularity of the nonlinearity. Thus we restrict
ourselves to s € (0, 1) and we comment on the case s > 1 at the end of the section.
Also, consider the case s < Nl2 (we comment on the limiting case s : N12 at the
end of the section). When s > Nf2, the embedding II"(IRN) .-* Z,-(IRN) allows a
simpler treatment of the equation (provided the nonlinearity is sufficiently smooth,
though); see Section 4.10 below. Note that if we consider a nonlinearity of the form
g(u):,\lulou, then the results of this section provide local existence in.Ir''(lRN)
under the condition a < al(N - 2s) (and, also, a regularity assumption). Thus,
in principle, any power o ) 0 can be handled in the I/'framework with s < Nl2.
Furthermore, and for the sake of simplicity, we only consider local nonlinearities.
The first result of this section is the following.

THponnn 4.9.1. Let 0 < s < min{1, Nl2}. Let g € C(C.,C), and assume that

S(0) : 0 and that there etists

(4.e.1)

such that

(4.e.2)

Let (1,fi be the admi,ssi,ble pai'r defined by

o(a< #"

ls(") - s@)l 3 C(r + lul" + lul')lu - ul for aII u1u € C.

(4.e.3)
N(a + 2)

n:4- N*so'
4(a * 2\

ry: ------:---------' a(N - 2s)'

Gi,uen g € -Ff"(lR.N), there erist ?.r**,?rri, e (0,oo] and a un'ique, marimal solu-
tion u € C((-","r",7^u*),I/"(Rt)) n ril"((-?}'i.,?o,,*),Bi.r(Rt)) of the prob-
lem (4.7.1). Moreouer, the following propert'ies hold:

(i) u e lfl..((-Z-},t",4,u*),Bi,r(Rt)) for eaery admi.ssi,ble pair (q,r).

(ii) (Blowup alternati,ue) If T^u* < x (respect'iuely, if T^in < oo), then

ll"(t)ll1y" -+ oo os t I T^u* (respecti.uely, as t I -T^in).
(iii) u depends cont'inuously on g i,n the followi.ng sense. There etists 0 < T <

4,.*,T,.i. such that if gn - g in II"(JRN) and i.f un denotes the solution
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of (4.1J) with the i.ni.ti,alualue gn, then 0 < ? <-T^u*(pn),7^6(9n) for
all suffici,ently large n and un 'is bound,ed in Lq((-T,?),8;,2(lRN)) for ang

admi,ssible pair (q,r). Moreouer, LLn -'+ u i,n Lq((-T,?),r'(RN)) as n --
x. In part'icular, un + ?.t, i,n C(l-T,?],Ils-e(nRN)) for all e > 0.

RprralRx 4.9.2. We decompose g - h*gz where gr(0) : gz(0) : 0, 91 is globally
Lipschitz C -* C, and

(4.e.4) lsz(rr) - Sz(zz)l < C(l"tl" + lz2l")lz1 - z2l

for all 21,21 e C (see Section 3.2). Let now 1) 0 be a bounded interval and let
u e L@(I,f/"(RjV)) n L't(I,Bi,r(R")). In particular, u e L6(I,r'(RN)) so that

Sr(u) e L*(I,r'(RN)). Next, we note that p ) 2 so that B|,2(RN; .* ff"'n1RN;.
Since 2s ( N, we see sp < N, and it follows that

(4.e.5) B;,2(RN) .--.LP(IRN)

for all p <p < Npl@ - sp): l/(a * 2)lW - 2s). Using (4.9.4) we easily deduce
that g2(u) e L1(I,ro(RN)) for all

**{,,#}<es@+#lT
In particular, we see that g2(u) € L1(I,re'(RN)). Since Zp'(IRN) .--+ H-d(lRN) for
o : a(N -2s) l2(a+2), we deduce that g2(u) e L1(I,fI-"(R]V)). Therefore, s@) e
I'Y(I,II-d(lRt)), ro that equation (4.1.1) makes sense. Moreover, we see that
equation (4.1.1) is equivalent to (4.1.2) and that (4.L.2) makes sense in g-a1pN).

RBuenx 4.9.3. In Theorem 4.9.1, uniqueness is stated in C(I,H"(RN)) n
,?(/,.B;.2(RN)). If, in addition to (4.9.1), we assume a 1(.af + 2s)/(,nf -2t),
then equation (4.1.1) makes sense for any u € L*(I,f/"(Rt)), without assum-
ing that u belongs to the auxiliary space .L?(.I,Bi,r(Rt)). Assuming, in addition,
a S (1 +2s)lQ- 2s) if .ly' : 1 or o < (2 +2s)lw - 2s) if N ) 2,we know that
there is uniqueness in,L-(/,II"(RN)) (see Section 4.2, especially Remark 4.2.12
for these properties). In this case, we deduce in particular from Theorem 4.9.1 that
if u € L*(1,I1"(RN)) is a solution of equation (4.1.1), then Lo(I,B;.2(RN)) for
every admissible pair (q,r).

For the proof of Theorem 4.9.1, we will use the following nonlinear estimates
in Besov spaces.

PRoposmIoN 4.9.4. Let g e C(C, C). Assume that g(0) :0 and that there erists
a)0 suchthat

(4.e.6) ls@) - g(u)l S C(lul + lul')lu - ul for alt u,a e C.

Let0l s( 1, 1(g (oo, 1(p(rS oo. If o:aprl(r-p), then

(4.e.7)

and

(4.e.8)

lls @)ll 
" ;," 

3 c llulli" ll,ll a;,"

lls(")lls;, < cll"ll7" llrlls;,"
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for alt u e Bf,o(RN). Here, we use the conuent'ion that llullr," : (,[n" lul")* /or
0<o(1.

Pnoor'. It follows from Hcilder's inequality that

(4.e.e) lll"l'rllr, < ll"lli" llrllr, .

Since lg(u)l 3 Clulo+r by (4.9.6), we deduce that

(4.e.10) ll s (") ll L, S c ll"ll7." llu u 

"" 
.

Moreover, if g e lRN, then it follows from (4.9.6) and (4.9.9) that

llg(u)(' - s) - g(")(')lll" < cll"ll?." ll"(' - a) - "(')1b,, 
.

Therefore, the inequality @.9.7) follows from Remark 1.4.4(iii). Inequality (4.9.8)
follows from (4.9.7), (4.9.10), and Remark 1.4.4(ii). tr

PRoposIrtoN 4.9.5. Let g e C(C, C). Assume that g(0) :0 and that g i,s globally

Li,pschi,tz cont'inuous. Letl < s < 1, 1 1r,q1oo. Itfollows that

(4.e.11)

and

(4.e.t2)

llo(")ll;;," < Cll"ll;;,"

lls(")lla;," < Cllulla;,"

for aIIu € B;,q(RN).

Pnoor. The proof is similar to the proof of Proposition 4.9.4. tr

PRoor oF THEoREIT,I 4.9.1. We only consider positive times, the study of neg-

ative times being similar. We recall that (4.1.1) is equivalent to (4.I.2) by Re-

mark 4.9.2. Decomposing g : gt * gz as in Remark 4.9.2, we write the equa-

tion (4.1.2) in the form
u : T!(u) ,

where
v{(u) (t) : T (t)p + I (u) (t)

and 
7t

a@)@ : t I y(t- s)e(u(s))ds
Jo

: o [' Te - s)s1(u(s))ds + t [' rp- s)e2(u(s))ds.
Jo Jo

We mostly use a fixed point argument, and we begin with some useful estimates.
We observe that by (4.9.L2) with r : q:2,

(4.e.13) llgt(")lls" 3 Cllullp. for all u € .F/"(R.lr).

Moreover, it follows from (4.9.8) with p : pt, r - p, and q : 2 that

llsz(")lls", " < cll"ll" 
"r"*,1 llzlls" "p .. r -T:T;-
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Since Bj,2(R..v; .- z{d$3(RN) uy (4.9.5), we deduce that

(4.e.14) lltr@)lln;,,, 3 Cll"ll{'

for all u e Bj,z(lRN). Next, it is clear that

(4.e.15) lls'(u) - gr(u)llu < Cllu - al}.",

and it follows easily from (4.9.4), Hcilder's inequality, and (4.9.5) that

(4.e.16) llgr(") - sz(u)llu, s c(llullfi"," + llrllE;,,)ll" - o\ft,, .

We now proceed in five steps.

SrBp 1. Uniqueness. Let I : (0,?) with f > 0 and consider two solutions
u,u e. L*(1,1/"(RN)) nL7(I,Bi,r(RN)) of (a.t.2). We deduce from (4.9.15) that

(4.e.17) llst(") - e1(u)ll;'1r,y,y < Cllu - ull1,s,p"1.

Next, it follows from (4.9.16) that

llsz@) - sz(u)llh,e,ro,) S
(4.e.18)

C (ll"ll7,, s, 
";,, 

I + ll' | | ?' t,, u ;,"t) llu - ull 7, s, r o1,

where 
1_ 4-a(N-2s) - 1

p41
so that p < 1. Therefore, we deduce from Lemma 4.2.4 that LL: ,u.

Srpp 2. Proof of property (i). Let I : (0,?) with ? > 0 and consider a
solution u e L* (1,H"(Rt)) nL1 (I,Bj.r(RN)) ot @.t.2). We deduce from (4.9.13),
(4.9.14), and Holder's inequality in time that

(4.9.1e) llel(u)ll;'1r,a"1< CTllull7-(r,H,)

and

(4.s.20) llsrfu)llr,,, rr,";,,,) s cT:ryll"ll7ll,,n;,,t.

We now apply the Strichartz estimates in Besov spaces (Remark 2.3.8 and Corol-
lary 2.3.9) and we deduce from (4.9.19)-(4.9.20) that if (g,r) is any admissible
pair, then u:H(u) e Ls(I,Bi,z(RN))nC([0,?],H"(RN)) and that there exists a
constant C independent of 1 such that

ll't7(r)llr"s,n;,t S(4's'2r) 
cllelln" +crllull'*(r,r") * cr!-=g=2!wllz!t,,a:,t,

and property (i) follows.

Srsp 3. Existence. We apply a fixed point argument in the set

E : {u e L* (1,f1'(RN)) n L't (I,Bi,r(R"));(4'9'22) 
llull;*1r,a") < M and llullntr,p;.,r < Mj ,
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where 1 : (0,7) and M,T > 0 are to be chosen later. (E,d) is a complete metric
space, where the distance d is defined by

d(u,u): llu - ullT-s,rz1+ llz - ullys,r,nl.

(See Step 1 of the proof of Theorem 4.4.1.) It follows from (4.9.21)-(a.9.22) that
there exists a constant Cs independent of 7 such that

llv(')pllr-tr,Ir") + llv(')pli""tr,Bi,.") S Collpuu' ,

ll7(")llms,Li"l + ll9(u)ll7,s,a;.2) S Co(T +rLA{=e M")M

for all g € 1{3(RN) and u € E. Therefore, if we let

(4.e.24) u :2Collplln" ,

and we then choose ? sufficiently small so that

. 4-o(N-2s) 1

Colf +T------v- M") < ;,
it follows that H : E - E. Next, we deduce from (4.9.17)-(4.9.18) that

llg, (") - sr@)11,,, (r,7"1 3 CTllu - ull 7* s,r"1

and

llgzfo) - sr@)llL,'te,'r),Lp') < crL"$a M'llu - ullLl((o,r),Lp)

for all u,u € E. Applying Strichartz's estimates, it follows that there exists a

constant Cr such that

(4.9.26) d(7t(u),?l(r)) < C{r +T!==t+=2i M')d(z, o) for all uia € E .

Choosing now ? possibly smaller so that

(4.9.27)
4-a(N-2!)

C/T +T-- .v* M") ( 1,

we see that T{ is a strict contraction on .O, and thus has a unique fixed point which
is a solution of (4.1.2) on 1.

Srpp 4. The maximal solution and the blowup alternative. We proceed as in
the proof of Theorem 3.3.9: using uniqueness, we define the maximal solution; and
since the local solution is constructed by the fixed point argument on an interval
depending on llplla, @y (a.9.2Q-(4.9.27)), we deduce the blowup alternative.

Srpp 5. Continuous dependence. This is an easy consequence of the esti-
mates of Step 3 above. Indeed, let gn ---+ g in ff"(RN) and set M :4Co where
Cs is as in (4.9.23). Since llrp"llrr" <2llplla" for n ) n6 sufficiently large, we see

that M > 2Collp"lln' for n ) ne. It follows easily that if T - 
"(llglls.) 

satis-
fies (4.9.25)-(4.9.27), then the solutions u, constructed by the argument of Step 3
all belong to the same set E (defined by (a.9.22) with 7:?(llplla,)) for n, ) n6.

Estimate (4.9.26) (together with Strichartz's estimates for the term T(.)9.) im-
plies that d(u-,u) < Cllp. - pll* + (Il2)d(u-, u), i.e., d(un,u) < 2Cllp^ - pllp.
It follows that un --+ u in L*(I,r'(Rt)) a L'v(I,ro(Rl/)) and a further use of
Strichartz's estimates shows the convergence in Lq (I ,r'(RN)) for every admissible
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puir (q,r). Finally, the convergence in L*(I,gs-e1frlv)) follows from the conver-
gence in L*(I,r'(Rt)), the boundedness in.-L-(/,H"(RN)), and the elementary

interpolation estimate ll"llr"-, < ll"ll* ll"llL.'. n

RnNa,cnx 4.9.6. Here are some further comments on Theorem 4.9.1 and its proof.

(i) The choice of the admissible pair (7, p) given by (4.9.3) is (partially) arbi-
trary. It is not difficult to see that other choices are possible. The present
choice leads to relatively simple calculations and is also a valid choice for
the case s ) 1 and for the critical case o :41(N - 2s) (see below).

(ii) If lsfu) - s(u)l < C(lul + lul")lu - ul, one can do the fixed point argument
in the set E : {u € L't(I,Bi,r(R")); llullp,g,aS) < M}, with the distance
d defined by d(u, u) : llu - ullpg,r,,1.

(iii) It is not difficult to show that one can replace the set E defined by @.9.22)
by the following set

E' : {u € r-(.f,I/"(Rt)) nL"'t(I,Bi,r(Rt));

llullr,-rr,r,l 1 M and,llullz,s,d"".,1S M\ .

This requires two modifications in the proof. One needs the Sobolev inequal-
ity llull "t.+,r 5 Cll"llt" ^ (see [28]). One also needs to show that (E',d)
is comp"lete. This amounts to showing a property of the type if un + It,

in L1(I,rp(RN)) and llz",ll;,1r,b;) 3 M, then u e L1(I,Bj,z)(RN)) and

llullr,, g,n;,5 < M. This follows easily by using Theorem 1.2.5 together with
the expression of llall6",, in terms of the Littlewood-Paley decomposition.

(iv) Note that the continuous dependence statement is weaker than usual. In
particular, we do not know if the mappings p * ?-i,(g),T^u*(g) are lower
semicontinuous .F/"(IR.N) -* (0,oo]. We do not know either if we can let
r : 0, i.e., if continuous dependence holds in,L€((-?,?),-Fl"(RN)). On the
other hand, note that the proof does not fully use the assumption gn -+ g
in I/"(JRN): it uses exactly that llcp,lls" < Zllelln" for n large and that
en+gin,L2(1RN).

Below is an analogue of Theorem 4.9.1 for the "critical case" o :4/(N -2s).

THsonB\,r 4.9.7. Let01s < min{l,N12}. Letg e C(C,C) uithg(0):g
satisfy (4.9.2) wi,th 

4o: F;; '

and,let (1, d b" the admissi,ble pai.r defined by @.9.3). For eaery rp € fIs(RN) , there
er"r,st T^*,?-in € (0,*] and a un'ique, marimal solut'ion u of the problem (4.1.1)
i.n C((-T^1,, ?o,.*), II"(RN)) n ,il.((-["i,,4,.*), Bi.r(RN)). Moreouer, the fol-
lowi,ng prcperties hold:

(i) u e lfl."((-Z;t,,?,,.*),Bi,z(RN)) for euery admi,ssible pai,r (q,r).
(ii) .{f %," <-crc, then llrllr-((o,r*"*),H") + llull7,r11o,r*"*),Bjz) : oo. -A s'im'ilar

statement holds i'f ["11 ( oo.

(iii) u d,epends cont'inuously on g 'in the sense of Theorem 4.9.1(iii).
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Pnoor'. We use the same notation and follow the same steps as in the proof of
Theorem 4.9.1.

Srpp 1. Uniqueness. Let 1 : (0,?) with T > 0 and consider two solutions
u,u e L@(1,H"(RN)) nL1(I,Bi,r(Rt)) of (a.I.2). Uniqueness being a local prop-
erty, we need only show that u : u if ? is sufficiently small (see Step 2 of the proof
of Theorem 4.6.1). We observe that (4.9.18) becomes

(4.e.28) llszfu)-sz(r)]:r.,,1r,r.,,13C(llulli,r,,a;,;+llulli"$,8;))llr-r11",s,",).

Using (4.9.17), (4.9.28), and Strichartz's estimates, we deduce that there exists C
independent of ? such that

llu - ull7*U,y1 4 llu - ull7"g,7o1 I
crllu - ullp-s,n1+ c(llulli,1r,B;,,) + llrll?"s,a;,)llu - rll",$,",t.

Since llulll" e,Bi,) --r 0 as 7 J 0 and similarly for o, we see that if T > 0 is small
enough, then

llu - ull;*s,71 * llu - ully,11,r.o1S ] ttt" - ullT*s,r.,1+ ll,, - ullys,r."7)

so that u, : 't).

Srep 2. Proof of property (i). It suffices to show that if 1> 0 is a bounded
interval and u € L'o(1,II"(RN)) nL1(I,Bi.r(RN)) is a solution of (4.1.1), then

u e Ls(I,Bi,r(RN)) oC(7,H"(RN)) for every admissible pair (q,r). This is proved
as in Step 2 of the proof of Theorem 4.9.1.

Srpp 3. Existence. We apply a fixed point argument in the set.E defined by

E : {u € L* (I,H'(Rt)) n L1 (I,Bi,r(Rt));
ll"llr,-tr,a"l 1 M1 and,llullT"g,n;.,) < Mz\ ,

where 1: (0,?) and Mr,Mz,? > 0 are to be chosen later. (E,d) is a complete
metric space, where the distance d is defined by

d(u,u): llu - ullpg,t,1+ ll" - ull1,g,r,oy.

(See Step 1 of the proof of Theorem 4.4.1.) The proof of (4.9.21) yields

llT7(u)llr."<t,t,) <cllv(')ell7"s,ai,,)+crllulll*s,n"y*cll"ll?Itt,t:.s.

In particular, given any u e E,

(4.e.30) ll71(")ll p s,a.y S Cs llcpll n " * CsT Ml + CoMf+,

and

(4.e.31) llTl(")llus,B;,,1 3 CollT(.)vllr-"s,e;,,1* CsTMr * CsMi+l

for some constant Cs independent of 7. Similarly, one shows (see the proof
of (4.9.26)) that there exists a constant C1 independent of ? such that

(4.e.32) lltl(") - 71(u)ll1.-s,tz1 + ll1l(u) - 7{(r)1ft,,r,,7"1 3 Ct(T + Mi)d(u,u)

(4.e.2e)
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for all utu e I. We now choose T,Mt,Mz as follows. We first let

Mt : JCollplln, ,

then we choose Mz ) 0 sufficiently small so that

coMt+ts collpllt,", coMt+' =+,3

Finally, we choose T > 0 sufficiently small so that

CoTMt 3 Collplln' , CsTMl I

and

CollT(')pllr,(r,B: ") = 
+'P,2/ - 3

(This last condition can be achieved because ? ( m, thus llI(.)pllr,,11o,ry,r;.r1 J 0

as ? { 0.) We then deduce from (4.9.30)-(4.9.31) that llft(u)ll1*1r,r.) < Mr and

llH(")llr.,g,n;) S Mz, i.e.,7{: E -,8. Furthermore, we deduce from (4.9.32)

that 71 is a strict contraction on .8, and thus has a unique fixed point which is a
solution of (4.1.2) on 1.

Srnp 4. The maximal solution and the blowup alternative. Using unique-
ness, we define the maximal solution (as in the proof of Theorem 3.3.9). Assume
?,,u* ( oo. If llullr,-((0,?*"*),a,) -f llullr,'110,r-"*),rj.z) ( oo, then we deduce from

Step 2 that u € C([0, ?,,.*],I{"(IRN)). By Step 3, we then can construct a solution u

of (4.1.2), with g replaced by u(4"u*), on some interval [0,e] with e > 0. It follows
that d defined on [0, fi.'*+e] by A(t) : u(t) for 0 S t 1T^a* and fr(t) : u(t-T^u*)
for flo,* 1t ST^u* *a is a solution of (4.1.2) on [0,?i..* *e]. This contradicts
the definition of 7h"*. Thus llull;-((0,"*"*),rr.) * llulll'110,r*"*),6l;.r; : oo.

Srpp 5. Continuous dependence. This is done as in the proof of Theo-
rem 4.9.1, Step 5. D

Rpl,tlnx 4.9.8. The observations of Remark 4.9.6 apply as well to Theorem 4.9.7
and its proof. We now focus in particular on the case where lS@) - s@)l < C(lul' +
lul")lu - ul. Then one can do the fixed point argument in the set B : {u €
,"v(1,8;,2(RN));llrllu.'tr,b;.,) 3 M), with the distance d defined bv d(u,u) :
llu-ull;,,g,rp) (see Remark 4.9.6(ii) and (iii)). In this case, instead of (4.9.31)-
(4.9.32), one obtains

llH(u)ll r.. s, e;, I < co ll7(') pll z, s, B : ) * cs M "+ -

and

ll11(") -']7(r)ll""s,",) I CrMa d(u,u).
since llI(.)9llr,,(m,ts;,) S Cllplln', we obtain by letting 1 : lR

llll(")llz,,rn,B:.,) S Csllelln" tCsMo+r ,

llft(") - 11(r)ll n <w,r.,1 I C 1Mo d(u, u) .

Therefore, if we first choose M > 0 small enough so that C6At[a*r < M 12 and.

CtMo < 712 and, then assume that llrpllri" is sufficiently small so that Csllplln" 3
M 12, we see that H is a strict contraction on E. In this case, we obtain (under

I

C,Mg <:
=

+' c'r <1,'
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the assumption that llpllr, is small) a global solution u of (4.1.1). Moreover, this
solution belongs (by construction) to r-(R,11"(RN))n.L,Y(R,Bi,r(RN)). See [70]
for details.

We now comment on the case s > 1. The restriction s ( 1 in Theorems 4.9.1

and 4.9.7 is motivated only by the nonlinear estimates of Propositions 4.9.4 and
4.9.5. The rest of the proof is not subject to the condition s < 1. It turns out
that estimates of the type (4.9.8) for s ) 1 are true but require more regularity as-

sumptions on g. The corresponding existence results of -Fl" solutions therefore hold
provided g is sufficiently smooth. See Cazenave and Weissler [70] and Kato [206].
See also Pecher [295], where the author uses time derivatives to obtain -F1" solu-

tions with minimal regularity assumptions on the nonlinearity. For completeness,
we state below two typical results.

THsonp\4 4.9.9. Assume N > 3 andl < s < N12. Letg(u): \luluwith)e C
and 

ao(c<r/_2,
If a i,s not an euen'integer, suppose further that

(4.e.33) [t] < o.

G,iuen g € f/'(RN), there erist ?r'.*,?r'i' e (0,m] and a unique, marimal solu-
tion u e C((-4"i",4"*),11'(R")) of problem (4.1.1). Moreoaer, the following
properti,es hold,:

(i) u e lfu"((-?*i",?,'.*),Bi,z(RN)) for euery admi,ssible pai,r (q,r).

(ii) (Blowup alternative) If T^^' < x (respect'iaely, if T^in 1 oo), then

ll"(t)lls. ---+ oo os t 1 4""* (respectiuely, as t I -?-i").
(iii) u d,epends cont'i,nuously on tp 'i,n the sense of Theorem 4.9.1(iii).

Pnoor'. We refer to Cazenave and Weissler [70]. Note that uniqueness of ]/"
solutions follows from Remark 4.2.12. D

TsooRBr,r 4.9.10. Assume N > 3. LetL < s < Nl2 and, g(u): )lt1f4z;v qt1i17t

) e C. If a is not an euen'integer, suppose further that (4.9.33) holds. It follows
that for euery g € FI"(RN), there ex'ist0 ( Tr'*, ?r'i' ( q and a unique, mari'rnal
solution u e C((-T^i', T-'*), H"(Rt)) of problem (4.1.1). Moreouer, the following
propert'ies hold:

(i) u e lfl".((-"-i",?,"*),Bi,r(RN)) for euery admissi,ble pai,r (q,r).

(ii) // ?.,.* ( a, then llullT,'110,r-"*),5.i,.): @, uhere (l,d it the adm'iss'ible

pair defined by (.9.3). A similar statement holds i,f [,1, ( co.

(iii) z depends continuously on g 'in the sense of Theorem 4.9.1(iii).

Pnoor. We refer to Cazenave and Weissler [70]. Note that uniqueness of H"
solutions follows from Proposition 4.2.13. f]

RpnaeRx 4.9.1I. Here are some comments on the assumption (4.9.33) in Theo-
rems 4.9.9 and 4.9.10.
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(i) The fact that assumption (4.9.33) is not needed when o is an even integer
is essentially due to the fact that g € C-(C,C) (in the real sense) in that
case. See Caaenave and Weissler [70] and Kato [206].

(ii) In the framework of Theorem 4.9.9, Pecher [295] has improved assump-
tion (4.9.33) by using time derivatives in the construction of the solution.
More precisely, (4.9.33) is not needed if N : 3,4, or, more generally, if
s < 2. If.2 < s ( 4, then it can be replaced by the weaker condition
s < a * 2; and if s ) 4, then it can be replaced by the weaker condition
s(o*3.

Rpru.a,Rx 4.9.72. In the limiting case s : Nl2, the embedding II#(RN) .-*

,p(RN) for all 2 < p ( oo makes it possible to obtain local existence for (suffi-
ciently regular) nonlinearities with arbitrary polynomial growth. See Kato [206].
In particular, there is local existence in the model case g(u) : \lulou for any a > 0

such that [r] < o. Using Tludinger's inequality, one can also consider nonlinearities
of exponential growth. See Nakamura and Ozawa [256].

4.LO. If'n Solutions, rn ) N/2
In this section we study the local existence of "smooth" solutions in fI*(lRN)

for m ) Nl2. Tn principle, one can consider arbitrary real m (see Kato [206]), but
we will only consider integers. The estimates are then simpler. The main point in
considering m > Nl2 is that ff-(Rt) '-' tr-(JRN). The consequence is that we
need regularity of the nonlinearity but we do not need any control on its growth.
We follow the method of Ginibre and Velo [135] and for simplicity, we only consider
Iocal nonlinearities. The main result is the following.

TupoRnu 4.10.1. Let m > Nl2 be an'integer and let g € C*(C,A) Q,n the real
sense) sati'sfy g(0) : O. For euery I € I/-(RN), there et'ist 4"*,?,'ir, > 0 and
a unique, mo,rimal solution u e C((-T^ir,4r.*),ff-(Rl[)) of @.I.1). Moreouer,
the followi,ng propert'ies hold:

(i) (Blowup alternative) If T^*
ll"(t)lls- ---+ oo as t I T^u* (respect'iuely, as t ! -4.i"). Moreouer,
limsup llu(t)llr- : oe o,s t I T^u* (respecti,uely, as t I -71,i").

(li) u depends cont'inuously on g i,n the following sense. The functi,ons T^u* and
T^ia ar€ lower sem'icontinuous II-(RN) -- (0, m] . Moreouer, if gn --+ g i,n

H-(RN) and i,f un 'i,s the marimal solut'i,on of $.1.1) with the initi,al ualue
gn, then un --+ 't-L in L@((-S,f),fl-(RN)) for euery p < oo and euery
'intental [-S,"] C (-Z-i',4'"*).

(iii) # (S(w),iw)1" :0 for all tu e I/-(JRN), then there'is conseruat'i,on of
charge; i,.e., llu(t)ll7z : llpll1z for all t € (-?-i',4.u").

(iv) f there erists G € C|(H*(RN),R) such that g : G', then there is conser-
uat'ion of energy; i.e', E(u(t)): n(p) for all t € (-7,'i.,7^^*), where E 'is

defi,ned bs (3.3.9).

The proof of Theorem 4.10.1 relies on the following technical lemma.

Lpvul 4.10.2. Let m > Nl2 be an'integer and let g e Cm(C.,C) sati,sfu g(0) :
0. It fottows that the mappi,ng u ,- g(u) is continuous and bounded I1*(1R.N) --+
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H-(RN). More prec'isely, g'iuen any M ) 0, there eri,sts C(M) such that

(4.10.1) lls(")lllr- < c(M)llullp- ,

(4.10.2) llg(u) - s@)llL, 3 c(M)llu - allu ,

for aII u, u € II-(JRN) such that llully*, llrllr,- 1 M. Moreouer,

(4.10.3) lls@) - s(u)lln^ sc(M)lll"-rll"- +€M(llu -rllr,)]
for aIIu,u e .FI-(IRN) such that llullp^,llrll11* I M, whereey(s) ---+ 0 as s J 0.

Pnoor'. LetM )0andlet
K(M)- sup lg'(")l + ... +ls{d1t1)l < *.

lul<M

l"l, lrl < M, then

ls@)-g(u)l s K(M)lu-ul

(4.10.7)

where k is
a: 0t *..

(4.10.4)

It follows that, if

(4.10.5)

and in particular

(4.10.6) lg(u)l < K(M)lul.

Consider now u € C"""(IRN). Given a multi-index a with lol: *, it is not difficult
to show that Do g(u) is a sum of terms of the form

n@tu)fioo,u,
j:1

an integer, k € {1,...,1o1} and the /i's are multi-indices such that
' * 0x and Wil 2 t. Let pi : Zmll/il,so that

lr1

,*:;
j:7'"

It follows from Hrilder's inequality that

rr k rt k

ll I r""11 ." < ll ltDoi ull"",
" j=l r L- j=l

On the other hand, it follows from Gagliardo-Nirenberg's inequality that

ll DPi ull 
",, 

s c llullffi, ilull'r*+,
and so

tt k l
ll fI rr,"ll < cy"ln^1"llf,-*' .

lli:t ttLz

Applying now (4.10.7) and (4.10.4), we deduce that

llD"s@)llz, ! cK(M)llulls^ .

Finally, we deduce from (4.10.6) that

llg(")ll u < K (M)llull 72,
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so that (4.10.i) follows from the two estimates above.
Let now u € fI'n(RN) with ll"llz,- I M and let (u,,),">s C C"-(IRN) satisfy

un a'tL in fI-(RN). Since E-(RN) .-,L-(IRN), we see ttrat ;lu,ll;* S2M and
llu^lln* < 2ll"llr^ for n large. In particular, we deduce from (4.10.1), which we
already established for u,, that

(4.10.8) lls@")lln^ !2c(zM)llulls* for n large.

In particular, (g(u.))">o is bounded in Hm. Since g(u,) -. S@) in ,02(RN)
by (4.10.5), it follows that 9@) -. g(u) in F/-(JR.N). Applying (4.10.8), we de-
duce (4.10.1) (with c(M) replaced by 2c(2M)). Inequality (4.10.2) is an immediate
consequence of (4.10.5).

We-finally prove (4.10.3). First note that, given u € H-(RN) and (z",),o>s c
Cf (IRN) as above, we may assume (after possibly extracting a subsequence)1hat
Dou,n -. Dou a,e. for all lol < *. Thus we see that formula (4.10.2) holds a.e. for
every u € FI-(IRJV). Let now M > Oand u, o € FI"r(R.N) with ll"lln^,llalln^ S M.
Given a multi-index a with lal : *, we deduce that Da[g(u) - S(r)] is a sum of
terms of the form k k

nG) @) fl nat u - n{n) @) f nei u,
j:r ;-1

where k and the Bi's are as in (4.10.7). Each of the above terms can itself be
decomposed as a sum of terms where the first one is

(4.10.e)
K

1nt*)(u) - rtr)(o)J floe,u,
i:1

The other ones have the form
k

e(e)(u)n Du,.,,
j:r

where all the tui's are equal to u, or u, except one which is equal to u - u. Let now
Pi :2rn/l?il. We see that

k

s llg(e)(r)llz - flllo9,.1llt' < c(M)llu - ulln^ ,

J-t

where the last inequality follows from the embeddings f/-(RN) .-+ .L*(IRN) and
fI-(Rt) ,-+ Lpj (RN). If k < m- 1, then g(ft) is Lipschitz on bounded sets, so that
the terms in (4.10.9) are estimated as above by c(M)llu-ulln^. It remains to
estimate the terms (4.10.9) when k : rn. This last term is estimated as above bv

(4.10.10) lls@) @) - s@) @)ll "* ll"llfr ̂  .

Since g(-) is continuous, hence uniformly continuous on bounded sets, and
llulln^,llrll"- 1 M, we see that yntm)(u) - n{^)(Qllr.- < dy0u - ulll-), with
dy(s) -' 0 as s J 0. Since llu-rllr,* SCllu-"ll:",i;ll"-rll3#, we mayreplace
6u(llu - ullr-) by 6y(llu - ullu), so that (4.10.3) now follows from (4.10.10). tr

PRoor op THnoRBrr.l 4.10.1. We first note that by Lemmas 4.2.8 and 4.10.2,
problems (4.1.1) and (4.1.2) are equivalent. We then proceed in four steps.

tt&rl
llc(k){,) lloe'wtllll ;-r llL2
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Stpp 1. Existence. We construct solutions by a fixed-point argument. Given
M,T ) 0 to be chosen later, we set -I: ?f,T) and we consider

E : {u € L*(I,fI-(Rt)) : llzll;*1r,r-) S M} .

It follows that (,8, d) is a complete metric space, where the distance d is defined by

d(u,u) : llu - ullT*g,7,1 .

(This is established by the argument of Step 1 of the proof of Theorem 4.4.1.) We
now consider ?l defined by

71(u)(t) : T(t)e + g(u)(t) 
,

where

a@)@: u [' r(t - s)e(u(s))ds
Jo

for all u e E and all t e I. We note that if u € L@(I,H-(R}/)), then 9(u) e
L*(I,r/-(RN)) by Lemma 4.10.2, so that g(u) e C(7,,t1-(RN)). Since I(r) is an
isometry on 11-(lRN), it follows from (4.10.3) that for every u € -E and t € -f,

llu(u)(t)llp^ < llplln* +rlls(u)lll*e,n*', < llella- +rc(M)M .

Furthermore, it follows from (4.10.2) that, if u,u € E, then

llH@)(t) - Tt(u)(t)llt" < rC(M)llu - ullp*s,r.,'1 .

Therefore, we see that if

M:2llplln^ and rC@) <;,
thenT{ is a strict contraction of. (E,d) and thus has a fixed-point which is a solution
of (4.1.3), hence of (4.1.1).

Stnp 2. Uniqueness, the maximal solution, and the blowup alternative. We
get uniqueness from Proposition 4.2.9. We then proceed as in the proof of Theo'
rem 3.3.9: using uniqueness, we define the maximal solutionl and since the local
solution is constructed by the fixed point argument on an interval depending on

llelln^ (by (4.10.11)), *" deduce the blowup alternative on llu(t)lls-. We then
show that if ?."'* ( oo, then Iimsup llu(t)ll;- : oo as r T 7l..*. Indeed, suppose
by contradiction that limsup llu(t)llr- < oo. Since u € C([0, T^u*),H-(RN)) and
II-(RN) .- l,-(lRN), it follows that

' 
: 

o=fll_"_ 
llu(r)ll;- < oo '

Applying now (4.10.1), we deduce from (4.1.2) that

llu(t)llri- < llplln^ + c(M) [' ilu(r)llr^ o, '
Jo

Applying Gronwall's lemma, we obtain that llz(t)lls^ S llelln^eTmaxc(M) for all
0 < t < Q,,*, which contradicts the blowup of llu(t)llg- at fl.u*.

Srnp 3. Continuous dependence. Let g e 11-(RN) and consider (pn)n>o C
H-(RN) such that gn + g in fl-(lRN) as ?? ---+ oo. Let u, be the maximal solution
of (4.1.1) corresponding to the initial value 9n.We claim that there exists T > 0

(4.10.11)
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depending on llplla- such that u, is defined on [-?,?] for n large enough and
un + 'tL in C([-T,T],.FI-(R.N)) as n --+ oo. The result follorrs by iterating this
property in order to cover any compact subset of (-4rir,4"u*).

We now prove the claim. Since llp"llu- S Zllelln^ for n sufficiently large, we
deduce from the estimates of Step l that there exists f :f(llplln-) such that u
and, un are defined on [-?, T] for n ) no and

(4.r0.r2) llzlll-11-r,r1,u^1* slp, llu,lll,- K-r,n,H^) 3 +llpllu^ .

Note that u*(t) - u(t) : T(t)(p. - d + 9(u")(t) - 9(u)(t). Therefore, it follows
from (4.10.2), (4.10.12) and the embedding I/-(Rl/) .- ,-(RN) that there exists
C such that

llr(t) - u^(t)117" s lle - pnl}, * cl 
fr' n"Al- u,(s)111, dsl

for all t e (-7,7). We then deduce from Gronwall's lemma that

(4.10.13) ll"(r) - u^(t)117" S lle - enlb.,erc ,= 0.

We then deduce from (4.10.3) and (4.10.13) that there exists C and e, J 0 such
that

llr(t) - u.(t)lln^ 3 en * llp - p.lla^ * cl ['llr(") - u,(s)lls- dsl
lJo I

for all t e (-7,?). The claim now follows from Gronwall's lemma.

Sr:np 4. The conservation laws. Note that the case m : I has already been
studied (Theorem 4.4.6 and Remark 4.4.8), so that we may assume m 2 2. The
conservation laws (properties (iii) and (iv)) then follow by multiplying the equation
by Z and dr, respectively. See Steps 3 and 4 of the proof of Theorem 4.8.1. n

Rpunnx 4.10.3. Lef g(u): \lulu with a ) 0 and ) e C. If o is an even
integer, then g € C"o(C,C). Therefore, we may apply Theorem 4.10.1 for any
m> Nl2. If a is an odd integer, then g e C^(C,,C) only for m 1[o], so that we
may apply Theorem 4.10.1 only in the case la]> Nl2 and for Nl2 < rn S [o]. If
o is not an integer, then 9 e C^(C,C) only for rn ( [a] + f , so that we may apply
Theorem 4.10.1 onlyinthecase [a]+t > Nl2 and for Nl2<m<lcr)+1.

4.11. Cauchy Problem for a Nonautonomous Schriidinger Equation

In this section we study the Cauchy problem for equation (7.5.5) below, starting
from any point t € [0, 1]. In fact, we consider the more general Cauchy problem
(see [72])

(4.11.1) { oo, * Lu + h(t)lulou : o

I u(0) : P,

where h € rlr."(lR,R). We study the equation (4.11.1) in the equivalent form

(4.rr.2)
pt

u(t) : T(t)r! + t, I 7(t - s)h(s)lu(s)l'u(s)ds.
JO

We have the following existence and uniqueness result.
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THpoRpu 4.11.1. Assume 0 < a < 4lW -2) (0 < o < oo z/ l/: 1).
Let0:41[4- o(N-D] (e: I i.f .ly':1, e > r and(2-cr)0 < I i.f
N : 2), and cons'id,er a real-ualued funct'ion h € Iid".(R,R). It foilows that

for euery r/ € Hl(R.N), there eristT^u*,?-i. ) 0 and a uni,que, mo,simal solu-

tion u e C( ( -?-i", ?,,,*), Ht (JRN ) ) n Wl;: K-T^i,, ?,.,*), H- t (RN ) ) of equation
(4.11.2). The solut'ion u i,s matimal in the sense that if T^u* < x (respectiuelg,
?-i' ( a), then ll"(t)llr' --+ oo as r l %* (respecti,uely, t J -?-in). In addi,ti,on,
the solut'ion u has the followi,ng propert'ies:

(i) #4.". .-m, then liminfslT-"*{llr(t)llft,llhllz,tt,a".l} > 0.

(ii) 1/ 4"i" <-cn, then liminfll-7*,"{lltr(t)ll3.llhllr,,t-r-,,,r)} > 0.

(iii) u € rf,"((-?ki,,,?-.*),Wt,'(RN)) for euery admissible pai,r (q,r).
(iv) There erists 6 > 0, depend'ing only on N,a, and 0 such that i,f

ll,bll:l!, [' b{41'd,s 15,
J-r

then [-r,zj c (-"-i',4'.*) and llull1"Gr,r),wr,.) < Kllrlrlln' for euery
admi,ssi,ble pai,r (q,r), where K depend,s only on N , a, 0, and q. In ad,d'it'ion,

if t!' i.s another i.ni.ti,al ualue satisfying the aboue cond'ition and i,f ut is the
conesponding solut'ion of (4.71.2), thenllu-u'llp*((-r,r),L2) < Kllrh-rlr'llv.

(v) f |.lrlt e r'(RN), then|.lu e C((-T^i,,?-*),I2(RN)).

PRoor'. We apply the method of Section 4.4. We suppose first that N ) 3, then
we indicate the modifications needed to handle the cases N : 2 and ly' : 1. Let
2" :2Nl(N - 2) and define r bY

(4.11.3)

Since (.1/ -2)a< 4, we have 2 <r < 2*. Therefore, there exists q such that (g,r)
is an admissible pair. A simple calculation shows that

(4.r1.4)

By Strichartz's estimates, there exists K such that

lly(.)d ll r- rn,ir' ) * ll 
y(. )d ll r" rm,yv t,. 1 S K llrbll u,

for every ry' € I/l(RN). Given M >0 and 0 < fi,?2 such that fi *?z > 0, Iet

E : {, e L* ((-71,"r), Ht (Rt) ) o L0 ((-71, ?r), wt,' (RN)),

llull7*pr,,rt,n') + llull1"q-r,,r;,wt,., < (K + L)M\ .

Endowed with the metric d(u,u) : llu - ullpag-r1,rzy,r,"1t (Etd) is a complete
metric space. Given a € E, it follows from (4.11.3), (4.11.4), and Sobolev's and

Holder's inequalities that hlul'u e Lq'((-Tr,Tz),Wt''' (JRN)) and that

llhlu l' u ll 

"'' 1(71,r21,w t,,' 
7

< C llhll L' ea,r, I I I 
t, 

| | i- t (7,r21, 7z* lllull y g- 11,r),w t,,',

< Cllhlla' 6r,,r)(K * !)a+t Y1a+t .

"2dt-;: z"'

111
_-_I_q'- 0' q

(4.11.5)



L4O 4. THE LOCAL CAUCHY PROBLEM

Furthermore, given u,u e E, one has as well

llh(ul" u - lul. u)ll 7n, (.-rt,r),r,, ) S

(4.11.6) C llhll 7' 6r,,r, ; ( ll o ll f - 11- r.1,ril,Ha )

+ llullf-11-n,r,),a,))ll, - ,llr"tt- 11,r2),1,) t

and so

( 4. 1 1. 7) llh(lu l" a - lul' u)ll 7", ((- rt,r2), 1,, ) : C 2llhll L' er, JD (K -r I)" M " d(u, u) .

Given'u € .E and r/ € III(RN) such that llry'lln. 1M,let?l(u)be defined by

ft

11(u)(t) :v(t){, + i I r(t- s)h(s)lol'u(s)ds for t € (-Tr,Tz).
Jo

It follows from Strichartz's estimates and (4.11.5) that

17(u) e C(l-Tt,"21, f/t (RN)) n Lc((-Tt,"r), w1''(RN))

and

ll ?l(u) ll ;- 11- r,,r2), H L) + ll ?l(u) ll z," 1 G\,r;,'vy t,, 1 I
K M + q(K + l)a+t12',o+t llhll p ;rt,r) .

Therefore, if 7r + ?z is small enough so that

q(K + t).+1 M"llhll1, py,,7"1 1 t,
then ?l(o) € E. Furthermore, Strichartz's estimates and (4.11.7) imply that

d(It(u), 11(")) < C 4(K + I)' M' llhll Le gr,,y"1d(u, a) .

Consequently, if T1 * T2 is small enough so that

K1M'llhlly<-r,,rs sL,
where K1 : (K * l)o+lmax{Cs,Ca}, then11 is Lipschitz continuous E * ,E with
Lipschitz constant 1/2. Therefore, 7l has a unique fixed point u e E, which satisfies
equation (4.11.2).In addition, the first part of property (iv) follows from (4.11.8),
(4.11.5), and Strichartz's estimates, and the second part from Strichartz's esti-
mates. Uniqueness in the class C([-4,?2],]/r(RN)) follows from (4.11.6) and
Strichartz's estimates. (Note that uniqueness is a local property and needs only be

established for ?r t ?2 small enough; see Step 2 of the proof of Theorem 4.6.1.)
Now, by uniqueness, u can be extended to a maximal interval (-?-in,fiou*), and
property (iii) follows from property (iv). Suppose that [,u* < m. Applying the
above local existence result to a(t), t ( T.r.* with 7t : 0, we see from (4.11.8)

that if
K lllu (t) llir, llhll 7" 1t,r^ "S S *,

then u can be continued up to and beyond [.-., which il a contradiction. Therefore,

K lllu(t)llir,11 all 1, 1t,a,"-) > *,
which proves property (i). Property (ii) is proved UV tf." same argument. Finally,
since o satisfies equation (4.11.1) in L?""((-T^i,,4,.*),rl-t(Rt)) and h is real

(4.11.8)
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valued, property (v) is proved by standard arguments. For example, multiply the
above equation by lrl2s-elt12-,take the imaginary part and integrate over IRN, then
let e J 0 (see Lemma 6.5.2 below).

If l{ : 2, the proof is the same as in the case N ) 3, except that we set r :20
and use the embedding f/1(R2) '- trp(lR2) with p : a0l@ - l).

If N : 1, the argument is slightly simpler. We let

E: {u € Z-((-ft,"2),Hl(R)) : llulll-11-a ,rz),Hl) S2M}

equipped with the metric d(u,u) : llu - ulll*g-\,7:z1,z,r;, and use the embedding
I/t(R) '--r L-(R).

We now study the continuous dependence of the solutions on the initial value.
The result is the following.

THnoRsN4 4.17.2. (Jnd,er the assurnptions of Theorem 4.17.1, suppose the:re erists

h > 0 such that h € ,fj"(R). The solut'ionu of (4.11.2) gi,aen by Theorem 4.Il.l
depends cont'inuously on t! i'n the followi'ng way.

(i) The mappings rlt H T^u* and tf; H T^ia are lower sem'icont'inuous
Ilt(Rt) - (0,ool.

(ii) // th" ;:l r/ zn .I/1(IRN) and i.f u, d,enotes the solut'ion of (4.1L.2) with

i,nitiat ualue tftn, then un "+ a 'in C(|-Tt,"2],H1(RN)) for any interual

l-T,Tzl c (-2,,i,,4"*). If, in addi'ti'on, l'Vb. - l'lrlt in L2(RN), then

| . lr, * l.lu i,n C([Tt,"2], r2(R.N)).

Pnoor'. We apply the method of Section 4.4. We proceed in two steps.

Srpp 1. We show that for every M > 0, there exists r ) 0 such that if
r/ e Hr(nN) satisfies ll/lla' < M,then[-r,rl C (-4ni,,?.,,*), and u has the
following continuity properties.

(a) If lldlls' 1 M, $^ .-l 
T/ in I/1(IRN), and if u,, denotes the solution

of (A.I7.2) with initial value rftn, then u' * o in C([-r,r],]/1(RN)).
(b) If, in addition, l.lrlt"- l'ldin r'(Rt) as rr-+ oo, then l'lrn- l'luin

C(l-r,r],I2(RN)) as n + oo.

We only prove the result in the case N > 3 (see the proof of Theorem 4.11.1

for the necessary modifications in the cases N : 7,2). Given M t 0, we choose r
so that the inequality in property (iv) of Theorem 4.11.1 is met whenever llr/ils' <
M. In particular, if llr/lls' < M, then [-r,rl C (-4,,i',4r,"*). Next, observe

that 7/0 > (4- aN)14, and so we may assume without loss of generality that
110, > @ - aN)lA. Therefore, if we define o by

then 2 < oo <2NlW - 2). Let now p be defined by

olat

po

!

:: #('-#'.) ,
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Since o > Nl2, we see that 2 < p < 2NlW - 2). Finally, let 7 be such that
(1, p) is an admissible pair. It follows easily from Hcilder's inequality that for every

-oo<o<b<oo,
/ rb - \l/dr

(4.11.e) llhuzllr,,,,o,b,,tc,1 3 ( / taf 'lt" llu,(s)ll1'") llzlll"11s,61,r.c1 .

Consider now ty' such that llrlrlln' S M, and let tltn be as in (a). Let u, u' be the
corresponding solutions of (4.11.2). We deduce from Strichartz's estimates that
there exists C, depending only on 7 such that

(4.11.10)
llu - unlly,g-rr),wt,p) + llu - unllT-g-r,r),H1) <

C llrh - r! 
"ll 

n, + ll h( 
| 
u 

| "u - lu"l u")ll r.1, ((_ a,r),w 1, p, ) .

On the other hand, a straightforward calculation shows that

(4.11.11) lV(lul'u - lr.lo.)l3 Cla*l'lVu - Vr,l + d@,u,)lVul ,

where C depends on a, and the function 6@,a) is bounded by C(lrl" + lyl") and

satisfies 4@,y) -----+ 0. Therefore, applying (4.11.9), (4.11.10), and (4.11.11), we get
Y4r

11u - unll p, q- r,r),w t, p ) + llu - u' ll ;- 1 1 -r,r),Ir1 )

< Cll',b - ,hnlln'

(4.tL.12) + llhlL,,' (-,,,)llunlll-(-r,r),L--)ll, -r.lb,,t<-a,r),w,,p)

* 
" 

( | "' 
I 
h(") 

I 

e, 
116@, u.)ll'.i) "" ll, ll r,, (- r,r),w t, e \ .

Note that by property (iv) of Theorem 4.ll.l, u,, is bounded in F/l(RN), hence in
tro"(RN), with the bound for t € [-r,r], depending only on llrb"llnr, hence (for
large values of n) only on M. Also, the bound on llulll'11-r,r),wl,e) depends only
on M. Therefore, it follows from (4.11.12) that

llu * u 
"ll 

p" g- r,a).w L, p) + ll t, - u nll r* (-,,,), n, )

< Cllrh - r/t^lla, * CllhllT"(-",,)llu - unllpq-,,r),wt,e)
r rb I r/0t

* 
" I J " 

lh(,)lo' lld@, u,)ll\" 
)

where the constant C depends only on M. Therefore, if we consider r possibly

smaller so that Cllhlly'g",,1 < If2 (note that r still depends on M), we have

llu - r^llr,",u-r,r),wt,e) + llu - unllT*q-,,,),n.) S

cll,b -,!*lln, * c( [' lh(")ld, llQ",,r^)llgt")"" .

\Jo - /
Therefore, property (a) follows, provided we show that

( ['walf'|d@,,,)il1'") --1 0.
\Jo " 

'f 
n+6

By the dominated convergence theorem, it suffices to verify that

lld@,r)llu,:A0 for all tel-r,rl.
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To see this, we argue by contradiction. We assume that there exist t and a sub-
sequence, which we still denote by u,(t) such that llf@(t),a.(t))llr,. > p > 0.

Note that un(t) -- u(f) in ,'(R") and u,,(t) is bounded in III(JRN) by prop-
erty (iv) of Theorem 4.l7.L Therefore, by Sobolev's and Hcilder's inequalities,
u^(t) --. u(t) in r""(RN). It follows that there exist a subsequence, which we still
denote by un(t), and a function / e tr'"(RN) such that un(t) -- u(t) a.e. in IRN and

lu"(t)l < / a.e. in JRN. Applying the dominated convergence theorem, we deduce
that ll@(u(t),u"(t))llu ---+ 0, which is a contradiction. Hence property (a) is proven.

Property (b) follows from property (a). (See Corollary 6.5.3 below.)

SrBp 2. Let (; e F/t(Rt), let u be the maximal solution of (4.11.2) given
by Theorem 4.11.1, and let [-Tr,Tr) C (-?,,i.,7i,.*). Set

M :2 
-#l=* ll'(t)ll'' '

and consider r ) 0 given by Step ]. By applying Step 1 m times, where (m-l)r <
Tt*Tz S mr, we see that if llrb-rltlln, is small enough, then the solution of (4.11.2)

with initial value Ty' exists on l-Tt,Tzl. Property (i) follows. Property (ii) follows
easily from the same argument.

4.12. Cornments

The results of this chapter are mostly based on the Strichartz estimates. Thus
we may expect that the results of the previous sections have a counterpart for the
abstract equation

(4.12.t)

whenever T(t) : eitA satisfies Strichartz-type estimates. Theorem 2.7.1 gives a
sufficient condition for such estimates, which we recall below. Let O be a domain
of IRN and let X : L2(Q). Let A be a C-linear, self-adjoint ( 0 operator on X
with domain D(A). Let Xa be the completion ot D(A) for the norm llrll|, :
ll"llk - (Ar,r)a, X|: (XA)-, and 7 be the extension of ,4 to (D(,4))-. Finally,
Iet I(t) be the group of isometries generated on (D(,4))., X|, X, Xa, or D(A) by
the skew-adjoint operator i.A. If, in addition,

(4.12.2) llY(t)ellp 3 Clt;* yr11"' for all e e D(Q) ,

then (t) satisfes the Strichartz estimates (see Theorem 2.7.1). As a frst applica-
tion, we have the following analogue of Theorem 4.3.1.

TupoRpl,t 4.72.I. Let A be as'in the statement of Theorem 3.7.I, and assume
thatt(t): sitA safisfies est'imate (4.12.2). Let g e C(X+,X)), and assume that
therc erist g\, . . . , gp € C(Xa, Xi) such that

g:gt*...19n,

where each of the gi's sat'i,sfies the assumpti,ons (3.7.3)-(3.7.6) for some exponents
ri, Pi. F'inallY, let

G : Gt I ...* Gn,

143

tr

{our*Au*e(u):Q
L u(0) : s,



144 4. THE LOCAL CAUCHY PROBLEM

and setE(a) = (tlz)(llullk^-llrlll)-C(u) for aIIu e X.s. Itfollowsthatthei,ni,ti,at
ualue problem (4.12.1) i,s locally well posed in Xa. Moreouer, there'is conseruat'ion
of charge and energyf i.e.,

ll"(t)llu: llrll1z, E(u(t)): E(r), for allt e (-7,.i,,4..*),

where u i,s the soluti.on of (4.12.1) with the i,ni.ti,al ualue r € X,q. (Here, the notion
of local well-posedness 'is as in Section 3.1).

Pnoor. By Theorem 3.7.1, we need only show uniqueness. This is proved
Proposition 4.2.3 by using the Strichartz estimates of Theorem 2.7.1.

RpuaRx 4.12.2. If we assume further that for every A ) 0, there exist e(A) > 0

and K(A) < oo such that

c(u) s K(A)+!:4/JU"ni

for all u € H01(C)) such that llullr"" < A, then all solutions given by Theorem 3.7.1
or Theorem 4.72.I are global (see Section 3.4).

We now give an analogue of Theorem 4.8.1. Most objects used in the statement
and proof of Theorem 4.8.1 have an obvious analogue in the abstract setting. It is
clear that A should be replaced by A and f/'(Rt) by D(A). As for the analogue
of .F/"(lRN) with 0 ( s ( 2, it is clear from the proof of Theorem 4.8.1 that the
essential property we need is the interpolation estimate (4.8.20). In fact, we do not
fully use (4.8.20), we only need an estimate of the type llrllri" < ellulls" IC,llull7,.
Thus we may assume that there exists a space D(,4) .--+ Y .--+ X such that for every
e > 0 there exists a constant C, with

(4.r2.3) ll"llv 3 ellullpral + ll"llx for all u e D(A).

Taking Y : D(Ai) is a possible choice. Depending on the applications, good
choices may also be an Lp space or even an -Fl" space. Following the proof of
Theorem 4.8.1, it is not difficult to establish the following result.

THBoRsr,I 4.12.3. Let A be as in the statement of Theorem3.7.I, and assume that
Y(t) : eitA sat'isfies est'i,mate (4.12.2). Assume there erists a Banach space D(A) ,--
Y ,- X such that for euery e > 0 there etists a constant C, for whi,ch (4.72.3)
holds. Let g : 91+ . . . + 9l- wi,th gi : D(A) - X, and assume there erist erponents
2 1 ri,p1 < 2Nl(N -2) (2 3 rj,pj < @ i,f N : 1) such that gi e C(Y,X) i,s

bounded on bounded sets and

llgi@) - si@)ll ri ! L(M)llu - al;,",

for allu,a e D(A) such tha,t ll"llv,llrllv < M. For euery r e D(A), there erist
?rrr*,[rir, ) 0 and a un'ique, mo,r'imal solut'ion u € C((-T^i,,4r.*), D(A)) n
Ct((-21"t",4,r*), X) of (4.12.1). Moreoaer, there'is the blowup altemtat'i.ue; i..e., i.f

4,.* ( a (respect'iuely, T^in ( *), then llu(t)llp(/) ---+ oo as t I T^u* (respect'iuelg,

os t J -[,1").

Iike
tr



4.12. COMMENTS

Rs[4A,Rx 4.12.4. Note that one can also show, as in Theorem 4.8.1, a form
of continuous dependence as well as the conservation laws (whenever the relevant
conditions on 9 are satisfied).

RpueRx 4.12.5. Note that the results of Section 4.6, i.e., the existence of L2
solutions, have an obvious counterpart in the setting of Theorems 4.12.7 and 4.12.3.

This is not the case for those of Sections 4.4 (Kato's method), 4.9 (H' solutions,
s < Nl2), and 4.10 (I/- solutions, ?r, > N/2). Indeed, those results are obtained
by differentiating the equation, in one way or another, with respect to space. It is

not clear, in general, what a good analogue of the space differentiation would be.

RpivlnRx 4.12.6. We established in the previous sections local existence results
for (4.1.1) in spaces of the type I/"(IRN) with s ) 0. One may wonder if there is
any local well-posedness result in f18 spaces with s ( 0, as is the case for KdV,
for example. This is a delicate question. For nonlinearities of the type g(u) :
Alulou, the answer is nol see Birnir et al. [32], Christ, Colliander, and Tao [80],
and Kenig, Ponce, and Vega [216]. On the other hand, the answer is yes if, for
example, g(u): )u2. See Kenig, Ponce, and Vega [214]. More generally, one can
investigate the minimal value of s for which the initial value problem (4.1.1) is
(locally or globally) well-posed in f/s. This question has been (and is still being)
studied by many authors. See, for example, Bourgain [38], Kenig, Ponce, and
Yega [214], Staffilani [318], and Tao [335]. Note also that the nonlinear Schrcidin-
ger equation (4.1.1) can be solved in certain spaces that are not based on -L2, like

Lorenz spaces;r'oo (see Cazenave, Vega, and Vilela [67]) or Besov spaces Bl.- (see

Planchon [298, 299]).
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CHAPTER 5

Regularity and the Smoothing Effect

In this chapter we consider the nonlinear Schrridinger equation (4.1.1) in IRN,
We address the problems of regularity of solutions and the C- smoothing effect.

The problem of regularity of solutions can be formulated as follows. Suppose
(p € I1'(IRN) for some s ) 0 and suppose the nonlinearity g is such that there is
a local existence theory of ffs solutions (see Chapter 4). It follows that there is a
maximal solution u € C((-T^in, ?],,u*), .F/"(Rt)) of (4.1.1). Suppose now that rp is
smoother than just If"(RN), say g € I/"'(RN) for some s1 ) s. The question is
then: does u belong to C((-fl-"1",?,,,*),I1".(nN))? In fact, one can simplify the
problem by assuming that there is also a local existence theory of fI" solutions. It
follows that there is a maximal solution uL e C(-?:|i,,41,.*),/1"'(RN)) of (4.1.1).
Of course, an I1"' solution is in particular an fls solution. By uniqueness of ff"
solutions, we deduce that u : ul on the Iarger interval where the two solutions
are defined. We then see that (-7*t",7*"*) c (-?-i,,fi,.*) because, again, an
f1"1 solution is an f/" solution. The question then becomes: does ?-]r1. : 7*i,
and ?-irr.* :Tl^*7 In other words, can u blow up in ff"'(lRN) before it (possibly)
blows up in fI"(lRN)? At this level of generality, there is no complete answer to
this question. (It seems that there is no counterexample either.) We give, however,
partial answers to this question in Sections 5.1-5.5.

The problem of the C* smoothing effect is the following: Let g e I/" (R.N) and
let u € C(-f,.F/"(IR.N)) be a solution of (a.1.1). Under what conditions on g and g
is the solution u in C*((I \ {O}) t mN)t In other words, when are the properties
of Section 2.5 preserved for the nonlinear equation? We study this question in
Section 5.6.

Finally, we observe that the results of this chapter are stated for one equation,
but similar results obviously hold for systems of the same form. See Remark 3.3.12
for an appropriate setting.

5.L. If8 Regularity 0 ( s ( min{l, N /2}
In this section we consider local nonlinearities, so that we may apply the If"

theory of Section 4.9. In this case, there is regularity at the f/"' level for any
s ( s1 < min{1, N12}, as the following result shows.

THsonrN,I 5.1.1. Let 0 < s < min{l, Nl2}. Let I e C(C.,C) sati,sfy 9(0) :0 and,

ls@) - g(u)l S C(t + lul' + lul")lu - ul for all u,u e C

o(a( 
"*r47

wi,th
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Let (1,p) be the ad,mi,ssible pai'r d,efi,ned, by @.9.3). Let g € /1"(Rt) and let
u e C((-T^in,?,,.*),r/'(RN))nril"((-r;i,,4.,u*),B;,r(RN)) be the ma,rimal H"
solut'ion of (a.1.1) gi.uen by Theorem 4.9.I (case I > 0) or Theorem 4.6.I (case

s:0). If g e H"'(RN) /or some s < sl < min{l, N12}, then for euery gdmi'ssi,ble

pair (q,r), u € C((-?,"i", ?,,u*),.H"'(RN)) n rfl""((-2Li,,4,.*), B;]r(RN)).

Pnoor'. We consider t > 0, the argument for t ( 0 being the same. We know
that u is an }ls' solution (in the sense of Theorem 4.9.1) on some maximal interval

[0, ?) with T 1Tmax, and we need to shorr that T : T*u* (see the discussion at the
beginning of this chapter). We argue by contradiction, and we suppose T I T^u*.
In particular,T l oo so that

(5.1.1)

Moreover, since 7 1T^u*,

(5.1.2) llrllz'rro,rl,.B1"1 * sup llu(t)lls" < oo.
0<r<?

We now reproduce some estimates from the proof of Theorem 4.9.1. We decompose
g: gr* 92 as in Remark 4.9.2 and we deduce from Propositions 4.9.4 and 4.9.5

that

llgr (") llr;:, 3 c llull s"',

llozfu)lla;t,, S Cll,ll',H-*,, llullrii 3 Cllullfi","ll"lls;b 
'

where the last inequality follows from the embedding B;,2(RN) + ,+E:)(RN).
It then follows from (5.1.4), Hcilder's inequality and (5.1.2) that for any interval
1c (0,?),

(5.1.5) llullr.,tr,B",bl < Cll"ll!.,e,n;,"1llull7.,s,n"o'"15 CllullT,g,e)i,),

wherel<p<Tisgivenby
11_--Jp7

We now apply Strichartz's inequalities in Besov spaces and we deduce from equa-
tion (4.1.2) and from (5.1.3) and (5.1.5) that (see the proof of Theorem 4.9.1)

(5.1.6) llull;-1r,a,'y +llullr."s,ai'"15 Cllvlln,' +Cllulll'(r,n"l) *Cllull6s,B"',1

for every interval 0 € 1C (0,7). 'We now let 0 < e <T and we consider / of the
form (0, r) with e < r < ?. We have

llull;'1r,a"'y < llullz,'110,"-e),rr'r) * llull;'11"- €,r),H"1)

< llull;'110,r-e),Ir"r i + ellullz,-1 G-e,r),H"1)
< C, t ellull;*1r,a,'y .

llullus,n.,bt 1c, * 6e4a llullns,slb).

llr(r)llir"' -.r oo.

(5.1.3)

and

(5.1.4)

4-a(N -2s)

Similarly
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It then follows from (5.1.6) that

llull;-1r,a"' I + llullz,'rr,B;!) S

c + c, + ecllulll-1 r,H"t) * t*!4=H cllurr,,(t,a;:,) ,

where the various constants are independent of r < T. We therefore may fix e
small enough so that the last two terms in the right-hand side are absorbed by the
left-hand side. It follows that

llull;-1r,a"r; + llull r,, tr,B;!) a C,

where C is independent of r < T. Letting r I T, we obtain a contradiction
with (5.1.1). tr

5.2. HL Regularity

In this section we establish f1l regularity. This can be done for local non-
linearities, by starting from the ffs solutions of Section 4.9. For more general
nonlinearities, this can be done starting from the L2 solutions of Section 4.6. We
begin with the first case.

Tsoonpn 5.2.1. Let0< s<min{1,N12}. LetgeC(C,C) sati,sfys(0):0 and

lg(") - g(o)l ( C(r + lul' + lol')lz - u[ for alt u,u € C

with

0(a(F;
Let (1,fl be the admi,ssi,ble pai,r d,ef,ned, by (a.9.3). Let g e /r'"(RlI) and let
u e C ((-T^i,, 4,"* ), H" (Rt ) ) n ril" ( ( -4"i,, ?-.*), Bi,, (Rt ) ) be the marimal H "
solut'ion of @.1.I) gi.uen bg Theorem 4.9.1 (case s > 0) or Theorem 4.6.I (case
s : 0)). f 9 e .F11 (R N ), then u € C ((-Tni., ?.,u*), Ht (RN)).

Pnoor'. The proof is very similar to the proof of Theorem 5.2.1, except that we
use the Sobolev spaces Ht(Rt) and I4lr'"(lRN) instead of Hst(lR.N) and B;.'r(RN),
and the inequalities

llsr(")ll11' < Cllullp,
and

llsz(u) ll *,,,, 5; C 
| | 

u 
| | ", < e+,r llullw,,, 3 C llullft ","llull*,,,

instead of (5.1.3) and (5.1.4). tr

We now consider more general nonlinearities and study the 1/r regularity of
the L2 solutions of Section 4.6. Since there are two slightly different results for
the local existence in.I/1 (Sections 4.3 and 4.4), there are two possible regularity
results, depending on what set of assumptions on g we choose. For simplicity, we
only establish one such result.

We recall the assumptions of Theorem 4.6.4. Let
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II 
a.rd let g : ,,(Rt) n r'(lRN) -- tr''(RN). Assume that there exists o ) 0 such

, that for every M > 0, there exist K(M) < oo such that

| {s.z.z1 lls(,) - s@)llu, ! x(u)(lluJlg. + llull?,)llo - "lli.-
for all u,u € ,L2(IRN) n r'(RN) such that llulft",llrllr, < M. Set

I ,:Nf1 _t)t n \z r/
I so that (q,r) is an admissible pair and assume
Ir (5.2.3) a*2<q.

I 
W" have the following result.

It THBonBtr 5.2.2. Let g : h * . .. * gx be as 'in Theorem 4.6.4; ,i.e., each of the

9i's satisf,es (5.2.1)-(5.2.3) for sorne rjlqjtej. Assume, i.n add,i,ti,on, that
I
I ts.z.al llvsi(")ll& t K(M)llullilo11vu11""'

for alt u e fIl(lRN) such that llull;" < M. Set r : max{r1,...,rp} and

I q: min{g1, ...,ex}. Let g e I'(Rt) and let u e C((-T*i,,7*,*),r2(RN)) n
I ,L[.((-?,,,i", T^u*),r'(RN)) be the marimal soluti,on of problem (4.1.1) giuen by

Theorem 4.6.4. If (p € Hl(Rlr), then u e C((-?]"i",4nu*),Ht(RN)).

Pnoor'. We first observe that g satisfies the assumptions of Theorem 4.4.6, so that
there is local existence in I1l (lRN). We consider t ) 0, the argument for t ( 0 being
the same. We know that u is an I/1 solution (in the sense of Theorem 4.4.6) on
some maximal interval [0,7) with T I Trna*, and we need to show that T : T^u*
(see the discussion at the beginning of this chapter). We argue by contradiction,
and we suppose T 1T^u*. In particular,T 4 oo so that

(5.2.5) ll"(t)ll17' -.f oo.

Moreover, since ? 1T^u*,

J 1s.z.o) sup llu(r)llrz * sup llullr.",((o,r),1-i1 ( oo.
J Oct<r l<i<k

We now reproduce some estimates from the proof of Theorem 4.4.6. It follows from
(5.2.2) and (5.2.4) that

lls i @)ll w,,"i < ll g (o) 
| | r"; + c K (M )llulli+, 11"11*,'., .

Applying (5.2.6), we deduce that

llsi@)llw',-i <c +cllulli+'llull*,,1 for all0 <t < ?.

It then follows from Hcilder's inequality that
1

llsi@)ll 
""i 

{r,w,,'i1< 
crni + cllullTt' s,r,,,llull",i 1r,wr',i1

for any interval .I e [0, ?), where

1 1 d;*2*l- '
Pj qj qj

(5.2.7)
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so that pi < ei by (5.2.3). Using again (5.2.6), we see that

(5.2.8) llsi@)ll fi 1r,w',,,i1 
< C + Cllull",1(r,wl,"j).

Wenowlet0 < e <T andweconsider,Iof theform (0,r) withe <r < ?. We
have

llullm g,wt'"i1 < llullr,,, ((o,r-e),wt,,jy + llullr'i11" -e,r),w,,,j)
' ad+2

< llrll c, ((o,r - €),w1,. j y * e' - -i i llull tn, tt, _,,,),w,, j )

by (5.2.7). We next observe that u is an I11 solution on (0,?) so that by The-
orem 4.4.6, u € Lpi((0,7 - €),I4l1''i(RN)) for every e > 0. It then follows
from (5.2.8) and the above estimate that

(5.2.9) llsi",)ll L"i 1r,w,,-'iy 
I c" * ,'-T cpll7e117,1vt,,i1 ,

where the constants are independent of r 17. We now apply Strichartz's inequal-
ities and we deduce from equation (aJ.2) and from (5.2.9) that

kk-di+2

llullz,*17,s,; + t llullr", {r,w1..i11 c, * CD€1-i- llullu,(r,wtt.i1.
--1 ;-1J-t

We therefore may fix e small enough so that the sum in the right-hand side is
absorbed by the left-hand side. It follows that

,i

llull;_17,s,y + t llullr"j 1r,w,,,i1 S C,
j:1

where C is independent of r 1 T. Letting r I T, we obtain a contradiction
with (5.2.5). !

Rnulex 5.2.3. Theorem 5.2.2 applies to the model case

g(u):vu+ f (u(.)) + (w *lul2)u

under the following assumptions. The functions V and VV € .Ld(RN) + r*(RN)
for some d ) 1, 6 > Nf2, andW € r"(lRN) +r-(lRN) for some o ) !, o > Nl2.
We have ./(0) :0 and

lf (rr) - f (zz)l SC(1+ lzll+lz2l)Blzr - zzl for some , 
= 

P. #.
The fact that the assumptions are satisfied is easily verified; see Corollary 4.6.5 and
Remark 4.4.8 for the details.
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53. H2 Regularity

In this section we study the H2 regularity of solutions. Since we already estab-
Iished the f/l regularity in the preceding section, one possibility is to start from an
f/l solution. However, we then need the assumptions of either Theorem 4.3.1 or
Theorem 4.4.6. This imposes either the Hamiltonian structure or Wl'p regularity
of g. On the other hand, if we start from an -L2 solution, then we do not need
such assumptions on g (see Theorem 4.6.4). Since the assumptions on g for local
existence in ff2 require neither the Hamiltonian structure nor the WL'p regularity
(see Theorem 4.8.1), it may be more economical for L2 solutions to jump directly
to the f12 regularity. For this reason, we present two regularity results, one for I11

solutions and the other for ,L2 solutions.

THEoREM 5.3.1. Let g :9r * .. .* g* sati.sfA the assumpti,ons of either Theo-
rem 4.3.1 or Theorern 4.4.6. Assume further that there esists 0 < s <2 such that,

foraIII<j<k,

(5.3.1) llsi@)ll n s c (M)(r + ll"lla" )

for all u € FI"(IRN) such that llullp < M. Let g e //t(RN) and let u €
C((-T^in,7,,,"*),r/t(RN)) be the marimal solut'i,on of the problem (4.1.1) gi,uen

by Theorem 4.3.7 or Theorem 4.4.6. If p e F/'(RN), then it fotlows that u e
C ((-T61n,T^u* ), E' (Rt ) ).

Pnoop. We recall that if g satisfies the assumptions of either Theorem 4.3.1 or
Theorem 4.4.6 as well as (5.3.1), then g satisfies the assumptions of Theorem 4.8.1,
so there is local existence in A2(nN). We know that u is an -F/2 solution (in the
sense of Theorem 4.8.1) on some maximal interval [0,7) with T 1T^r*, and we
need to show that T : T^u* (see the discussion at the beginning of this chapter).
We argue by contradiction, and we suppose T <T^ur. In particular, 7 < oo, so

that

(5.3.2)

Moreover, since 7 ( 4r.*,

(5.3.3)

llu(t)ll11, -:l oo.

sup llz(t)llsr ( oo
0<t<?

and, since u is an ff2 solution on [0, ?),

(5.3.4) llulli,- i1o,r;,r,y + llulll y" 1(0,r),;a; ( oo

for all admissible pairs (4, b) and all 0 < r z-7. We now reproduce some estimates
from the proof of Theorem 4.8.1. For simplicity, we suppose k : l, the case

k ) 2 being treated as in the proof of Theorem 5.2.1 above. We first observe that
by (5.3.1), g@) er'(Rt). Next, we recall that (by (3.3.2) or (a.A.2I)) thereexist
2 1 r, p < 2NlW - 2) (2 I r, p I m if N : 1) such that

(o.J.D/ lls@) - g(u)ll u, ! c (M)llu - "lll.
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for all u,u € Ilr(lRN) such that llzllp',llrlla' < M. We consider 7 and q such

that (7, p) and (q, r) are admissible pairs. It follows from estimate (4.8.4) and
from (5.3.3) that

(5.3.6) 
ll *r,",ll s cuutln,r,r.,)
ll uL ll L1, (J,Lp, ')

for every interval 1c [0,?). Applying now Lemma 4.8.2 and (4.8.7), we obtain
that

llu'll u s, r,, t < c llp ll n " + c ll s (d ll r", + c llu tl}.", ( t, r." )

for every interval 0 e / c [0,?). Using (5.3.4) and the fact that 't' 1 q, we
deduce easily that (see the proofs of Theorems 5.1.1 or 5.2.1 above for the details)
u1 e Lq((0,?),r'(R.N)). Applying again (5.3.6) and Lemmas 4.8.2 and 4.8.5, it
follows that

(5.3.7) w € L@((0,"),r2(RN)).

Next, we easily deduce from (5.3.1), the interpolation inequality (4.8.20) and esti-
mate (5.3.3) that there exists C such that

(5.3.8) llg(r(t))llr, < c +]llrtt)llp for all 0 < t <7.

Finally, we use equation (4.1.1) and estimates (5.3.3), (5.3.7), and (5.3.8) to obtain

llr(t)llr, < c +'rll*{4llr" for all 0 < t <7.

Thus lla(i)ll pa l-2C for 0 < t < T,-which yields a contradiction with (5.3.2). n

Rnuanx 5.3.2. We note that we did not use all the assumptions of Theorem 4.3.1

or Theorem 4.4.6. In fact, we need only assume that g € C(Hr(R.N), H-1(RN)) (so

that the equation makes sense) and that each of the gr.'s satisfies (5.3.1) and inequal-
ity (5.3.5) for some exponents 21ri,p1 <2Nl(N -2) (2<rj,pj ( m if l[:1).
Under these assumptions, it follows that if p € f/2(RN) and if u e C(1,Hl(RN)) is
a solution of (4.1.1) on some interval I > 0, then u e C(l,H2(JR.N)). The argument
is exactly the same. In practice, though, the existence of an -Fll solution is obtained
by either Theorem 4.3.1 or Theorem 4.4.6.

RsN{nnx 5.3.3. Here are two examples of applications of Theorem 5.3.1. Consider
first

g(u) : vu r f(',u(')) + (w * lul2)u,
where V, /, and W are as follows. The function V is a real-valued potential, V €
,6(RN) + r-(RN) for some d ) 1, 5 > Nl2. 14/ is an even, real-valued potential,
I4l e .L"(IRN) +.1*1mr; for some o ) 1, o > Nl4. The function / : IRN x IR - lR.

is measurable in r e IRN and continuous in u € lR and satisfies (3.2.7), (3.2.8),
and (3.2.17). We extend / to IRN x C by (3.2.10). It follows that g satisfies the
assumptions of Theorem 4.3.i (see Example 3.2.11), and similar estimates show
that (5.3.1) holds (for s sufficiently close to 2). In particular, we may let f (r,u):
)]ulou with.\ e lR and 0 ( o ( 4lW * 2) (0 < o < oo if N:1,2). Consider next

g(u):vu+ f (u(.)) + (w xlul2)u,
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where V,VV € rd(RN) + r-(R.N) for some d > 1, 6 > Nl2, I4z e .L"(RN) +
,-(RN) for some o ) 7, o > Nf 4, and / is as in Theorem 4.4.1 (for example,

f("): \lzlz with ) € C and (.n/-2)o < a). It followsthatg satisfiesthe
assumptions of Theorem 4.4.6 (see Remark 4.4.8) and that (5.3.1) holds (for s
sufficiently close to 2).

We now study the I12 regularity of L2 solutions.

Tsnonpu 5.3.4. Let g : h * ... * gn be as 'in Theorem 4.6.4; i.e., each of
the gi's sati,sfi,es (5.2.1)-(5.2.3) for solne rj,ai,ei. Set r : max{r1, ...,rp} and
q: min{q1, ...,Q*}. Assume, in add,iti,on, that there er'i,sts 01 s 12 such that

(5.3.e) lls@)llL, < K(M)(I + ll"llri") for aII u € fl2(RN)

suchthat llrllr, < M. Letp€r2(lRN) andletu€C((-Tn.,?*,*),r2(RN)) n
Ifl""((-tL'",?Lu*),r'(RN)) be the mod,mal solut'ion of the problem (4.7.1) gi,uen

by Theorem 4.6.a. If g € I/2(lRN), then u e C((-"^i",?,,,,*),11'(Rt)).

Pnoor. We first observe that by (5.2.2) and (5.3.9), there is local existence in
II'(RN) by Theorem 4.8.1. The proof is then analogous to the proof of Theo-
rem 5.3.1 (see also the proof of Theorem 5.2.2). D

RsN4A,nx 5.3.5. Theorem 5.3.4 applies to the model case

g(u) : vu * f (',u(')) + (w * lul2)u

under the following assumptions. The function V € ,6(RN) + r'"(RlI) for some

d'> 1, 6 > Nl2, andW € r"(lRN)+r*(lRN) for some o ) l, o > Nl2. We have

.f (r,0) : 0 for all z e IRN and

lf(r,rt) - f(r,22)l < C(1+ lzrl + lz2l)Bl4 - z2l for some 0 < B < +./V

The fact that the assumptions are satisfied is easily verified, see Corollaries 4.6.5
and 4.8.6 for the details.

5.4. Hrn Regularity,, m ) N/2
In this section we consider a nonlinearity g that satisfies the assumptions of

Theorem 4.10.1 for some rn > N 12 and we study the -Ff-' regularity of the solutions
f.or mt > m. This is a particularly simple case as the following result shows.

TspoRpu 5.4.1. Let m > Nl2 be an 'integer and let g c C^(C,Q Qn the real
sense) uith g(0) : 0. Let I € FI-(R.N) and tetu e C((-T^i',?-.*),rf-(RN))
be the mo,rimal solut'ion of @.1.1) giuen by Theorem 4.10.1. If p e I1m1(IRN) /or
sorn€ rn1 ) m and if g e Cml (C, C), then u e Cmt ((-4"ir,, ?rr.*),Il-'(RN)).

Pnoor'. We consider d ) 0, the argument for t < 0 being the same. We know
that u is an f/-' solution on some maximal interval [0, T) with T {.T^^*, and we

need to show that T : T^u* (see the discussion at the beginning of this chapter).
Consider r 1T^u,. It follows that

sup llu(t)llp-r ( oo
0(t(r
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so that
sup llu(t)ll1- ( oo.

0(t(z
Applying property (i) of Theorem 4.10.1 (at the level rn1), we deduce that ? > r.
Thus ?:4r,.*.

5.5. Arbitrary Regularity

So far, we have established regularity up to the level II2(IRN) for 11" solutions,
0 ( s < 1, and regularity of arbitrary level for Ilm solutions with m > Nl2. Tn

higher dimensions, there is of course a gap betwee\ H2 and Hn with rn > Nl2.
It seems that there is no general result concerning regularity at higher order. See

Ginibre and Velo [135] and Kato [206, Corollary 4.3] for some partial results in that
direction. Here is a result concerning a very particular nonlinearity.

Let g(u) : )lulu with ) € C and o an even integer. In parbicular, g €
C-(C,A). BV Theorems 4.6.1 (case t : 0), 4.9.1 (case 0 < s < min{l, Nl2}),
4.4.1 (case s: 1) or 4.9.9 (case 1 < s < Nl2), there is local existence in,Ff"(lRN)
for (4.1.1) when 0 < s < N/2 and s > N/2-2fa. Moreover, for every admissible
pair (q, r), u € lfl""((-21"t",4'.*),I1"'"(RN)) (see the above'mentioned theorems
and Remark 4.4.3 for the case s : 1). We have the following regularity result.

THronnu 5.5.1. Let g(u): )lul"u with 
^ 

e C and a an euen'integer. Let
0(s<N/2satisfy

(5.5.1)

F'inally, Iet g e H"(RN) and let u be the comespond'ing rnonimal H" solution of
(4.1.i), u e C((-T^i,, ?,,,*), H"(RN)) n ,,0."((-?}i., ?.,"*),I/"''(RN)) for euery
admi,ssible pai,r (q,r) (see aboae). If p e I/-(RN) for some m > Nf2, then u €
C ((-T^1n, T^u* ), fI* (lRN ) ).

PRoor'. Supposefirsts < 1. If s < l and m:I, thenregularityfollowsfrom
Theorem 5.2.1 and if. m : 2, regularity follows from Theorem 5.3.1. If. m ) 3,
then in particular u is an f12 solution by Theorem 5.3.i. If N 12, then regularity
follows from Theorem 5.4.1, and if N > 3 we are reduced to the case s > 1 and
N > 3, which we study below.

We define rs > 2 by

too

n

A/2t'T-a

(5.5.2) 1 
-

1'O

We observe that a ) 2 so that

72
t- N"

(o.o.r/ 2<ros#-

2<r<;\, rs)ry'.

(with equality if o : 2). Moreover, it follows from (5.5.i) and (5.5.2) that

(5.5.4) rss ) ,|y'.

We deduce from (5.5.3)-(5.5.4) that there exists r such that
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In particular, there exists q such that (9, r) is an admissible pair. We also note that
by (5.5.2),

112
;<t-A/a-

so that q ) o. It follows that u e ,ft"((-Zki,,?-.*),H"''(RN)). Since
I/"''(RN) .-- tr-(lRN) because rs ) N, we obtain

(o.a.oJ u e Lftc(eTnin, ?-u*), r-(RN)) .

We now observe that, due to the particular structure of. g(u), the proof of Lem-
ma 4.10.2 yields the estimate

(5.5.6) lls@)lln^ 3 Cllulli*llrlln^ for all ?.' € Ir'-(RN).

We consider t ) 0, the argument for t ( 0 being the same. We know that u is an
I/m solution on some maximal interval [0, ?) with T (-T^u*, and we need to show
that 7:T*a* (see the discussion at the beginning of this chapter). We use equa-
bion (4.1.1), the property that I(t) is an isometry in II-(IRN), and estimate (5.5.6)
bo obtain

llr(t)llr- sllelln^ + c I llr(s)lli*llu(s)lls-ds for all 0 <t <7.
JO

Applying Gronwall's lemma, we deduce

/ft\
ll"(t)lla- <llelln^ exn (c Jo llu(r)ll|-as) for all 0 <t <7.

If T < [.u*, then (5.5.5) yie]ds limsup6r llu(t)lla- ( oor a contradiction with the
blowup alternative in ,g-(lRN).

5.6. The C- Smoothing Effect

In this section we present a result of Hayashi, Nakamitsu, and Tsutsumi 1177,
178, 179] describing a C* smoothing effect similar to the one observed for the
linear equation (see Section 2.5). More precisely, under suitable assumptions on
the nonlinearity, if the initial value rp decays fast enough as lrl -- oo, then the
corresponding solution of (4.1.1) is smooth in both t and r for t I 0, even if rp is

not smooth. There are several results in that direction, depending on what are the
assumptions on g(u) and on the initial data. Some of these results, however, are

fairly complicated technically. Therefore, and for the sake of simplicity, we only
give a simple, typical result in order to illustrate the idea, and we refer to the papers

of Hayashi, Nakamitsu, and Tsutsumi U77, 778, I79) for a more complete study.

THEoREM 5.6.1. Assume that N :1. LetT ) 0, let g e Ht(R), and let u be a

strong Hr -soluti,on of

tr

(5.6.1) { 
*,r^! u,, * lul2u : o 

on lo,Tl.I u(0) : ,p

If 9 has compact support, then u € C-((0,") x R).
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Pnoor'. Let us first do a formal calculation, in order to make clear the idea, which
is quite simple. We use the operators Po defined in Section 2.5. More precisely for
any positive integer /, let

(5.6.2) ut1t,r) : (r * 2it0")tu(t,r) .

We deduce from formula (2.5.4) that

(5.6.3) ur1t,r1 : Qttf ei* 0!@-i* uft,x)) .

It follows from (5.6.2), (2.5.5), (5.6.1), and (5.6.3) that

(5.0.4) tul + ut * + (2ttf ei* at (le-i* uf e-n* u) : o .

Note that lul2u : trEu, and so

o!lu12u: t aiafloalu.
n*j*k:(

Therefore, setting

(5.6.5) u(t,r): e-i*u(t,r),

we deduce from (5.6.4) that

tu{ + ut"* + (2itf ei* t oiuoloola : o.
n*j*k:I

Since ul(0) : rtg, we see that

ut 1t1 : t(t)(x' @ * o I r(r - s) ( {ztr1t "'* I aiug)a{@aju(s))as,
Jo \ n*j*k:t. /

and so

(b.6.6) llut(t)11", < ll*tpl1,, + [' {zr)tll t aiu@)ar,u@0!u(s)117, d,s.
rO n* j*k=(

Next, by Holder's inequality,

il-il
ll ) . 0iu(s)0r"u(s)aft'(s))ll

il -^tt n* j*k=(. tt L'

I llaiuQ)ll 
"ry 

ll4,G)ll ff pfu(s)ll 
"ry 

.

n* j*k:t

Furthermore, it follows from Gagliardo-Nirenberg's inequality that

lla',r4)ll"+ sclla!u6)ll"L,Urf')ll# ror every i € {0, ...,{).
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Therefore,

(5.6.8)

Taking the Z2 scalar
obtain
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I llai,@ll 
"x 

llal, @ll 
"+ 

| | 
af u1s; llr* < c 

ll 
aju(s) ll r, llt,(s) ll?*

n+j+k:t
a

s ; llul(s) II 7, llu(s)ll2y*

s9WG)|",.

(Note that u is bounded in ffr(R), hence in r-(R).) Applying (5.6.6), we deduce

from Gronwall's inequality that

(5.6.7) ll"t(t)l:"" < Cllrtpll}" for all t e l0,T) ,

where C depends only on T, 1., and llull;-110,ry,a.;. In particular, given 0 <
e 1T, u e L*((e,"),H/(R)) for every positive integer l. Since the mapping
p ,-- lul2u is continuous Ht -- fll (see above),.it follows from (5.6.4) that u! e
L*((r,"),Iil.(R.)), and so u1 e L6((e,?),I41"(R)) for every positive integer
(.. In particular, u e C([e,"),I4i".(R)), for every positive integer /. Applying
again (5.6.4), we deduce that u e Cl([e,"),I41"(R)) for every positive integer /.
Differentiating the equation k times with respect to t, we obtain eventually, with
the same argument, that o e Ck([€,"),/41"(R)) for all positive integers I andk.
Therefore, u e C@(le,?] x IR), which means that u e C*(le ,"] x R). The result
follows, since e > 0 is arbitrary.

Now, we want to make that argument rigorous. In order to do that, we need

the following result.

Lprrarra,q. 5.6.2. Suppose g and u are as aboae. If, in add'ition, <p e S(lR), then
u € c'o([0,7),s(R)).

Pnoor'. We proceed in three steps.

Srsp 1. u e -t@((0,"),Hl(R)) for every positive integer l. This follows
from Theorem 5.5.1.

Srpp 2. rpu e L* ((0, ?), Hr(R)) for all nonnegative integers p and (.. We
argue by induction on p. We have already established the result for p - 0 (Step 1).

Assuming it is true up to some p ) 0, let us show that it is true for p * 1. Set

uk1t1 : Alu(t). Given a positive integer /,

tu!+ut,+ t un$uk:0.
n*j*k:2

product of (5.6.8) *i16 i"-2e# r2r*2rt, where € € (0, 1), we

t= !ll"-'"' ,p+1u! (t)ll?, : t^ [ ut -"-2er2 ,zn+2]2dt"\'"L-J'-
+rn [ (e-2.,*" rzo+z& t u"6u*)

r' \ n* j*k:l '
:a*0.

(5.6.e)
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We integrate the term o by parts, and we note that ImulQ:0. It follows that

d: -m | (Qn + 2) * 4ur21"-e* rout+L"-ex2 re+Lut)
J

< C (p) ll re un * t ll 

", 
11 
e- e'2 rP* 1 

un ll 
"" 

. C (p, () lle-' 
*" xo + 1 ut ll *

(5.6.10)

by the induction assumption. On the other hand,

p S ll"-u*" ,o+tulll", I 11"-e* *n+ru"duk11p
n*j'tk=t

(5.6.11)

< C (l)lle- "' ro+L ut ll u D ll"- "" *,*t ur ll ",,lc:0

since uj is bounded in trF for everyi, by Step 1. It follows from (5.6.9), (5.6.10),

and (5.6.11) that

! ! ll 
"-, 

*, ro+ | ut (t)llzt, S
2 dttt" \", ttt ' - 

(

c (p, () ll e- "' ro + | ut ll v + c (l) ll e-' *' rp + 1 ut ll r, | 11 
e- "' ro *' rn ll 

""lc:0

for every nonnegative integer l. Therefore,

0

19 f 11"-ef ,n*Luk 1t1112", S)ilLtt"
f,:u 

e (.

c(p,t)T 11e-"'rn*turll", + c(l)T lle-u*'vn*'uoll'", .

,c:0 k:0

Hence the result follows by integrating the above differential inequality and letting
eJ0.

Stnp 3. Applying Step 2 and equation (5.6.8), we see that, for all nonneg-

ative integers / and p, rpu!. e Z-((0,7),L'); in particular, trpue e C([0,7],L').
Considering again (5.6.8), we deduce that rput e C1([0,?], L2) for alI I' and, p.

Iterating that argument, we obtain that rput € C-([0, T],L") for all nonnegative
integers (. and p. This completes the proof. !

ENo or rHE pRooF or TupoRpM 5.6.1. Consider a sequence pp € S(R) such

that gp --+ 9 in f/t(R) as k --, oo, and such that llropxllu < 2llregllp for all
positive integers k and p. Let up be the solution of (5.6.1) with initial value p6 given

by Theorem 3.5.1. It follows from Theorem 3.5.1 that us---+ u in C(l},Tl,Ht(R))
as k -, oo. On the other hand, by Lemma 5.6.2, the calculations of the formal
argument above are rigorous for the solutions u7r. Therefore, estimate (5.6.7) holds

for the solution up and is uniform in ft. Thus ll"n(t)llu 3 C(t) for all t € [0, ?) and

all 1.21. One concludes as in the formal argument that we described before. n

RnM,cnx 5.6.3. Note that we have shown in fact that the function u defined

by (5.6.5) belongs to C-((0,?),I/-(R/u)) for all mt 0, whenever (I+r2)t(p e
,r(R) for every positive integer nz. Evidently, there are also partial results if we

only assume that (1 + r2)7, € ,2(R) for some given positive integer rns.
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Rruanx 5.6.4. Note that we did not really use that u e C([0,"), Hl(R)). What
rve used precisely is that u e L2((0,"),r-(R)) and that the solution depends
continuously on rp in L2((0,"), r*(R)). This may be used to show a CF smoothing
effect for initial data in ,2(R.) (see Corollary 5.7.5 below).

Rpu.qnx 5.6.5. In Theorem 5.6.1, we chose the nonlinearity g(u) : lul2u to sim-
plify the calculation of }ig@). With exactly the same method, one can establish
the same result for S@): ),lul2ku, where k is a nonnegative integer and,\ e IR.

More generally, the result holds when g(u) : f (lul2)u, where /: [0,m) -+ IR is in
C-, but the calculations are technically a little bit more complicated.

5.7. Comments

Theorem 5.3.1 can be generalized in the framework of Theorem 4.12.1. More
precisely, we have the following result.

THEoREM 5.7.1. Let A and I : 9r + "'+ gp be as i,n the statement of The-
orem 4.72.1. Assume further that there erists a Banach space D(A) .* Y -'
X such that, for euerA € ) O, there erists a constant C, for which llully <
ellrlloral + ll"llx for all u e D(A). Let g € X4, and cons'ider the motimal solu-
tion u e C((-",,i",4,.'), Xe) of the problem (3.7.7) giuen by Theorem 4.L2.1. If
p e D(A), i,t follows that u e C((-T."i", ?,,u*), D(A)) n Ct((-"-i,,4.,.*),I'(C))).

Pnoor'. Local existence in D(,4) follows from Theorem 4.12.3. The proof of The-
orem 5.3.1 is then easily adapted (with the estimates from the proof of Theo-
rem 4.12.3). n

Rpuenx 5.7.2. Let f,) be a smooth, open subset of IR2, and let g satisfy the
assumptions of Theorem 3.6.1. Consider p € }/01(f,)), and let z be the maximal
solution of (3.1.1) given by Theorem 3.6.i. If I e H2(Q), then (from Brezis and
Galloudt [45]) u e C((-?,"i", ?,,u*), f/'(Cl)) n Ct((-z;t,, ?-.*), r2(fl)).

THnonovl 5.7.3. Assume that N : 2 or.lf : 3, and let k be any posit'iue'integer
if N:2,andk:7if N:3. LetT) 0, )€lR, letp€Il1(R), andlet
u e C(10,"), Hl(IR.)) n Cl([0, T), H-r(R)) satisfy the equat'i.on

If g has compact support, then u € C-((0, 
") 

x R).

Pnoor'. The proof is adapted from the proof of Theorem 5.6.1 (see also
mark 5.6.5).

Rorrranr 5.7.4. The C- smoothing effect of Theorem 5.6.1 holds as well (with
an obvious adaptation of the proof) for the nonlinearity g(u) : (W * lulz)u, where
W € ,1(R.) + ,-(R). The proof again makes use of the property that the solution
depends continuously on g in L2((0,"),r-(R)). (See Hayashi [162] and Hayashi
and Ozawa [188]).

{ uu, * Lu * )lul2ku : o

I u(0) : ,p.

Re-
tr



5.7, COMMENTS

Conorlanv 5.7.5. Assume N:1. Let\e lR andW e Ir(R.)*tr-(R). Con-

si.d,er g € r2(R) and letu € C(R.,r'(R)) n.Lf""(R,r-(R)) be the solution of the

problem

I iu, + Lu + \lul2u + (W x lul2)u : o

I u(o) : rp

giuenby Corollary 4.6.5. If g has compact support, thenu € C-((R\{O}) x m).

PRoor. Note that (4, *) is an admissible pair in dimension 1. Therefore, the
result follows from Remarks 5.6.4 and 5.7.4' n

Rounnx 5.7.6. A smoothing effect of analytic type was established for equations

of the type'iu1* Au : F(u,tr') in JRN, where F is a polynomial in (u'Z) (for

example, F(u,t):lul2*u, where rn is a nonnegative integer)' Under some decay

and smoothness assumptions on the initial value u(0) (that do not imply that
u(0) is analybic), it is shown that the corresponding solution is (real) analpic in
space and/or in time (see A. de Bouard [97], Hayashi [161, 163], Hayashi and

Kato 1174,175], and Hayashi and Saitoh [192, 193]).



CHAPTER 6

Global Existence and Finite-Time Blowup

Throughout this chapter we continue the study of equation (4.1.1) in the whole
space IRN. So far, we have studied the local properties of solutions of nonlinear
Schrodinger equations: local existence, regularity and the smoothing effect. In
this chapter we begin the study of the global properties of the solutions. We
establish criteria on the nonlinearity and/or the initial data to determine whether
the solutions exist for all times, or blow up in finite time.

In Section 6.1 we apply the results of Section 3.4. These results are based on
the conservation of charge and energy and yield global existence for all initial data
or for small data only, depending on the nonlinearity.

In Sections 6.2, 6.3, and 6.4 we establish global existence under a certain as-

sumption of smallness on the initial value, without assuming the Hamiltonian struc-
ture (i.e., without the conservation laws). The smallness condition can be just a
quantity related to the .I11 norm of the initial value (Section 6.2), or depend on
how the initial value "oscillates" as lrl -* oo (Section 6.3), or depend on how the
initial value behaves like a homogeneous function as lrl ---+ m (Section 6.4).

In Section 6.5 we obtain sufficient conditions on the nonlinearity and the initial
value for finite-time blowup and we establish some lower estimates of the norms
that blow up.

In Section 6.6 we consider the so-called "criticalt' or "pseudoconformal" case

g(u) : Alul*s. We first establish sharp existence results concerning the initial-
value problem in I/1(IRN) and tr2(RN). Next, we describe some properties of the
blowup solutions that are only known for the critical nonlinearity.

In Section 6.7 we still consider the so-called "critical" or "pseudoconformal"
case g(u) : )lul#u, and we apply the pseudoconformal transformation to derive
some further information on the nature of the blowup.

6.L. Energy Estimates and Global Existence

In this section we give some sufficient conditions for global existence based on
the conservation of charge and energy. For that reason, we consider solutions in the
energy space /11(lRN) and nonlinearities for which there is conservation of charge
and energy.

THsonpr4 6.1.1. Let g be as'in Theorem 4.3.1. Assume further that there erist
A ) 0, C(A) > 0, and s € (0, I) such that

, L-€,, ,,cG(u) < ?ll"lh' +C(A) for altu € FI1(lRN)(6.1.1)

163
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such tha,t llul}," < A. Consider,p e I{(O) and let u e C((-T^i,,?,,u*),Ht(RN))
be the corresponding marimal solut'ion of @.1.1.) giuen by Theorem 4.3.7. If
llpll* < A, then 4'i' : T^u* : a. In addition u € tr*(R, Ht(RN)).

Pnoor'. This is an immediate consequence of Theorems 3.4.1 and 4.3.1. n

Below is an application of Theorem 6.1.1 to the model nonlinearity of Corol-
Iary 4.3.3.

Conorranv 6.1.2. Letg(u):Vu*/(.,"(.)) +(W*lul')u, whereV, f , andW
are as follows: V 'is a real-ualued potent'ial, y € ,t(R]V)+r-(RN) for some 6 ) !,
5 > N/2; W ,is an eaen, real-ualued potent'ial, W € r"(Rt) + r-(RN) for some
o ) \, o ) NfA, and f :lRN x R -, lR is measurable'in r €lRN ond cont'inuous
'in u € IR azd sati,sfies (3.2.7), (3.2.8), and (3.2.77). The functi,on f i,s ertended to
IRN x C bg (3.2.10). Assume furiher that there erist A> 0 and0 4 u z-4lN such
that

(6.1.2)

and that

(6.1.3)

F(r,u) < Alul2(t + lul") ,

w+ e r'(RN)+ r-(R.N)

forsome0 ) 1, e > Nl2(and0 > li,f N:2). Itfollowsthatforeuery
p e I/l(R.jV) , the maa'imal strong Hl-solut'ion u of @.1.7) gi,uen by Corollary 4.3.3
is global and sup{llu(f)lls' : t e IR} < oo.

Pnoor. We claim that, with the notation of Corollary 4.3.3,

(6.1.4) G(u) < 7ll"ll'n, + C(llully) for all u € I11(RN).

The result then follows from Theorem 6.1.1. To prove the claim, let V : Vt * Vz,

where V1 € L6 and Vz e trt' and let W+ : Wr * W2, where Wt e. Le and
W2 € Lo. We have

aG @) s 2llvll L * ll"ll7' + 2llv2ll L6 t t " I I I *+ + 4 Allull2}" + a Allull"jl'

+ llw t ll p ll"llL" + llwzlb." ll"lli*
< c(t + ll"ll1,,) + cllull2"*_, + cllullLj?" + cllulla"* .

On the other hand, it follows from Gagliardo-Nirenberg's inequality that

N 26-N

ll"ll'"A < cll"llf,ll"llrT- ,

ll"ll""I?" s cllull#ll"llLt'-* ,

llulln"# S cllullf{, ll"llT .

Since f , ry, # < 2, (6.1.4) follows from the inequality ab { ea' * C(t)b''. n
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Rpuenr 6.1.3. In the case where F satisfies (6.1.2) with z : 4lN, then instead
of (0.t.a), we obtain the following inequality:

/1 a \(6.1.b) G(u) < ( * + ctl"llfl' ) ll"ll?', + C(llull;") for all u € Hr(RN).
| ') u I "/

In this case, all solutions of (4.1.1) are global and uniformly bounded in I{1, pro-
vided llrplllz is small enough. This follows from (6.1.5) and Theorem 6.1.1.

We now give an example of application of Theorem 3.4.3, which shows global
existence under a smallness assumption on the initial value.

THponsN,{ 6.1.4. Let g be as'in Theorern 4.3.1. Assume further that G(0) : O and,

that there eriste > 0 and a nonnegat'iue funct'ionn e C([O,s),R+), wi,thrT(0):9,
such that

(6.1.6) G(u) < f]lull'", + rt(llullL") for altu € f/l(lRN)

such that llrlls' < e. It follows that there esists a ) 0 such that, for euery I e
Ht(RN) wi,th llglls' I a, the marimal strong Hr-solut'ion u of (A1.1) gi,uen by

Theorem 4.3.I is global and sup{llu(t)lls' : t e IR} S e .

Pnoor. The result follows from Theorem 3.4.3. tr

Conorrenv 6.1.5. Let g(u) : Vu + /(',u(')) + (W * lul')u, where V, f , and
W are as follows: V 'is a real-ualued potent'ial, y € ,6(R.N) + r-(lRl{) for some

d ) 1, 5 > Nl2; W is aneuen, real-ualuedpotential,W €,L"(1RN)+r-(RN)
for some o ) 1, o > Nl4; and f :lRN x lR. --+ lR is measurable'in r € IRN ond
continuous'inu€ lR and sat'isfies(3.2.7), (3.2.8), and(3.2.17). Thefuncti'onf i's

ertend,ed to IRN x C. by (3.2.10). It follows that there erists a ) 0 such that, for
euery p € HI(RN) wi,th llplls' I a, the rnarimal strong H|-solut'ion u of (al.I)
gi.aen by Corollary 4.3.3 i,s global and sup{llu(t)llsr : t e JR} < oo.

Pnoor'. With the notation of Corollary 4.3.3, we have

G(") < Cllull2y" + Cllullfi2 + Cllull|r, + llv2llL6llull'r, .

Since in the splitting V : Vr +V2, llv2llL6 can be made arbitrarily small, the result
follows from Theorem 6.1.4.

6.2. Global Existence for Small Data

In this section we do not assume conservation of charge or energy. We establish
global existence for small initial values in ff1(RN) for nonlinearities that vanish at
a sufficient order at the origin. We rely on the method of Kato [206]. We essentially
reproduce the estimates of the fixed-point arguments of Chapter 4, but we eliminate
the dependence on t. Note that with this technique, we obtain not only the llobal
existence but also a certain decay of the solution. For the sake of simplicity, we

consider local nonlinearities only.

Tuponpu 6.2.1. Let g € C(C,C) sati'sfy S(0) : 0. Assume there eri.st

4 4 /4 \(6.2.1) iS"t 
<d2<N=t (, = 

atloz<cnifN :I)

n



166 6. GLOBAL EXISTENCE AND FINITE-TIME BLOWUP

such tho,t

(6.2.2) ls@)- g(r)l3C(lrl" * lul"'*lul" +lul")lu-ul for allu,u eC.

There erists 6s ) 0 such that i.f p e f/l(RN) satisfies llplln, < es, then the
correspond'ing marimal Hl solut'i,on u of (4.1.7) gi,uen by Theorem 4.4.6 i,s global,

'i.e., T^in : Tmax : oo. Moreouer, u e .Lc(lR, ryt'r(ptv)) for euery admissi,ble
pai,r (q,r).

PRoor'. We may assume without loss of generality that a1 : f . Moreover, ar-
guing as in the proof of Theorem 4.4.1, we can write g: gr *gz where gr(0) :
gz(0) :0 and for j :1,2,

(6.2.3) lgi@) - sj@)l < C(lulai + lul't)lu - ul for all u, a e C.

We consider the admissible pairs (li,pi), i :1,2, such thal pi : aj *2; in
particular, 7r: pt:2* 4lN. Given 0 1t .-T^u*, we set

f (t) : llull ;- 110,t;,n' y * ll ull ;.'' ((0,t),wt, or1 + llull r- tto, t),wt, cz1 .

Since 7i < m (and u is continuous with values in al(RN)), we see that

(6.2.4) /(t) I llellsr as t | 0.

On the other hand, it follows from Strichartz's estimates that there exists C inde-
pendent of t such that

(6.2.s) f (t) < c llvll u, + c lls l(u)ll r,l 11o,t1,wL, 
oi 

1 
+ c lls2(u)ll 

".L 
1p,t1,w,, oL 

1 
.

Since le1(u)l + lVej(u)l 3 Clul"t (lt,l + lVul) by (6.2.3) and Remark 1.3.1(vii), it
follows from Hcilder's inequality in space and time that there exists C independent
of ? such that

ll 91 (u) ll r,i ((o,t),w,, pl ) s c llulli\,((0,t),z,ar y ll r ll z'' ((0,r),wl,p1 )(6'2'6) 
< cf (t1ot+t '

Similarly, there exists C independent of ? such that

ll g z (") ll r., L uo,t1,w,,,L 1 
3 C llullT. 

< <o,t), L c z 1llull p", 1qs,1y,w',,, 1'

where p is given by
I *4-(N-2)az
p 2a2(a2 + 2)

We note that due to the assumption (6.2.1), 'y2 < I,L < oo. Therefore, since Hr ,-'
Lp, and Wr'pz ,--+ LPz , we see that llullr,rtto,rl,r, r"l < f (t), and so

(6.2.7) llsz@)llr.";uo,ty,w,,oL13 C71t1o,+r .

It now follows from (6.2.5)-(6.2.7) that

f (t) SCllplln'*Cf (t1't+t *Cf (t\az+r for all 0 <, < ?ka*.

Applying (6.2.4), we deduce easily that if llpllrr' ( eo where ee ) 0 is sufficiently
small so that

(2Ces)"'+1 *(2Ces)o"+t < 1,
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then /(t) < 2Cllplla'for all0 < t < 4,*. Letting t I T^ *, we deduce in particular
that llull1,*i(0,"-"*),r/1) < oo) so that fl"u*: oo by the blowup alternative. Thus

/(t) is bounded as t ---+ oo, so that

llzll;-110,..;,H') + llrllz,"((0,oo),w1,nr) + llullr,'rrto,oo),wr,rz; ( oo.

By Strichartz's estimates and the previous estimates of gi(u), this implies that
u € Ls((0,m),I,tr21''(JRtr)) for every admissible pair (q,r). The estimate for t < 0
is obtained by the same argument. !

RBiuenx 6.2.2. Theorem 6.2.2 says that if llrpllsr is small, then the corresponding
I11 solution u is global and decays as | -+ oo in the sense that u € ,q(lR, WI'r(RN))
for all admissible pairs (q, r). Note that we already mentioned results of the above
type. See in particular Remarks 4.5.4, 4.7.5, and 4.9.8 where it is assumed that
llYpllu,llpllp, and llglfr;", respectively, are small. These results, however, ap-
ply to (essentially) homogeneous nonlinearities. This is a major difference with
Theorem 6.2.2 which applies, for example, to the case g(u) : alulo'u*blul""u.

Rpnrenx 6.2.3. The smallness condition on llglls' can be improved, depending
on the assumptions on g. Also, instead of considering Iy'r solutions, one can consider
more generally ff" solutions. See Section 5 of Kato [206] and Pecher [295]. Note
that global existence results for small data hold under various assumptions on the
nonlinearity and for smallness of the initial data in various spaces. See, for example,
Hayashi and Naumkin [183], and Nakamura and Ozawa [2571.

6.3. Global Existence for Oscillating Data

In this section we consider the model nonlinearitv

g(u) : )lul"z,

4
.\e C, 0(a(fu (0<a<mifN:i).

We show that the solutions of (4.1.1) are "positively global"; i.e., ftr*: oo if the
initial value g is sufficiently "oscillating" in a sense to be made precise below (see

Theorem 6.3.4 and Remark 6.3.5). This result is based on a global existence result
for small data whose proof makes use of a Strichartz inequality for nonadmissible
pairs. We first introduce the number os, which we will also use in Chapter 7. We let

(6.3.3) a6 : os(|y') : 2_N+JMTuN+4
2N'

i.e., as is the positive root of the polynomial ly'r2 + (l/ - 2)r - 4.

Rpuenx 6.3.1. We notethat a ) 0 satisfies Na2 + (N-2)a-4 > 0 if andonly
if o ) o6. We also note that

F<A/+2'oo'F' if N > 2,

if ltr : 1.

(6.3.1)

where

(6.3.2)

/

N-2
,A
;(0s(;-tv lY
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We have the following global existence result.

Tsponnna 6.3.2. Let g sati,sfy (6.3.1)-(6.3.2). Suppose further that a > a0, where

as 'is d,ef.ned by (6.3.3), and let

(6.3.4)
2a(a * 2)

n:-- 4-o(lf-2) '

There eristse> 0 suchthati,f 9 € I/1(RN) andllT(.)pllt"((o,oo),2,-+z) 4 e, thenthe
mo,rimal HL solut'ion u of (aJ.l) gi.uen by Theorem 4.4.I is posi,ti,uely global, i,.e.,

?rnu* : x. Moreoaer, u e r"((0, m), tr"+2(R N)), and, u e L1((0,oo), wl'e(RN))
for euery admi.ssi.ble pai'r (1, fl.

For the proof of Theorem 6.3.2, we will use the following lemma.

LsrvltrdA. 6.3.3. Letr: a*2, let (q,r) be the correspond,ing ad,mi,ssi,ble pa'ir, and
let a be gi.uen by (6.3.4). It follows that a ) Sl2 i.f and onlg if a > as, uith a6
defined by (6.3.3). For suchualues of a anda, andfor0 < ? ( oo, we haae the

following est'imates for A defi'ned by

A(f)(t) : [" r(r- s)/(s)ds for0 1t <7.
JO

(i) If u € ,"((0, 
"), 

,'(RN)) , then A(lul'u) € ,a((0, 
"), 

r'(RN)) . Fufther-
more, there erists C 'independent of T such that

(6.3.5) ll A(lul" u) ll r" ( (0,"),r, ) < c 
| | 

u 
I I ilrio,o,r" I

for euery u e La ((0,"), r'(RN)).
(it) If u € La((0,?), r'(RN))nrs((0, ?), wr,'(RN\ and i.f (t, d is any ad,rnis-

s'iblepa,ir, thenA(lulu) e .L'r((0,f),WI'p(RN)). Furthermore, there erists
C independ,ent of T such that

(6.3.6) llA(lul"u)lly ((0,?),w,,p) < Cll"ll!,.uo,r1,r.,1llull7.(o,r),w1,")

for euery u e La((0,i"), r'(RN)) n ,c((0, ?), wl''(RN)).
PRoor'. The first part of the lemma is a simple calculation, which we omit. For
assertions (i) and (ii) consider d defined by (2.a.2). Since (o*1)rt : r, (a*l)d,t : a,

and

we see that
| | | 

u l' u 
| | 1"' 1 1o,r:), r..' y : | | 

u 
| | !ff1o,rl, r' )

and (applying Holder's inequality twice) that

| | | 
u l' u 

| | ;", 1 1o,r),w r,,, 1 3 C llulli" rro,rl, 4llull z" (o,r),w r r 1 .

The results now follow from (2.4.3) and Strichartz's estimates, respectively. tr

PRoop oF THEoREM 6.3.2. We use the notation of Lemma 6.3.3. Let e ) 0,

let p € Ht(RN) be such that

1la
_--I_
q'- q ' a'

llY(')pllr"rro,oo),r,'; ( €,
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and let u be the maximal solution of (a.1.1) defined on [0,4,u*) with 0 ( 4.u* (
m. It follows from equation (4.1.2) and from (6.3.5)-(6.3.6) that there exists K
independent of ? and g such that

(6.3.7)

and

llull r,. <<o,n,t") S € + K ll"ll|ltro,rt,r."t,

(6.3.8) llull7"p,r1,w',"1 < I(llplla' + Kllulli"r(0,"),2.)llull7o16,,y1,1/vt-1

for every T I T^u*. (The term Kllplln, in (6.3.8) comes from Strichartz's esti-
mates.) Assume that a satisfies

(6.3.e) 2o*1 Keo <!.
Let /(t) : llullr"t<o,rl,r"l. It follows that / € C([0,?,""")) and that /(0) :0.
Furthermore, it follows from (6.3.7) that /(t) < e + Kf (t)o*r for all0 < t 1T^u*.
Using (6.3.9), we deduce by a simple continuity argument that /(t) ( 2e for all
0<t<Zio.",sothat
(6.3.10) llrllr,"tro,r-". 1.uy < 2e .

Applying (6.3.8) and (6.3.10), we obtain

(6.3.11) ll rllr," t<o,r-"- ),wt,,1 < 2K llgll s' .

We now deduce from equation (4.i.2) and from Strichartz's estimates (for the linear
term) and (6.3.6) that u € ,"v((0,?.}".*)Wl'p(lRN;; for every admissible pair (7,p).
In particular, it follows from the blowup alternative that [.u* : m. This completes
the proof. tr

The main result of this section is now the following (see [72]).

Tsponnu 6.3.4. Let g sati,sfy (6.3.1)-(6.3.2). Suppose further that a > o,o, where
crs'is d,efined by (6.3.3), and let a be defined by (ffi.Q. Let g € I/t(Rt) sati,sfy

| . le(.) € r2(RN). Giuenb € lR, sel

(6.3.12)
' blr12

?b\r): e' a 9\n),

and let ila be the marimal H1 solution of @.t.1) with the initial ualue 96 e
Ht(RN). There erists b6 ( oo suchthatif b> bo, thenT^u*(g,a): oo. Moreouer,
i6 e La((0,oo),,L"+2(IRN)), andi6 e L1((0,oo),I421'n(lR*)) fo, euery admiss'ible
pair (1, fl.

PRoor'. Let r : a*2 and let (9, r) be the corresponding admissible pair. A direct
calculation, based on the explicit kernel of the Schrcjdinger group (see Lemma 2.2.4),
showsthat , bttt2 | / r \ r

[T(t)tpul@) : sxrTiFtT lA-+-y{ ;, - lel@),L '+o' \r+otl I
where the dilation operator DB, 13 > 0, is defined by DBw(r) : Btw(Br). It easily
follows that

: [''o
JO

llY O e ulli." uo, oo ), r' )
(t - br)\e llT(r)ell"y,. d,r .
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Since llI(r)cpllr. < Cllv(r)plln' 3 Cllplly and since

2(o_q)>_1.
q

by Lemma 6.3.3, we see that

]r,g llr(')rallr."((0,-),r,") : o .

The result now follows from Theorem 6.3.2.

Rpuenx 6.3.5. We note that 196(z)l = lp(r)|. In particular, Theorem 6.3.4
implies that there is (positively) global existence for initial values of arbitrarily
large amplitude. The condition b > bo means that 96 is sufficiently "oscillating"
as lrl -.* ee.

Rpuanx 6.3.6. It is the condition l.le(.) e Z2(m.N; that ensures pb € f/l(lRN).
For a general I € f/r(iRN), pa e -L2(R.N) n ffi."(RN), but rp6 g Ht(RN).

Rnuanx 6.3.7. Here are some comments on Theorem 6.3.4.

(i) Let q:4(a*2)lNa, so that (q,o+ 2) is an admissible pair. One easily
verifies that if a> 4f N, then q ( a, where a is given by (6.3.4), and that if
a < 4f N, then q ) o. Next, if u e L1((0,oo),I4l1'p(lRN)) for every admis-
sible pair (?,p),." have in particular u e Ls((0,oo),.L"+2(IRN)), and also
u € ,-((0,oo),tr"+2(JRt)) Uy Sobolev's embedding theorem. Therefore,
u € La((0,oo),.L"+2(1RN)) if a > 4lN. On the other hand, if a < 4f N,
then the property u € L"((O,oo),tro+2(lR.N)) expresses a better decay at
infinity.

(ii) If ) ( 0, then all ffr solutions of (4.1.1) are global (see Section 6.1). There-
fore, Theorem 6.3.4 means that all the solutions d6 have a certain decay as

f * oo for b large enough.

(iii) If l > 0 and a < 4lN, then all I/1 solutions of (4.1.1) are global (see

Section 6.1). Therefore, Theorem 6.3.4 means that i,u has a certain decay
as I * oo if b is large enough. Note that certain solutions do not decay,

in particular the standing waves, i.e., solutions of the form ei-tg(r) (see

Chapter 8).

(iv) If .\ > 0 and a) 4f N, then (4.1.1) posesses solutions that blow up in finite
time (see Section 6.5 below). Theorem 6.3.4 means that for any g e IIt(RN)
with | . le(.) e tr'(Rt), the initial value cp6 gives rise to a solution which is
(positively) global and which decays as f + oo provided b is large enough.

Rouanx 6.3.8. Assume g satisfies (6.3.1)-(6.3.2). Suppose further that
cr ) as, where as is defined by (6.3.3), and let a be defined by (6.3.4). Let
p€.F/1(R.N)satisfyl.le(.)e ,'(Rt).Givens€JR,letu'bethemaximalflrsolu-
tion of (4.1.1) with the initial value t!" : T(s)p. It follows that there exists se < oo

such that for every s ) s0, T^^*(4)): oo. Moreover, u" € L"((g,m),.L"+2(JRN)),
and u" € .L7((0,m),I4ll,r(RN)) for every admissible pair (7,p). Indeed, since

lly(.)pllr"tto,-),r") is finite (See Corollary 2.5.4), we see that

n

llv(')/"llr"rro,co),r") : lly(')pllr"((s,m),r') "l] 
0,



6.4. GLOBAL EXISTENCE I71

and the result follows from Theorem 6.3.2.

6.4. Global Existence for Asymptotically llomogeneous Initial Data

In this section we consider the model nonlinearity

(6.4.1)

where

(6.4.2)

where as is defined by (6.3.3). We first establish global existence of solutions for
initial values that are sufficiently small in a certain sense. We then apply this
result to initial values that are asymptotically homogeneous using the estimates of
Section 2.6. The results of this section are based on Cazenavre and Weissler [73,75].

We first introduce some notation. Let

g(u) : )lulou,

.\e C, c,sl-c'.#- (ao<o<ooif N:1),

^ 4- (N -2)at1 :- 2a(a * 2)

No
@+Pa: 

L.

AIno<P< rtr*4.-t

0@+1)<1.

(6.4.3)

so that

(6.4.4)

Note that by (6.4.2),

(6.4.5)

and

(6.4.6)

(6.4.e)

(6.4.10)

Next, given 0 < T ( oo, we define the spaces X7 and Wr by

(6.4.7) X7: {u € rf.((0,?),ro+2(RjV),"f:i5r,llu(t)ll;,.+, < oo},

(6.4.8) w7: {v € s'(lRN) : 
osuRrtFllI(t)glly.+" 

< *},

where we use the convention that if. lb e S'(Rl/), then llt/111,.+2 : oo it ,lt /
,a+2(nRN). We note that, given p € S/(RN), the mapping t r-+ T(t)g is continuous
IR -* S/(IRN), so that the definition (6.4.8) makes sense. We also observe that Xr
and W7 are Banach spaces when equipped with the norms

ll"llx, : esssuptBllu(t)llI.,+" ,
0<r<]l

llpllw, : sup tBllr(t)elll.+, .

o<t<T

This is quite clear for Xy by applying Theorem 1.2.5. For Wy, we argue as follows.
Suppose (p.)^>o is a Cauchy sequence. It follows that (2,),>6 defined by u^(t) :
T(t)p" is a Cauchy sequence in X7 and thus has a limit u € X7. It now suffices

to show that u(t) :T(t)p for some tp € S/(RN). Since u,r'--+ u in X7, there exists
t6 € (0,?) and a subsequence (n;.)1,;s such that uno(to) -. u(to) in ,"+2(lRN),
hence in S'(RN). Therefore, pnu : T(-ts)unu(to) -, 7(-t6)u(ts) in S/(IRN). We
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let p: (-t6)u(t6). Since enn - rp in S'(1RN) and u,o(t) :T(t)e^u? we see that
u(t) : T(t)p.

We begin with the following existence result.

TspoRnu 6.4.1. Assume (6.4.1)-(6.4.2) and, consid,er the spaces Xy and, W7
defined b9 (6.4.3)-(6.4.10). There erists €s ) 0 such that the followi,ng properties
hold:

(1) LetO<T< q andpe Wr. If llpllw, (e(es, thenthereeristsaun'ique
solution u € X7 of equati,on (4.1.2) such that llully, < 2e.

(i1) Let p,t € W* sati,sfy llpllw*,llrbllw* ( e ( es and let u,u be the corre-
spond,'ing solut'ions of (aJ.2) in X* such that llrllx-,llrll"- <2e. If

(6.4.11) suptpllf(t)(p-{t)llu*,:,4. < oo for some g < p< 
d+r,

and i,f e 'is suffic'i,entlg small (depending on pr), then

(6.4.12) sup tpllu(t) - u(t)ll1-+" < 2A .

In part'icular, f llu(t) - u(t)ll;-+" -+ 0 as t -+ oo.

(iii) Let 9 € W* sati,sfg llellw* ( e ( es and let u be the cor"respond'i.ng solution
of @.1.2) in Xoo such that llrllx- <2e. If

suptplll(t)9llu*, :,4 < co for some p, sati,sfgi,ng (6.4.11)
r>0

and i,f e 'is suffic'iently small (dependi,ng on p), then

suptpllu(t)ll 7-+z < 2A and, tpllu(t) - T(t)gllp+z ---+ 0 as f --+ oo.
r>0

Rpltnnx 6.4.2. We note that the equation (4.1.2) makes sense for p €W7 and
u e Xy. Indeed, T(t)g is well defined and the integral

It(6.4.13) 9(u)(t) : i 
Jo 

v(t - s)s(u(s))ds

is too. To see this, we observe that

(6.4,14) llg("(r))llr*++ S l.llllu(r)llijl, < lrlr-pt"+t);1ull!],.

Thus the mapping s r-r I(l - s)g(u(s)) belongs to .Lff"((0, t), trCI+2(lRN)) and

(6.4.15) llv(t - s)s(u(s))111.+, < l.\l(t - s)-affir-e@+r) ll"lll-l'.
It follows from (6.4.5)-(6.4.6) that Q(u) is well defined, and in fact t r--+ f(u)(t) is
continuous (0,?) -- r'+2(lRN). Note also that t r-+ I(i)rp is continuous [0,oo) -'
S'(RN) and bounded [d, oo) ---+ ,d+2([RN) for every 6 > 0. It follows that T(t)g
is weakly continuous (0,m) -- r'+2(RN). Since f(u) is strongly continuous, we
see that if g e W7 and if u e X7 satisfies (4.7.2), then u is weakly continuous
(0,?) -* I,"+2(R.N).

Pnoop oF THEoREnt 6.4.1. We proceed in three steps.
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Srpp 1. Proof of (i). This follows from a quite simple fixed-point argument.
Given g€Wr,set

11(u)(t) : T(t)e + 9(u)(t) for all u € Xr and t e (0, ?),

where 8(u) is defined by (6.4.13). It follows from (6.4.15) that
tt

lltl(u)(t)ll7-+, < t-Bllellw. + lllllull**,' | (r - s)-^#fE] s-a@+r) 6r.
JO

Using (6.4.4), (6.4.5), and (6.4.6), we see that

ft No ^"1I A - s)-a#or-r(a+r) 4, : IB | (r - a;-z#:n ,-e@+t) 4oJo' Jo '
: Ct-F .

It follows that 71(u) e Xr and that there exists K independent of ? such that

ll1l(")llx, Sllpllw, + xllull\lL for all u e X7.

Similarly, one shows that, by possibly choosing C larger,

lltl(") - 1l(o)llx, S K (ll"ll*, + llrll?,) llu - ,ll*, for all u,u € X7.

We deducethat if 66 ) 0 satisfies 2Ke$ < 1, then for any g eWr with llgllsz, <
e ( eo and any 0 < T I a,'17 is a strict contraction on the ball of radius 2e of
X7. Thus 'l7has a unique fixed point, which solves (4.1.2).

Stpp 2. Proof of (ii). Set

a(t): 
osulrtellu(s) -u(s)111,+g fort > 0.

We note that p > f so that a(t) is well defined. We deduce from equation (4.I.2)
that

tt"llu(t) - a(t)ll7-+,

< A+ ctp(llullft,+ llull!")a.(tl ['A- s)-a#5" -oss-t" d,s
J-o

ft: A + c (ll"llft,+ llullf,)o(t) J, Q - fl-zdfry o-oe o-, do

for all f > 0, where the last identity follows from (6.4.4). Since

(6.4.16) aP+p<1
by (6.4.4) and (6.4.11), it follows that there exists C (depending on p) such that

a(t) 3 A+ c(llull|r, + llollft,)a(t) < A* C(2e)"a(t) for all t > 0.

If e > 0 is sufficiently small so that C(2e)' < 712, we deduce that a(t) < 2,4 for all
t ) 0 and (6.4.12) follows by letting t 1 oo.

Srpp 3. Proof of (iii). The first part of the statement follows from (ii) ap-
plied with th : 0. It remains to show t6u1 lullu(t) - T(t)9117-+: ---+ 0 as t --+ oo.

We observe that

llu(r) - T(t)elly^+, < lt I ft- s)-'#f" llu(s)lli]1, ds
JO
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and that llu(t)117,.+, 3Ct-" for every B < u < 1u' Assuming

(6.4.17) o,13+ tL < (a* r)v 11,

which is possible by (6.4.6) and (6'4.16), we obtain

fT
ll"(t) - t(t)ell,-+" S c I (t - s)- tdft 

"-(o+r)" 
4"

JO

: Ctr-1ffiq-(a*1)2.

Applying now (6.4.4), we deduce that

tpllu(t) - T(t)9117-+z I Q7u*aB- (o*1)' 
,-----+ 

0,

where the last property follows from (6.4.17). n

The relationship between the solutions in X7 constructed in Theorem 6.4.1 and

finite energy solutions is given by the following lemma.

Louva 6.4.3. Assume (6.4.1)-(6.4.2) and cons'i'der the spaces X7 and, W7 d'e-

fined bg (6.4.3)-(6.4.10). Let s6 ) 0 be g'iuen by Theorern 6.4.L. Let 0 < ? S m
and g e W7 satisfy llpllw, I es, and, let u e X7 be the un'ique solution of equa-

tion (4.I.2) such that llrllx, .-2es, gi'uen by Theorern 6.4.L. If I € Hl(R.N), then
u e c(10,"1, r/1(R1V)).

PRoor. Let ur € C([0,?r,.*),//t(RN)) be the maximal strong I11 solution of
(4.1.i) given by Theorem 4.4.1. We first observe that, since Ht(RN) '-+ ,a+2(lRN),

ll"tllx" < Crellull"*((0,r),sl) ------+ 0.

Thus there exists 0 < r < min{?,?.'u*} such that llulllx, S 2es. Also, llullx" S
ll"llx, 12e0. Using the uniqueness property in Theorem 6.4.1, we conclude that
'ttr : 'tL on (0, r). We now observe that for 0 < , < min{?, T^u*} ,

u(t) - uL1t1 : t [' tp- s)[e(u(s)) - e(ur(s))]as,
JO

so that (see above)

ll"(r) - ur1tir117-*" <
ftc I A - s)-'#t (ll"(")lli-*, + llul(s)llfl'*,)llr(") - ul(s)ll1-+, ds '

JO

We fix 0 <Tt < min{?,?,.^"}. On (0,7/), llur(s)ll1,-+: is bounded. Furthermore,

llu(s)11fl.+, 3 Cs-Bo. Thus, since ll"(") - ul(s)111,.+, :0 for s 1r, we deduce
from the above inequality that there exists C, depending on ?', such that

llu(t) -ul1t111r.*, sc ['A- s)-t+f';llr(") -ul(s)lla.+,ds for all 0 <t<T'I.
JU

It then follows from (a generalized form of) Gronwall's lemma that u : I^Ll on
(0, ?'). Since 0 < Tt < min{?,[n.*} is arbitrary, we conclude that u : ul on
(0, min{?,4"*}), and it remains to show that 7 1T^u*. Assume by contradiction
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that fio,* ( ?. Since u € C([0,?.,u*),]It(RN)), llu(t)ll1-+, is bounded near 0;

and since u € X7,llu(t)117.+" is bounded away from 0. Thus

sup llu(t)111.+, < m.
0(t(?,,"*

It easily follows, by applying Remark 1.3.1 (vii) and Hcjlder's inequality, that there
exists C such that

(6.4.18) lls("(t))llw,, "+z S Cllu(t)llry',.+: for all 0 < t < %.*.

We now let 0 < T 1T^u* and we observe that
ft

u(t+r):T(t)u(r)+i I T(t- s)s(u(s*r))ds for 0 ( t <T^u*-r.
JO

We now let r : q * 2 and we let q be such that (q, r) is an admissible pair.
Applying Strichartz's estimates and (6.4.18), we deduce that (see, e.g., the proof of
Theorem 4.4.1)

(6.4.19) llullT*p,eS,n'; * 11u117,"11",0),w',,) 3 Cllu(r)lls' + Cllully"'1e,g,w1,,)

with C independent of r < d < ft.". Since

llullr",rr,,e),w,,.) s (d - r)+llulll11r,fi,w, -; ( (?*,* - r)+11u11i,11,,61,w'o1,

we see that if we fix r sufficiently close to 7l'.*,

c llull 7a, 11,,e),w,,, ) < ] | l, | 1 r",,",0),w r,, ) 1

and it follows from (6.4.19) that

ll"ll;-g",el,n'y * llull;"11",0),w',,) < 2Cllu(r)lls, .

Letting 0I T^u*, we obtain u e L@((r,?,r,.*),Ht(Rt)), which contradicts the
blowup alternative of Theorem 4.4.1. !

Rnuenx 6.4.4. Lemma 6.4.3 is a regularity result. Under the same assumptions,

one can show that if rp e ff"(lRtr) for some

J+ss<min{t,*},2(a+2)- | 4)

then u € C([0,?],II'(RN)) and u coincides with the,F/s solution given by Theo-
rem 4.9.1. The proof is similar (see the proof of Theorem 4.9.1). The assumption
s > Nal2(a * 2) implies that II"(IRN) '--+ tr'+2(RN;. Thus ll"llx, -- 0 as T J 0
whenever u is an -Il' solution. This is an essential step in the proof of Lemma 6.4.3'

Note that the assumption s ) Na l2(a+2) also implies the condition a < 4l(N -2s)
of Theorem 4.9.1.

Conorrenv 6.4.5. Assume (6.4.1)-(6.4.2) and cons'ider the spaces X7 and Wy
defined bg $.aS)-(6.4.10). Then there erists es > 0 wi,th the following proper"ty.

Let 9 € flt(RN) and,let u € C(10,?.'.*),f/t(RN)) be the correspond'ing strong Hr
solut'i,on of (al.l) gi,uen by Theorem 4.4.1. If llellw* ( e ( es, then ?]-"* : oo,

u € Xoo, and llully* < 2e.
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Pnoop. The result follows from Theorem 6.4.1 and Lemma 6.4.3. tr

We now comment on the above results.

Rprr,lnnx 6.4.6. The essential condition for global existence in Theorem 6.4.1 is

llellw- S €0. The main difficulty in exploiting this assumption is that the structure
of Woo is not known. We give below some sufficient conditions for g to belong
to Woo.

(i) .Hl(RN) n L# (RN) .* I4l-. Indeed,

llT (t) ell p.+, ! c ll7 (t) ell s' < cllell s,

l|:; (t)ell y. +" < ltl -'dfa' llvll 
"g4so that

(r + lrl)z#o llt(t)ell7.+" < cllwll#n"#.

We see in particular that if p € //l(lRN) a L#(IRN), then llpllw,--+ 0 as

? J 0 and supt>o tpllT(t)9117-+z ( oo for all p. < Nal2(a + 2).

(ii) Let p € C with Rep - 2la. It follows from Theorem 2.6.1 that t/(r) : lrl-n
satisfies f ll7(t)$llL.+2 : c > 0. In particular, th e W*. Note that the
assumption (6.4.2) is essential.

(iii) Assume a < 4lN (in addition to (6.4.2)). Let p e C with Ptep : 21o
and set t!(r): lx1-n. We see that r/111,1yr1 e I/l({lcl > 1}) and that

/111,1.ry e L#({l"l < 1}). In particular, there exists p € F/l(RN) such

that g-$ e f#(RN). For example, p:q$ with 4 e C*(lR.l/) such that
n@) :0 in a neighborhood of 0 and n@):1 for lrl large. Moreover, given

any g e flt (RN ) such that I - $ e t*# (RN ), it follows from Corolla ry 2.6.7

that 9 €W* and that lll(t)(e - rDlft,.*, < gf td T .

(iv) Let

(6.4.20)
. (^ No I lromtnfP' 4@+DI t " Uo+D'

letpeCsatisfy

(6.4.21) Rep- 2p+#,
and set t@): lrl-p. tt follows from Theorem2.6.l that lplll(t)tbllu*,:
c ) 0. Moreover, it follows from (6.4.20) that t/111"q>r1 e f/l({lrl > 1}) and

that,r/111"1a 4 e L#({l"l < 1}). In particular, there exists p € I1r(RN)

such that g - { e L#(RN) (see (iii) above). In addition, given any

p € I/l(RN) such that 9 - g e r*#(RN), it follows from Corollary 2.6.7

that 9 € W* and that llT(t)9lly.+, 3 C1t-#.b + f p). Moreover,
t+llT(t)9lly-+2 -a c as f --+ oo.
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Rptr,tlRx 6.4.7. Let t!@) : Slrl-o with p € C such that Rep : 2lct and d e C.
It follows from Remark 6.4.6(ii) above that there exists a constant K such that
llr/llw* < l(ldl. In particular, if ldl < eolK, it follows from Theorem 6.4.1 that
there exists a unique solution u € Xoo of @.7.2) (with the initial data Ty' instead
of rp) such that llullx* 1 2eo. Such a solution is of particular interest since it is

self-si.mi,lar. We recall that if u is any solution of (4.1.1) (or (4.1.2)) on (0, m) x IRN

and if 7 > 0, then u, defined by ur(t,r): fu(12t,72) is also a solution. (The
assumption Rep - 2la is essential.) A solution u is called self-si,milar if it is

invariant under the transformation u r* u,r, i.e., lf. u : u., for all 'y > 0. We
claim that u is self-similar. Indeed, it is easily verified that u., satisfies (4.1.2) with
the initial value ry'.',(r) : f$(lr). Evidently, since ry' is homogeneous, tftl : t!.
Moreover, it follows from a direct calculation that |lrtllr- : llullx-. Therefore,
by the uniqueness property of Theorem 6.4.I, a, : o for all 7 > 0. We observe

that u is weakly continuous (0,*) -' ;a+z(lfrN) by Remark 6.4.2, so that / :
u(1) e La+z(lpn) is well defined. Applying the identity u(t,r) :1Pu(12t,'yr) with

1 : f tr, we see that

u(t,r): rt f (ft),
i.e.; the self-similar solution u is expressed in terms of its profile f . Note that
self-similar solutions are not -Ffr solutions in general; see [73, 75]. For a more

detailed study of self-similar solutions, see Cazenave and Weissler 173, 74, 75),

F\rrioli [119], Kavian and Weissler [209], Planchon [298], Ribaud and Youssfi [302],
and Weissler [363].

Reuaax 6.4.8. Here are some more applications of Theorem 6.4.1 and Corol-
lary 6.4.5.

(i) Assume a < 4lN and fix pr satisfying (6.4.11). Let p € C with Ptep : 21q
and let d e C. Set r/(r) : 6lrl-p and let p € fIl(lRN) be such that
,b - p € ,*#(Rlr). If ldl and llv - rl,ll"g are sufficiently small, then

llpllw*,llrlllw* ( e, where e ) 0 is as in part (ii) of Theorem 6.4.1 (see

Remark 6.4.6(ii) and (iii)). If we denote by u and u the corresponding
solutions of (4.1.2), then u is an -IJl solution by Lemma 6.4.3 and u is self-

similar by Remark 6.4.7. Moreover, it follows from Theorem 6.4.1(ii) and
Remark 6.4.6(iii) t6u11ullu(t) - u(t)ll1-+, is bounded uniformly in t > 0.

Since tBllo(r)llr-*, : c ) 0, we deduce that1l llu(t)ll;.*, -* c as t --+ oo. In
particular, we know the exact rate of decay of llu(t)llr.+, as t ---+ oo. Note
also that u(t) is asymptotic to the self-similar solution u as t --+ m (in the
sense that tBllu(t) - u(t)ll}'+z -+ 0 as t -- m).

(ii) Let pr, satisfy (6.4.20) and let p e C satisfy (6.4.21). Set t/(r) :6lzl-p and

let s eflt(Rt) be such that $ - e e L#(RN). If ldl and llv - rl,ll 

"gare sufficiently small, then llrpllsz- ( e, where e > 0 is as in part (iii) of
Theorem 6.4.1 (see Remark 6.4.6(iv)). If we denote by u the corresponding
solution of (4.1.2), then u is an I11 solution by Lemma 6.4.3. Moreover, it
follows from Theorem 6.4.1(iii) and Remark 6.4.6(iv) thul Tullu(t)ll;.*, *
c ) 0 as t -+ oo. In particular, we know the exact rate of decay of llu(t) ll1.+,
as f ---+ oo. Note also that by Theorem 6.4.1(iii) and Remark 6.4.6(iv),
tpllu(t) -T(t){lly.+z ---+ 0 as f --+ m. This means that u(t) is asymptotic
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to I(t)tb as f -+ co. Note that I(t)T/ is a self-similar solution of the linear
Schrodinger equationl see Remark 2.6.6(iii).

Reuenx 6.4.9. Here are some comments on the decay rates of llu(t)111.+: that
are achieved by f/t solutions of (4.1.1). (See also Remark 7.3 in [75].)

(i) Suppose a < 4lN. It follows from Remark 6.4.8(ii) above that if 0 < p <
Nal2(a+2), then there exist I11 solutions of (4.1.1) for which llu(i)111.+z e:

t-t" as t ---+ oo (in the sense that tullu(t)lly-+z ---+ c ) 0). By Remark 6.4.8(i),
p - P is also achieved if a < 4/ N, and it follows from the results of Chapter 7

below that p, : Nal2(o.-t2) can also be achieved. Moreover, p: Nal2(a+
2) is the fastest possible decay in general (see B6gout [20] and Hayashi and
Ozawa [187]). On the other hand, it is not known whether some solutions
can have a slower decay than t-0.

(ii) Suppose a > 4/N. It follows from Remark 6.4.8(ii) above that if Nal4(a +
2) < tt < Na/2(a + 2), there there exist flr solutions of (4.1.1) for which

llu(t)lli,.+" x t-p as f --+ 616. A decay 11L" 1-z#fz-l is also possible and
is the fastest possible (see (i) above). Note that the lower bound p >
Nal4(a+2) is also optimal. Indeed, if u € Xoo is a solution of (4.1.1), then

u a trzdtn ((0, *),14+z1pN)) (see Remark 3.12 in [Zb]). If ) in (6.4.1) is
a negative real number, the same property holds for any ffl solution with
initial value in ffl(R.N) n .L2(Rl/,lrl2 dr); see Chapter 7 below. In both
cases, it follows that liminfl*-tzdf5llz(t)111.+, = O.

6.5. Finite-Time Blowup

We show that, under suitable assumptions on the nonlinearity, some solutions
of the nonlinear Schrcidinger equation blow up in finite time. We follow the method
of Glassey [148]. This is essentially a convexity method, but not purely energetic.
It is based on the calculation of the variance

That calculation is technically complicated. Therefore, for the sake of simplicity,
we consider a specific type of nonlinearity. More precisely, we consider the case

where g is as in Example 3.2.11. Therefore, we assume

g(u) : vu * f (',u(')) + (w x lul2)u,

where V, f , andW are as follows. The potential V is real-valued, y a;r1nN) *
,'"(RN) for some p > 1, p > Nl2. The function / : IRN x lR - lR. is measurable
in r € IRN and continuous in u € IR and satisfies (3.2.7), (3.2.S), and (3.2.17).
Extend / to RN x C by (3.2.10). The potentialW is even and real valued; 14/ €
,Ls(RN)+ r-(RN) for some q > l, q > Nl4.In particular, 9 is the gradient of the
potential G defined by

I wrtu{r,r)12 d,r

[RN

G(u) : | {IrOr"(')l' + F(r,u(x)) +}fw* ;ul2)(z)lu( 4f} a,,
[RN
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and we set

E(u) :1 [ p"Alt2 ax - c1u1 for all u e .ul1nN;.zJ

We recall (see Corollary 4.3.3 and Remark 5.3.3) that the initial-value problem
for (4.1.1) is locally well posed in I11(lRN), that there is conservation of charge and
energy, and that there is the II2(RN) regularity if the initial value is in II2(RN).

Our blowup result is based on the following identities, which will also be essen-

tial in the next chapter to establish the pseudoconformal conservation law.

PRoposrrIoN 6.5.1. Let o

s@i:vu* f (.,?r(.))+ (W *lul2)u

be as in Erample 3.2.17. Assume, i,n ad,d,i,ti,on, that

(6.5.1) r.VV(r) € .l"(lRN) + r*(R.N) for some o ) 1,o r {.tt
(6.5,2) f (r,u) 'is 'independent of r,
(6.5.3) r.YW(r)€,Ld(RN)+r*(RN) for somed > 1,d t *.
Cons,id,er,.p € fIl(RN ) such that l.lp(.) er'(Rt), and let u b" th] 

"onespondlingrnarirnal solution of @.1.1). It follows thatthe functi,on t * l.lr(t,') belongs to
C ((-T^in,?,,.* ), r' (Rt) ). M oreouer, the funct'ion

179

I

I

I

I

I

I

(6.5.4)

is i,n C2(-T^ir, ?-u*),

(6.5.5)

and

r^
tr-+ f(t)= | 1r121u1t,r)l2dr

RN

I

f'(t):arm lx,r'vudr,
NRN

f"(t):

(6.5.6)

for all t e (-fl,'6, T^a*).

Before proceeding to the proof, we establish the following lemma.

LpMru.c 6.5.2. Let s e C(I/l(RN), F/-t(RN)). Assume that g(w) e .Lfu.(JRN) and
thatlmg(w)D:0 a.e.'i,nlRN /or allw e rlt(RN). Let I ) 0 be aninterual of R,Iet
p € I11(R'v), andletu be aweakHL-soluti,on of (4.1.1) onI. If |.le(.) €,2(lRN),

r6E (e)+ / tstn + 2) F (u)- aN Re(/(u )il))dx
RN

*rl(r**" 
"u) wpd,r

RN

* n | (tr * i,.o*r* t"l') tuf d,r

RN
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then th.e functi,on t - | ' lu(t,') belongs to C(1,r2(RnI)). Furthermore, the funct'iton

f defined by (6.5.Q belongs tu WL'*(I) and the identity (6.5.5) holds for a.a. t e L
If u i.s a strong Hr -solut'ion of (a.L.I) on I , then f e Cr Q) and the i'denti,ty (6.5.5)

holds for all t e I.

Pnoor. Without loss of generality we may assume that 1 : [0,?] with 0 <
? < oo. Formally, the result follows by multiplying the equation by i,lrl2n, taking
the real part, and integrating on lRN. However, the equation makes sense only in
.[y'-l(RN) and ilrl2a / Ht(Rt), so we need a regularization argument. Let e ) 0,

and take the H-L -Hl duality product of equation (4.1.1) ,"itrh 4u-zelrl" 1r1'u1t,r7 e
Irt(RN). Setting

f ,(t) : lle-etxt2lrlu(t)ll!" ,

we deduce easily that

f !(t) : zm [ {V u . y (e-2elxt2 lrl'a) - "-zelrl2 @12 s(u)a}d,r .

n"

Since Im(Vu . Vu) : Im(g(u)a): 0 a.e., we obtain that

f',(t) : zw I z;Yu-Y(e-2'l'1" 1r12)d,r

RN
t .^

atm | {e-elrl2 Q - zelxl2)}e-'l'l' t r . Y u d,r,

R"t

andso 
1t f ,,,

(6.5.7) f,(t) :/,(0) + n 
Jo 

r^ 
J {"-oo" (t - zelrl2)}e-'l't"ur.Yud,rd,t.

[RN

Note that e-,l,l2Q - 2elrl2) is bounded in z and e and that lle-elxl2lrlpllr,, <

llrpllr,,. Therefore, we deduce easily from (6.5.7) that

f,(t) s lllrlpll'r", * c ['llvu(s)111, {ffi a, .

Jo

It follows easily that

(6.5.8) {f"6 3lllrlpllr, ** ['llVu(s)11',, ds for all t e -I.z Jo

Letting e J 0 and using Fatou's lemma, we see that ru(t) € ,2(RN) for all t e .I
and that lllrlu(t)lll;' is bounded in t e /. Therefore, the function i * l.l"(t,.)
is weakly continuous / -' tr2(1R.N) (see Section 1.1). Moreover, we may let e | 0

in (6.5.7) and we obtain

llru(t)1127" : llrell2." * n l" m I a, .vud,x d,t .(6.5.e)

RN

Note that the right-hand side is a continuous function of t and so the function
t * I 'lu(t,.) is continuous 1 --+ ,'(RN). It follows that the right-hand side
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of (6.5.9) is a W'l'- function and the identity (6.5.5) holds a.e. If u is a strong ffl-
solution, then the right-hand side of (6.5.9) is a C1 function, so the identity (6.5.5)
holds for all t e .I.

CoRoLtRRv 6.5.3. Let g be as'in Lemma6.5.2. Assume that g : Ifr(RN) -.+

g-t1prv) 'is bounded, on bounded sets and let I ) 0 be a closed, bounded interval oJ

IR. .Letp € fI1(RN) be suchthatl.le(.) e ,L'(RN) andletube aweakHr-solut'ion
of (4.1.1) on I. Let (g)-Es c .I/1(IR.N) and, for all m ) 0, Iet u* be a weak
HL-solution of @.1.1) correspond'ing to the i.nitial ualue g*. Assume further that
l.lp^(.) € ,2(RjV) for aII m ) 0 and that tem + rg i,n L2(RN) as m --+ oo.
If u^ -- u i,n L*(I,ff1(RN)) asrn -+ x, thentrLL* --+ ru inC([,I2(RN)) os

n1 ---+ 6.

Pnoop. Assume by contradiction that there exist (t*)^>o C 1 and e ) 0 such
that llxu^(t*) - xu(t^)11"" > t. Without loss of generality, we may assume that
there exists z € .I such that t^ ---+ T as m ---+ &. We deduce from (6.5.9) that for
every f € 1,

(6.5.10)

It follows from (6.5.10) that lll '1"*(t)ll7,, is bounded uniformly in t € .I and
m) 0. Since (u-)->s is bounded in.L-(1,f/t(Rt)), @(u^))*>o is bounded in
L*(1,II-t(RN)) so that (uT)^r_o is bounded in ,L*(/,f/-t(Rt)), by (a.1.1).

Therefore, (u*)^>o is bounded in Co,i(I,.L2(RN)). We deduce that u^(t^) --+

u(r) in ,'(Rt) as rn -4 oo and, since l.lu-(t-) is bounded in .L2(R.N) , l.lu^(t*) ^
u(r) in r'(RN) as rn + oo. Since u- ---+ u in L*(I,I/t(Rt)), it then follows
from (6.5.10) and (6.5.9) that llru*(t*)117, --, lluu(r)lllz as m ---+ 6, and so

ru^(t*) ---+ ru(r) in .L2(JRN), which yields a contradiction. This completes the
proof. n

Pnoor oF PRoposITIoN 6.5.1. The first part of the statement follows from
Lemma 6.5.2. It remains to show that the function / defined by (6.5.4) belongs
to C2(-T^1n,?.,,*) and that the identity (6.5.6) holds. Formally, the result would
follow by calculating the time derivative of the right-hand side of (6.5.5). This
corresponds to multiplying equation (4.1.1) by i(2r)r-u+ Na), which is not allowed
since the equation only make sense in H-l(RN). The proof we give below is based

on two regularizations. Therefore, we proceed in two steps.

Srpp 1. The case g € II2(R.N). Note first that by I12 regularity, u e
C((-?*i",?.,r*),II'(R")) n Ct((-zLt,,?.,u*),r'(Rt)). Given e ) 0, consider

0r(r) : e-ul'l' and let

(6.5.11) for every t € (-?r"i", ?.""*).

We claim that h, is Cl and that

llru*(t)112"" : llrg*1121, * n ft w I m r' Yu* d.s d,t.
Jo J

RN

rh,(t):Im | g,ar.Yudr
J

RN

- I* / u1{20,r0,u + (Ne" -l r),0,)t}dr .

[RN

(6.5.12) h:(t) :
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Indeed, (6.5.12) is equivalent to

rtf(6.5.13) h,(t) : h.(0) - Im / | u1{20"r0d + (N0, * r},0,)tr}dr d,s .

'o d'"

The identity (6.5.13) holds in fact for every function u which is continuous in
I/t(Rff) and Cl in .12(R.N). Indeed, by density we need only establish (6.5.13) for
u which is Cl in r/t(Rnn). In this case, we deduce from (6.5.11) that

ffhL(t):-r^ J 0,u1r.YEdr-r* 
J 

0,ur'Yu1dr,
RN RN

and (6.5.13) follows by integration by parts, since

1uur 'YT1 : Y ' (rQuuut) - N?ruui - 9rTtx 'Yu - r}r?ruuj .

This proves the claim. Using now equation (4.1.1), we see that

(6.5.14) hL(t) : - n" /{1,, + g(u)){20,ra,n + (N0"-r rL,o,)t}d,r .

R'"

Next, an elementary calculation based on the identity

Re(20 uY u . Y (r 0,u)) : - ( (N - 2) e, i r 0,0,)lY ul' + V . (rl,lY ul2 )

shows that for every u e II2(IRN),

t
Re I L,u{ze,r},T, * (l/8. + r1,O,)T,}dr

J
RN

" | 6,1vu12 d,(6.5.15) --JwetvutuL

- J {zra,e,l0,ul2 + ((N + r)a,e, + ra\e)r.lefua,u)}dr .

RN

We now calculate the various terms corresponding to g(z). Since

RelV u{20.r A,il, + (N 0, + r 0,0,)a}l : Y . (rV 0,1"1') - 0,(n' V V)lul2,

we obtain
t,

(6.5.16) ne I vu{20,r0,A + (Nd, + rl,o,)u}dr : - I 0,(r .YV)lulz dr .

JJ
RN RN

Next,
F;e[f (u) (20,r A,a)] : Y' (2r 0, F (u) ) - 2(Nd. t r 0"0,) F (u),

so that
f

Re I l(u){20,r0,il, + (lrd, * r\,0,)t'}d,r :
J

DN(6.5.17) 
t , ^.^| @e, * ro,o")(f (u)a - 2F(u))dr.

[R'N



Finally, using the identity

F;e[u{20,r0d + (Nf..- + r0,0u)a}] :Y . (rq,lul2) ,

we obtain
t'l

ne | 1w * lul2)u{20,r 0,u + (N 0, + r 0,0,)T,} d,x : - I 0,lul2 r . (VW * lulz)dr .JJ
RN IRN

On the other hand, I,7 is even, so that YW is odd. Therefore,

| 0,1u12r , (vw * lul2)d,r

R/v

:: I o,lul2l(r .vw) * lul2ldr2l
NRN

1rf
+ : I | (e,@) - 0,(y))lu(r)1"1"(y)l'" .vw(r - y)dy dr ,ZJ J

]RN RN

f
ne | 1w * lul2)u{z0,ra& + (N0, * rl,0,)il,}dr

J
RN

: -: I o,lul2l(r .vw) *lul2]dr2J
RN

L f f ,^- ; J J {e,{") - 0,(v))lu(r)l'1"(il1'"'YW(r - v)dv dr.
]RN ]RN

Applying (6.5.15), (6.5.16), (6.5.17), and (6.5.18), we deduce from (6.5.14) that

h!.(t) -- z I e,1vu1' ar + [ 0,@ .yv)lul2 d,rJ -' J

and so

(6.5.18)
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RN

RN

RN

NRN

+ | Nr,,er@) - f (u)a) a, *t2 | 0"1u1'11, .vw) * lul2ldr

(6.5.1e)

IRN JRN

Note that 0,,r0,0r, and 12010, are bounded with respect to both r and e. Fur-
thermore, g, I !, 0r0, - 0, r0r0, * 0, and r0|0, ---+ 0 as e J 0. On the other
hand, for every t e (-?-i,,4."*), we have u(t) e f/'(Rt) and lrlu(t) € r2(R.N)
by Lemma 6.5.2, and so we may use the dominated convergence theorem to pass

t-* | 1r0,0,(210,u1" + 2F(u) - f(")a)
NRN

+ ((Ir + r)A,0, + r0l.e)Re(n0,u)\dr

1f?

+ ; / I (e,@) - 0"(y))lu(r)l'1"@)l'" .yw(n - y)d.y dr .
.J J
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to the Iimit in the right-hand side of (6.5.19) as e J 0, except in the last one. We

obtain

[RN [RN

where .L is the limit as e J 0 of the last term in (6.5.19). We claim that

(6.5.20)

(6.5.21)

Since also

r,,i3n:trl : 2 | lyul2 d,r + N I eF(u) - Re(/(u)t))dr
RN RN

+ | wP r.YV h +; | tufK,.vw) *lul2)d,r + L,

L:0.

I
lim h,(t) : Jm / ur .Yudr : h(t) ,6JU J

RN

we see that h is of class Cl and that
fr

h'(t) : z | 1vu12 dx * N I pr1u1- Re(/(u)z))drJ" J'
+ [ WP r-yv an +! [ Wf (@.vw)*lul2)dr.

J 2J ''
IRN RN

Equation (6.5.6) now follows from the above identity (6.5.5), and conservation of
energy. We finally prove the claim (6.5.21). Note that

| | w,al - 0,(v))lu(r)l'1,(v)l', . yw (r - v)av arl <
/4 K oo\ IRN IRN\w'o''A) 

[ [ wlW.!#fu@)l,lu(y)l,l(, - il.vw(r - y)ld,y d.r.J J lr-al
IRN ]RN

Also, it follows from assumption (6.5.3) and from Young's and Sobolev's inequalities
that

tl

I I l"@)l'lu(il121(r - s)' YW(r - y)ldy dr S Cllullar" + Cllulla -"s_J J " Ltr=-l
IRN R,N

S cllullf" '

Since

sun;r1J&(u) -d.(E)l . - and @lW -- o a.e. in rRN x rRN,

"+a' lr - Al lr - Al e1o

we may use the dominated convergence theorem to pass to the limit in (6.5.22) as

e l. 0, and we obtain (6.5.21).

Srop 2. Conclusion. Let (g^)^EN c fI2(lRN) be such that g* ---+ p in
I/t(RN) and rg* - rg in r'(Rt) as m --+ oo, and let un be the corresponding
maximal solutions of (4.1.1). Let A(t) denote the right-hand side of (6.5.6) and let
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@-(t) denote the right-hand side of (6.5.6) corresponding to the solution u*. It
follows from Step 1 that

(6.5.23) llru*(t)ll2y, : llt:e-llzt, t- 4tm I q;r.ye*a, + ft [' *^61ara,.
o/" Jo Jo

By continuous dependence and Corollary 6.5.3, we may let n'L --+ 6 in (6.5.23) and
we obtain

llru(t)112", : llrell2.,-t 4trm [ ,r.yed,r * [' [" eg)dsd,t,
J Jo Jo

NRN

from which (6.5.6) follows.

THEoREM 6.5.4. Let

g(u):vu-t f (',u('))+ (w *lul2)u

be as'in Erample 3.2.71. Assume further that

2(N+ 2)F(s) -,nrs/(s) < 0 for alt s)0,
v+;r.Vv<0 a.e.,

w +;r .vW < o a.e.

Let g € r/t(Rt) be such that l.le(.) e ,t(Rt). tf E(d < 0, then ?-1a ( oo and

4,,* ( q. In other words, the solut'ion u of (4.1.1) blows up in fi,ni,te time for
botht>0 andt<0.

PRoor'. It follows from (6.5.24), (6.5.25), (6.5.26), and Proposition 6.5.1 that for
every f € (-7-i.,?nr*),

(6.5.24)

(6.5.25)

(6.5.26)

(6.5.27)

where

llru(t)112"" < 0(t) ,

0(t) : llrpll'"" * 4t Im I V " 
.Ye d,r + 8t2 E1e1 .

NRN

Observe that d(t) is a second-degree polynomial and that the coefficient of t2 is
negative; therefore e(t) < 0 for ltl large enough. Since llxu(t)112,, ) 0, we deduce
from (6.5.27) that both ?6;a and flr,.* are finite. !

Rsl4lnx 6.5.5. Note that the proof of Theorem 6.5.4 does not show that
llru(t)117, --+ 0 as t T T^u* or I j -T^u*. (See Ball [16, 15] for an interesting
discussion of related phenomena.) This is sometimes the case (see Remark 6.7.3),
but not always. Consider the model case 9(u) : )lulou with,\ > 0 and a:41N.
First, observe that by the invariance of the equation under space translation, one
constructs easily a solution such that llru(t)1127" f 0 as t I T^^*. Indeed, it follows
from the conservation of momentum (3.1.5) that, given 16 € lRN,

I W - rol'lul' : I pfp12+ lrol2 [ lrf *z [ *.,olpl' -t 4trm I e,o.rr,J' J"" '-',J"' J " J
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so that ll(r - rs)ulltz will not converge to 0 if lrsl is large enough. Moreover, in
general,

inf {ll(r - rs)u(t)llil : t e [0,?,..*),ro e RN] > 0.

To see this, we follow an argument of Merle [248]. Consider a real-valued, spherically
symmetric function tp € I11(IRN) such that r9@) d I'(RN) and E(rp) < 0. Let
(p")">o be a sequence of real-valued, spherically symmetric functions such that
rpn(r) € ,2(RN) for all n, ) 0 and gn ---+ g in IIt(Rt) as ??---+ m, and let un
be the corresponding solutions of (4.1.1). In particular, E(p"),*i E(p) u"a

llp.ll"" ,*lllpll"". Therefore, it follows from the proof of Theorem 6.5.10 belorn'

(see in particular formula (6.5.42)) that there exists a function itr, € W4'*(IRN),
V ) 0, such that

,+ f vfu.12 < 2E(e) <0 for 0 < t <T^"*(pn) .
dtz J

On the other hand, since g, is real valued, one easily verifies that
I

4lvl""l'l :0,
dt J lr:o

so that

I v4,l' s2 [rulpl2 + t'E(e)
JJ

for 0 ( t <T^u*(gn) and for n large enough. This implies that there exists T0 < oo

such that

(6.5.28) T^u*(gn) < To for n large enough.

On the other hand, for every zs € IRN, we have (see the proof of Theorem 6.5.4)

ll(r - rn)u*(t\|''7, -ll(, - ro)p.112"" +an(9.1t2 for 0 ( t <T^u*(pn).

In particular, for n large enough,

ll(r - rs)u.(t)1121" 2.ll(* - *o)p^112"" +rcn197t2 for 0 ( t <T^^*(pn).

Since inf"osp' ll(r - "ilpnll?,r,,1] 
oo, it now follows from (6.5.28) that

inf {ll(r -no)u^(t)llLz :0 ( t z-T^u*(en),ro € R"},= *,

which proves the claim.

Rouanx 6.5.6. The proof of Theorem 6.5.4 is based on the fact that the non-
negative quantity llxu(t)11'z"" is dominated by the polynomial d(t) and that the
assumption E(p) < 0 implies that 0(t) takes negative values. A necessary and
sufficient condition so that d(t) takes negative values is that

(6.5.2e)
/ r \2(I* / er.Yedrl ,za@)llrpll'",.
\J/

RN
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Therefore, we have

it E(9): 0 and

It E(9): 0 and

itE(e))0and

ifE(@)0and

(6.5.31)

(6.5.32)

then [.'u* < oo,

then ftqn ( oo,

-Jzn1p111"e11p then fl',,* < oo,

1frn19111r911y, then [,,6 ( oo.

0

0

w lv*.ved,r <

m lv*.Yed,r>

m I v*.Yed,r <
RN

m I v*.Yed,r >
RN

Rpntanx 6.5.7. Note that

2(,^rr+2)F(s) -lrs/(s) : -rvrs3+# 
s 

1t-tz+r+)r'1s;;,

and so assumption (6.5.24) is equivalent to the property that s-(2+#)f(") ir u

nondecreasing function of s. Similarly, V * $r.YV : V * |r}rV : +A,(r2V).
Therefore, assumption (6.5.25) (respectively, (6.5.26)) is equivalent to the property
that lrl2V(n) (respectively,lrl2W(r)) is a nonincreasing function of lrl.

Reruenr 6.5.8. Note that the assumption E(Q ( 0 is a sufficient condition for
finite-time blowup, but it is not necessary. To see this, consider the model case
g(u): Alulu with.\ > 0 and 4lN < a < al@ -2). We claim that for any
Es ) 0, there exists rp such that E(9) : Eo and ?k*(p) < oo. Indeed, fix
a real-valued function d e Cf;(RN) and set ,lt(*) : e-'l'1"0(r). It follows that
r/ e Cf (RN) and that

(6.5.30)

Set now

Im | $r.Yth : - | 1xl2ep)' <0.
JJ

RN I{'N

A:; I tv,r,t,,
RN

c: | @ft,bt",
RN

\fB: " - ll$1"+'.a+2 J ' '

[RN

f-
D - -Im I rhr .Yth .

NRN

Given o, p > 0, to be chosen later, set p(r) : otbQrc). It follows from (6.5.30) that

. f_Im 
J Qr.Ys <0,

[RN

so that, in view of (6.5.29), we need only show that we can choose o and p, so that

E(P) : Eo 
'

/ f \2(I* / er'Ypl ,ze@)ll*pll?.,.
\.//

NRN



188 6. GLOBAL EXISTENCE AND FINITE.TIME BLOWUP

Conditions (6.5.31)-(6.5.32) reduce to

(6.5.33)

(6.5.34)

Fix now

and let p be given by

p2: )B oo.
A-€

In particular, (6.5.34) is satisfied and (6.5.33) reduces to

/ B 1 
?z[ 

4-(N -2)at(a-'l 6---r-:Eo'

which is achieved for o suitably chosen.

Rpulnx 6.5.9. Theorem 6.5.4 shows the existence of solutions for which both
4.r* ( oo and ?6;a ( oo. As a matter of fact, there exist solutions for which
?r.* : oo and 7-i, ( oo and solutions for which ?-r* ( oo and Trri, : oo. Indeed,
let s(u) : )lul"u with ) > 0 and a > 4lN. Let tp e I/t(Rt) with l. le(.) e r'(RN)
be such that E(9) < 0. It follows that the maximal solution u of (4.1.1) blows up
in finite time for both t ) 0 and t ( 0 (see Theorem 6.5.4). Theorem 6.3.4 implies
that if b is large enough, then the maximal solution da of (4.1.1) with initial value
pb given by (6.3.12) is positively global and decays as f --+ oo. Of course, E(96) > 0

for such b's, and one may wonder if d6 still blows up at a finite negative time. The
answer is yes, as the following argument shows. Changing gu to W (which changes

i,6(t) to "{4), it suffices to show that if E(p) < 0, then for all b ) 0 the solution
u of (4.1.1) with initial value

4,@): p(r)e-i*

blows up at a positive finite time. Let ft"*(r/) be the maximal existence time of
t-', and let /(t) : lll'lu(t,.)ll'"".h follows from formulae (6.5.5) and (6.5.6) that

f (t) :/(0) + tf'(0) + 8E(10* - 
^4(N1 

;4) f', [' I I,/f+2 drdo dst*2 Jo"/oJ -'

for all 0 < t < T^u*(1b), and so

f (t) : /(0)+ tf'(0) +8E(Qt2 for all0 < t < T^^*($).

Setting P(t) : /(0)+t/'(0)+8.E(u(0))12 for all f ) 0, a straightforward calculation
shows that

p (t) : ll,pll,", + at ( r g7 - !U"rlt?"\ + st2 ( n p1 + ( Wvllr"" - 3 "trl )\2,/\oz/

#o(^-#"): Eo,

o], o-4".
U

o<e<*i,'{a, f},



with

In particular,

tf+.) : $r1e;. o,
\ o,/

and we deduce easily from (6.3.13) that T^u*$!) < llb (see the proof of Theo-
rem 6.5.4). Hence the result follows.

The condition for finite-time blowup in Theorem 6.5.4 is E(p) < 0. However,
the argument is based on the study of llru(t,r)ll2"r, and this quantity is defined only
it x,p(r) e ,2(Rl/), but not for a general p € Hl(RN). The question as to whether
negative energy implies finite-time blowup for general I/1 solutions is open (see

Gongalves Ribeiro [152] and Merle and Raphael [249] for partial results). However,
Ogawa and Tsutsumi 12751have shown the following result in this direction.

TspoRotr,t 6.5.10. Let g(u): Alul"u wi'th ),> 0. Assume N ) 2 and

1<o.=! ^ e<a<4i.f N:2).N-* -l'/-2 \--

If p e Ht(RN) is such that E(p) I 0 and if I i,s spherically symmetric, then
?-i. ( q and ?-u* ( a;'i.e., the solut'ionu of (4.1.I) blows up i,n finite ti,me for
botht>0 andt<0.

The proof is in some way an adaptation of the proof of Theorem 6.5.4. In-
stead of calculating llru(t,r)1127", we calculate llM(r)u(t,")ll2L,, where M : IRN --+

lR is a function such that M(r): lrl for l"l < ft and M is constant for lrl
large. Next, we use the decay properties of the spherically symmetric functions of
f/t(RN) to estimate certain integrals for lrl large that appear in the calculation of
llM(r)u(t,r)ll?,".Note that, as opposed to the ease rg € ,2(lRN), the appropriate
function M(r) depends on the initial value g.

The proof makes use of the following lemma.

Lplraltr 6.5.11. Let N ) 7 and,let k e Ct([0,oo)) be a nonnegat'iue funct'ion such

that r-(tv-r)f(") e ,-(0, oo) and r-(N-l)(k/(r))- e .L-(0,oo). There erists a
constant C such that

llkiulll-1e'; <
-1 r -/N-l\zr rr-rr'l -!

cllulli,rn" 
r 
(llr-('" -'r k,. ll j,1e" ; * llr-t'" -' ) (k') 11;- llulli,ls" y)

for all spherically symmetric funct'ions u € Hl(lR.N).

PRoor'. By density, we may assume that z € 2(R.N). For s > 0,

k(s)lu(s)12:
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IF(p):Im lrQYgdr.
RN

- l"* ft{r{o)lut")hao

- I,* k'(o)lu(o)12 d,o - 2 l,* rurRe (u(o)2,.( o))d,o

l"* {r'{o))-lr(o)l' d,o * 2 l"* np1p1o)llu,(o)ld,o .
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Therefore,

/c(s)lu(s) l2 S C;;r-tr-t) (k/)- llz- llrll?,ro"l * Cllull;,1e" ) llr-(N-r)ku,ll;,1p'; ,

and the result follows. n

PRoor oF THEoREna 6.5.10. By scaling, we may assume ):1. Let u be as in
the statement of the theorem. Consider a function W e W4,-(IRN), and set

1r
V(t) :; / V(r)lu(t,x)lz dr for all t € (-?,nin,?.nu*).

'n'"

We claim that

d2 lmf
hrAl :2 

J @(v)Yu,Yu)dr - ;, J nvpl'+2 ar
IRN RN

(6.5.35) -; t L2v1u12 d,x

p",v

for all t € (-?,,i,,7^u*), where the Hessian matrix H(i[) is given by I/(V) :
(0706V)15i,1r51,'. Assuming p € I/2(RN), it follows that u is an f12 solution
(see Remark 5.3.3). In this case, (6.5.35) follows from elementary calculations
(see Kavian [208]). The general case follows by approximating 9 in //1(1RN) by
a sequence (p.)n>o c f/2(RN) and using the continuous dependence. Next, we
rewrite (6.5.35):

#, u, : zN aE (u(t)) - 2 I {ry,, "r, - (r,(\p)v u,v o} a*
nRN

(6.s.36) + :+ [ e* -AV)lul"+2 a, -1 [ Nvpf a,.o+2 JN ,J

Let now p e 2(R) be such that p(r) = p(4 - r), p> 0, /up : 1, supp(p) c (f,3),
and p') 0 on (-*,2). We define the function 0 by

o(r) :, - [' ? - o)p(o)d,o for r ] o.
JO

We consider e e (0, 1), to be specified later, and we set

v(") :ilr(r) : !e4r')

and

,€r2
-y(r) =l?): t - 0'(er2) -2er20"(er\: I pg)d,s+2er2p(er2)

Jo

for r € IRN and , : lrl. Elementary calculations show that

,^, ^E\ ( @(v)Yu,Vu):2(7-1(r))lu,l2,(o'o'r// 
I lv:2N(1 -r(r))+ 4(7-N)er20"(er2),
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and that

A2v : e(alr1l'r + 2)0" (er2) + 16(,^\i + 2)€r20ttl (er2) + t61er2)20"" (€r2)) .

In particular, there exists a constant a such that

(6.5.38) llA'vllr- 12ae.

It now follows from (6.5.36), (6.5.37), and (6.5.38) that

d2 f ....o 2NU f ....
(6.b.3e) huAl <2NaE(e)-t 

J t(r)1u,12 + ffi J 
"r?)lul"+2 +aellull2y,,

where we have used the above relations and the properti"s + > I and 0" < 0. We
claim that there exist b and c such that

(6.b.40) # | t?)tut'+2 < beqik |'tf (l .,r^')r * **|u|Zt' .

Indeed, we first observe that 7(r) < 1+2sups>0 sp(s), so that

| ilr)l"l+' s cllti"ll1*llull?,"

S Cllullff llr-(N-l)7+u ,ll:i" + cllullTt2llr-(N-1)r-i (z')- lli*- .

The first inequality follows from the_ property a < 4 and the second from Lem-
ma 6.5.11 (one easily verifies that 7d e Cr([0,m))). Observe that 7(r) = 0 for
r <e-i, so that llr-iof-t)1+u,llu < toifll^t*u,ll'z. Next, note that 1> Ll2 for
er2 > 2. Furthermore,

'y'(r) : 6erp(er2) + 4e2r3 p'(er2) ,

so that l(r) 20 for er2:i 2 and

l(r) > -4e2r3lp'(er')la -nut llsBp'(s)ll1-16,-y .

Thus llr-(/v-r).y-t(f')-llr* < Cet and (6.5.40) follows. Using now (6.5.39),
(6.5.40), and conservation of charge, we see that

t^

*+*, Al < 2N aE (e) - a 
J t(r)lu,l'

+ bes-& llellf ( [ 
"WS'\u 

* uo* llell,,t'z + aellell2'" .

\J ' / ""'L-

Finally, since a ( 4, we may apply the inequality ri < r * 1 to obtain

(6.5.41) #rn <2NaE(e - (a,-besiB l,pnf ) | t?)1,,1'

+ bes=e llellf -r ce#llell1t, + aellell2y,.

We note that the constants o, b, and c do not depend on g and e. Since E(p) S O

and o ( 4, it follows immediately from (6.5.41) that one can choose e > 0 depending
only on rp through llgll1z and ^O(rp) such that

#rU, < NaE(g) for all r € (-ft1,,,4^,*).(6.5.42)
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Since V(t) > 0, (6.5.42) implies that 4.i. ( oo and ?,,.* ( oo.

RsN{lRx 6.5.12. There are two limitations in the above proof. The first one is
a 1 4. If a > 4, powers of ll1ia,1", larger than 2 appear with positive coefficients
in (6.5.41). This is due to the homogeneity in Lemma 6.5.11. The other limitation
is l/ ) 2, since if N : 1 the power of e in the second and third terms of the right-
hand side of (6.5.41) vanishes. This is due to the fact that the radially symmetric
functions in dimension 1 do not have any decay property. However, in the critical
case N : 1, e: 4, Ogawa and Tsutsumi [276] have proved that all negative energy
f/r solutions blow up in finite time without any symmetry assumption. Their
method is a more sophisticated version of the above argument. (See also Martel
[240] for certain extensions.)

We now give a lower estimate for blowing up solutions (see [70]).

TspoRnu 6.5.13. Suppose S@) : \lulu wi,th \ ) 0 and

.ff tp e III(R N) is such that T*u* 1 m, then there erists 6 > 0 such that

(6.5.43) llVu(t)111, >
(7,n.* - t)*-r#

for 0 1t ( ?rr.*.

A s'im'ilar est'imate holds near -?,.i, 'if T^in 1oo.

Paoor. Generally speaking, every time one proves local existence by a fixed point
argument, the proof also gives a lower estimate of the blowup. Here, we do not go
through the entire local existence argument, but instead we give a direct proof. Set
r : q * 2 and let g be such that (q, r) is an admissible pair. Let rp be as above, and
let u be the corresponding solution of (4.1.1). It follows from Remark 1.3.i(v) that

(6.5.44) ll v( lzl"u) ll, "' < c ll"ll?."11 v"ll 2..

By conservation of energy,

rll"lli" : -rE(p) +f,llv"ll?.,.

Therefore
rll"ll?, < cQ+ llvull|,)i . c(t + llvulll,)? .

From (6.5.44) and the above inequality, we deduce that for any 0 < t <r <T^u*,

llV(lul"u)ll, 0,11t,r1,r,,1< C(1 + llVullr,-11 t,r),1\)+ llYullTa q1t,ry,t,t

< c(, - t)#(1 + llVull1,* ((r,,),r,,))TllVullz,"tr,,,l,r.l .

Set now

fr(r) :1 + llVullr- (t,r),12) * llVzll1,"111,r),1,) t

so that, by the above inequality,

llV(lul"u)ll, o,11t,r),t,,) < C(, - lTf 11r1r+*

n

* ,".;- (# 
= 

0 < co i/N: 1)

(6.5.45)
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On the other hand, it follows from Strichartz's estimates that

llVull;*11t,"),1\+llVrllz,"tt,,"t,r,.y<CllVu(t)llr,+CllV(lul"u)117n,11t,,y,r",1

for 0 < t 1r < 4,.*. By (6.5.45), this implies that

(6.5.46) fr(r) < C(1+ llVu(t )llr")+C(r -t1Tf- .,r1r1r+? for 0 < t I r l-T^u*.

Consider now t € (0,7L.*). Note that if ?,,.* ( oo, it follows from the blowup
alternative that fi(r) ---+ oo as r I T^u*. Note also that fi is continuous and
nondecreasing on (t, ?-1,"*) and that

f,G) i 1+ llv?,(t)llr, .

Therefore, there exists rs € (t,[.,*) such that fi(re) : (C + 1)(1 + llvu(t)111,),
where C is the constant in (6.5.40). Choosing r: ro in (6.5.46) yields

1 + llvu(r)ll 7, < c(t + c)1++ ?o - Dffi (r + llvu(t) llr,)'*?
< (1+ c)z+zz(?-;,.* - t1\f g+ llVu(t)111,)t++ ,

and so

1+ llVu(t)111" >
(t+c;r+;(?,,.*- qW

Hence the result follows, since f € [0, ?-],r"*) is arbitrary and ffi - 1 - \1. A

Before proceeding further, we establish an immediate consequence of the above
result concerning the blowing up of certain -Lp norms of the solution.

CoRor,raRv 6.5.14. Suppose S(u) : \lulu wi.th ). ) 0 and

4 4 /4 \
F <o. uu._z (i =a<m 

if N:t).
If p e Ilt(RN) 'is such that T^"* < oo, then ll"(t)llr, ,,'*1* * for atl p > N*.

Moreouer,

(6.5.47) Ilr(t)llr" : (q"-;T-E foro<t.-T^u*,f ;<P3a*2
and

(6.5.48) ll"(t)llr" > 4-(N-2)o, Ilm r\-(;--i(rmax - r,l P'
for0<t1T^u*i,fp>a*2.

A si,milar est'i,mate holds near -Z-i', z/ ?'"i" < oo.

RpnaRx 6.5.15. Notethatif N > 3and p> #, orif N - 2andp:
oo, then it may happen that llu(f)ll;p : oo for some (or all) t € (-?-i.,7-L,u*).
Clearly, this does not contradict the above estimates. Note, however, that u €
It"((-z;t" ,T^u*),tt''1RN)) for every admissible pair (q, r), so that by Sobolev's
embedding theorem, llu(t)llu ( oo for a.a. t e (-4,i,, 7},"*) provided .l/ ( 3 or
l/>4andpcf!.
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Pnoor op CoRol,Lanv 6.5.14. Suppose first $ I p I a * 2. By Gagliardo-
Nirenberg's inequality,

llulll:1, ! cllvulllr'll"lli[' with p :
2,^/-(,^r -2)p'

4p - 2Na

By conservation of energy and the above inequality, we obtain

| | vu (r ) | | l, s 2 E (p) . hluft) ll7:? " 
< c + c llv u(t)ll!;' llu(t) ll7!'

for all 0 ( t ( ?,,,*. Since llVu(t)llr, ,,'*i_ oo, it follows that

llvu(t)lll" ! cllu(t)lli[P .

By Theorem 6,5.13, this implies

llu(r)llr" 2
(4n" - t);#t(*-r#) '

Inequality (6.5.47) follows, .i"c" ;f7( j - N;21 : * - #.
Suppose now p ) o * 2. It follows from Hcilder's inequality that

ap 2(p-@+2))

ll"ll7!1" s ll"llFll4lir .

Therefore, by conservation of charge and energy,

lly u(t)112", s 2 E (p) . :Lw(t)llz:?, < c + c ll,Q)ll'ff lellf#
for all 0 < , < 7],.*. The lower bound (6.5.48) now follows from Theorem 6.5.13

and the above inequality. tr

RprraeRx 6.5.16. Theorem 6.5.13 and Corollary 6.5.14 give lower estimates of
llV"llr, and llull;" near the blowup. They do not give any upper estimate. It
is interesting to compare these results with the corresponding ones for the heat
equation. If one considers the equation u1- A,u : luln-Lv with a Dirichlet boundary
condition, then a simple argument (even simpler than the proof of Theorem 6.5.13)

gives the lower estimate llull1,* ) (4"* -q-+. If o < #, th"tt it is known that
this is the actual blowup rate of the solutions (see [361, t26,795,352]). However for
larger a's, some solutions blow up faster (see [196]). A lower estimate is obtained
as well for llull;", p > Na12. In some cases it is known that llull;" also blows up for
p: Nal2 (see [362]) and that llull;r remains bounded fot p l Nal2 (see [113]).

RplteRx 6.5.17. In the case o > 4lN, one does not know the exact blowup rate
of any blowing up solution. In addition, one does not know whether llrllr," bto*.
up for 2 < p < Nal2. On the other hand, there is an upper estimate of integral
form (see Merle [243]). More precisely, if cp e f/l(lRN) and r9@) etr2(RN), then

4z f ,n,.. ,,' f .

fo J t"l't"(t,*)12 dr : ANaE(p) - 2(Na - 4) J lVz(t, r)12 dr
[RN

3 a - bllYu(t)112"" for some constants a,b > 0.

RN
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Since llru(t)ll2t" ) 0, this implies that

['^* f llvu(s)lll, d,sd,t < x.
Jo Jo

Since
rT,'.* 7t f?","*
I I llvz(s)llf, d,s d.t = I (T^^* - t)llvu(t)ll2L" dt ,Jo Jo Jo

it follows immediately from Hcilder's inequality that

l^?-"*I llVu(t)llf, dt < oo for 0 ( p, < r.
Jo

If rp e ,F/1(RN) and rp is spherically symmetric, then one obtains the same estimate.
Indeed, by using the fact that o > 4lN, one can improve (6.5.42) to

*ral < NaE(e- (no - 4)llvull21",
dt"

and the conclusion is the same.

RpuaRx 6.5.18. In the case o :41N, then (6.5.43) becomes

llvu(t)ll1' - 1*i-p,(6.5.4e)

and (6.5.47) and (6.5.48) become

(6.5.50)

In particular, llull7" blows up for p > 2. Since llulll, is constant, estimate (6.5.50)

is optimal with respect to p. On the other hand, it is known that the blowup rate
given by (6.5.49) and (6.5.50) is not always optimal, since some solutions blow up
twice as fast (see Remark 6.7.3 and Bourgain and Wang [41]). Moreover, in space

dimension N : 1, Perelman [297] has constructed a family of blowing up solutions
for which I

(log lrgg("*.. _ r)l) -u 
llr(r)llr* __+ c ) 0,

\ Tr""*-t / " t1?*"*

which is very close to but different from the lower estimate (6.5.50). Merle and

Raphael [250] recently obtained the upper estimate

llvu(t\ll? ". t (rog lllg(r'* - t)l ) 
+

rl '-\-/rL-_- 
\ ?i"""_t )

for a certain large class of blowing up solutions, which is very close to the lower

estimate (6.5.49). These results show in particular that at least two different blow
up rates are actually achieved. This was established in space dimension ly' : 1, but
there are strong indications that it might also hold in higher dimensions.

RnveRx 6.5.19. There is an abundant literature devoted to the determina-
tion of the blowup rate by means of numerical computations. See Flisch, Sulem,
and Sulem [114], Le Mesurier, Papanicolaou, Sulem, and Sulem [226, 228, 227],

Mclaughlin, Papanicolaou, Sulem, and Sulem [2421, and Patera, Sulem, and Sulem

llu(t)llu - ---j ------ fot p > 2.
(7-|""* - t)z \2- i I
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(6.6.1)

where

(6.6.2)

[293]. See also [336] for a survey of some of this literature. For a given equation,
the computed blowup rates vary widely according to the authors. For example, in
the case a: N :2,the rates (as of 1993) range from (T*-r)-i to (T*-t\-E
(see in particular Table i of [336], p. 409). Furthermore, for a given author, the
rate may vary from one paper to another. On the other hand, it seems that the
"fast" blowup rate of the pseudoconformally self-similar solutions in the critical
case (see Remark 6.7.3) was never reported numerically. This last point is usually
interpreted as the exceptional character of this blowup rate. This does not seem to
be correct, however, since it has been shown to have some "stabilityt'; see Bourgain
and Wang [41].

6.6. The Critical Case: Sharp Existence and Blowup Results

In this section we consider the model nonlinearitv

g(u) : \lul"u,

4tr)0, a:;.
lv

We recall that the 111 solutions of (4.1.1) are global and bounded in f/l(RN)
provided tp €.F/i(lRN) satisfies llpl}." < d for some d > 0 (see Remark 6.1.3). In
fact, one can determine the optimal d. Let R be the (unique) spherically symmetric,
positive ground state of the elliptic equation

(6.6.3) -AR + R: lRl*R in lR.N

(see, for example, Definition 8.1.13 and Theorems 8.1.4, 8.1.5, and 8.1.6). Note
that any ground state of (6.6.3) is of the form eie R(r - y) for some I € lR and
y e RN. We have the following result of M. Weinstein [356].

THEoREM 6.6.1. Assume (6.6.1)-(6.6.2) and, tet R be the spherically symmetric,
posit'iue ground state of (6.6.3). f 9 e III(RN) is such that

r* llpllr, < llRllr, ,

then the mosimal Hr solut'ionu of (a.I.7) i.s gtobal and supr.p llu(t)lls' < m.

Rpvrenx 6.6.2. The condition llpllr,, < ,\- * llnlllr is sharp, in the sense that for
any p > )-* llAllr, (in fact, even for p: \-* llRllr,, see Remark 6.7.3 below) there
exists rp €,F/l(RN) such that llpll", : p and such that u blows up in finite time
for both t < 0 and t > 0. Indeed, let r/(r) : R(r/-Ar), so that ll.lrll*: )-*llBllp
and r! is a solution of

-Lt/ + 
^$: ^llbl'1r.It follows that E(!): 0 (see formula (S.i.21)). Let p > )-*llnllr,, set 7 :

^*, 
plllRll* > 1, and consider 9p : .t$. It follows that llprll7z: p and

E(p p) : ^f+2 E@,) - t#lv 1bll2L, < o,
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and so the corresponding solution uo of. (4.1.1) blows up in finite time (see Theo-
rem 6.5.4). Note that there are certain extensions of Theorem 6.6.1 to nonlinearities
of the form g(u): \lulu with a > alN; see B6gout [19].

Rnuenx 6.6.3. In space dimension N : 1, an elementary calculation shows that

.R(r) : 3+

/cosh(2r) 
'

llRll2"" : rJ|.
Therefore, it follows from Theorem 6.6.1 that if p € HI(RN) is such that
)*llpllr, <gir/i,thenthesolutionuof (4.1.1)isglobalandsupr.p llu(r)lls, < oo.

Pnoor oF THEoREITa 6.6.1. By conservation of charge and energy and by
Lemma 8.4.2 below, we have for all t € (-4ni',?r"*),

!t:u(t)llr", s E(d. *];'-(t)lll:?,2"^
< E (d + 

2 [Rb llv u(t)1127'll"(t) ll?'

\ ll,nllo-
3 E(p) - wllvu(t)llf,,

(6.6.4)

in particular,

and so

; ('- ffiif;') tvu(t)tt2v" < E(e)

Hence the result follows, by using the blowup alternative. n

Rouanx 6.6.4. Assume ) > 0 and let d be the supremum of the p's such

that llplll: < p implies global existence of the corresponding .L2 solution (see

Remark 4.7.5). Then it is clear that d < )-iillRllr,, where R is as in Theo-
rem 6.6.1. This follows from Remark 6.6.2 and from the regularity property (iii)
of Theorem 4.2.1. Whether or not d: \-* llRllr,' is an open question. How-
ever, one can show that if rp € .L2(R.N) satisfies llpllr," < A-*llRllrr, and if, in
addition, l.le(.) € r2(lRN), then ?ki'': ?rr,.* : o9 ard z e .Lq(lR,r'(RN)) for
every admissible pair (q,r). (Here, ?.'u*,?r'i' are the existence times given in
Theorem 4.7.1.) Indeed, consider a sequence (pn)n_o c .F/l(RN) with 9n --+ g
in ,2(RN) and rg.(r) bounded in ,2(RN). The corresponding solutions u, sat-
isfy l'1",(.) e C(R,r2(lRN)) (see Lemma 6.5.2), and from the pseudoconformal
conservation law we see that (see formula (7.2.8))

8t2E(u^(t)) : llrp,ll!" for all t € lR,

ilr12
where u,(t) : e-'iiun(t). In particular, llu"(t)11:r" : llu"(t)lllz: llrp'lllz, so

that there exists e ) 0 such that llu,(t)111, < )-*llRllr, - e for n large enough.
It follows that there exists C such that llVa"(t)117" < CE(u"(t)) for all t € IR (see

the proof of Theorem 6.6.1). By Lemma 8.4.2, this implies that

llu.(t)lll:?,3cE(u^(t)ltte;1rt sS ror all t e IR.



198 6. GLOBAL EXISTENCE AND FINITE-TIME BLOWUP

We conclude as in Remark 4.7.4 above.

Theorem 4.7.1 has an immediate application to the study of blowup solutions.

THsonBN,r 6.6.5. Assume (6.6.1)-(6.6.2). Let tp € "L2(RN) and let u be the cor-
respond,'ing mo,rimal L2 solution of $.L.1) gi,uen by Theorem 4.7.1. If fi,.* < oo

and if (t^).>o 'i,s any sequence such that tn I T^^*, then u(t.) does not haue any
strong li,mit in r'(RN). A simi,lar statement hold,s forT*in.

Pnoor'. Assume that u(t^) -+ u in ,t(Rt). By continuous dependence (see

Theorem 4.7.I),

T^^*(u(t.))> ]"-".{r; ro forn largeenough.

This implies that

I
T^"*(g) ) tn *;"-""(tl) for n large.

z

This is absurd, since fr - T^u*.

In fact, one can prove a stronger result which implies the above theorem
(see [71]).

Tssonpnr 6.6.6. Assume (6.6.1)-(6.6.2). There erists p > 0 wi,th the followi,ng
property. Letg e r'(RN) andletu be the correspond,'ing matimal L2 solut'ion of
(4.1.1) gi,uenby Theorem4.7.L. If 7k.* ( oo andi,f L i,s the set of weak L2 limlt
po'ints of u(t) astl T^u*, thenllwll2,,3llpll?,,-p2 forattw € L. A s,i.rnilar
statement holds for T^i".

Pnoor'. It follows from Step 1 of the proof of Theorem 4.7.1 (see in particu-
br (a.7.\) that there exists 6 ) 0 such that if

ll7 (.) dll u *"( (o,r;,r,.+z ; ( d,

then 4,"'*(d) > r. Letting Q: u(t), we deduce that

llI(.)u(t)ll;.+2((0,?,."*-r),r-+21 ) d for all t e [0, 4""*).

Therefore, given any ry' € ,2(R^r) and any, € [0,?,-nu.*),

d < ll 
y(. 

) (u( t) - tlt) ll 7. +,((0,?-"*-t),r..+, ; + ll I(. )r/ ll 1.+z 110,r*** -t), L- +zy

< cllu(t) -.hll* + lly(.)/l[,.+2((0,?_*-r) ,La+z) ,

where c is the constant in the corresponding Strichartz estimate. Since

ll7 (')rbll u*"((0,?*"* -r),r.+, ) rffi* 0,

liminf lluft\ - rL,ll," > ! .
t17,,'u*" " -C

D

it follows that
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Therefore, if u(t^) ^ Q for some sequence tn | flr.,r*, then
an

a < li*inf llu(t") - rhll?."
c2'n'*"'''

llfr fr :.*:"1,.,,,!-"f ,;'r,;r!':;(ue.),,,)7")n*m t"

: llpllT" - ll,bll'"" ,

and the result follows. n

For I/1 spherically symmetric blowup solutions in dimension N > 2, there is
a minimal amount of concentration of the L2 norm at the origin, as the following
result shows (see Merle and Tsutsumi [251], Y. Tsutsumi [344], and M. Wein-
stein [360]).

Tsponen 6.6.7. Assume (6.6.1)-(6.6.2). Suppose further that N ) 2 and, let
R be the spherically sgmmetric, posi,ti,ue ground state of equat'ion (6.6.3). Letl:
(0,oo) -- (0,oo) be any functi,on suchthat Z(") 

"ro' 
x and r*u(") ;0. Finallg,

let g e Ilt (Rt ) and let u be the matimal HL solut'i,on of @.1.1) . If 9 is spheri,cally
symmetric and such that T^^* I oo, then

T,+*l.t llu(t)ll;,1o,1 > l-* llRllr,, ,

uhere(11: {r € iRN : lrl < l?.,u* -tli1(T^u*-t)}. A sim'ilar statement hold,s

for T^in.

As a consequence of Theorem 6.6.7, we have the following result.

Conolleny 6.6.8. Und,erthe assumpt'ions of Theorem6.6.7, if T^u* ( oa andif
L i,s the set of weak L2 lirnit points of u(t) as t I T^u*, then

llwll2y, 3llpll'"" - 
^-?'llRllT" 

for att w e L.

A si,mi,lar statement, holds for T^1n.

Rpuenx 6.6.9. Note that the minimal loss of tr2 norm given by Corollary 6.6.8

is optimal. Indeed, there exist solutions that blow up in finite time, and for which

llpll?,": S-?11n112", (see Remark 6.7.3). Corollary 6.6.8 improves the conclusion
of Theorem 6.6.6 for I/r spherically symmetric solutions, in the sense that it gives

the optimal value of p.

Pnoon oF CoRoLLARy 6.6.8. Assume tn I T^u, and u(t,) .. u in ,'(RN).
Given e > 0, u(tn) - tr in L"({lrl > €}), and so

llwll2'" 111,1>+ y S lim inf ll u(r" ) ll ?, tt t, t >,1 I .

On the other hand,

llu (t.) 1127, 1 11,t >. ) ) : ll u (t.) ll?,, - llu (t ") ll7"( { | o I < u } )

: llvll?." _ ll"(t")ll?"({t"t<e})

s llellT" - llu(t^)1127"1s,1 ,



( llu"llr" : llu(t.)llL, : llpllu,
(6.6.7) {llVu'llr,:t,

I E(o") : a(t.)20(u(t,)) : w(t^)2E(e) _= 0.

It follows in particular that

.i)E(un):;- #llr"lli!?,,
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and the result follows from Theorem 6.6.7. n

Pnoor or Tsponpna 6.6.7. Set o(t) : llvu(t)llr] so that ,(t) ,;- 0. We

claim that

(0.6.5) liminfllu(t)ll1:111r;<o(r)r(r*"*-r)))>)-*llEllr,.
+Jry!tfnlax

The result follows from (6.6.5) and (6.5.49), since'y is arbitrary. We prove claim
(6.6.5) by contradiction, so we assume that there exists tr, 1 4'u* such that

(6.6.6) lim llu(r")ll L2(:txt<u(t,,)t("*"*-,",))) a 1-*llRIlr,.
n+€

We set
un(r) : u(t)E uQ^,w(t^)r) ,

so that

so that

(6.6.8) lla.ll|!?, .=# + o

By (6.6.7), (un)n o is a bounded sequence in lIl(RN), so that there exist a sub-

sequence, which we still denote by (r,),r0, and u.' € HI(IRN) such that I)n ^ 'ti)

weakly in f11(R.N) as n --+ oo. Since the orr's are spherically symmetric, we deduce
that un .:L* in tro+2(RN) (see Proposition 1.7.1). In particular, E(w) ( 0, and

by (6.6.3), w + 0. By applying Lemma 8.4.2 below, we obtain

(6.6.e) )* llrllr, ) llRllr, .

Given M > 0,

llwll 7" 11"1 < rur) ) :,lg lla^ll 7, q1,1< tryl

:,,]$ llu(t") ll;' 111" t< M u(t.)j)

< lim inf llu(t ") ll y" 
111,1 <u (r* )7 (?_"* _t. ) ) ),

since 7(s) --+ oo as s J 0. Since M is arbitrary by applying (6.6.9) we obtain

l*igf llu(i,)ll;,11g,1<o(r*)1(?-"*-r-))) > llrllr, > 1-* 11R;;r, ,

which contradicts (6.6.6). This completes the proof. n

In fact, Corollary 6.6.8 can be generalized to nonradial solutions (and also to
the space dimension I/ : 1). More precisely, we have the following result'
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TunoRnu 6.6.10. Assume (6.6.1)-(6.6.2). Let R be the sphericalty symmetric,
positiae ground state of equat'ion (6.6.3). Fi,nally, let g e //t(RN) and let u be the
marimalHr solut'ionof @.1.I). If T^^*1oo andi,f Listhesetof weakL2 lirnit
po'ints of u(t) as t I T^^*, then

1ltull2", 3llpll'", - s-* 11ny2", for alt w e L.

A si,mi,lar statement holds for T^in.

By conservation of energy and the blowup of llVu(t)ll1:, Theorem 6.6.10 is an
immediate consequence of the following proposition.

PRoposrrroN 6.6.11. Let (un)ns_s c Hl(RN)\ {0} ond u € .L2(IRN) be such that
?tn ^ IL zn r2(RN) es n -+ x. If furthermore llVunllr, ;l q and

rimsup #* =0,n+oo llvunllLz

then llull2", ( lim inf,*m llr.ll?., - )- 3 llRll'"".

We will use the following lemma.

Lovrrrra 6.6.12. If (un)^>_o c HI(RN) is such that

(i) llu.ll2,":a)0t
(ii) 0 < inf,,>s llVu.llp ( sup,>6 llVu"lll, < m,
(iii) lim sup n-oo E(un) < 0,

then pr, > )-: llBll2yr, where pr: p((u,")n>o) i.s d,efined, by (1.7.6).

Pnool oF PRoposITIoN 6.6.11. (Assuming Lemma 6.6.72.) Let (u,),>6 be as

in the statement of Proposition 6.6.11. Set o, : liminf,r-m llu^ll2t". By considering
a subsequence, we may assume that

llunll2r" n?*o.

Set r,r, : llVu^llil and define un(r) : wfi u.(u^r). It follows that llunll2"" :
llu.ll2y", llYu^ll2y": 1, and

limsJe E(un) :rimsur ffi = 
o

We first show that a > 0. Indeed,

1 / llr- Il9" \ ^E(u") > ; (t - ^ffi )llYu.ll2;, 
,

by Lemma 8.4.2, which implies that )llu"llf 
" 

> llBll}", and so a> A-Z llnlll,. We
now set 

tn: !-'n
llunll tz
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so that (wn)n>o satisfies the assumptions of Lemma 6.6.12. Therefore,

p((u,,),>o) 2 1- 3 llRll'", .

We apply Lemma 1.7.5 to the sequence (rn)n>g. Given e > 0, it follows from the
above inequality that there exists 7 such that

p(w^,T) > 
^- 

3 llRlll,, - e for n, large enough.

Therefore, setting an: A(wn,?) with g(',') defined by Lemma 1.7.4(ii)'

t W^@)12 d,r 2 \-* llall?", -e for n large,
I

J

{lx-u-lcT}
which means that

af
T;M J lu-(*)12 d'r > \-?llall2"" - e

- {l*-z^l<t,,}

with zn : unUn and tn : unT. Note that t^ ;?* 0. By possibly extracting

a subsequence, we may assume that either lz^l ,:J @ or zn ;:l " for some

z € lRN. In the first case, consider M > 0. Since u, - u in L'({l"l < M}), we
deduce that

llull2y" 1 11, 1 3 r,r y ; S lim inf llu ̂
1127" 1 11, 1 3 ttr 1 )

: lt"aigf {llu"ll'y, - llu,"ll?."<n,l>Mi)}

: o - lim s;p llu^llzy, 111"12trty)

<a_\-ZllRll2""+e.

The result follows by letting M I q, then e J 0. In the second case, consider d > 0.

Since u,, - u in L'({l"l > d}), we see that

ll"ll'", t tt, - a>a 1 ; S li m inf llu ̂
ll27z I 11, - 42 a | )

: lr,T,igf {ll""ll7" - llu^ll?,"<tt,-,tsai)}

: o - hffjp llu, I 
j 
1,, 111"_,1_<o1t

<a_\-?llRll2r,+e.

The result follows by letting d J 0, then e J 0. This completes the proof. n

Pnoor or LBIr,ttr,la 6.6.12. We claim that there exists d ) 0, depending only on
.lf and,\ with the following property. If (un),2_s c fIl(lRN) is such that

(6.6.10) llu*ll?,:o)0,
(6.6.11) 0 . jif,llVu.ll;, < sr]t llvu"il2y" ,-oo,

(6.6.12) t'ffJo E(u") 3 0,

(6.6.13) p(@.).>o) < )-3 llBll1, ,
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then a > p((u,).>o), and there exists a sequence (in)n>o c Hr(R^/) satisfy-
ing (6.6.11), (6.6.12), and (6.6.13), and such that lltr,,ll2,, : a - 0 for some P > 6.

The result follows, since if (u,jn>_o C Hl(R.N) is as in the statement of the lemma,

and if p((u")">o) < )-;llBll2y", then we may apply the claim & times to obtain
a - k5 > p((u").>_o), which is absurd for k large. Therefore, we need only prove
the claim, and we consider (u,-)nro c //1(RN) satisfying (6.6.10)-(6.6.13). The
property a> p((u*).zo) follows from (6.6.11), (6.6.12), (6.6.13), and Lemma 8.4.2.
Next, we apply LemmaI.7.5, then Proposition 1.7.6(iii) to the sequence (un)n>0,
and we consider the corresponding sequences (u7.)p>6 and (ars)7r1e. We set

(6.6.14)

where the constant .I( is given by (1.7.17). We first show that

(6.6.15) Lr:: F((un)n>o) > d,

where d'is defined by (6.6.14). Indeed, it follows from (1.7.17) and (6.6.14) that

1 / _ ( p(un*,t*)\ t\ /,-^ ,2 K ^,E(u.u)>;(1-z\ \ d / /J'Yunul'-@;4Fkl(un*'t*)7'
Assuming by contradiction p ( d, we obtain by letting k -- oo and applying
Lemma 1.7.5(ii) and (6.6.11),

which is absurd. Next, since lrrl S lu,ul by (L7.12), it is not difficult to deduce
from Lemma 1.7.5(ii) and (6.6.13) that

(6.6.16) r-r((wn)x>o) S tt < )-t llRll?' .

Also, it follows from Lemma 8.4.2, (6.6.13), and (1.7.14), that there exists o ) 0

such that

(6.6.17) E(un) > ollVupll2y, for k large.

On the other hand, it follows from (1.7.15) and (1.7.16) that

(6.6.18) liminf{E(u, *) - E(rx) - ,E(urp)} > 0.

Inequalities (6.6.12), (6.6.17), and (6.6.18) imply that

(6.6.1e) limsup E(wp) < 0.
k-oo

Next, we deduce from (1.7.13) and (6.6.11) that

llVwpllp, < Cllu"rlln' < C .

tlqi;:f llVtoT.ll;, > 0.

To prove this, we argue by contradiction and we assume that there exists a subse-
quence, which we still denote by (.r)*to, such that llVtu;. 111, -* 0 as k * oo. It

': (#)* '0,

,,;1,'nE(,,) 
= ;(' - (;)*) ;ir I tvu*t' > o,

(6.6.20)

Finally, we show that

(6.6.21)
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follows that E(tu7,) ---+ 0 as k -+ oo, so that (6.6.12), (6.6.18), and (6.6.17) now im-
ply that llVrrllr, --+ 0 as k-- oo. Using (1.7.16), we deduce that llu,ull;.+r -- g,

so that, by (6.6.11),

limsupE(u.) > 1n-inf llVu-ll?, > o.
t--' 2 n-.o

which contradicts (6.6.12). Hence we have proved (6.6.21). Setting

,o: Rro,
llwkllL2

we see that 0 < lli*ll'r" : a - H I a- d, and we deduce from (1.7.14), (6.6'20),
(6.6.21), (6.6.19), and (6.6.16) that the sequence (d*)r>o satisfies estimates (6.6.11),
(6.6.12), and (6.6.13). This completes the proof. tr

RBIvtaRx 6.6.13. For more information on the blowup in the critical case, see the
series of papers of Nawa 1264,265,266,267, 268,269,270].

6.7. The Pseudoconformal Tlansformation and Applications

In this section we consider the model nonlinearity

(6.7.1) g(u): \lulou,

where

(6.7.2) leJR, ":#.
In this case, the pseudoconformal conservation law, introduced by Ginibre and
Velo [133], becomes an exact conservation law. This conservation law is associated
to a group of transformations which leaves invariant the set of solutions of (4.1.1)
(see Ginibre and Velo [139]). We describe below this group of transformations (the
pseudoconformal transformation).

It will be convenient to use the Hilbert space

(6.7.3) t:rl1(RN;n.L21nN,lrl2dr): {u € }rt(Rt) ,l.lu(.) € r2(RN)i

equipped with the norm

(6.7.4) ll"ll3 : ll"ll?, + ll""llL,.
Let now b e lR.. Given (t,r) e lR X RN, we define the conjugate variables (r,y) e
IR x IRN by

trs?]s:IT;;, U:I+W' orequivalentlY t:7::G, r:ffi

Given u defined on (-S1,^92) x IRN with 0 <-51,52 ( oo, we set

Im ifb^91 S-1 f oo lfbSz>I(6.7.5) Tt: 1 s, ." ,.- ] . Tz: 1 .s" !. ,t r.bsA; if b^gl > -1, t Fd3; t oS2 1I'
We define u6 on (-T1,Tz) by

u6(t, r): (1 + bt)- + ei*#-n "( :-,.+-),\r+or L+ot/
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or equivalently

(6.7.6)

Note that

(6.7.7)

and, more generally,

(6.7.8)

In particular,

(6.7.e)

u6(t,r): (1 - as;#sdz#4";t u(s,y).

llu6(t)ll 7" : llz(s) ll 1,,

llu6(t)llye+": (1 - bs),-#flllu(s)lllo+, if B > 0.

llu6(t)ll1-+, : (1- bs)# llu(s)ll;-+,

(6.7.11)

(6.7.12)

(6.7.13)

so that if bs1 ) -1 and bs2 < 1, then

(6.7.10) llu6 ll 1-+z 11- t t,t2) La+21 - ll u ll 1,.+, 11 - I L,s2) Ld +z )

with t1 : dh and tz : Tfti. Next, if u € C((-^91, ^92), X), then it is clear that
ub e C((-Tr,Tz),8). In addition,

llru6(t)llp, : (1 - bs)-l lleu(s)111, ,

1

llVu6(t)111,, : ,ll(-bu + 2i(1- bs)V)u(s)11z,, ,

'l

llVu(s)111, : ,ll{u" + 2i(L + bt)Y)u6(t)lly, .

The interest of the above transformation lies in the following result.

Tspoeou 6.7.1. Suppose u € C((-St, s2), 12(R.JV))nrf,:'?((-S1, ,s2), r'+2(lRN))
,is a solut'ion of @.IJ) (see Theorem 4.7.1). Let b e IR, lef 71,T2 be defi,ned

by (6.7.5), and let u6 be def,ned bg (6.7.6). It follows that

ub € c ((-Tt, ?, ), 12 (RN )) n rfl:', ( ( - Tr, Tz),r"+', (RN ))
,is also a solut'ion of @.1.1). If, i,n addit'ion, u e C((-Sr,Sz),D), then u6 €
C((-Tr,Tz),E).

Pnoor'. It is clear that u6 e C((-Tr,"2),r2(RN)). In addition, it follows from
(6.7.10) that u6 € Lf[2(-fy?2),r"+'(RN)). Furthermore, one shows that if
0 ( ^9r,,S2 

( oo andif b,9r ) -1 and bS2<1, thenthemapping LLerrb iscontinu-
ous C([-S1,,s2], r2(RN)) n ,'+2((-sr, Sz), Lo+2(RN)) -- C(l-Tr,"z], r2(nN;; n
Lo+' ((-Tr,?2 ), r'+' (RN ) ).

Let now u e C(l-S!,,521, 12(lR.N)) n l'+z1r-Sr, Sz),r"+2(RjV)) be a solution
of (4.1.1), with,Sr and 52 as above. Let p: u(0). We have in particular ?ki"(p) >
51 and T^u*(g) ),92. Consider (9,),26 c H2(RN) such that gn + g in,l2(m.N).
By continuous dependence (Theorem 4.7.i(v)), T^in(gn) ) .9r and T^u*(gn) > Sz

for n large enough. We denote by u' the corresponding solutions of (4.1.1). We
first observe that un € C((-,9r, 52), Hl(Rl/)) by Theorem 4.7.1(iii). Applying then
Remark 5.3.3, we deduce that un € C((-,91, ,92), H2(IRN)); i.e., z is an I12 solution.
It follows that u satisfies equation (4.1.1) a.e. on (-St,Sz) x IRN. A tedious, but
straightforward, calculation shows that (u')6 satisfies (4.1.1) a.e. on (-?t, ?z) xRN.
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The conclusion follows from continuous dependence (Theorem 4.7.1(v)) and from
the continuity property mentioned above. !

Rnulnx 6.7.2. Note that the pseudoconformal transformation preserves both
the space ,'(RN) and the space X. On the other hand, it does nof preserve the
space I{1(RN).

Rounnx 6.7.3. The pseudoconformal transformation has a simple application
(see M. Weinstein [359]), which yields interesting information on the blowup. As-
sume for simplicity that ) : 1 and let r/ be a nontrivial solution of (6.6.3). (Note
that $(r) has exponential decay as lrl -- oo; see? for example, Theorem 8.1.1.)
It follows that u(t, r) : eitrh(r) is the solution of (4.1.1) with p : Ty', and that
T^"*(p): ?ki"(p) : *oo. We set u(t,r): u-r(t,r); i.e.,

(6.7.14) u(t,r): (1 - t)-t"-l:t-ei# '( r \*'(fl,) forr€RN't<1'

Therefore,

(6.7.15) llu(t)ll r, : (1 - t)- 
!9? 

ll,bll ",
forallt(1, 1(p(oo.

: 1. F\rrthermore, it follows fromThus, llull1,.+2((o,r),L.+2) : *oo so that [..*
(6.7.12) that

so that

(6.7.16)

^ r tl/ ,; \ 12

llyu(t)ll'zyz : i J | 
(" * llo )*Al1 

a,
RN

(t - t)llvu(t)l[,, --- llvr/l}." .

We deduce in particular from (6.7.15) and (6.7.16) that u blows up twice as fast
as the lower estimates (6.5.49) and (6.5.50). This implies that, at least in the case
a : 4/N, the lower estimates (6.5.49) and (6.5.50) are not optimal for all the
blowup solutions.

It also follows from (6.7.15) that llt.r(t)lln ,i 0 if 1 < p 12, so that

(6.7.77) u(t)..o intr2(RN) astf 1.

In particular, the loss of tr2 norm at the blowup is equal to llRlllz if T/ is a ground
state of (6.6.3), but it is larger if ry' is an excited state. (Note that excited states
exist if N > 2; see [25].) Therefore, the loss of .L2 norm given by Theorem 6.6.10
is not always optimal.

Note also that by (6.7.11),

(6.7.18) llru(t)ll1z: (1 - t)llrglly, ----. s

(cf. Remark 6.5.5.). In particular, u(t) ------+ 0 in L"({l*l > e}) for any e ) 0.

Furthermore, one easily verifies that u(t) ------+ 0 in ,F/t({l"l > e}) and in I-({lzl >

e]) (this last point because ry' has exponential decay). Therefore, u(t) blows up only
at t:0. Furthermore, it follows from an easy calculation that lr(t)lt ;? llrltll'""6

in D'(IRN), where d is the Dirac measure at fr :0.
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Finally, we observe that formula (6.7.14) also makes sense for f > 1, and that
u given by (6.7.14) is also a solution of (a.1.1) for t ) 1. As a matter of fact, the
properties of u as t 'f 1 and as t | 1 are similar. Formula (6.7.14) gives (formally)
an extension of the solution o beyond the blowup time ['.* : 1. We know that
u satisfies (4.1.1) on (-oo,1) and on (1, m), and we investigate in what sense ?r

may be a solution near t : 1. Note first that u e C((-oo, 1) U (1, oo),.L2(IRN)) and
that llu(t)111, : llrlrll* for t 11, so that by property (6.7.17) u is discontinuous
in.L2(RN) at t : 7. On the other hand, u e .Loo(lR,r'(RN)), so that Ao €
,*(R,I/-2(lR'N)). Fhrthermore, it follows from (6.7.15) that lllu(t)l"u1t;11r' :
clt - t1!;!. Therefore, if we assume N ) 3, then lul"a e lt.(m,rl(R.N)). If m
is an integer such that ,t(RN) .* g-rnlnqrv) (so that in particular m ) 2), then
we deduce that lol@tr € .[L.(R,H--(RN)). Therefore, Ut € ,t.(]R,It-*(iRN)), so

that u € C(R,I1-'"(RN)). Thus u(t)-* 0 in g-rn1p|) as f -+ 1. This implies
easily that u satisfies (4.1.i) in 2'(JR.,rf--(RN)). Therefore, we see that o can be
extended in a reasonable sense beyond the blowup time [r'.* : 1. However, the
meaning of this extension is not quite clear. Indeed, if we define

then the above argument shows that d is also an extension of u beyond ?.ra* : 1,

which satisfies (4.1.1) in 2/(R,f/--(RN)). As a matter of fact, one can define
many such extensions. For example, since equation (4.1.1) is invariant by space

translation and by multiplication by a constant of modulus 1, we see easily that for
any y € IRN and ar € IR,

i(t\:{'A) ift<1
I e"u(t,. - y) if t > 1

satisfies (4.1.1) in D'(JR,H-'n(RN)) and is also an extension of u beyond ?-1,,.* : 1.

About this problem, see Merle [245].

Rnuanx 6.7.4. In space dimension N : 1, the solutions considered in the above
remark are completely explicit. Indeed, it follows from formula (6.6.4) that

is a solution of the Schrodinger equation iu1 * u*, * lulau : 0 that blows up at
t :7.

Rruanx 6.7.5. Let u(t) be as in Remark 6.7.3. Given y € RN, set uo(t) :
u(t,.- y), so that u, is a solution of (4.1.1) for which ?,,r* : 1, and that blows up
at the point gr € IRN. Given (y2)1q4<7. with yi * W for j I (.,

k

u(t):Lrn,(t)
(:1

is a function that blows up at t: 1, and only at the points !t. On the other hand,
since (4.1.1) is nonlinear, r-t,'is not a solution of (4.1.1). However, Merle [244] shows
that there exists a solution u of (4.1.I) on [0, 1) for which 4,a* : 1 and which is

( u(t) if t<1u(tl:1 "
L 0 if r > 1,

cosh (fi)
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asymptotic as t 1 1 to tu. This shows in a way the stability of the type of blowup
displayed by u.

RsN{anx 6.7.6. Assume for simplicity,\ : 1 and let R be the positive, spherically
symmetric ground state of (6.6.3). It follows that for any 7 € IR, p ) 0, and g € RN,
u(t,r) - uituiu2tp(p("- 9)) is a solution of (4.1.1). For any b < 0 and 11 € IRN,
u(t,r) : ab(t,, - *r) is therefore also a solution. An easy calculation shows that

(6.7.1e)

with ?La" : -\/b, e : pT^u*, fio : U/T^u*, and d : j - p2T^ur. Let now
p € .FIl(Rnr) be such that llrplll, : llRllyz and such that fl.u* ( oo. It follows
from Merle [2a6] that there exist d e lR, a-r ) 0, ns,r1 € IRN such that u is given
by (6.7.19). SimilarlS if 4,i. ( oo, then there exist d € IR., ar ) 0, rs,r1 € IRN

such that u is given by

/ u 1# -o-, t.-,,r2, _; -2 t, ,,t \u(t,r): (_i * ) e'"-"2,r;;r6-'c;T7R( *: -((r-"r)-(7,"i"+t)zs) ).\.rmin-f r/ \lmintL /
In other words, the only solutions that blow up on the critical sphere are those
obtained from the ground state by the pseudoconformal transformation. Note in
particular that if u is a solution on the critical Z2 sphere, then fi.'r* and 4ri,
cannot both be finite.

6.8. Comments

We begin with some examples of applications of the results of the preceding
sections.

Revenx 6.8.1. Let g(u): \lulouwith) e IR and0 < o < 4l(N-Z) (0 < a < m
if N: 1).

(i) If ) < 0, then all solutions of (4.1.1) are global.

(ii) If ,\ > 0 and a < 4f N, then all solutions of (4.1.1) are global.

(iii) If l > 0 and o > 4/N, then the solution of (4.1.1) is global if llgllp' is
small enough. On the other hand, given,r/ e f/l(nN), rb + 0, the solution
of (4.1.1) with g: kTy' blows up in finite time, provided l,kl is large enough.

Statements (i) and (ii) follow from Corollary 6.1.2. The first part of (iii) follows
from Corollary 6.1.5. Finally, the last part of (iii) follows from Theorem 6.5.4.
Indeed, it is clear that (6.5.24) is satisfied, and that E(kb) ( 0 for lkl large enough.

Rpnenx 6.8.2. Let g(u): l(lrl-'*lul2)u, where ) e lR, and 0 < z < min{N,4}.

(i) if 
^ 

< 0, then all solutions of (4.1.1) are global.

(ii) If ) > 0 and 0 <u < 2, then all solutions of (4.1.1) are global.

(iii) If ) > 0 and v ) 2, then the solution of (4.1.1) is global if llglls' is
small enough. On the other hand, givenT/ e Hl(nN), r/t + 0, the solution
of (4.1.1) with rp: kry' blows up in finite time, provided lkl is large enough.

- /r -\ ( w \#-ne-n,l*-*''',, aa^-J ,u\t1I) : 
\a*_ _,,| " 

s(imax-') ''lmax-r

" R(#-((' - ",) - (r.,* - r)"r))\lmax -
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Statements (i) and (ii) follow from Corollary 6.1.2. The first part of (iii) follows
from Corollary 6.1.5. Finally, the last part of (iii) follows from Theorem 6.5.4.
Indeed, it is clear that (6.5.26) is satisfied, and that E(krlr) < 0 for lkl large enough.

RpneRx 6.8.3. Let g(u) : )lul'u* 0(lrl-" *lulz)u, \, 13 € R, 0 ( a < 4l(N -2),
and 0 < z < min{N,4}.

(i) The solution of (4.1.1) is global if llplls' is small enough.

(ii) If 
^,P 

< 0, then all solutions of (4.1.1) are global.

(iii) If l < 0, B>0, and 0 < v <-2,then all solutions of (4.1.1) are global.

(iv) If ) ) 0, 0 <'0, and a ( 4/N, then all solutions of (4.1.1) are global.

(v) If 
^,P> 

0, a ( 4fN, andO<v < 2, then all solutions of (4.1.1) areglobal.
(vi) If 

^,P> 
0,o) 4fN,andv)2, thengiven/€Hl(RN),rr+ 0,the

solution of (a.1'1) with p : kry' blows up in finite time, provided lkl is large
enough.

(vii) If ) ) 0, P < 0, a ) 4fN, a ) 2,and z ( 2, then given ry' € fIl(lRN),
,b + 0, the solution of (4.1.1) with g : kty' blows up in finite time, provided

lkl is large enough.

(viii) If ) { 0, P > 0,a < 4fN,a 12,andu } 2, then giventy' € }/l(RN),
,lt + 0, the solution of (a.1.1) with 9 : ftry' blows up in finite time, provided

lkl is large enough.

Statement (i) follows from Corollary 6.1.5. Claims (ii), (iii), (iv), and (v) follow
from Corollary 6.L2. Finally, (vi), (vii), and (viii) follow from Theorem 6.5.4.

Rpuanx 6.8.4. There are some finite-time blowup results in strict subdomains
O c IRN. For example, assume 0 c IRN is smooth, bounded, and star-shaped
about the origin, and 9(u) : lulu for some 4l N < a < al (N - 2). It follows that
a solution u € C1([0, Tl,L2(aD n C([0, r),H2(o) n II01(0)) of (3.1.1) blows up in
finite time, provided E(p) < 0 (see Kavian [208], proposition 1.2). In addition, if
O is a smooth, bounded domain of lR2 and S@) : lul2u, then for every rs € O
there exists a solution that blows up like the singular solution in IRN (the rescaled
ground state of Remark 6.7.3) at zs. See Burq, G6rard, and Tzvetkov [50].

Rprraanx 6.8.5. Consider the problem (4.1.1) with 9(u) : \lulu, .\ € IR., and
a ) 0. Suppose first that a < 4/N. It follows from Theorem 4.6.1 that for
every g € ,2(lRN), the corresponding .L2 solution of (4.1.1) is global. By If"
regularity (Theorem 5.1.1), we deduce that if 0 < s < min{Nf2,1}, then for every
g e fI'(lRN), the corresponding f16 solution of (4.1.1) given by Theorem 4.9.1
isglobal. Fixnow0 < s < min{l(2,l} andassume 4lN <a <41(N-2s)
and.\ < 0. It follows (see Remark 6.8.1(i) above) that for every (p €.I1l(IR]V),
the corresponding ,I/1 solution of (4.1.1) is global. On the other hand, it follows
from Theorem 4.9.1 that for every g € /{"(Rlr), there exists a local f/3 solution u
of (4.1.1). One may expect that the fls solution is global, but there is no equivalent
of the conservation of energy at the fI" level. It is possible to show, however, global
existence for all tp € II"(RN) in some cases; see Bourgain [38] and Colliander et
al. [88, 89, 90, 91]. See also Vargas and Vega [350] for a related result of global
existence for all initial values in a space strictly larger than ,'(RN) for the cubic
one-dimensional Schrodinger equation.



CHAPTER 7

Asymptotic Behavior in the Repulsive Case

In this chapter we continue the study of the global properties of the solutions
of (4.1.1). We have seen in the preceding chapter that for certain nonlinearities and
initial values, the solution of (4.1.1) satisfies u e Zq(1R., Wt''(RN)) for every admis-
sible pair (q, r). See, e.g., Theorem 6.2.1. This implies that u(i) has a certain decay
as f -+ oo. If g is "sufficiently" superlinear near 0, for example if g(u) : )lulou with
o "sufficiently" large, then g(u) will have a stronger decay. One may then expect
that the term 9(u) becomes negligible in equation (4.1.1) and that the solution u(t)
behaves as f ---+ oo like a solution of the linear Schrcidinger equation. This turns
out to be the case, under appropriate assumptions on g, and the scattering theory
formalizes this kind of property. Of course, we have been vague in saying that
the solution z(t) behaves like a solution of the linear Schrodinger equation, since
this can be measured in various different topologies. This gives rise to different
scattering theories.

In Section 7.I, we describe the basic notions of the scattering theory.
In Sections 7.2-7.4, we develop a scattering theory in the weighted Sobolev

space D defined by (6.7.3)-(6.7.4). We first establish the pseudoconformal conser-
vation law (Section 7.2),then deduce the decay properties of solutions (Section 7.3),
and develop the scattering theory (Section 7.4).

In Section 7.5, we apply the pseudoconformal transformation in order to obtain
some further results (both positive results and counterexamples).

In Sections 7.6-7.8, we develop a scattering theory in the energy space f/l (lR.N).

We first derive the Morawetz estimate (Section 7.6). This is the essential tool to
obtain the decay properties of the solutions (Section 7.7) on which the scattering
theory is based (Section 7.8).

7.1. Basic Notions of Scattering Theory

In this section we introduce basic notions of scattering theory. Consider a
Banach space X in which the equation (4.1.1) can be solved locally. For example,
X can be 1{1(lRN), r'(Rt), }I"(RN), or the space E defined by (6.7.3)-(6.7.4),
depending on the nonlinearity 9. See Chapter 4.

Let g e X be such that the corresponding solution u of (4.1.1) is defined for
all t ) 0, i.e., T^u* : m. If the limit

(7.1.1) ,+ :,[gI(-t)u(t)
exists in X, we say that ua is the scattering state of 9 (at *oo). Also, if g € X is
such that the solution of (4.1.1) is defined for all t ( 0; i.e., 4r,i, : co, and if the
limit

,- : ,jlt T(-t)u(t)

2tr

(7.r.2)
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exists in X, we say that u- is the scattering state of g at -crc.
I We observe that saying that p has a scattering state at foo is a way of saying

I that u(t) behaves as f ---+ *oo like the solution T(t)ua of the li,near Schrodinger
I eouation.

We set
I
I (7.1.3) R*: {p € X :T^u*: oo and the limit (7.i'1) exists}

and

| 3.t.1) R- - {p e X: ?,,i, : oo and the lirnit (7.I.2) exists}.
I

In other words, 7?1 is the set of initial values rp which have a scattering state at

I *oo. We define the oPerators

I (7.1.5) Ua:Ra -+ / maPPing I e u+

and we set

I (2.1.6) U*: U+(R+).

If the mappings Ua are injective, we set

I r.r.tl O+ : [/f 1 :l,la -+ ?-a.

The mappings f)1 are called the wave operators. Next, we set
II (7.1.8) 0+ : u+(R+ n R-) .

I
Finally, the scattering operator S is the mapping

| 1z.t.o; s:[/+Q-:o--0+.
II In other words, u+ : Su- if and only if there exists rp e D such that 7k.* : ?.ri, :

oo and such that T(-t)u(t) --+ u+ as t --+ too.

t Rnuanx 7.1.1. Note that the operators and the sets that we defined above
depend on the space X in which the convergence (7.1.1) or (7.1.2) takes place.

I Revnnx 7.1.2. We observe that for the linear Schrcidinger equation; i.e., when
- S(u) = 0, all the operators [/+,f,)r,S defined above coincide with the identity on

r X. Note, however, that, in the general case g I 0, these operators are nonlinear.

II RBIr,rnnx 7.1.3. Assume that

s(q :;6 for ail u e X.

t It follows that changingt to -t in the equation (4.1.1) corresponds to changing u
to Z, which means changing g to Q. So we see that

I n-:R+:{peXtVeR+},I U_ :W: {a e X :a €t!a},

a O- : O+: {,r.r € X :E € Oa},
l-
I and that U-9: U+9 and Q-P : dl+Q.

I
I
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7.2. Th'e Pseudoconformal Conservation Law

Throughout this section we consider a nonlinearity 9 is as in Example 3.2.11.
Therefore, we assume

g(u) : vu -t f (',u(.)) + (w * lul2)u ,

where V, f , andW are as follows. The potential V is real valued, y € re(RN) +
,-(Rt) for some p > L, p > Nl2. .f , RN x IR -i lR. is measurable in r € IRN and
continuous in u € R and satisfies (3.2.7), (3.2.8), and (3.2.17). Extend / to RN x C
by (3.2.10). The potential W is even and real valued, W € ts(RN) +.L-(lRN) for
some q ) 1, q ) N/4. In particular, 9 is the gradient of the potential G defined by

f (1 ^ 1 ^ )(7.2.1) G(u) : J \;"Oyu(r)lz 
+ F(r,u(r)) + ;(w * lul2)(c)l?,( r)12 

| 
dr ,

NRN

and we set

1f(7.2.2) E(u) : i Jo,lr"{")1'zdx - G(u) for all u € al(rRN).

We recall (see Corollary a.3.3) that the initial-value problem for (4.1.1) is locally well
posed in I/t(Rt) and that there is conservation of charge and energy. Moreover,
if 9 € X with X defined by (6.7.3)-(6.7.4), then u € C((-7l"t",4,.*),D) (see
Remark 6.5.2). Also, if p € Ff2(lR.N), then u e C((-T^i.,?-.*),,ff2(m.N)) (see

Remark 5.3.3).
The following "pseudoconformal conservation law," discovered by Ginibre and

Velo [t33, 134], is essential for the study of the asymptotic behavior of solutions.

Tuoonpu 7.2.1. LetE be def,ned, by (6.7.3)-(6.7.4) and let

sfu) : vu-r f (',u(.)) + (w *lul2)u

be as in Erample 3.2.11. If p e E and, i,f u e C((-?,"i",4,.*),8) i,s the corre-
spond'ing solut'ion of (4.I.1), then

ll(r + 2itV)u(t)ll't" - B* G@(t)) : llrell2," - fo sllG)d.s,(7.2.3)

where G i,s defined, by (7.2.1) and

e(t) : { /ttt" +2)F(u)- a.n/Re(/(u )n))d,r
LJ

[RN

(7.2.4)

for all t € (-?-i,, ?'"").

Rprtenx 7.2.2. Note that by Proposition 6.5.1, the left-hand side of (7.2.3)
makes sense.

+8lV +;,.YV)lul2d,r
RN

+ 4 I W * !r, YW) * 1u1'?11uf ar|
RN
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Pnoop op THsoRstvt 7.2.7. Let

h(t) : ll(r + 2itv)u(t)ll'"" - 8*G(u(t)) .

We have

h(t) : llru(t)ll2y, + 4*llvu(t)ll2r, - 4trm l, " 
. Yu d.r - 8*G(u(t))

R*
f

: llru(t)1127, - 4tIm | ," .Yud,a + 8t2E(p) ,

R*

where the energy.E is defined by (7.2.2). Applying Proposition 6.5.1, we deduce
that h € Ct(-?-r",7^u*) and that

/l- f
h'(t): frllxu(t)llL, - 4Im | ,".vudr

e"v
frt

- 4t;Im I ar .Yudr + I6tE(e) : -t|(t) ,dt 
J'

and (7.2.3) follows after integration on (0,t). n

Rpnrenx 7.2.3. Note that when V:0, "f(s) : )lsl*s for some ) e IR and
W(r) : plrl-z for some p e R (p : 0, if N : 1,2), (7.2.3) is an exact conservation
law, which is

ll(r + 2itY)u(t)ll'r,-
(7.2.5) *, | {ffit,t,** + f,{t*t-, *1u1211uf\ar: trpil?".

[RN

It corresponds to the invariance of the equation under a group of transformations.
See Section 6.7 and see Ginibre and Velo [139] and Olver [285].

Rnuanx 7.2.4. Note that if i 10, then

(7.2.6) (n *2i,t7)w :2itei*V@-i*w) ,

and so

ll(r + 2itY)wll2L" : 4t2llv 1e-iW w7111, .

Therefore, if we set

(7.2.7) u(t,r): e-i*u(t,r),

then (7.2.3) is equivalent to

(2.2.8) 8*E@(t)) : llrell2," - [' ,eg)ar.
JO

That equivalent formulation of (7.2.3) will be helpful later.
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Rpnanx 7.2.5. Let f e C(C,C) satisfy /(0) :0 and l/(u) - f(")l< C(lul" +
lT,'1")lo-ulforallu,u € Crwhere0( a ( 4lW-2) (0 < o < mif N:1).Assume
further that f (eiqu): eiqf (u) for all u e C and d e lR. It follows from (7.2.6) that

l(n + 2itY)f(u)l : zlrllv 1e-i* y6i)11 : z1t11v1y1uy;1 ,

where o is defined by (7.2.7). From the above identity and Remark 1.3.1(vii), it
follows that

ll(r + 2i,tv)f (")ll 
"g 

< cltlllrll1.+,llVull;,+, .

Since lul : lul and ZltllYul: l(r * 2itY)ul, we obtain

(7.2.e) ll(r + 2i,tv)f(")llr*f? < cllulli-+,ll(r + 2i,tY)ully.+, .

Note that when o:0; i.e., when / is globally Lipschitz continuous,

(7.2.10) ll(r + 2itv ) f (u)ll u S C ll(r * 2i,tY)ull 7, .

The constants C in the above inequalities are independent of u andt.

7.3. Decay of Solutions in the Weighted tr2 Space

In this section we apply the pseudoconformal conservation law to the study of
the asymptotic behavior of solutions. For simplicity, we restrict our attention to
the model case

(7.3.1)

where

(7.3.2) n > 0,

and we refer to Section 7.9 and Ginibre and Velo 1133. 132. 134. 139] for more
general results. Note that in this case,

t r..r.rl T*i'(p): ?',.*(p) : @ for all tp € HI(RN)

(see Remark 6.8.1(i)).
Furthermore, it follows from (7.2.8) that (7.2.3) is equivalent to

8f {! [ tr,(r)t'dr+-\ [ wft)t *,a"]:"" [2 \-/r ** a*2 J t"\-/t * 
J

g(u) : -rllulou,

A

0<a< 

- 

(0<o<mif Iv-:1).
1\ -2

RNRN
t ..o.41

llrpll'r." + q# 
I"' " | fue)l'+2 d,r ds for au r € rR,

NRN

where t, is defined by (7.2.7). We have the following result.

Tsponeu 7.3.1. Assume (7.3.1)-(7.3.2). If p e Ht(Rt) satisfies l'le(.) e
,'(RN) and i,f u e C(R,fft(RN)) is the correspondi,ng solut'ion of (4.1.1), then
the followi.ng propert'ies hold:

(i) If o> 4lN, thenfor euery2 <" < *-"[ (2<r <@ i.f Iy':1; 21r <q
- 1\-Z r 

-if N :2), there erists C such that

(7.3.5) ll"(r)llr. S C1r1-r"1;-', for alt, € R..
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I

I (ii) # a <4f N, thenfor euery2 < r S #5 (2<, < @ i.f .l{ - 112 ( r ( oo

I if N : 2), there eri,sts C such that

r (7.3.6) ll"(t)llr, < Cltl-r1;-|)(t-d(r)) for alt t eR,

I where
( o i,f 2<r<at2o(r): i rmm ot"'*''

I
Pnoor'. If a > 4f N , we deduce from (7.3.4) that

I at2 [ lvu{t)l' d, < llrpll'", for alr r e rR.
J

[RN

I Applying conservation of charge and Gagliardo-Nirenberg's inequality, we obtain

t ll"ft)llu: ll?(t)llr" < cllvo'(t)llN(+-+) llu(t;111;Nr*-*r

I s cltl-r1*- ''llelll-N(+-+)

. 
t cltl-N1;-t' '

I H""ce (i) is established. Assume now a < 4lN.We consider the case I ) 1, the
' urgument being the same for t < -l.It follows from (7.3.4) that

| ^.rr',.\\ ^r/,." ,4-Nc, f' f ,

I st2E(u(t)): sE(u(l)) + 4r1a; 
J, 

, 

J,l,(")l'+' 
drds.

I fnis implies that
t

h(t) < c * n --!" [' \nAl where h(r) : t' I p611'+2 a*.

| 
_ z Jt s 

J"
t 

Ooolying Gronwall's Lemma, we deduce that

I n(q < cf={e ,

I
from which we deduce

I fz.s.zl llu(t)llr-+, < ct-N(i-#t -

Applying (7.3.4) and (7.3.7), we obtain

II st'Ilvr(t)l'd,rsc+c['r'_ +d,s3c+ct2t-*,
J" Jo

I
I and so

(7.3.8) llvu(t)11,, < CT!tr .

II
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Applying (7.3.7), Hcilder's inequality and conservation of charge, we deduce that
forevery2SrSs*2,

llr(t)llr" : ll,u(r)llr s clluQ)llffit*-*r 11u1r1lll, 
"'Li") tL- *t

S Clt;-rur ;-*l 11'11 
t; a*ar*-*l

S clrl-r''1;-"' '

This implies (7.3.6) for 2 < r 1 a*2. For al2 <, < R*, it follows from (7.3.7),
(7.3.8), and Gagliardo.Nirenberg's inequality that

ll,(t)llr' : ll,(t)llr. s cllv,(t)ll#ffi il,@lli:#ffi
< ct-N(i-i)(r-o(r)) .

Hence (7.3.6) follows for r > o f 2. This completes the proof. !

Rnunnx 7.3.2. Theorem 7.3.1 implies in particular that if 9 € I/l(RN) and

| . le(.) € ,2(lRN), then the corresponding solution u of (4.1.1) converges weakly to
0 in .L2(RN) as ltl -* oo. Indeed, u is bounded, in L2 and converges to 0 strongly
in tro-12.

Rorvteax 7.3.3. Note that for a ) 4lN, u has the same decay properties in
,'(RN) as the solutions of the linear Schrtidinger equation (see Proposition 2.2.3)
for every 2<-r <2NlW - 2). When a < 4f N, the decay properties are the same

for r ( ai2.

Conolrany 7.3.4. Assume (7.3.1)-(7.3.2). Assume further that a ) an, where

as is defined by (6.3.3). Let g € fI1(RN) sati,sfy | . le(.) € -t2(RN), let u be the

marimal solution of (4.1.1), and set

(7.3.e) u(t): (r+2i,tV)u(t) /ort e IR.

It follows that u € ,c(R, Wt''(RN)) and u e Ls([R, rr(RN)) for euery adm'iss'ible
pair (q,r).

Rnnrenx 7.3.5. Note that it follows from Proposition 6.5.1 that u is well defined,
and that ?, € C(lR.,12(Rt)).

For the proof of Corollary 7.3.4, we will use the following lemma.

Lnvrue 7.3.6. Under the assumpt'ions of Corollary 7.3.4, it follows that u €
trfl."(m,r'(RN)) for euery admissi,ble pair (q,r).

PRoor. Given e ) 0, let

lc,la
I@lsu(u): -n7ll61"u for u € C.

Let u€ be the maximal solution of (4.1.1) with 9 replaced by gr. Note that for
every € ) 0, gu is globally Lipschitz continuous C --' C. Note also (see, e.g.,

2t7
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Corollary 6.1.2) that u. is globally defined and that, by conservation of charge and

energy,

(7.3.10) sup llu'(t)llsr ( oo.
,€F
€>O

Next, we observe that lg(u) - S,@)l S lg(")l and that l7fu) - g,(u)l t 0 as e J 0

for every u € C. It follows easily that Lf --, LL in.Lff"(lR,reGN)) as e J 0 for
every 2 I p 1 2NlW - 2) (2 < p <'m if N : 1). (See, e.g., Step 3 of the proof
of Theorem 4.4.6, and in particular the proof of (4.4.29).) Using the conservation
of energy for both z and ue, one deduces easily that u,' --+'tL in.Lff"(lR,Ht(Rt))
as e J 0. Therefore, we need only estimate the solutions u' independently of
€. It follows from Lemma6.5.2 that u'(t) : (r* 2itV)u'(t) € C(lR,r'(RN)).
Furthermore, applying formula (2.5.5)' we obtain

(7.3.11)

Since gu is globally Lipschitz continuous, it follows from (7.2.10) that there exists

C, such that

ll(r + 2i,tv)s,(w)llu S C)l(" * 2itY)wllyz .

Therefore, (r+2itY)g,(u') € lff"(n,r'(Rt)). Applying Strichartz's estimates,

we deduce from (7.3.11) that u€ € rfl""(lR,r'(RN)) for every admissible pair (g,r).
Next, we observe that there exists C independent of e such that

ls,@) - g,(:u)l3 c(1"1" + lul")lu - ul for all u,u e c.

Therefore, we deduce from (7.2.9) and (7.3.10) that there exists C independent of
t and e such that

ll(r + 2itY)s,(r)llr*# 3 Cll(r * 2i'tY)wlly+, for all u €,Hl(RN).

It then follows from Strichartz's estimates and (7.3.11) that if r ) O, if (q,r) is any
admissible pair, and it (1, d is the admissible pair such that p : a + 2, then there

exists a constant C independent of e and r such that

(7.3.12) llr'llr,n((-"," ),La < Cllrqll;" -f Cr# llu'lly11-,,,7,ro1 .

We first let (q,r): (1,d. We deduce that if r ) 0 is sufficiently small, then

llu'117,11-,,"),r,0) 12Cllrpllu,. Applying again (7.3.12) with an arbitrary admis-
sible pair (g,r), we obtain that llu'117,"1(r,r),L,-) is bounded as e J 0. By letting
e J 0, we conclude easily that u e Lq((-r,z),.L'(RN)) for every admissible pair
(q,r). By time-translation invariance of the equation, this implies that if ts € lR,

then (r +2i(t - te)V)u e Lc((to - r,to *-z),-L'(RN)) for every admissible pair
(q,r). Since Yu e L0((ts - r,to * r),.L'(lR.ry)) by Remark 4.4.3, we conclude that
u € Lq((ts - r,to * r),,L'(IRN)), which completes the proof. n

Pnoor oF CoRoLLARY 7.3.4. We proceed in two steps.

Stpp 1. ?, € ,s(lR,ryt'r(frr)) for every admissible pair (g,r). Note first
that u € ,Iq""(lR, Wt,'(RN)) by Remark 4.4.3 or Theorem 4.4.6. Consider now

ft
u' (t) : T(t)re + i I T(t - s)(r * 2i.sY)s,(u"(s))ds.

JO
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r : a + 2, and let q be such that (q, r) is an admissible pair. We have

u(t) : T(t)p - ht [' r1t- s)lul"u(s)ds.
JO

Therefore, it follows from Strichartz's estimates that for every t > ? > 0,

llull;"110,t;,w',,1 S Cllvllnr + Clllul"ull"",to,n,wr,,,., + Clllul"ull"s,((r,t),w1,,,),

where C is independent of I and ?. Since

lllul' ull vs',,, < C ll"ll7" llull *', ",

we deduce from Hcilder's inequality that for every ? € [0, t],

/ f7: -gL \f
llull;"i1o,ty,w,,"l < cllplls, + c( / llu(s)llf;" ds ) llulll,'r<o,D,w,.,)

(7.3.13) \ ro /
/ rt -g.e- \ q#

+ cl I llu(s)llf;' ds ) llully"s7,1y,1ry,-1.
\J" /

By Theorem 7.3.1, llu(s)llu < Cs-?, and so

aa

ll"(')llF < cs-#i .

Note that since a > a0, we have2a> q-2. Therefore for ? Iarge enough,

"(l;lr,(")l# 
o,)* 

=*
(7.3.14)

On the other hand, u € ,'o((0, ?), /r'l(RN)) n ,s((0, ?), wr''(RN)). Therefore, it
follows from (7.3.13) and (7.3.14) that

ilull r" ((o,t),w r,, 1 { c + } 11, ll r" 1to,t),w 1,, ) .

Letting t t oo, we obtain

llull;"110,-y,wr,,1 < 2C '

One proves as well that u e .La((-oo, O),W'''). Applying again Strichartz's esti-
mates, one obtains the result for every admissible pair.

Srpp 2. u € rs(lR,r'(Rt)) for every admissible pair (q,r). Note that u e
trfl."(m,r'(RN)) by Lemma 7.3.6. Consider now r: a*2, and.let q be such that
(g, r) is an admissible pair. It follows from formula (2.5.5) that

u(t) : T(t)re - o, [' r(t - s)(r * 2isv)lul' u(s)d,s .

Jo

Therefore, we deduce from Strichartz's estimates that for every f > 0,

llull;"i1o,t;,r'1 S Cllrpll"" + cll(x + 2i'sY)lul"ullr,n'110,t1,y*1 ,
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where C is independent of t. By applying (7.2.9), we obtain

(7.3.15)

/ f7'.. ...q \f
llrllz"rro,,r,r"1 3 cllrell", * 

"( /, llu(s)lli;' ds ) llullr,,tro,rl,r,.l

/ rt e.3- \+
+ cl I llu(s)lli;" ds I llull7"sr,t1,r,.)\"/r - /

I

l

for every ? e [0,t]. One concludes as in Step 1 above. D

7.4. Scattering Theory in the Weighted tr2 Space

In this section we still assume (7.3.1)-(7.3.2). We show that the scattering
states, the wave operators, and the scattering operators are defined on the space I
defined by (6.7.3)-(6.7.4) provided o ) os defined by (6.3.3). The results of this
section aredueto Ginibre andVelo [133] for a> 4lN andtoY. Tsutsumi [341] for
o > a0. In Section 7.5 below, we will obtain a similar result for ar: eo, but by a
different method using explicitly the pseudoconformal transformation.

THEoREM 7.4.1. Assume (7.3.1)-(7.3.2). Assume furlher that a ) as, where as
is defined bs (6.3.3) and let E be the Hilbert space defined by (6.7.3)-(6.7.4). If
e € E and if u i,s the marirnal solut'ion of (4.1.7), then there erist u+ ,u- € E such
that 

llr(-t)u(t) - ,+ ll" . --;' o .

In addi.ti.on,

ll.r*llr, : ll"-\ft,, : llpllv and -l' : E(p)-ilrr".r:tlv"
IRN RN

PRoor'. Let u(t) : T(-t)u(t). We have

u(t) : e - irt [' l:--r71u1"u(s)ds.
JO

Thereforefor0<t<r,

a(t) - u(r) : -r, l:r(-s)lul"u(s)ds.
(7.4.1)

It follows from Strichartz's estimates that

llr(t) - u(r)lls': llr(t)(u(t) - u(r))lls' < Clllul'u117a,11t,r1,wt,,,1,

where (q,r) is the admissible pair such that r : e* 2. Thus,

llr(t) - u(r)lls',,;L 0

(see the proof of Corollary 7.3.4). Therefore, there exists u+ e f/l(lRN) such that
u(t) -- u+ in Ht as f -+ oo. One shows as well that there exists u- € HI(IRN)
such that u(t) -- u- in HL as t --+ -m. Finally, it follows from formulae (7.4.7)

and (2.5.5) that 
rt

r(a(t) - u(r)) - -ir1 | r;t11"+ 2isV)lzl'u(s)ds.



r*oo
(7.4.2) u(t) :t(t)u+ +trt I T(t - s)lulu(s)d,s for all t e IR.

Jt
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By Strichartz's estimates,

llr(u(t) - u(r))llr" : llI(t)r(u(t) - t,(r))111" < Cll(r 1- 2isY)lul"ullrn, 11t,"y,r.r1 ,

where (q, r) is the admissible pair such that r : a * 2, and so

llr(u(t) - u(r))lly,,,;L 0

(see the proof of Corollary 7.3.4.) Therefore, r(u(t) - u+) * 0 in L2 as f ---+ oo.

One shows as well that r(u(t) - u-) * 0 in L2 as f -r -oo. The other properties
follow immediately from conservation of charge and energy. n

Rpulnx 7.4.2. Theorem 7.4.1 means that the mappings U+ : g r_' u+ and
U- t g H u- are well defined D * X. In fact, one can show with similar estimates
that [,I.. and [/- are continuous. Note that [/a are nonlinear operators.

Rnnaenx 7.4.3. By Corollary 2.3.6,

r*-
u* : e - trt I r(-s)lul"u(s)ds.

Jo

In particular,

We now construct the wave operators f,)1 that are the inverses of the opera-
tors [/a.

THEoREM 7.4.4. Assume (7.3.1)-(7.3.2). Assurne further that q ) o,s, where as
i,s defi,ned bg (6.3.3), and letE be the Hi,lbert, space defined by (6.7.3)-(6.7.4).

(i) For euery u+ € E, there etists a un'ique g e E such that the mari,mal
solution u € C(lR,I/t(Rt)) of @.1.1) satisfies llI(-t)u(t) - r+llr * 0 os

t -r *oo.
(ii) For eaery u- e E, there erists a uni,que g e E such that the rnarimal

solution u € C(lR.,Irt(Rt)) of @.t.r) satisfies llf(-t)u(t) -r-llr --+ 0 as

t --r -@.
Pnoor'. We prove (i), the proof of (ii) being similar. The idea of the proof is to
solve equation (7.4.2) by a fixed-point argument. To that end, we introduce the
functions u(t):T(t)u+ and z(t): (z* 2itY)a(t,r). Let (g,r) be the admissible
pair such that r : o * 2. It follows from Strichartz's estimates and Corollary 2.5.4
that cu € ,s(lR, Wt,.(RN)), z € ,q(lR, r'(RN)), and that llu,(t)llr" < Cltl-z/0. aut

(7.4.3) K : llull7"1p,w1,,) + llzll;"in,r,"; * sup ltl? lla,(t)llz, .

r€lR

GivenS>0,set
/:(,S,m) ,

and let

E : {u € Ls (I,Wt,'(Rt)) : (r -t 2itY)u(t,r) € rs(1, r'(RN)) and

llull;"s,1,v,4 + ll(r +2itV)u(t)llps,L.) + sup ltl? llu(t)|ft., S 2K\
t€I
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and

by (7.2.e),

(7.4.7)

and that

(7.4.8)
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d(u,u) - llu - ull7"g,t,) for u,u e E.
It is easily checked that (E,d) is a complete metric space. Given u€ E,

| | 
g(u(t)) ll w,,,, < c llu(t)ll ?" I | "(t) ll w',, < c (2 K)' t- ? 11u1t111*,,,

and so by Hcilder's inequality,

/ t''", 2o \ "#
lls(")llt "'(r,wl 

r,) S C(2KY 
\Js 

s-;= ds 
) llully"s,6,, "1

< C(2K1"+t Sr-;3 
'

since 2a > q -2.It then follows from Corollary 2.3.6lhat t(u) defined by

(7.4.4) J(u)(t) - -t I r(r - s)s(u(s))ds
Jt

makes sense, that

(7.4.b) J(u) e c([,9,m),Ht(RN)) . Ls(I,wt''(RN)),

and that

(7.4.6) llJ(u)llr,s,w, ") < f; for 
^g 

large enough.

Furthermore,

r@
(r + 2itY) J (u)(t) : -i, I x(t - s) l(r + ztsvls(u(s))] ds ,

Jt

by formula (2.5.5). Since

ll(r +2isv)s("(s))l[,,, I cllu(s)llf"ll(" + 2zsV)u(s)117,' ,

one concludes as above that

(r + 2i.tY)J(u) e c( [S, m;, .12 1m.N) ) o Ls (I,r' (RN) ),

ll(r + 2it7)J(u)11""r,,",t < t for .9 large enough.

Finally, it follows from (2.2.4) that

llJ(u)(t)llz, :,1 [ ft - saZllu(s)llitr d's < c(2K)oatsr-aff!;? ,
Jt

since 2(o + 1) > q. Therefore for ,9 large enough,

,up {i? llJ(u)(t)ll,": r e [s, *)] < f(7.4.e)

Applying (7.4.3), (7.4.6), (7.4.8), and (7.4.9), we deduce that '4 defined by

A(u)(t) : T(t)u+ + J(u)(t) ,
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maps .A to itself if ,9 is large enough. One easily verifies with similar estimates that
if ^9 is large enough, then

(7.4.10) d(A(u),,a(r)) < |a6,r1 for all u, u e E.

Applying Banach's fixed-point theorem, we deduce that "4 has a fixed point u e E
that satisfies equation (7.4.2) on [S, m). It follows from (7.4.5), (7.4.7), Strichartz's
estimates, and Corollary 2.5.4 that u e C([,S, oo), al(RN)) and that (r +2i,tY)u e
C([S, oo), 12(RN)). In particular, $ : u(S) e X. Note also that

ft
u(t+ s) : v(t)1h + i, I T(t- s)e(u(s+ s))ds.

Jo

Therefore, u is the solution of the problem

Io"r*Au+e(u) 
:o

I u(.9) :1P.

Note that, by Remark 6.8.1, the solution z is global. In particular, u(0) is well
defined, and by Proposition 6.5.1, u(0) € X. It follows from equation (7.4.2) that

T(-t)u(t) - r,'i : -o [* r(s)e(z(s))ds .

Jt

Since z e E, it is not difficult to show with the above estimates that llf(-t)u(t) -
,+ll" -r 0 as t ----r oo. Therefore, g: u(0) satisfies the conclusions of the theorem.

It remains to show uniqueness. Let g1,gz € E, let u1 and uz be the corre-
sponding solutions of (4.1.1), and assume that llf(-t)ui(t) - r+ll" -- 0 as f ---+ oo

for j : L,2. It follows from Remark 7.4.3 that ui is a solution of. Q.a.2). Further-
more, it follows from Theorem ?.3.1 and Corollary 7.3.4that z7 € ,s(R, Wt''(Rt)),
(r+2i,tY)u1. € .Lq(R,r'(RN)), and that ltl2/qlluj(t)lb. is bounded. In a similar
way to the proof of (7.4.10), one obtains that u1(t) : uz(t) for t sufficiently large.
By uniqueness for the Cauchy problem at finite time, we conclude that 91 : gz. J

Revanx 7.4.5. It follows from Theorem 7.4.4 that the wave operators fl-' :

,tt* ,-- g and Q- : u- r--+ g are well-defined E -* D. In fact, one can show with
similar estimates that Q.. and O- are continuous. By Theorems 7.4.1 and7.4.4,
U*O+ : f,)+[/+ : -f on X, where [! is defined by Remark7.4.2. In particular,
Q1 : l --+ X is one-to-one with continuous inverse (O+)-t - U+.

THnonnv 7.4.6. Assume (7.3.1)-(7.3.2). Assume furlher that a ) an, where as
i.s defined bg (6.3.3), and letD be the Hi,lbert space defi,ned by (6.7.3)-(6.7.4). For
euery u- € E, there erists a unique u+ € N wi,th the follouing property. There
erists (a unique) I e E such that the mos'imal solut'ion u € C(IR.,E) o/ (4.1.1)
sati,sfies T(-t)u(t) -- u* 'in E a,s t --+ *oo. The scattering operator

S : X -- X mapping u- r--+ y+

'is cont'inuous, one-to-one, and, 'its 'inaerse 'is continuous X -t I. In add'it'ion,

llr+llr, : llu-llyz and llVu+111, : llVu-ll7z for eaery u- et.

Pnoor'. The result follows from Theorems 7.4.1 and7.4.4 and Remark 7.4.5,by
setting S : [/+Q-. Note that S-r - U-Q+. !



(7.5.1)

where

(7.5.2)
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Rpuenx 7.4.7. Since 7(t) is an isometry of 111(RN), the property llI(-t)u(t) -
,+lln' -* 0 is equivalent to llu(t) -I(t)u+llsr --+ 0. In general, it is not known
whether the property llI(-t)u(i)-r+ll: -- 0 is equivalent to llu(t)-T(t)u* ll" -* O.

On this question, see B6gout [18].

7.5. Applications of the Pseudoconformal Transformation

In this section we consider equation (4.1.1) in the model case

g(u): )lulou,

4)€JR, 0<o< tr- (0<a<ooifN:1).

We complete the results of the preceding section by using the pseudoconformal
transformation. More precisely, we apply the pseudoconformal transformation
(6.7.6) with b < 0, and we suppose for convenience that b : -1. Moreover, through-
out this section we systematically consider the variables (s, y) e IR x IRN defined by

t r ^-- ^^.--:---r s Ys : ;---: , A : l---l r or' equlvalently, t: ;----, I:
L-L L-L r-rD l*s

Given 0 I a <b( oo and u defined on (a,b) X RN, we set

(7.5.4)

(7.5.3)

for r € IRN and #a <t < +8. In particular, if. uis defined on (0,m), then u is
defined on (0, 1). Tlansformation (7.5.3) can also be written, using the variables
(s,y), as

One easily verifies that u e C([a,b], t) if and only if u e C(1ft;, #1,f) (0 < o <
b < oo are given), where the space E is.defined by (6.7.3)-(6.7.4).

F\rrthermore, a straightforward calculation (see Theorem 6.7.1) shows that u
satisfies (4.1.1) on (a,b) if and only if u satisfies the equation

(7.5.5) iut + Lu + )(1 - 0!8" lul't, : o

on the interval (Tft,#). Note that the term (t-t7!83 is regular, except possibly
at t:1, where it is singular for o < 4lN. Furthermore, the following identities
hold (see (6.7.11)-(6.7.13)):

llr(t)llB"t?" : (1 +''Y- 11u1s1111"[],, B > 0,

llvu(t)lll" :|tt' +2i(r+ s)V)u(s)lll, ,

llvu(s)llf, : tnllt" 
- 2i(1 - t)v)u(t)112"" .

It follows from (7.5.6) and conservation of charge for (4.1.1) that

ftil,{t)|", : o.

( r.D.o,

(7.5.7)

(7.5.8)

( /.b.v.)



tu(t):
it follows that

(7.5.10)

(7.5.11)

(7.5.12)
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Moreover, if we set

E 1 (t) : |llv, {r)llr", - ( 1 - t) 
o+" 

;f 1,, {r) I 1 ;y.',,

E2(t) : (r - t1L#= PtPl

: (1 - t)'+-f;llvr{t)ll,r, - #lue)lll!:",
] ttt" - 2i(1 - t)y)u(t)1127, - (1 - r;'* ;| rt,(r)ll?ii, ,

*u,rr: -(1 - r)oq- !.yhtu(t)lli!?",

*r",ur: (1 - qu+= rylyu(t)112", ,

#",u, : o.

Indeed, (7.5.10) and (7.5.11) are equivalent, and both are equivalent to the pseu-

doconformal conservation law for u, by (7.5.6) and (7.5.7). Similarly, the iden-

tity (7.5.12) is equivalent to the conservation of energy for u, by using (7'5'6)

and (7.5.8).
The results that we present in this section are based on the following observa-

tion.

PRopostrtoN 7.5.1. Assume (7.5.1)-(7.5.2) and let E be defi,ned by equat'ions

(6.7.3)-(6.7.4). Letu e C([0,oo),t) be a solut'ion of equat'ion (4.1.1) and letu e
C([0,1),8) be the corcesponding solution of (7.5.5) defi,ned by (7.5.3). It follows
thatT(-s)u(s) has a strong li,mi,tinE (respecfiuely, in r'(Rt)) as s---+ x i'f and

onlyi,fu(t)hasastrongti,mi,tinD(respectiuely,'inr'(Rt)) astll,'i,nwh'ichcase

(7.5.13) 
"lllgy(-")"(s) 

: siEFy(-r)u(i) inE (respectiuels, ?n 12(RN)).

Pnoor'. We define the dilation DB,0i 0,by Dpu(r): 0tu(0r) and the mul-

tiplier Mo, o e JR, by M"u(r): ei4lu(r). With this notation, and using the
explicit kernel

r(t)u: # J"o'dtu(y)dy,
elementary calculations show that

\(.c.14)

and that

( / .o. ro/

T(r)DB : DpJ(72r) for all z € lR and P > 0,

/.\
T(r)LI" : II ro*"=D ,i ,Ti + ", ) 

for all r, o € IR

such that I + or ) 0. We note that by (7.5.3),

u(t): M-"'n"'u(J=) ro' 0 < t < 1',_r \r _,,/
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Therefore, we deduce from (7.5.14) and (7.5.15) that

r(-t)u(t) : M-,y(-+)"f +) ror au r € [0,1),\ r-r./ \r-c./
which we rewrite in the form

r(-s)z(s) : "n* 
Y ( --:), (t+=)

1 1*s/ \1+s/
trHence the result is established.

The following result implies that if a < 2fN, then no scattering theory can

be developed for equation (4.1.1) (see Barab [17], Strauss 1322,325], and Tsutsumi
and Yajima [348]).

Tsponnu 7.5.2. Assume (7.5.1)-(7.5.2) and' Iet E be defined by (6.7.3)-(6.7.$.
Assume further

,.
a < , (a < 1 z/lf : 1).

Letpe E and,letu€ C(R.,t) bethe correspond'ing solut'i,onof (a.1.1). If p*0,
then T(-t)u(t) d,oes not haue ang strong limit i'n ,'(R") as ei,ther t --+ a or
t --+ -oo. In other words, no nontriu'ial soluti'on of @.7.1) has scattering states,

euen for the 12(RN) tupology.

PRoor'. We consider the case f --+ oor the argument for f ---+ -oo being the
same. We argue by contradiction and we assume T(-t)u(t) t_* u+ in .L2(R.N). in

particular,
ll"+llr,": llu(t)llr, : lltpll;z > 0.

On the other hand, we deduce from (7.5.13) that u(t) 
al'ur 

in ,2(RN) with

,n, : I(1) (eatr! u,r) I o.

Since a +I <2, we have

lu(t)|"?r(t) ; lwlw * 0 in L# (RN).

Let 0 € 2(RN) be such that

(7.5.16) (ilwl'w,0) : t.
It follows from (7.5.5) that

fi<rOl,o) 
: (iLu d) + )(1 - t)!E (i.lul'u,o)

: (ia, A0) + .\(1 - ,!E glul"u,0) .

Therefore, by (7.5.16), and since tr is bounded in -L2(JRN),

lrlr

l*@G)d)l>:lAl(1- q!+a -c for 1-e(t< 1,e>0smallenough.
tdt " I t

Since (Na - 4)12 < -1, it follows that l(t'(t)'9)l * * as I f 1, which is absurd. n
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RBulnx 7.5.3. In the case ly' : 1 and 1 < a I 2, we have the following
result. Let g e X and let u e C(R, D) be the corresponding solution of (4.1.1)
with 9(u) : \lulu. If p * 0, then f(t)u(t) does not have any strong limit in X
as either t -+ oo or f -+ -oo. The proof is similar. One needs only observe that,
since u(t) is bounded in I (hence in Hl(R)), a(t) -- w as t f 1 in Zr(R) for every
2l:p< oo, and so l'u(t)l'r.'(t) ---+ lul"u'as t J 1in r2(R).

If a ) 2lN and if ) < 0, then every solution in D of (a.1.1) with 9(u) : trlul"u
has scattering states in ,2(RN), as the following result shows (see Tsutsumi and
Yajima [348]).

Tnponpu 7.5.4. Assume (7.5.1)-(7.5.2) and let D be d,efi,ned bv $.7.3)-(6.7 .4.
Let g e D and let u € C(R, t) be the correspond'ing solut'ion of @.1.1). .f/ ) < 0,
then there erist us € ,2(lRN) such that

T(-t)u(t) r*-i_ r+ zn Z2(nN).

Rpu,q,nx 7.5.5. Here are some comments on Theorem 7.5.4.

(i) If a ) ae, then it follows from Theorem7.4.l that u1 € X and that the
convergence holds in E. The same conclusion holds in some other situations:
7f a: eo, see Theorem 7.5.I1;if a > al(N+2) (a > 2 if lf : 1) and if llpllr
is small enough, see Theorem 7.5.7. On the other hand, if a< 4l(N +2),
or if o ( ao and llpllr ir large, then we do not know whether ua € X.

(ii) Theorem 7.5.4 does not apply to the case .\ > 0. In fact, if a < 4l(N +2),
there are arbitrarily small initial values g € X that do not have a scattering
state, even in the sense of .L'(R"). To see this, let g eE be a nontrivial
solution of the equation

-Lv't P: \lPl'p

(see Chapter 8). Given c,., ) 0, set g,(r): ritp@n. It follows that
-Lg, * rg. : )lg.logr. Therefore, u.(t,r) : e"tg.(r) satisfies (4.1.1)
and (-t)u.(t): e"tT(-t)9, does not have any strong Iimit as f ---+ oo
in Z2(nN). On the other hand, one easily verifies that if a < 4l(N +2),
then llu.llr - 0 as ar J 0. However, we will see below (Theorem 7.5.7) that
if o > 4lW + 2), then small initial values in E have scattering states in E
at *oo.

PRoor on TspoRBw 7.5.4. By Proposition 7.5.1, we need only show that u(t)
has a strong limit in ,'(RN) as t f 1. As observed above (Remark 7.5.5), there
is a better result when o ) a6. Therefore, we may assume that a ( a6, and in
particular a <41N. Therefore, it follows from (7.5.9) and (7.5.11) that

|r1.o.r//
(7.5.18)

(7.5.1e)

llu(t)llpz < C ,

llu(t)lly.+, < C ,

llvu(r)111, < c(r - illT3 ,
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for all f € [0,1). By usingthe embeddings f,#1nr; '-- g-r11qr) '-- H-2(RN)
and equation (7.5.5), we obtain

llrrlln-" < llAullp-, +C(1 - Drylllul",r.rlls-,
< cllull}z + c(1 - Doj= llull?ji, .

Therefore,

llrrlln-,<C+C0-lljTt,
by (7.5.17) and (7.5.18). It follows that o1 € ,1((0,1),.F/-2(RN)). Hence, there
exists tr € H-2(RN) such that u(t) - to in f1-2(Rt) * t 1 1. By using (7.5.17)

again, we obtain thatTr e ,12(m.N) and

(7.5.20) u(t)^w inr2(RN) astJ1.

Consider now tft € F/r(RN), and let 0 < t < r <L. We deduce from (7.5.5) that

("(") - a(t),V)1, : J, @r,$)s-r,p d,s

fT fT N--a: 
J, 

(uVu,Yrb)u ot * J, 
(t - s;---- (i\lul"u,{) 

"Z+i,1._,ds,
and so

l(r(.) - u(t),g)1"1< cllvrl,lft." 
f," llvrll"" a,

f'
+ clll,tllT.+, 

J, tt - ')rvqr llulliil, ds

< Cllv$llL" [' 0 -s)rn/ ds + cllltll'.." [' g.- ,)*a d",
Jt Jt

by (7.5.19) and (7.5.18). Letting r f 1 and applying (7.5.20), we obtain

71 71

l(w - a(t),r1,)r.,1S Cllvrl'|ft., 
J, ,t - ")!# d.s + Cllglly.*, 

J, Q - ")F a"

< c(1- ,)+ llvrbll* + c(1 - qoFn llr/l}.-*" .

We now let $ : u(t) and we apply again (7.5.19) and (7.5.18). It follows that

lyut - u(t), u(t)) yzl S C(l - r) + (r - t; 
{ir + C G - DoE(7.5.21) < ce _ 0r+2 r:? o.

Finally,

llr(t) - wllzy": -(w - u(t),u(t))7" + (tr - u(t),w)pu? 0,

by (7.5.21) and (7.5.20). This completes the proof.

Besides the fact that Theorem7.5.4 does not apply to the case 
^ 

> 0, neither
does it allow us to construct the wave and scattering operators, since the initial value
g and the scattering states u1 do not belong to the same space. We will improve
this result under more restrictive assumptions on a by solving the initial-value
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problem for the nonautonomous equation (7.5.5) and by applying Proposition 7.5.1

which relates the behavior of z at infinity and the behavior of. u at t : L

However, we want to solve the Cauchy problem for (7.5.5) starting from any
time t € [0, 1], including t: l where the nonautonomous term might be singular.
In order to do this, define the function

(7.5.22)

and consider the equation

(7.5.23) i,u1* Au * /(t)lul"'u : 0.

Under appropriate assumptions on o, the initial-value problem for (7.5.23) can be
solved starting from any time t € IR, and we have the following result.

THEoREM 7.5.6. Assume (7.5.1)-(7.5.2) and letE be defined by (6.7.3)*(6.7.Q.
Assume further that

I xtt-r)!# if -m<r<1f(t):( '
ll if r>1,

"r;+2 @>2fN:1).(7.5.24)

It follows that for euery ts € IR and tb e E, there erist T^(to,rh) < to < Tw(to,tb)
and a unique, mari,mal solut'ion u e C((Tm,Tm),D) of equation (7.5.23). The
solution u 'i,s marimal i,n the sense that if Tu < x (respect'iaely, T^ > -x), then

ll"(r)ll1r' --+ oo os t I Tu (respectiuely, t I T^). In add'it'ion, the solut'i.on a has the

followi,ng propert'ies.

(i) If r*r : r, thenliminfllr{(1-t)6llu(t)llp'} > 0 wi,th5 : NP-! t7 N > z,

d< 1 - * if N :2, andt : i- ! t7 N :t.
(ii) The soluti,on u d,epends continuously on tl.t i.n the folloui.ng wag. The mappi'ng

rb * Tu 'is lower sem'icont'inuous E - (0, *], and the mappi,ng lt * T*
'is upper sem'icontinuousE'-. [-*,0). In ad,dit'ion, if thn - lt i,nD as

?? --+ oo and,i,f [^9,"] e (T*,Tm), thenun ---+ u in C([S,"],D), whereun
denotes the solution of (7.5.23) with ini,ti,al ualue r!n.

Pnoor'. The result follows by applying Theorems 4.11.1 and 4.11.2 with h(t) :
f(t - to). !

We now give some applications of Theorem 7.5.6 to the scattering theory in E
for (4.1.1).

THsonnN4 7.5.7. Assume (7.5.1)-(7.5.2) and (7.5.24). Let D be the space de-

fined by (6.7.3)-(6.7.4). With the notat'ion of Secti'on 7.7 (correspond'ing to the E
topology), the followi'ng propert'ies hold':

(i) The sets R1 and, U1 are open subsets of E contai'ni'ng O. The operators

Ua : Ra -- l,{+ are b'icont'inuous b'iject'ions (for the E topology) and the

operators Qy : Ua --- Rx. are b'i,cont'inuous b'iject'ions (for the E topology).

(ii) The sets Oa are open subsets of E conta'in'ing 0, and the scattering operator
S zs o b'icont'inuous bi,jecti'on O- ---+ Oa ffor theD topology).
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Rs\,Ienx 7.5.8. Theorem 7.5.7 implies that there is a "low energy" scattering
theory (i.e., scattering theory for small initial data) in X for the equation (4.1.1)
with 9(u) : \lulou,provided AlW +2) < o < AlW - 2) (2< a < oo, if N : 1).

As observed before (see Remark 7.5.5), if a < 4lW + 2) and ) ) 0, then there is
no low energy scattering.

PRoor oF THEoREvt 7.5.7. Let g € D and let u be the corresponding so-

lution of (4.1.1) with 9(u) : )lul"u. Let u be the solution of (7.5.5) with the

initial value ry' defined bV $@) : 9@)e-i4 (see Theorem 7.5.6). The solution
t'is defined by (7.5.4), as long as (7.5.4) makes sense. Therefore, it follows from
Proposition 7.5.1 and Theorem 7.5.6 that g €R+ if and only if q\4(0,r/) > 1, and

that in this case ua : ei#y(-f )u(f ). Therefore, the open character of R-. and
the continuity of the operator Ua follow from the continuous dependence of u on
ry' (property (ii) of Theorem 7.5.6).

Let now U € E, and set w : T(I)(e-oEFa), so that a : eiEF!(-l)tll. It
follows from Proposition 7.5.1 and Theorem 7.5.6 that A : U+g for some g e E
(i.u., y e tt+) if and only if T*(I,w) < 0. In this case, p : eitr{ z(0), where
z is the solution of (7.5.5) with the initial value z(1) : u-r. Thus rp is uniquely
determined and the operator [! is injective. Furthermore, the open character of
Lla and the continuity of the operator f,)+ : (t/+)-t follow as above from the
continuous dependence of. z on w.

As observed in Remark 7.1.3, the similar statements for R-,U-, U-, and O-
are equivalent, by changing t to -t and u(t) to U(-t). Therefore, we have proved
part (i) of the theorem. Part (ii) now follows from part (i) and the definitions of
Oa and S (formulae (7.1.8) and (7.1.9)). n

We now establish further properties of the wave operators f,)1.

THponpu 7.5.9. Assume (7.5.1)-(7.5.2) and, (7.5.24). Let E be the space de-

fi,ned by (6.7.3)-(6.7.4). With the notation of Section 7.7 (correspond'ing to the E
topology), the followi,ng properties hold:

(i) .ff ,\ < 0, thenU* : D. Therefore, the waue operators Qa are b'icont'inuous
bi,jections E -. R*'

(ii) .I/ \ > 0 and a < 4lN, thenUa: E. Therefore, the waue operators dlt are
b'icont'inuous bi'jections 2 --. R*.

Pnoor. Assumel ( 0,or) > 0ando <4lN.Letw € X, andletzbethe
solution of (7.5.5) with the initial value z(1) : ru. BY Theorem 7.5.6, z is defined
on some interval [1 - t, 1] with e ) 0. Set

d@) : et /$ ,0 - e,ey) e E.

Let u be the solution of equation (4.1.1) with the initial value

(7.5.25) "(T) :'
Since ) ( 0, or tr > 0 and a < AfN,we obtain that u is global. Therefore, we may

define p : u(0). We claim that 9 € Ra and that ua : 
"oE{T? 

l)ru. Indeed,
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consider u defined by (7.5.Q. We see by applying (7.5.4) with t : 1 - e and (7.5.25)
that

u(7-e):z(l-e),
so that by uniqueness u : z, and so the claim follows from Proposition 7.5.1. This
completes the proof. D

We now study the asymptotic completeness. We first recover the results of
Section 7.4, with a different proof, though.

TsBoRprr,t 7.5.i0. Assume (7.5.1)-(7.5.2) and,letD be defined by (6.7.3)-(6.7.a).
If 

^ 
< 0 and a ) as wi,th as d,efined, bg (6.3.3), then Ua - R+ :8. In part'icular,

U+., A+, and S are b'icont'inuous bijections D -+ X. Here, we use the notati,on of
Sect'ion 7.1 (correspond,i.ng to the D topology).

Pnoor'. By Theorem 7.5.9 and Remark 7.1.3, we need only show that R+ : E.
Let tp € X, let u be the solution of (4.1.1), and let u be defined by (7.5.4). If
a2 4lN, then it follows from (7.5.10) that.Ol(t) is nonincreasing, which implies
that llVu(t)ll1: is bounded as I f 1. Since llr(t)llu is also bounded by (7.5.9), we
deduce that llu(t)lls' is bounded as t f 1. By Theorem 7.5.6, this implies that u(t)
has alimit ast J 1, and so g €R+ by Proposition 7.5.1. Wenow assume a <4/N.
It follows from (7.5.11) that llu(t)ll;.+z remains bounded as t f 1. Set r: a*2,
and let (q,r) be the corresponding admissible pair. Given 0 ( ts < t < 1, it follows
from equation (7.5.23) and Strichartz's estimates that

(7.5.26) lloll;*11to,t),p'; * llulll"1 Os,t1;Nt,.1 I
C llu (t s) ll H, + C ll f lu l" a ll 

"n, 
1 1, o,r1,*,,,, 1.

Since

lllul'ull'7,,',,, < Cllulli.+"llrllw,,, < Cllall,s',, ,

we deduce from Holder's inequality that

llf lol"rllu,tfto,t1,wt..,1 S Cllf ll L#r,o,,; llrllr'11r o,t),w1..) .

Since a ) c,o, f € L# (0, 1). Therefore, if we choose ts sufficiently close to 1 so
that Cllfll"-a(ro,r) 3 If2, then we deduce from (7.5.26) that

llull;-11t6,ty,a,y * llull;"111o,t),wt,,1 < 2Cllu(ts)llH' for all ts < f < 1'

Therefore, u remains bounded in AI(IRN) as I f 1, and one concludes as above. E

Finally we extend the asymptotic completeness result to the case a : ao (see

Cazenave and Weissler l72l).

TspoRplt 7.5.17. Assume ly': 1 or N ) 3, IetD be defined, bg (6.7.3)-(6.7.!,
and let as be defr,ned by (6.3.3). If S@) : \lulu wi,th ), I 0 and a : ao, then
U+ : R+ : D. In part'icular, U+, dl+, and S are b'i,cont'inuous bi,jecti,ons X -+ D.
Here, we use the notat'ion of Secti,on7.7 (correspondi,ng to theD topology).

Pnoor'. By Theorem 7.5.9 and Remark 7.1.3, we need only show that R+ : D.
Let p e X, Iet u € C(R,X) be the solution of (4.1.1) with 9(u) : )lulou, and let u
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be defined by (7.5.4). Note that, since z is defined on [0, oo), u is defined on [0, 1).
By Proposition 7.5.1, g €R+ if u(t) has a limit in X as t f 1. Therefore, in view
of Theorem 7.5.6, we need only show that

(7.5.27) sup llu(t)llsi ( oo.
r€[0,1)

We argue by contradiction and we assume that (7.5.27) does not hold; i.e.,

(7.5.28) limsup llu(t)llr' : e6.
tlt

We consider separately the cases l{ > 3 and Iy' : 1.

Cesp N > 3. By (7.5.28) and property (i) of Theorem 7.5.6,

llvu(t)1121, >;-fo:z
\L-L) z a

for some constant a > 0 and all t e [0,1). By applying (7.5.11), we obtain

d ^ ... b

- 
u')tudt-o'"' - (1 - t;rtl+ !+2-:

for some constant b > 0. Since q,: eot the above inequality means

d_.. b

atEz(t) S _(1 _,) ,

which implies that E2(t) -+ -oo. This is absurd, since .82(t) > 0. This completes

the proof in the case N ) 3.

Cesp .|y' : 1. The argument is the same as above, except that we first need to
improve the lower estimate of the blowup given by property (i) of Theorem 7.5.6.
We claim that

(7.5.2e)

for some constant o ) 0 and all i e [0,1). Indeed, note first that by (7.5.11),

*nrft) . o,
dt

and so

sup llu(t)ll1-+z ( oo.
t€[0,1)

Fix f6 € [0,1). It follows from equation (7.5.23) and Strichartz's estimates that

llull;-11t6,t),r'y < Cllu(16)lla, + Cllflaloull;'111o,ty,r'y for all t € (t0,1).

On the other hand,

lllul"ulls' < Cllullf- llulls'
and, by Gagliardo-Nirenberg's inequality

2 o+2

llrllr- 3 cllullifi" llolljJi, .

a
llu(t)llr' 2 ;--:, *=a.*,(1 - t) 

-4-
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Therefore, we deduce from the above four inequalities that there exists a constant
K independent of fs and t such that

(7.5.30) llullr-rrr,rl, st1 < Kllu(to)lln, + Kll/l[,,rr",tlllullffirr,tl,a.l.

Now, by (7.5.28), there exists 11 € (t6,1) such that llulll-1(ro,rr),r/1) : (K +
1)llu(r0)llrr'. Letting t : tr in (7.5.30), we obtain

llr(to)llir, < K ((K+ 1)llu(re)lls,)# ll/llr,(ro,rr),
hence

1 < K(K + r)*# ll,,(r0)ll;? 1l/ll'1to,tr) .

Since ll/ll6(to,t,) ( ll,f llltr",rl < CQ - td#, we obtain (7.5.29). We now con-
clude exactly as in the case I/ > 3. This completes the proof. n

Reu.q,Rx 7.5.I2. Here are some comments concerning Theorem 7.5J1.

(i) The conclusion of Theorem 7.5.11 holds in the case N : 2, but the result
was established by a different method. See Nakanishi and Ozawa [263].

(ii) If AlW +2) < o ( o6, then we do not know whether R+: R- : E.
Showing this property amounts to showing that no solution of (7.5.5) can
blow uP at t : 1.

RpuaRx 7.5.13. Ginibre and Velo [130] extended the construction of the wave
operators (Theorem 7.5.7) to a wider range of a's by working in the space H" (RN) n
f(fI"(RN)), where 0 < s < 2. The lower bound on o for that method is given by

r 4 2\o > max 
tt - t'Ar 

+ 2r'Fi'
If l/ < 3, one obtains the lower bound a > 2lN by letting s :312. If N > 4, there
is still a gap between the admissible values of a and the lower bound a > 2lN for
the scattering theory given by Theorem 7.5.2. See also Nakanishi and Ozawa f2631

for related results.

7.6. Morawetz's Estimate

This section is devoted to the proof of Morawetz's estimate, which is essen-
tial for constructing the scattering operator on the energy space. See Lin and
Strauss [230], and Ginibre and Velo [137, 138, 143]. We begin with the following
generalized Sobolev's estimates.

Lauue 7.6.1. Letll p< oo. If q< N is suchthat0 < Q1p, thenfuff e

,t(RN) for euery u € W1'p(RN). Furthennore,

f lu(r\lp / D \q(2.6.1) J fft d" < ('a ) il"ll';nlv"ll'r, for euery u € I4ll'p(RN).

RN

PRoor'. By density and Fatou's lemma, we need only establish (7.6.1) for u €
D(RN). Let z(r) : lrl-!v. We have Y .z: (l/ - q)lrl*e . Integrating the formula

luloV' z : Y . (l"lo 
") - plulo-'Ylul
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over the set {u e IRN; lrl>, ) 0}, we obtain that

(7.6.2)

The result follows by letting r J 0.

We now assume that N ) 3, and we consider

(N - s) lro,,,rW o'" 
|r,,,,,t

lu(r)[-IlVu(r)|
lrlc-t

dr.

Applying Hcilder's inequality, it follows that

(x-s)[ P#a'<r( [ ryr")rwtT1v,1r"
J 11,1>,1 lrlq - ' \ J{l"l>,1 lrlq

Since r ) 0 is arbitrary, (7.6.1) follows. !

Conorrany 7.6.2. If N > 4, thenlilill' . Zt(RN) for euery u e H2(mN).
Fufthennore, there erists C such that

(7.6.3) t ryTd'r ! Cllullzr, for euery u€ H2(RN).
I lrylJJ t&l

[RN

.Pnoor'. Note that it suffices to establish (7.6.3) for u € 2(RN). Applying (7.6.2)
with q:3 and p:2, we obtain

(N - 3) / pw 
dn s z I l1(1)l lvu(c)l o,

J1g"1>'1 lrl" J y4>,1 lrl lrl

.2( [ (j.-d-\+([ F"(7)l'.r,\+- " \./{t*tt' } l"l' ** ) \./tl"tt't --l'P- "" )
Applying (7.6.1) with p - Q:2 to both u and Vu, we obtain

(rr - 3) lro,,uff d,x < cllull1l,llvzlls, t cllull2lq" .

!

s@) : vu + f (u(.)) + (w x lul2)u,

where V, /, and W are as follows. The potential 7 is real valued such that V,YV e
,p(RN) + t-(lRN) for some p > Nl2. The function / : [0, oo) * ]R. is continuous
and /(0) :0. We assume that there exist constants C and o e [0, R5) such tttat

l/(r) -/(")l < C(l+ lrl" + lul)lu-ul for allu,u € JR,

and we extend / to C by setting
7

f(r) : efM) for all z eC, z 10.

We set

F(z) : ["' f (r)0, for all z € c.
JO

Finally, W : IR.N -+ lR is an even, real-valued potential such that W,VW a 1,o1nN)*
I-(RJV) for some e)- 1, e> Nl4.
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We know (see Section 3.3) that g is the gradient of the potential G defined by

G(u) : [ {lvAlW(")t'+ F(r,u(r)) +}W* 1zl2)(c)lu( df} a'.
J lz

RN

Finally, we set

E(u) :'U I w"Atf ar - c(u) for all u e aliRN;.
p"rv

For u € Ilt(RN), we set

1 ^ ,A'/-1. I, ,rr ,(7.6.4) h(u) : ,Vt"f + 2r:{2F(u) -af (u)} + 
'1"1,fi.(VW 

* lrl2).

If u is such that h(u) e tr'(Rt), we set

(7.6.5) H(u): I nglo*.
R'"

We will use the followins estimate.

Lpurrae 7.6.3. Let N ) 3, let g be as aboue, and, set p - max{o +2,#T}. If
h and, H are defi,ned by (7.6.$ and (7.6.5), then h(u) € ,l(RN) for euery u €
f/t(RN)n L4lr'p(RN). Furthermore, there erists C such that

lH(u) - H(")l < C(7 + llullsr + llrlln')'+'(/'o'oJ x (llulls, *llullyy',, + llr,lls, + llullw,,,)llu -ulls,
for all u,u € I/r(lRN)n wt'eimr;.

Pnoor'. Let us write % : Vr* V2, where V e tt(lRN) and V2 e .L-(JRN);
YW : Zr * Zz,where 21 g fc(lRN) and 22€ r-(lRN); and / : h * f2,where
fi is globally Lipschitz continuous and l/2(o) - fr(")l < C(l"l+ lt'l)"lu - ul for all
u,u € C. Set

d,i(u) : t"lr#.ei*lul2) and ${u): l{rr,Ol -nIt@)} for i: r,2.

Consider u,o e D(JRN). We have

f^^l'
J Vtuf -tu\")l s J lul(l,l + lul)lu-ul

NRN RN

< cllvrll# (llrllrt+ + ll"llr*$, )llu - "ll"*+,
< C(llulls' + llulls')llu - ulln'.

Also,

I lvr1ul' - lul')l < c(llull7" + llull;,)llu - uyzz .J ', -''
RN



RN ITN

and
f ' f (lul+lul)"+l
I l,bz@) -,lz(u)l s c I :L:__|::z--1, - ul.
JJ

RN RN

Applying Hcilder's inequality and (7.6.1), we deduce that

f ....
I lvtzlu) - 1P2\u)l

NRN

S C(llullr.+, * llulll.+,)"(llVull1.+, * llVull1,.+,)ll, - ullT-a,

< C(7 + llrllr' + llulllr')'+'(llrllr' * llullu/',, + llull,,i' + llollw',")llu - ulls, .

Also,
I

I I't'r@) -,hr@)l < C(llVulll, + llVullz,z)llu - ullv" .

J
RN

One obtains the same inequalities for {1 and $2 by applying Young's and Hcilder's

inequalities. Therefore, (7.6.6) holds for aII u,u € 2(RN). The result now follows
easily by density. E

We are now in a position to state and prove the main result of this section.

THoonpv 7.6.4. (Morawetz's estimate) Assume N > 3 and let g be as 'i'n

Lemma7.6.3. If 9 € Hl(RN) andi,f u e C((-?*i",?*u*),Ht(Rt)) 'isthemarimal
soluti,on of (4.I.I), then

236
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f I lrl -t- lr,l
I lrbt@) - rltt(")lSC I t"t' r-tly -ulJ' J T

1t1

J" 
H(u(r))dr ! ,{(iu(t),u,(t))y, - (iz(s), u,(s))p}

(tr, + A'u * s(u),u, + |u) 
"":0 

on (-['in, ?,,'.*) .

(7.6.7)

for all -4,i, ( s ( t <T^u*, where H(u) is definedby (7.6.5).

Rsunnx 7.6.5. Note that the inequality (7.6.7) makes sense. Indeed, it follows
from Remark 4.4.3 or Theorem 4.4.6 that u e Lq((s,t),Wr''(lR.N)) for every ad-

missible pair (g,r). Applying Lemma 7.6.3, we deduce easily that H(u) e.Lr(s,t).

Pnoor oF THEoREtt 7.6.4. We proceed in two steps.

Srpp 1. (7.6.7) holds, when (p € H2(RN). Note that by Remark 5.3.3,
u € C((*T^i,,4,.,), r/2(RN)) n Ct((-z;i", ?k,*), r'(Rt)). Therefore, the equa-

tion (4.1.1) makes sense in ,'(Rt) and we may multiply it by u' * (I{ - I)ul2r e
C ((-T^in,4.u*), r' (RN) ) (by Lemma 7.6. 1 ). Therefore,

We claim that

/ r/-1 \ rd.(7.6.9) 
\t'ut,u"* * ")r,:r1-tlru,u,)L".
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Indeed, by density, we need only establish the identity (7.6.9) for smooth functions
z. In this case, it follows from integrating the identity

( / t/-1 \'l 1 1 /r \
Re 

{zut (o. * ;")} : 
;u,Re(zuu,) * ;v (i n"(,;",2)7 .

We also claim that

(2.6.10) (o,, ,," - #") ," = 
o .

Again by density, we need only establish (7.6.10) for u € D(RN). Note that in this
case,

n" {1, (o, * ! -' \ ') ( - /- r/ - 1-\ ltvrt'}t \ ;")i:v'ne{vu(o'* , o)-,, 
)

+v rry-l '"\
Y a'z rwf 

)
- |{lo"l' -lu,l'}- ffl,l',

and so / N -1 \ f r.
(Au,z, + 2, ") ",: 

- 
!, ;{lvul" -1",1'} - e-b,

where

o: 
{2"t"(o)t" i:il;; u: 

{ 
?"-'x"-''J # llil;i

Note that b is well defined by Corollary 7.6.2. Inequality (7.6.10) follows immedi-
ately. Furthermore,

(7.6.11) (rr,u,* +") .: -; I VWf .

\ zr /u 
IRN

Also, we need only establish (7.6.11) for u € 2(Rt). In this case, (7.6.11) follows
from integrating the identity

nu{y, (r, * *: tz)} : v / vlul2\ t"
r \ zr /) '\"t#)-|vl"t''

Note also that

/... l/-1 \ rN-l(7.6.12) | l@),u, * 5-u) 
",: 

- J * 12F(u) -af (")\ .

\ 4' /L2 
RN

Note that we need only establish (7.6.12) for u € 2(Rt). In this case, (7.6.12)
follows from integrating the identity

n" {r(,,) (r, * {--J;o) } : , (.ry) - #t 2F(u) -nf (u)} .

t \ 2r /) \ r / 2r
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Finally, we claim that

(2.6.13) (r, - lul2)u,u, +

Also, we need only establish (7.6.13) for u € 2(RN). In this case,

( ^ / N -1-\) - lr \ t
n" 

{rw* l"l')" (", 
+ -7:a)} : v. lf,r* .wf)tuf 

) - il"f fr,.v 
(w *tut2) .

Equation (7.6.13) is obtained by integrating the above equality. We deduce (7.6.7)

from formulae (7.6.8)-(7.6. 13).

SrBp 2. Let tp € ,FII(RN), let u be the corresponding maximal solution
of (4.1.1), and let -?rrri. < s < t I T^u*. Consider a sequence g- € H2(IRN)
such that g* - 9 is.F/l(R.N). Let u* be the corresponding solutions of (4.1.1).
It follorvs from Theorem 3.3.9 that u* - u, in C([s,t],]/t(RN)). Furthermore, it
follows from Remarks 4.4.3 and 4.4.4 that for every admissible pair (q,r), u* is

bounded in Zq((s,t),W1''(R.N)), uniformly with respect to rn. In particular,

(i,u* (r), ui Q)) 7" **i U"Q), u,(r)) 7",

uniformly on [s, f], and by Lemma 7.6.3,

rt rt
I ng*g11d,r ----. I u1"1r11ar.

Js m'6 Js

The result now follows by applying Step 1. n

Coaollanv 7.6.6. Assume lf > 3 and let g(u) : -qlulu for some 4 > 0

and,0 < a < al(N -2). For euery (p € fIl(RN), the mori'mal solutionu €
C(R, f/1(RN)) o/ (a.t.t) sat'isfi,es

l:: Iry!"*'d'rdt<a(7.6.L4)

RN

In add,it'ion, u(t) - 0 zn,II1(]RN) as t ---+ t66.

PRoor'. It follows from Remark 6,8.1(i) that the solution u is global and bounded
in .F/1(RN). Applying (7.6.7), we obtain

f / l"(141"*' oro, s c|lu(t)llzo, + llu(-r)ll?, ) < c.
J-, J -rq

NRN

Hence (7.6.14) follows by letting t 'f oo. In order to show the weak convergence to
0, we need to verify that for every tft € D(RN), (u(t),rlr) -+ 0 as I -+ *oo. Note
that

t\u(t),,t)l < [ W<t)ll,pt s I gg @F'*l,pl s c( [ P!r9ta+21 ;iz
r ' " '- J lxla+r' \J lul ) '

RN [RN' ' RN
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and so
^+6
I ll"{r),rh)1"*'d,t < q.

Finally, u is bounded i" I/t(;-{, and so by the equation, u1 is bounded in H-1(lRN).
We see in particular that the function t r-' l(u(t),r/)l is (uniformly) Lipschitz con-
tinuous IR -* lR. Hence the result follows.

Rpltanx 7.6.7. Theorem 7.6.4 requires l{ ) 3. (If N :1,2, then singular terms
appear in the proof of (7.6.10).) This is the reason why the scattering theory in the
energy space (the asymptotic completeness part) was developed only for N > 3.

Recently, Nakanishi [259] obtained a substitute for Morawetz's estimate in any
dimension. More precisely, in the model case g(u) : -qlulu with 4 > 0 and
0 < o < 4lW -2) (0 < a < oo if N : 1,2),

n

)(s - I'I)+
2

(N+5
('* lllvll'r, * 4sup ll"(t)ll?, ;

./ t>o

This is obtained by taking the scalar product of the equation with pu * | . Vu,
where

(7.7.1)

where

(7.7.2)

l,* J#h.rlo+2<oo'

f/+ +\ - 
2r

! \erel - fi---i;-----:6

N -L-it *
allm\-:l-r\"'*) JEWp ' 6"1, +P)t

Note that (7.6.15) is weaker than (7.6.14) particularly because of the time depen-
dence in the factor of lula+2. It is sufficient, however, to deduce the asymptotic
completeness in dimensions.ly': l and N:2 underthe assumption a> 4f N,i.e.,
the analogue to Theorem 7.8.1. See [259]. Note that the proof, however, is much
more delicate than the proof of Theorem 7.8.1.

7.7. Decay of Solutions in the Energy Space

Throughout this section we assume that -l/ 2 3. We apply Morawetz's estimate
to the study of the asymptotic behavior of solutions. For simplicity, we restrict our
attention to the model case

g(u) : -rllulou,

1

?>0, 0<c< fr= (0<o(mifN:1),

and we refer to Section 7.9 and Ginibre and Velo [137, 138] for more general re-
sults. Note that in this case, T^i'(p) : T^u*(g) : oo for aIl I e ffl(JR.N) (see

Remark 6.8.1(i)). Note also that we may apply Corollary 7.6.6. Our main result of
this section is the following.

I,- J #(tr" * 2i'tY)ul2 * 24t2wl"*') 
=

in particular,

(7.6.15)
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Tuponnvt

(7.7.3)
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7 .7 .7. Let N ) 3 and assurne (7 .7 .1)-(7.7.2). If
4otF'

then for euery I € f/l(RN), the mo,r'irnal solut'ion u e C(lR,I/t(Rt)) of @.7.I)
satisfies

(7.7.4) llu(t)llu r--i-0 for euery2<r < #

I l"(t,x)lo+2 dr --J o
-/{lrl>tlost} ' ' t-*oo

Rolrenx 7.7.2. The above result is due to Ginibre and Velo [137]. However the
proof that we present below follows closely an idea of Lin and Strauss [230].

PRoor or TupoRnv 7.7.L. The proof that we give below does not cover the case

N : 3 and a e G, +]. (The proof in that case is slightly more complicated,
and the result follows from Theorem 7.9.2 below.) We only consider f > 0, the case

t < 0 being treated similarly. Note that we need only establish (7.7.4) for r : a*2,
since the general case follows immediately from the boundedness of the solution in
I/1(RN) and Hcilder's inequality. We proceed in several steps.

SIPP 1. The estimate

holds. Indeed, let M > 0 and let

otw@):{# itl?l<M
l. 1 tf lrl> M

so that 0M eW1,*(JR.N) and llYg4all;* |;1/M. Thus dyu € C(lR,A1(RN)) and

\t.{.o)

(iut + Lu + g(u),i0yu) s.t.s' : o.

Note that

(iu1,i9yu) ';,-r,Hl :

and

-(A,r,'i?yu)s-r,11' : (Vu, iY?yu)yz: (Vu, i.uY9ya)y"

(s(u),i,0yu) p

rd f ^ ,,,
,dt J auwl- 

'
[RN

-r,p,r : 0,

I: -Re I iilvu.v?M
[QN

1.. c
S ,llu\t)ll"n, 3 tt.



RN RN

Letting M:tlogf, we obtain

f.clI lu(t,r)l' dr S 
= 

* I 1tnutlel' dr .

JtogtJ-
{ lcl > t loe t} IRN

Applying the dominated convergence theorem to the last term in the right-hand
side of the above estimate, we obtain that

J lu(t,r)12 d" ,; o.

{ lcl>t los t}

The result now follows from Htilder's inequality and the boundedness of z in
Hl(RN).

Srsp 2. Foreverys ) 0, tt1, r ) 0, thereexistsr0 > max{t,2r} such
that

( /. /.o/
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It follovrs that
f^ct.f
I e1a1"1t,r)12 dr s # + | ov19f ar for everv t e R.

JrvtJ

{ lal<s log s}

Indeed, by Morawetz's estimate (7.6.14),

roo>,{-# | tug,r)lo+2
{ lcl<s log s}

m rt42(k*7\r 1 r
tL*:oJ,*r*" ;6* -J . 

l'('' ")lo+2
{lrl<s log s}

m t rt*2(k*l)r r
>t:/ I lu(s,r)1"+z

fa^'yt, Jt+zt , J
{ lcl< s log s}

with 76 : (t + 2(k + t)r) log(t + 2(k + 1)r). Since

6
sI

4 (t + 2(k + I)r) log(t * 2(k * 1)z) - * 'ft:O'

we see that there exists & ) 0 for which

7t*2(k*1)r f
I I lu(s,r)lo+2(e.Jt+2kr 

{lrl5Jrogsi

Hence the result follows with ts : t * 2(k * 1)2.

Stpp 3. For every € ) 0, a,6 > 0, there exists t6 ) max{a, b} such that

l:,'_", I lu(s,r)l'+2 d,rd,s '-e.

sup llr(")llr,.*, < r.
s€ lro -b,to]

(7.7.7)
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Consider t ) r ) 0, and write

rt-,
(7.7.8) u(t) :T(t)v + i' Jo r(t - s)s(u(s))ds

: u(t) * w(t,r) + z(t,r).

It follows from Corollary 2.3.7 that

(7.7.e)

Let now

llu(t)111.+z .------+ 0.
t+&

p:{6, ifa21
' tt'; ifa<1'

Observe that .nf(| - i) : f min{a, 1} > 1. Therefore, we deduce from (2.2.4) that

llw(t,r)117, S [' 
" {t- s)-N(+-i)11,r1";;1;1'*,,,, a"

JO

< Cr-(# min{a'l}-r\ rr z r rra+1, ,:ER ilu(s)ilir.t,ro, .

Since 2 < (a * I)p' < f5, and since u is bounded in Ffl(lRN), there exists C such

that

(7.7.10) llw(t,r)lly, < Cr-(t min{a'l}-l) for all t > r > 0.

On the other hand, note that

w(t,r) : T(r)u(t - r) - T(t)p ,

and so it follows from conservation of charge that

(7.7.11) llw(t,r)ll7,32llpll*.

Applying (7.7.70), (7.7.17), and Hcilder's inequality, we deduce that there exists K
such that

(7.7.12) llut(t,r)117.+,. yr-!e=i$i#4 for all t > r > 0.

Finally, by (2.2.4),

ft -.vo(7.7.13) llz(t,r)lly-+, 
= Jr_,(t - 

s)-z-+z-l llu(s)ll|Ii, ds.

Note that Na < 2(a*2), and let p e (7,"ft*"'). It follows in particular that
(a * I)p' > a * 2. Applying (7.7.13), Hcilder's inequality, and the boundedness of
u in tro+2(lRt), *u obtain

llz(t,r)ll7'+" t (l_,u- s)#t3) ,")* ( l'_,walltf,*.Lr')
I c 16 ( l:_ "1,(s) 

lt ;J.,, )

* u 
l:_,r(r - s)e(u(s))ds
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for some 6, p > 0. In particular, there exists -L such that

llz(t,r)117.+, 1 Lrp*6("3yr",,,,_f"", rr(r, dr"+2 dr)

. tu (l:_, I lu(s,r)1"+2 a,a,)'
i lrlSs los s)

It follows from (7.7.9) that there exists 11 ) max{a,b} such that

(7.7.15) llu(t)llr.*"31 forf )f1.

Next, let 11 ) b such that

(7.7.16) llw(t,v)117.*"<l fort)0,-4
which exists by (7.7.12). By Step 1, there exists t2 ) fr such that

(zz1z\ r,r+5( svp t lz(s.r)l'+2a")'Sf rort)tz.\""r'J u't 
\"iij",irrr>y'rog") / 4

Finally, by Step 2, there exists ts ) 12 such that

(7.7.18)

Note that [t - rt,t] c lto - 2rt,ts] for all t e fts - b,t6]. Therefore, it follows
from (7.7.18) that

(7.7.1e)

{ lc l<s log s}

Applying (7.7.8), (7.7.75), (7.7.16), (7.7.74), (7.7.17), and (7.7.19), we deduce that
llu(t)ll;.+, ( e for every I € lto - b,t6]. Hence the result follows.

Stnp 4. We need to show that for every € > 0, llu(t)lllo+z 1€ for t large.
Let t ) r > 0. It follows from (7.7.8) and (7.7.12) that

(7.7.20) llu(t)117.+" S llr(t)llz,.* , + Kr-*4#f,f'1r + llz(t,r)ll7-+' .

Consider e > 0, and let r; be defined by

(7 7 
'1\

No-2 max{a,ll

Kr"@:!.-i

We deduce from (7.7.9) that there exists t1 > 0 such that

llr(t)ll"-* < 1 for t ) tr.
Applying (7.7.20), (7.7.21), and (7.7.22), we obtain

llu(t)11r.+, t Z* llz(t,r,)117.+z for t ) t1.

/, , 1A\
\ r, r .41,/

(77"\

t,i ( I:"" _,,, I tu@ , r)lo+2 a" a,)' < i .

{ lcl< s log s}

t,!(l:_, | tu@,r)t'+2 d*d,)' =i.

(7.7.23)
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Note also that by (2.2.4),

rL

llz(t,r,)117.+" < | (r - s)-,-#r llz(s)llijl, ds
,

(7.7.24) r L-r: 
No

< Mr)-x;+tt 
rsup,llu(s)llili, 

for every t ) re '

By Step 3, there exists f6 ) max{r.,t1} such that llu(t)111.+z 1€ for t € lts-r,,ts].
Therefore, we can define

f.: sup{f > ts: llu(s)lly^+z 1e for all s € [ts -r,,t)].
Assume that t. < oo. It follows that

(7.7.25) llu(t,)lly.+" : e.

Applying (7.7.23) and (7.7.24) with t : f,,, we obtain that

€s:+ Mr!-zdinr.'+t,-2
which implies

,t-zdll uo, :.- 2M'
Applying (7.7.21), we see that

(7.7.26)

where
., _ a(No - 2 - 2T-ax{a.l}) + (No - a) 

.
2(e + 2)

Observe that when a I 7, we have 7 > 0 (remember that l[a > 4). Therefore,
(7.7.26) implies that ru is bounded by a positive number. This is a contradiction
whene issmall, sincer, -+ oo aseJ0. Wheno) 1, oneeasilyverifiesthat 7>0
when.A/ ) 4, or when.ly' : 3 and o > !Y, in which case we obtain the same
contradiction. Therefore, t. : oo, which is the desired estimate. tr

Tnponpn 7.7.3. Let N > 3 and assurne (7.7.7), (7.7.2), and(7.7.3). For euery
p e /r'r(R.N), the rnoa'imal solution u € C(lR,Ht(Rl/)) of (a1.\ satisf,es

(7.7.27) z e trq(lR, Wt''(Rt)) for euery adrni,ssi,ble pai,r (q,r).

For the proof, we will use the following elementary lemma.

LuMMA.7.7.4. Let a,b > 0 and p > 7. Assume thatb is small enough so that
the function f(r) = a - r * brp'is negatiae for some r ) 0, and let rs be the fi,rst
(posi,ti,ue) zero of f . Letl c R be an'interual and let $ e C(1,1R+) sati,sfy

0(t) Sa+bQ(t)e for allt e L

If d(to) : 0 (or nrcre generaUy Q(ts) < rs) for some ts € I, then O(t) < rs for
alltel.

-1 \ I
T')'e - zu1lK1"'
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Pnoor'. By assumption, the set J : {" ) 0; f (") > 0} is of the form J :
[0,g]u[z,oo) for some 0<-y <.rs < z. Since {Q(t) ttel} isaconnectedset and

f@(t)) ) 0, we must have either {/(t) : t e /} c [0,y], or else {d(t), t € I) c
[r, -). This proves the result. tr

Pnoor or THpoRev 7.7.3. Let (7, p) be the admissible pair such that p : a*2.
For every ^9, t > 0,

tt
u(r+S) :T(t)u(S) +i I T$-s)e(u(S+s))ds.

JO

It follows from Strichartz's estimates, Remark 1.3.1(vii), and Hcilder's inequality
thatforeveryt)S)0,

ll,ll'rts,,r,w ',,1 < cllu(s)llr, + 
" (l:W(,)llZ|' ll,(,)lllr,,")

< Cllz(s)lls'

* 
" 

( l r' 1 1 
u 1 s ) | | !x+' 

) 

"' 
-' 

I l, (, ) lll, "' llu ( r) 111,,,,, 
" ) 

*,

where C is independent of t,,S. Note that (a * I)l' ) 7, and so

/ rt \ 1/r'
( | tt"ayt';"+t)r'-rllu(s)lll,,"'ll"(")rr'' \
\ Js 

il*\"/ilrp tt*\o)ttLp ttu\otttwr'c 
)

< sup{llu(s) llr., : s > s}'+t-+ llull!,ur,r),*,,,t.

It follows from Theorem 7.7.1 that

/ rt \ 1/r' -a( | lt"Ayt+t)r'-rllz(s)lll,""'ll"(')lllu," ) ! e(s)llulli.'i((.s,r),wrp)
\Js ' " /

: e(s) llull], i1",,;,-,,n;,

where e(,9) --+ 0 as ^9 
--+ oo. Therefore,

llull 7, 11s,t1,w,,,t < C llpll n, + e(s) llu lll -11r,r1,*,,,1 .

By Lemma 7.7.4, we see that if we fix .9 large enough, then llull;'1(s,r),wr,r; (
K for some K independent of t. Therefore, u € Lt((S,m),I421'r(nr);. One
shows as well that for S large enough, u e .L"((-m,-S),Wr,o1lRN)), and so u €
,'v(lR,W\'p(RN)). This implies that S(u) e r"t'(R,Wr'p'(RN)), and the result
follows from Strichartz's estimates. f]

REMARK 7.7.5. One can add the following property to the statement of The-
orem 7.7.3. If 9 e f/'(RN), then u1 € ts(R,r'(RN)) for every admissible pair
(q,r). This is obtained by a similar argument, by applying the estimates used in
the proof of Theorem 5.3.1. it is not difficult to see, using Sobolev's inequalities,
that this implies u € ,s(lR, W'''(Rt)) for every admissible pair (q, r); in particular,
u e .L*(lR,H2(RN)).
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7.8. Scattering Theory in the Energy Space

We apply the results of Section 7.7 in order to construct the scattering operator
in the energy space fI1(JRN). the results below are due to Ginibre and Velo 1137].
We still assume that -lf > 3 and that 9 is given bV (7.7.1)-(7.7.2). We refer to
Section 7.9 and to Ginibre and Velo [137, 138] for more general results, and to
Nakanishi [259] for the case N:1,2. We first construct the scattering states.

THsonB\4 7.8.1. Let N > 3 and aEsurne (7.7.7), (7.7.2), and (7.7.3). If p e
flt(RN) and,i.f ue C(1R,//1(RN)) i,sthemarimalsolut'ionof (4.7.I),thenthere
erist u+,u- e 1/1(RN) such that llT(-t)u(t) - un lln' . --;' 0. In addit'ion,

Iltr*12:E(p).
RN

Pnoor'. Let u(t) : T(-t)u(t). We have

rt
u(t1 :,p + i I I(-s)s(u(s))ds.

Jo

Thereforefor0<l<r,
pt

u(t) - u(r) : i 
J, 

T(-s)s(u(s))ds .

It follows from Strichartz's estimates that

llo(t) - u (r)ll s' : ll x(t) (o(t) - u(r)) lls' < C lls @)ll L{ 11t,ry,ty,,., 1,

where (g, r) is the admissible pair such that r : q 12, and so

llr(t) - u(r)ll;6,,,,;L 0

(see the end of the proof of Theorem 7.7.3). Therefore, there exists u+ e fll(lRN)
such that u(t) - u+ in HL as t --+ oo. One shows as well that there exists u- €
Ht(RN) such that u(t) --+ u- in H\ as f --+ -oo. The other properties follow from
conservation of charge and energy. tr

Reu,q,nx 7.8.2. The mappings [! : g * u+ and U- i g r- u- defined by The-
orem 7.8.1 map -Ffl(RN) * I/1(lRN). In fact, one can show with similar estimates
that Ua and [/- are continuous H1(R.N) -- Hl(RN).

Revr,qnx 7.8.3, We deduce from Corollary 2.3.6 the following formula:
r*oo

yL : e + i, I I(-s)e(z(s))ds;
Jo

in particular 
rtoo

(7.8.1) u(t):T(t)u+-i' I T(t-s)s(u(s))d's forallte R.
Jt

We now construct the wave operators.

1f

ll"+llr, : llu- llr," : llpl}., and, * I lv"*l' :zJ
RN
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Tunonpu 7.8.4. Let N ) 3 and assurne (7.7.1), (7.7.2), and (7.7.3).

(i) For euery u+ € I/1(JRN), there erists a uni.que I € f/l(lRN) such that the
marimal solut'ion ?, € C(lR,IIt(R")) of (AJ$ satisfies

llT(-t)u(t) - ,+ lla' --+ 0 as f --r *oo .

(ii) For euery u- € I/l(RN), there ex'ists a unoque p € r/l(lRN) such that the
marimal solution u € C(lR,I11(RN)) of (al.l) sat'isfies

lla(-t)u(t) - u- lla, ---+ 0 os t --+ -oo .

PRoor'. We prove (i), the proof of (ii) being similar. The idea of the proof is to
solve equation (7.8.1) by a fixed-point argument. To that end, we introduce the
function w(t) : T(t)u+ . Let (g, r) be the admissible pair such that r : 6a | 2. It
follows from Strichartz's estimates and Corollary 2.3.7 that r..r €.Lq(lR,tr4/t'r1ngru))
and that ll"(t)llr" ---+ 0 as f -> oo. Consider,S > 0 and let

(7.8.2) Ks : llull1'((s,rc),w1,') + sup ll<,,,(t)ll7,'.

Note that

(7.8.3) Ks 
^------ 

0.

Let

E : {u e Ls((S,oo), tyl''(R.t)) 
' llrllr"t(.s,oo),wr,.; + sup llc..'(t)llr < 2Ks} ,

and
d(u,u): llu - zll;n11s,-1,2,,y for u,u e E .

It is easily checked that (E,d) is a complete metric space. Givenu e E, we have
(see the proof of Theorem 7.7.3)

lls(') llr"'tts,oo),r4zr'"; < C(2K s)'+r -

By Corollary 2.3.6,.7(u) defined by

(7.8.4) J(u)(t) - -t [ 7(r - s)e(u(s))ds
Jt

makes sense and

(2.8.b) J(u) e C([,s, m), Ht(Rt)) n ,s((,s, oo), wl''(R.N)) ,

and

(7.8.6) llJ(u)lluus,*),wt,,1+llJ(u)\ft.*((s,oo),n1) <C(2Ks)'+L -

Applying (7.8.3), (7.8.6), and Sobolev's inequality, we deduce that

(7.8.7) llJ(")lluus,m),r42r,"; +llJ(u)ll7*((s,m),r,') ( Ks for S sufficiently large.

Putting together t t' 
?fi:, 

t] 
l?;- -, 

."r'*;'ri 
:;3: :'
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I

II

maps -E to itself if ^9 is large enough. One easily verifies with similar estimates that
if S is large enough, one has

(7.8.8) d(,4(u),,a(r)) < |a6,r1 for all u,u € E.

It follows from Banach's fixed-point theorem that ,4 has a fixed point u € .D,

which satisfies the equation (7.8.1) on [,S,m). Note that u € C([S,oo),.F/1(RN))
by (7.8.5); in particulat, { : u(S) e flt(RN). Note also that

u(t + s) : v(t)$ + i [' Tft - s)s(u(s + ^9))ds.
Jo

Therefore, u is the solution of the problem

I iut+ Au+9(u) :g
t "(s) 

: /.
Note that, by Remark 6.8.1, the solution u is global. In particular, u(0) € IIr(RN)
is well defined. It follows from the equation (7.8.1) that

T(-t)u(t) - r.L* : -n [* r(s)e(z(s))ds .

Jt

Since u e E, it is not difficult to show with the above estimates that lll(-t)u(t) -
u+lln, -+ 0 as t --+ oo. Therefore, g : u(0) satisfies the conclusions of the theorem.

It remains to show uniqueness. Let gr,pz e I/1(IRN), Iet u1 and u2 be the
corresponding solutions of (4.1.1), and assume that llI(-t)ui(t) - r+lln' --+ 0 as

f -* oo for j : I,2. lt follows from Remark 7.8.3 that ui is a solution of (7.8.1).

Furthermore, it follows from Theorems 7.7.1 and 7.7.3 that ur' € ,c(lR, ryt'r(frrv))
and that ll"i(t)llr" ---+ 0 as f -+ oo. In a similar way to the proof of (7.8.8), one
obtains that u1(t) : uz(t) for t sufficiently large. By uniqueness for the Cauchy
problem at finite time, we conclude that 91 : gr. n

REMARK 7.8.5. Note that the above proof of the construction of g for a given
u0 only uses a fixed-point argument. In particular, it still works for N : I,2.
It is not difficult to see that it also works in the limiting case a :41N. The
proof of un'iqueness is more delicate and uses the decay estimate of Theorem 7.7.3.

This is where we use the assumption .l/ > 3. As observed in Remark 7.8.9 below,
uniqueness also holds in dimension ly' : 1 or 2.

Rouenx 7.8.6. Nakanishi [260] has extended the existence part of Theorem 7.8.4

to the case o > 2lN when N > 3. The construction is by a compactness argument.
Note that when a < 4lN, uniqueness is an open problem (see Remark 7.8.5).

REMARK 7.8.7. The wave operators O.' : u+ t--, g and O- : u- r- rp defined
by Theorem 7.8.4 map Ht(Rt) -- f/1(1RN). In fact, one can show with similar
estimates that O.. and Q- are continuous. By Theorems 7.8.1 and 7.8.4, [JaQ1 :
Q+I/+ : I on F/t(Rt), where U1 is defined by Remark 7.8.2. In particular,
Q1 : I/1(lRN) -* I/1(RN) is one-to-one with continuous inverse (A+)-t - [J+.

Tsponpu 7.8.8. Let N > 3 and assun'Le (7.7.7), (7.7.2), and (7.7.3). For euery
u- € f/l(RN), there erist a un'ique u+ e fIl(lRN) and, a un'ique (p € HI(IRN) , such
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that the rnarimal solut'ionu € C(R,Ht(RN)) of (aJ.l satisfi,esT(-t)u(t) -- ut
Zn A1 (mN) as t ---+ X.a. The scattering operator

s : Hl(mN) -* HI(RN) mappi,ng u- t-.+ 7r*

'is continuous, one-to-one, and'its'inuerse is cont'inuous Al(nN) -.+ H1(IRN). In
addi,ti,on, llu+llr., : llu-ll7z and,llVu+111, : llVu- llpz for euery u- € H1(RN).

PRoor. The result follows from Theorems 7.8.1 and 7.8.4, and Remark 7.8.7,by
setting S : U+O-. Note that S-1 - U-0+. n

Rpulnx 7.8.9. We note that the conclusion of Theorems 7.8.1. 7.8.4. and 7.8.8
also hold if l[:1 or N:2. See Remark 7.6,7 and Nakanishi [259].

7.9. Comments

The estimates of Theorem 7.3.1 hold for more general nonlinearities. In par-
ticular, consider g(u) : /(u(.)), where / is as in the beginning of Section 7.2.
Assume that F(s) ( 0 for all s > 0, and that there exists 0 < 6 < 4lN such that
-s-2-6f'(s) is a nondecreasing function of s ) 0. We have the following result.

PRoposrrroN 7.9.1. Let g be as aboae. If p e f/t(RN) ,is such that l.le(.) e
,'(Rt), and i,f u 'is the mo,s'imal solut'ion of (4.7.1), then

| *t u2:.

I r61t1;a, < cltary and ll"(t)llr, s clrl-+!(+-+)
J

RN

for allt e R. and all 2 < r < 2Nl@ - 2).

Pnoor'. It follows from Theorem7.2.l that u defined by (7.2.7) satisfies

* E(u) s llrpllzt, - [' , / tttt + 2)F(u)- ar', Re(/(u )u))dr d,s .

Jo 
o'^

By assumption, -s/(s) < -(2 + d),P(s). Therefore,

r^rftl
l1vo1t112d,r-2t2 | rgp11a,<G-Nq I I sF@(s))d,rd,s.J J "' Jo J

[RN RN NRN

One concludes as for Theorem 7.3.1 that

f -, ,,,, , - r,rrr-41I n'\u\t))dr < Llrl 2 ,

R'"

and so llvt'(t)lllz < cltrlf . The result now follows from Gagliardo-Nirenberg's
inequality and conservation of charge. tr

Applying these estimates, one can extend the scattering theory in X to more
general nonlinearities (see Ginibre and Velo [133, 132]).
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The result of Theorem 7.7.1 can be generalized in the following way. Consider
g(u) : /(u(.)), where / is as in the beginning of Section 7.2. Assume that there
exists d < 4/N such that

(7.e.1) r(") sc(s2+56+2)

so that all solutions of (a.1.1) are global (see Section 6.1). Assume further that

(7.e.2) l/(")l < C$u+t + "'+') for all s ) 0

for some 4lN < 1t 1v 14lW - 2). Assume finally that

(7.e.3) 2F(s) - s"f(s) > cmin{sp+2,s"+2} for all s ) 0.

We have the following result.

THponsNl 7.9.2. Assume N > 3 and let g be as aboue. For euery g € -FI1(RN),
the marimal solutionu € C(R,11t(Rt)) of @.lJ) sat'isfies

ll"(r)llr. ,_*; o,

foreuery2<r<2NlW-2).

PRoor'. The proof is an adaptation of the proof of Theorem 7.7.1. We only prove

the result for t ---+ *oo, the case t --+ -oo being similar. Note also that we need

only establish the result for r : v *2, lhe general case following immediately from
the boundedness of the solution in f/l(RN) and Holder's inequality.

Step 1. We have the estimate
r2N(7.9.4) I l"(t,r)ldr.-,- 0 forall 2<r<;-

, r+t@ n -2'
{ lcl>i loe t}

The proof is the same as that of Step 1 of the proof of Theorem 7.7.1.

Srsp 2. Foreverys ) 0, t)I, z ) 0, thereexistsr0 > max{t,2r} such

that

(7.e.5)

This follows from Morawetz's estimate and (7.9.3). (See the proof of Theorem 7.7.1,

Step 2.)

Srpp 3. Forevery e>0,t)l,r ) 0 and 2<r <2Nl@ -2), thereexists
to > max{t,2r} such that

fto t

| / min{luY+2,lulv+2}drdt<e.
Jto-ZT J- {lcl<tlogt}

rtn I

| | l"Q,r)l d'rdt < e.
J to-2r J

ilcl<tloet)

(7.e.6)

Note that we need only establish the result for r = p * 2, the general case fol-
lowing immediately from the boundedness of the solution in fI1(lRN) and Holder's
inequality. Consider e ) O, t ) 7, r ) 0. Let

( u(t,r) if.lu(t,r)l < 1
u(t.r\ : 1' [0 iflu(t,,r)l >1,
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and u : It - u. It follows from Step 2 that for every e' > 0, there exists t6 )
max{/,2r} such that

fto t .^

Jr^-r, J lu(t' r)1"+2 d'r dt

(T.g.z) 
" {lcl<tlogt} 

fto r ,^
+ l. J lw(t,r)lP+2 d.r d,tb 1 e' .

J to-2' 
11r1<rtogtj

Note that

ftof.ftof
| | l"(r, r)1u+z ax d,t : | | lr(t, r)lr+2 d* dt

J tn-2r J J to-2r J

(7.g.g)"{l'l<tlost}-{lcl<tlost} rto r
* Ju_r" J lw(t,r)l,+2 drdt.

" 
{lclStlogt}

Applying Holder's inequality in space and time, and conservation of charge, we

obtain

l:^"_,. I' {lrl<tlogt}
(7.e.e)

Choosing e' such that

(7.9.10) 6t 1Q7,+za (e'1ffi < u,

the result follows from (7.9.8), (7.9.9), (7.9.7), and (7.9.10).

Srpp 4. For every e ) 0 and t,r ) 0, there exists r0 > max{r,r} such that

(7.9.11) sup llz(s)111"+u < e.
s € [ts -r,t6]

Consider t ) r ) 0, and write

u(t) : T(t)e + n ['-" T(t - s)s(u(r1|a, + t, [' T(t - s)s(u(s))d,s(7.9.12) Jo J t-,
: u(t) * w(t,r) + z(t,r) .

It follows from Corollary 2.3.7 that

(7.e.13) llu(t)lly"+",:; 0.

Arguing as in the proof of Theorem 7.7.1, Step 3, one shows easily that there exists
K such that

(T.g.tl) llw(t,r)llL,+" < Kr-s5ifi7$t'ttt for all t> r > 0.

lw(t,r)lu+2 <

cr# (l:"'-,, | @(u')t'+2)#
{lrlSt los r}
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Let now

(7.e.15)

(7.e.ie)

(7.9.21)

Note that
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Arguing as in the proof of Theorem 7.7.1, Step 3, one shows easily that there exist
L < x and o. b.c > 0 such that

(7.e.16) llz(t,r)lly,*z < z(1+ ,\l( [' ilrlli.j.',) * ( [' lrllo,") I ,L\Jt-r - / \Jr-' / )

and one concludes as in the proof of Theorem 7.7.1, Step 3.

Srep 5. We need to show that for every € ) 0, we have llz(t)111,+z 1e for t
large. Consider e ) 0, and let r' be defined by

{7.e.17)

v(N!-2 nrax{ !.1} )

rcr, --=t;ffi :1 ,
A

It follows from (7.9.13) that there exists t1 > 0 such that

(7.e.18) llr(t)llr"*, < 1 for t ) tr.
Applying (7.9.I2), (7.9.13), (7.9.14), and (7.9.17), we obtain

,:@l#2 €Q,1t*21

llu(t)llL"+, =Z*llz(t,r")llv,+, 
for t ) max{t1,2.}.

ll z (t, r,)ll y, +" < c rL 
- #iu sup ( ll u ll f| 1 + llullL!],),

t-rE,t

Note also that, given t ) Te, we deduce from (2.2.4) that

(7.9,20)

where p is given by (7.9.15) (compare the proof of Theorem 7.7.1, Step 4). By
Holder's inequality and conservation of charge,

p(v+2') - v

ll"llLl' 3 Cllull"*, .

p(u -t2) - u . p(v +I) < u * L,uu
and so it follows from (7.9.20), (7.9.21), and the boundedness of u in al(nN) ttrat
there exists M such that

(7.e.22)
t _ Nu p(v+2)-v

llz(t,r,)117"+, < Mru ztv+z) ssp (llullr*i, )t-Te,t

ByStep4, thereexistsf6 ) max{r.,t1} suchthat llu(t)111,,+z 1e fort € [ts-ru,tsl.
Therefore, we may define

,6: sup{t ) t6: llu(s)117"+" <e for all s e [t6 *r,,t]].

Assume that tu ( oo. It follows that

(7.e.23) llu(t")lly+, : e.

Applying (7.9.22), (7.9.23), and (7.9.19) with t : t., we deduce that
c r---4.tr< i+ Mrt-zi-ru€44?:,
a



7.9. COMMENTS

'I _ =,N1,;: utv+z\_2v
which implies r- 2("+2) eT > ll2M. Applying (7.9.17), we obtain that

rl1 )(7.s.24)

where

One can conclude as ln
p:! 1, then

2M(4K)"e+=2"'

fu(u + 2) - 2v)(N p - 2 - 2ma;l.{p,,r}) + u(N p, - 4)

2p(u * 2)

the proof of Theorem 7.7.1, Step 4, provided 7 > 0. If

__fu(u+2)-u)(Np,-a)' 2p,(v + 2)

Note that p>2lN > ul@ *2), so that p,(u+2)-u )0. Since also Np ) 4, we
see that 7 > 0. If p > 1, then "y : N*(p - d@D, where

6@):
(N-2)r+4

(N -2)(r+2)
When N ) 4, / is nondecreasing, and so 4@) < 0@l@ - 2)) :  /N. This implies
again that 7 > 0. When N:3, /(r) is decreasing and Q@l(N -2)):4/N. Since
Np,> 4, there exists z <u <4lW - 2) such that p,- 0(r) ) 0. Observethat /
satisfies as well assumptions (7.9.2) and (7.9.3) with z replaced by 7. Therefore, in
this case also, 7 > 0. This completes the proof. !

Rnvanx 7.9.3. It is not difficult to extend the results of Theorems 7.7.3.7.8.L.
7.8.4, and 7.8.8 to the case where g is as in Theorem 7.9.2. Therefore, one can
construct a scattering theory in H1(RN) for such nonlinearities (see Ginibre and
Velo [137, 138]).

Reuenx 7.9.4. Concerning the decay of solutions in -L-, see Ginibre and Velo

[132], Dong and Li [tOZ] (one-dimensional case), Cazenave [57] (two-dimensional
case), and Lin and Strauss [320] (three-dimensional case).

Rpuenx 7.9.5. When 9(z) : )lul#u, ) € IR, a scattering theory can be con-
structed in a subset of ,2(RN), containing, for example, all functions with small
L2 norm and also all functions in u € I'(RN) such that ru e .L2(Rrr) in the case
) < 0 (see Cazenave and Weissler [71] and also M. Weinstein [359] for a related
result). A low energy scattering theory can also be constructed in fI"(lRN); see

Nakamura and Ozawa [2551.

Rerraenx 7.9.6. When 9(u) : \lul"u, with ) ) 0 and a 2 4lN, it is not difficult
to adapt the proofs of Theorems 7.8.1,7.8.4, and 7.8.8 (by using Theorem 6.2.1) in
order to construct the scattering operator ,5 on the set {u € /11(RN) : llullp' < e}
for e small enough. Obviously, the scattering operator cannot be defined on the
whole space f/t(RN), since some solutions blow up in finite time (see Remark 6.8.i).
The assumption c > 4lN is optimal (see Cazenave and Weissler 1721, Remark 4.4).

Rpunnx 7.9.7. The results of Sections 7.3 and 7.4 can be extended to Hartree-
type nonlinearities. See Cazenave, Dias, and Figueira [61], Chadam and Glas-
sey [76], Dias [103], Dias and Figueira [104], Ginibre and Velo [134], Hayashi [159],
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Hayashi and Ozawa [185, 188, 189, 186], Hayashi and Tsutsumi [194]' Lange 1227,
220),P.-L. Lions [233, 234], Nawa and Ozawa [271], and Pecher and Von Wahl [296].
The results of Sections 7.6,7.7, and 7.8 can also be extended; see Ginibre and

Velo [143] and Nakanishi [258].

Rruanx 7.9.8. It follows from Theorem7.5.2 that if g(u): )lul"u with,\ e R
and o < 2/N, then no solution of (4.1.1) has a scattering state, even for lhe L2

topology. This means that no solution behaves as t --+ tm like a solution of the
Schrodinger equation i,u1 * Au: 0. However, it may happen that some solutions
behave as f --+ *m like a solution of a different, linear Schrcidinger-type equation.
This is the theory of modified wave operators. See Ginibre and Ozawa [129], Gini-
bre and Velo [t4t, L42, 144], Hayaski, Kaikina, and Naumkin [172], Hayashi and

Naumkin f181], Hayashi, Naumkin, and Ozawa [184], Nakanishi 1262, 2611, and
Ozawa [287].

Rnnaex 7.9.9. In the case N:3 and g(u): \lul2u with ) < 0, Colliander et
al. [90] have shown that the Cauchy problem is globally well-posed in ,Ir'"(R.N) for
s>4lSandconstructedthescatteringoperatoronallof 11"(Rt).Theresultsare
based on a new form of Morawetz's estimate.

I

I

I

I

I



CHAPTER 8

Stability of Bound States in the Attractive Case

In this chapter we study the stability of standing waves of the nonlinear Schro-
dinger equation for a class of attractive nonlinearities. Throughout the chapter,
we consider the problem (4.1.1) in the model case g(u) : llul"u where ) > 0
and 0 < a < 4l(N - 2) (0 < a < m if l/ : I,2), and we indicate references
concerning more general nonlinearities. Without loss of generality, we may assume
that ,\ : 1. We have seen in the preceding chapter that when 

^ 
< 0, all solutions

converge weakly to 0, as f --+ *oo. When ,\ ) 0, we have a completely different
situation. Indeed, in the case a > 4f N , all solutions with small initial data converge
weakly to 0 as t --+ tm, see Theorem 6.2.1; and, on the other hand, it follows from
Remark 6.8.1 that solutions with "large" initial data blow up in finite time. In
fact, in both the case a > 4lN and the case o < 4lN, we show in Section 8.1 the
existence of a third type of solutions, that are global but do not converge weakly
to 0. More precisely, we construct solutions of (4.1.1) of the form

u(t,r): ei'tg(r),
where a.r € IR and g € .F/1(]RN), g +0. Such solutions are called standing waves,
or stationary states, or Iocalized solutions. In Section 8.2, we show that when
a > 4lN a class of standing waves is unstable, and in Section 8.3, we show that
when a < 4lN a class of standing waves is stable. We apply purely variational
methods, and we refer to Section 8.4 for other methods.

8.1-. Nonlinear Bound States

Throughout this section, we consider g of the form

(8.1.1)

with

(8.1.2)

s(u) : lul"u

4
0 < a <;;---; (0 <o < m if 1vt:1,2).

1\ -2
We look for solutions of (4.1.1) of the form

(8.1.3) u(t,r) : e"'g(r),
where 0/ € lR is a given parameter and cp € /r't(RN), g + 0. It is clear that g must
solve the problem

(8. i.4)

We refer to Strauss [323], Berestycki and Lions [25], Berestycki, Gallou6t, and Ka-
vian [24], Berestycki, Lions, and Peletier [26], and Jones and Ktipper [fO9] for a

/ ,r e ,F/r(R*),e + 0,

L -Ap * us - lplp.

255
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complete study of (8.1.4) as well as for similar problems with more general nonlin-

earities. In particular, it is known that if u S 0, then (8.1.4) does not have any

solution. Therefore, from now on we assume that

(8.1.5) r,; ) 0.

We begin with a regularitY result.

Tnnoapv 8.1.1. Assume (8.1.2), a ) 0, ond b e lR.. If u e I1t(RN) sati,sfies

-Lu * au : blulou tn .H-1(lR.N) , then the followi'ng propert'ies hold:

(i) u e ts,nllRN) foreuery2<p <q. Inpart'icular,ue C2(IR.N) and

lDBu(r)l,,EL 0 for au lll52.
(ii) There eri,sts e ) 0 such tnot 

"'l'l(lu(r)l + lVu(r)l) e I-(RN).

PRoor. Changing u(r) to (l\llJo)-*,"@1rt), we may assume that u satisfies

(8.1.6) -Lu * u: blul"u

with lbl : 1. Note that (8.1.6) can be written in the form

(8.1.7) F-l ((1 + 4112 l€l2 tfu) : blulo u,

where f is the Fourier transform and (8.1.7) makes sense in the space of tempered
distributions S'(RN).

(i) Notethatif u e trp(RN) forsomea*1< p1@,then lul"z e .L"t.(nN).
It foltows rhat u e H2,# (tRN) : W2'# (RN) (see Remark 1.4.1). Applying So-

bolev's embedding theorem, this implies that

(8.i.8) u e ,q(lRN) for all s>;hsuch that 1 >

Consider the sequence qi defined by

L-,^',rv( r 2 - 2 \
n, = \o+ t/" \a+2 -,^r" * n;1"+ t1t I

Since (N -2)o<4, weseethat;ft -#: -dwith 6>0. We have

1 
- 

t 
=-(o+1)i5<-6,Qi+r qj

and so f is decreasing and i ,?* -oo. Since Qo : a + 2, it follows that there

existsk)0suchthat

lto foro((.<k; t 
<0.qt Q*+r

We claim that u a len(RN). Indeed, u € f/l(lRl/) so that,r a;oo(lRN); and if
u e Lst (RN) for some / ( k - 1, then by (8.i.8),

u € zs(lRN) for all q . ;hsuch that ;.+ - # : *
In particular, u e Lqt+l (JR.N). Hence the claim follows. Applying once again (S.1.8),

we deduce that u € ,q(RN) for all s > skl@ * 1) such that llq ) If qpa1. In

a*1 2

plv

T
I
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particular? we may let q : oo. Therefore, lul"u € r2(RN) n roo(RN), so that u €
I4l2'p(RN) for all 2 < p < m. Applying Remark i.3.1(vii), we obtain that lulau e
W1'o(RN) for all 2 < p < oo. In particular, it follows from (8.1.6) that for every
j € {1,...,N}, (-A+ I)0g, e lp(RN); i.e., f-1((1 +ar2laz)F7iu) e ro(RN).
Thus diu € .i'/2'p(RN) : w2,e(lRN) (see Remark 1.4.1). Therefore, u € WS,p(RN)
for all 2<p< oo. BySobolev'sembedding, rr a 6z,alnqN) forall 0 < d < 1, so
that lD9u(r)l * 0 as lrl -+ m for 

{,101Sz.(ii) Let e > 0 and d'(r) : eri?FT. d. is bounded, Lipschitz continuous, and

lV0rl < 0, a.e. Taking the scalar product of the equation with dru e f/l(lR"), *"
obtain

(8.1.e) n I v,.v(o,il)+ | e"pf s I e,1u1"*,.

NQN RN RN

Note that V(9d) :tV?, + 0,Vd- Therefore,

n" (vu.v(a,z)) > o,lyul2 - o,lullyul.\,/
Applying (8.1.9) and Cauchy-Schwarz's inequality, we obtain easily

lj

I e,l"l'<2 I e,fuf+2.
JJ

NRN RN

(8.1.10)

By (i), there exists R > 0 such that l"(r)l'<Il4for lrl > ft. Therefore,

(8.1.11) z I e,1u1"+2 <z t st't1u1o+z +: [ 0Jul2.J -' J ' 2J'"
nRN {l"lSn} RN

Putting together (8.1.10) and (8.1.11), we obtain

I e,1u1' < + t "t't1u1o+2.J -'' 
J

NRN {lcl5n}

Letting e J 0, we deduce that

(8.1.12) ["ap3 <*.
g'"

Since u is globally Lipschitz continuous by (i), we deduce easily from (8.1.12) that
lu(r)lN+zsl'l is bounded. Next, applying dJ to equation (8.1.6) and multiplying the
resulting equation by 0r0iT' for j :1,...,N, we obtain by the same calculations
as above that

I et"t1vu12 < oo.
p"r

Since Vu is globally Lipschitz continuous by (i), we deduce that lVu(r)1N+zulcl ig
bounded, as above. n

Lnuua 8.1.2. Assume (8.1.2), a ) 0, and b e R. If u € rlt(RN) sati,sfies

-Au * au: blulu € }f-l(lRN), then the following properties hold:

(i) ,fn" lVulz + a/*" lul2 : b.Io" lul"+r.
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(ii) (Pohozaev's identitY)

(N-2) [Fuf +Na[tuf :2!b- [Wf*'.l ,._, J,, o 1_2J
RN IRN RN

PRoor'. Equality (i) is obtained by multiplying the equation by 0, taking the real

part, and integrating bY Parts.
The identity (ii) is obtained by multiplying the equation by r.Vz and taking

the real parts. Indeed, one obtains

Re(-Au(r' Vu)) + oRe(u(r' Vu)) : bRe(lul"u(r' Vz)).

Applying the identities

Re(-Au(r .vu )) : -* ;'loul' + V (- *",or(z'vz)) + ]"lvrl'?) ,

Re(u(r.vu)) : -{Wf * io (,lul'),

Re(lul'u(r.Vu)) : --{ 1.,1"*' +;!UV '(*lul"*'),

and integrating over R.N yields the result. Note that these calculations are justified

by the regularity properties of Theorem 8'1.1. n

Before stating the main result of this section we need to introduce some nG'

tation. Assuming (8.1.2) and cu ) 0, we introduce the following functionals on

r/t(RN).

(8.1.13)

(8.1.i4)
1f

v (") : 
- l lul"+2 dr -cz-r z J

[RN

r(u): I Nuf 0",
RN

7 lturo"'
[RN

1

S(u) : )rfu) -V(u),2

(8.1.16) E(u):) l tr"l'0" - # l @"*'d,r: s(u) -7 l @f dr.

(8.1.15)

(8.1.17)

(8.1.18)

RN [RN RN

One easily verifies that these functionals are in Cl(1{t(RN),R), and that ?"/(z) =

-2L,u, V'(u) : lul"u - au. We introduce the sets -4 and G defined by

A:{u e }r11nN; :uf 0 and - Lu*au:lul"u},

G = {u e A : S(u) < S(r) for all u e A}.

We have the following result.



CoRor,l.qRv 8.1.3.
then

(8.1.1e)

(8.1.20)

(8.1.21)

(8.r.22)
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Assume (8.1.2) and a > 0. If u € I/1(RN) satisfies (8.1.4),

'l

S(u) = ;T(u),
-{v

(N - z)T(u) :2NV(u) 
,

Na-4^,,
-2N, t \u) 

'

4 - (li - 2)a^, ,

-6o 
t ful'

! ,t"t - A+,

t s(") : min{s(r) :v(w): A+},

Tlwr:
RN

E(u):

PRoor. These identities follow immediately from Lemma 8.1.2. !

Our goal is to show that A and G are nonempty and to characterize G. For
technical reasons, we consider separately the cases N > 3, N:2, and l{:1.

THponou 8.1.4. Assume ly' > 3, (8.1.2), and u ) 0.

(i) A and G are nonempty.

(ii) u e G if and only if u solues the minim'ization problem

(8.1.23)

where l\ : W inf{"(u) : V(u) : r}. In add,,ition, min{S(t,) : V(w) :
A+) : -2-*_rL+.

(iii) There erists a real-ualued,, posit'iue, spherically symmetric, and, d,ecru,as,ing

function I e G such that G : U{eoe p(. - y) : d € IR, y e mN}.

Tnponnv 8.1.5. Assume N :2, (8.1.2), and, a > 0.

(i) A and G are nonempty.

(ii) u e G i,f and only i,f u solues the mi,nimizat'ion problem

(8.1.24) I u e N and !p* lrl, :.t,
I s(") : min{S(to) : tir e .ly'},

where N: {u € f/t(RN) :V(u):0 andu+0} and,1-;fomin-61,,$(tr.').
(iii) There erists a real-ualued, pos'itiae, spherically symmetric, and decreas,ing

funct'ion I e G such that G :U{enep(. - A): d € lR, y € RN}.

THoonsN4 8.1.6. Assume -Atr : 1, (8.1.2), and a > 0.

(i) A and G are nonernpty.

(ii) A: G.

(iii) There erists a real-ualued,, pos'it'iue, spherically symmetric, and decreasing

funct'ion I e G such that G :U{"iqp(.- y): 0 € JR,y € R}.
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Let us first consider the case Iy' : 1, which is especially simple'

Pnoop oF THEoRErra 8.1.6. Note that (S.1.4) is the ordinary differential equa-

tion

(8.1.25) -u" +1^1s:lulou.

Define 6: (u(a*2)lD*,, and let rp be the maximal, real-valued solution of (8.1'25)

such that p(0) : c and g/(0) : 0. It is clear that g is an even function of z.

Furthermore, on multiplying the equation by g', we obtain

d /I 12 u 2 1 ^\
#\ir'' - lv' + 

o ulvi"*" ) 
:0,

and so

(8.1.26) Lr'' -Z*" * r!utvt"*" :o
throughout the existence interval. It follows easily that cp is bounded and therefore

exists for all r e IR' I\rrthermote, gtt(O) : -aac/2 ( 0' Therefore, there exists

o ) 0 such that p' < 0 on (0,4). We claim that 9' < 0 on (0,oo)' Otherwise,

there would exist b > 0 such that gt( 0 on (0,b) and p'(b) :0. Applying (8.1.26)'

this would imply that p(b) : -c. Therefore, there would exist d € (0' b) such that
p(d) :0. Applying again (8.1.26), we would obtain 9'(d): 0, which would imply
that p : 0. Therefore, g decreases to a limit / e [0, c). In particular, there exists

rm + oo such that gt(r^) -+ 0- Passing to the limit in (8.1.26)' we obtain that

.,/ {o 1\r\"*r-;):o'
which implies / : 0. Therefore tp decreases to 0, as t --+ *oo, and we deduce easily

that the decay is exponential. Therefore g" and hence cp' also decay exponentially
to 0. Therefore, p e .4, which proves (i). Let now o e A. On multiplying the
equation by O', we obtain

(8.1.27)
1... e,,. 1

Ulr'l' - Yrlrl' + ri7lul"+2 
: x .

Since u € fIl(lR.), it follows that u(r)--+ 0 as lrl -* oo. Therefore, by the equation,

u"(r) - 0 as lcl * oo, and so u'(z) ---+ 0 as lrl -' oo. Letting lzl --+ m in (8.1-27),

we deduce that K:0, and so

(8.1.28) )t 't' - iwt' * r! rwr+' 
: o .

In particular, lul > 0, for if u would vanish, then by (8.1.28) u'would vanish at
the- same time and we would have u : 0. Therefore' we may write u : P€iq , where

p ) 0 and p,g e C2(IR). Writing down the system of equations satisfied by p,0,
we see in particular that p?tt*2p'0' :0, which implies that there exists K e lR

such that p2e' = K, and so 0' : K I p2. On the other hand, since lu'l is bounded, it
follows lhat p2g'2 is bounded. This means that K2 f p2 is bounded. Since p(r) -' 0

as lrl -* oo) we must have K : 0. Therefore (remember that p > 0) e : ds for
some d6 e R. Thus t): eiqop.Since p € FII(IRN), there must exist rs € lR such

that pt(rs):0; and, by (8.1.28), p(ro): c. Let now ur(r) : p(r- 16). It follows
that u.r satisfies (8.1.25), 'u.,(O; : c, and tr."(0) : 0. By uniqueness of the initial-value

I
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problem for (8.1.25), we have u ? g, and so u(r) : 
"iqog(r+r0), 

which completes
the proof. n

we next consider the case ly' > 3, and we begin with the following lemma.

Lplrua 8.1.7. Assume N ) 3, (8.1.2), and a ) 0. It foltows that the m,in'imiza-
ti,on problem

(8.1.2e)

has a solution. Euery solut'ion u of (8.I.29) sati,sf,es the equation

-Au*l\uu:ltlulu,
where

(8.1.30)

{ v(u):1
| 7(") : min{?(to) : V(w) :1}

N _'
L: 

^ 
inf{"(o) : V(u) : t} .

PRoor. We repeat the proof of Berestycki and Lions [2S]. We recall the definition
of the Schwarz symmetrization. If u e L2(JR.N) is a nonnegative function, we denote
by u* the unique spherically symmetric, nonnegative, nonincreasing function such
that

l{re RN:u*(r) >A}l :l{re RN:u(r) >I}l forall)>0.
we refer to Berestycki and Lions [25], appendix A.IiI for the main properties of the
Schwarz symmetrization. In particular,

(8.1.31) ltu.Y: ltuY
IRN IRN

for all | < p <oo such that ue .Lr(JRN), and

(8.1.32) I lvu"l' < | tr"f ir u €.F/'(IRN).

RN RN

The proof proceeds in four steps.

Srnp 1. Selection of a minimizing sequence. Let u e H1(RN). One can
easily find ) > 0 such that V(,\u) : 1. Therefore, the set {u € }/1(RN) : V(u) : 1}
is nonempty. Let (u-)-6ry be a minimizing sequence of (8.1.29). Let u*: lu*|".
It follows from (8.1.31) and (8.1.32) that (u-)-ex is also a minimizing sequence
of (8.1.29).

Srsp 2. Estimates of (u-)-6ry. By definition, llVu-ll1: is bounded, and

by Sobolev's inequality (u-)-es is bounded in L#*(RN). On the other hand,
V (u^) : 1 implies that

u f . .o I f
i J l"-f s a+2 J lu*l'*'.

RN RN

By Hrilder's inequality, this implies that

A t, tt2 - 1 
', ', 

* , tra*2-Na/2
tllu*llL, s a + 2 llu*\|,,'#!-llu^ll;;
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Since a )-2- Nal2 <2,it follows that (up)-ey is bounded in,L2iRN), hence in
H'(RN).

Srnp 3. Passage to the limit. By Step 2 and Proposition 1'7.1, there exist

u € Hl(lRN) and a subsequence, which we still denote by (u-)-es, such that
ltrrn 4 u as n1 -v oo, weakly in al(nN) and strongly in tr"+2(RN). By the weak

Iower semicontinuity of the "L2 norm,

,.N(8.1.33) v(") > 1 and T(") S lgligf 7(u-) : ftA,
where A is defined by (8.1.30). Since V(z) > 1, it follows that u f 0. We claim
that in fact V(u) : 1. Indeed, it V(u) > 1, then there exists ) > 1 such that
u(r): u()r) satisfies I/(o) : 1. It follows that

T(u): x2-Nr1u) <T(u)= osn,
which contradicts the definition of A. Thus, V(u):1, which implies by definition
of A that T(u) > 2N/^l{oi - 2). Comparing with (8.1.33), we see that ?(u) :
2NLIW - 2). Therefore, u satisfies (8.1.29)'

Srpp 4. Conclusion. Let u be any solution of (8.1.29). There exists a La-
grange multiplier .\ such that

(8.1.34) -L,u:.\(lul"u - uu) .

Taking the Z2-scalar product of (3.1.34) with u, we obtain

r(u) :r(r,+ 2)v(u).ry I Wf) : x,
to^

with p ) 0. Therefore, ) > 0. Applying Lemma 8.1.2(ii), we deduce that

2N 2NT(u): f ,xv1") 
: 

^1r^.
Since ?(u) : 2N /\l(N - 2), it follows that .\ : A. This completes the proof. !

Conorrenv 8.1.8. Assume N ) 3, (8.1.2), and, u ) 0. #A is defined bg (8.1.30),

then the m'in'im'izat'ion problem

(8.1.35)

has a solut'ion. Euery solut'ion u o/ (8.1.35) sati'sfies the equation (8.1'4). In addi'-

tton,

(8.1.36)

I v1"1: ttt
t tt"l: min{?(tr) :v(w): A+i

min{"(tu) : V(w): A+} : -?{-1#

Pnoor'. Given u € f/1(lRN), let Au € ,Hl(Rlr) be defined by

u(t:) : Au(lti r) .

One quite easily verifies that u satisfies (8.1.29) if and only if Au satisfies (8.1.35).

Therefore, it follows from Lemma 8.1.7 that (8.1.35) has a solution. Finally, given a

I
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solution u of (8.1.35), let 'u be defined by Au : u. It follows that u satisfies (8.1.29),
and so r(r) :2NLl(J/ -2),by (8.1.30). This implies that ?(u) : L+-rT(u) :
2NL+ l(N - 2). Hence (8.1.36) follows. Furthermore, since ,u satisfies

-L,u * /\uu,: Llulou,

it follows that u satisfies (8.1.4). This completes the proof. n

Conorranv 8.1.9. Assume N > 3, (8.1.2), andw ) 0. #A i,s defined bgr (8.1.30),
then the m'in'im'izat'ion problem

(8.1.37) I v1"1: tE
I s(") : minis(to) :v(w): A+i

has a solution. Euery solut'ionu of (8.L37) sati,sf,es the equat'ion (8.1.4).'In addi.-
t'ion,

(8.1.38) min{,S(tu) :V(w): A+} : #t+ .

Fi,nally, u sat'isfies (8.1.37) if and only i,f u satisfies (8.1.35).

PRoor. Let u € f/t(RN) be such that V(u) : A#. We have

s(u) : irr"l- A+ ,

so that u satisfies (8.1.35) if and only if u satisfies (8.1.37). Therefore, (8.1.37)
has a solution by Corollary 8.1.8. Finally, let u satisfy (8.1.37). It follows that u
satisfies (8.1.35), and by Corollary 8.1.8, u satisfies (8.1.4). Furthermore, (8.1.38)
is a consequence of (8.1.36) and (8.1.19). tr

CoRol,l.q,Rv 8.1.10. Assume ly' > 3, (8.1.2), and, a > 0. It follows that G is
nonempty. Furtherrnore, u € G i,f and only i,f u satisfies (8.1.37).

Pnoop. Consider a solution u of (8.1.37). It follows from Corollary 8.1.9 that u
satisfies (8.1.35) and (8.1.4). In particular, we deduce from (8.1.36) and (8.1.38)
that

(8.1.3e) v(u):1t , T@):;*l+, s(u) : ,lut+ .

Applying Corollary 8.1.9, we deduce that ,4 is nonempty. Consider any u e A. It
follows from Corollary 8.1.3 that if

v@):1t ,

(8.1.41) T(u) : {- rrf and ^e(u) : ;!il+ .

Let o : Irf 1, and let u(r) : w@td.We have V(w) :,1#, and so by (8.1.36),

(8.1.42) r(.) >-;TU,r+

(8.1.40)

then
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By (8.1.41),

Applying (8.1.42),

that

(8.1.43) S(u) > S(u),

and so u e G. In particular, G is nonempty. If we assume further that u € G, then

we must have ,9(u) < 5(r), since u satisfies (8.1.4). In view of (8.1.43), this means

that
S(u) : 51';'

Applying (8.1.39), (8.1.40), and (8.1.41), we obtain that

V(u): 1E and S(u) : ;At+
By Corollary 8.1.9, u satisfies (3'1.38), which completes the proof. n

Finally, before completing the proof of Theorem 8.1.4, we need the following

lemma.

Lnvrue 8.1.11. Let a: IRN -* R be cont'inuous and assume that a(r) --+ 0 os

lrl --' oo. If there erists u € fll(RN) such that

r(w) : o4-'r@): ;*^+ I .

we deduce that 7 > A. By (8.1.39) and (8.1.41), this implies

I tto,t' - ol,l') d,r < o,(8.1.44)

[RN

thenthere e3rst\)0 and, apos'itiue solut'ion u € HI(RN)nC(RN) of the equati,on

(8.1.45) -Au * Au: au.

In ad,d:it'ion, if w e HI(RN) 'is nonnegat'iue, w f 0, and if there eyists u € lR szch

that -Lut*uw: aut, thenthere esists c> 0 suchthatw: cu. Inpart'icular,
l-L: \.

Pnoor. We claim that the minimization problem

r ll",ll-- - 1

(s.1.46) { rr@rrr"-^
I J(") : min{J(u) : llulll, : 1},

where

J(u) : J tlv"l' - alul2)d.x,

RN

has a nonnegative solution. Indeed, let (u-)-6s be a minimizing sequence of
(3.1.45), and let u* : lu^|. Since lu-l : lu^l and lVu-l S IVu-|, v/e see

that (u*),nas is also a minimizing sequence. Since a € ,-(lRN) by assumption,
we deduce easily that (u-)*ex is bounded in lll(nN). Therefore, there exists a
subsequence, which we still denote by (u-)-ex, and there exists u e .F11 (RN) such
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that u* - u in flt(RN). Note that u ) 0 and let us show that z satisfies (8.1.46).
Foreveryr)0,

f , ,, , ,l
I lalluk - ""1s

[RN

fr
I lal(u*-r u)lu* - ?rl + sup{la(r)l : lzl Z r} | ("'^ + u') .

J.J
{lcl<r} {l"l>r}

It follows that

f ,,,, ,t / f ."\+I lallui"-u"l3zll"ll"*l I lu^-ul'l +zsup{lo(c)l : lrl >r}.
./\J/

IRN {ltl<"}

Consider e ) 0. There exists r > 0 such that

2sup{lo(r)l' lrl ) r} < e12.

Since the embedding I/t(Rt) '- L2(8,) is compact, we deduce that, for m large
enough,

/ f -\+zll"llpl I lu^-ul2l <r/2.
tt,'/=.) /

Therefore,
L,tc,l

J latlu;-u"lS e for mlarge enough.

[RN

It follows that t.. " r -

J laluk 
^-:- J lol"'.

RN nRN

Using the weak lower semicontinuity of the L2 norm, we obtain that

J(u) 3 -p and llulll, < 1,

where -p, : int{J(u) : llulll" : 1}. Note that by (8.1.44), F ) 0, and so u I 0. We
have llulll, : 1, since, otherwise, there would exist k > 1 such that tu : ku satisfies

llwll1" :1. We would obtain J(w) : kzJ(u) 1 -tr, which is a contradiction by
definition of p. Therefore, llull;": 1, and, again by definition of ;.r, we must have
J(u) : -p. This proves the claim. Therefore, there exists a Lagrange multiplier ,\
such that

(8.1.47)

On taking the .t2-scalar product of the equation with u, we obtain

(8.1.48) ):p)0.
It follows easily from (8.I.47) that u € f/2(RN) n C(RN) (see the proof of Theo-
rem 8.1.1); and since u) 0, we deduce from the strong maximum principle (Gilbarg
and tudinger ll,ZZ), corollary 8.21, p. 199) that

-A,u * \u: au.

(8.1.4e) u)0.
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So far, we have proved the first part of the statement of the lemma. Let now / € lR

be such that there exists a solution ur € FIl (RN), u 2 0,of the equation

(8.1.50) -Aru*ulr:au).
We may assume that w I 0. On multiplying (8.1.47) by u.r, (8.1.50) by u, and

computing the difference, we obtain

Since uu > 0 and wu l0 by (8.1.49), this implies that u: ). We now claim that
there exists c > 0 such that tl : c'u,, for if this were not the case, there would exist
c ) 0 such that z : 'ut) - cu takes both positive and negative values. Note that

-Az * ),2: az.

On multiplying the equation by z, we see that

J(z) : -\llrll'"" .

Therefore, g defined by
7

c - 1t--1--
llzll L2

satisfies (8.1.46). It follows that lgl also satisfies (8.1.46). Repeating the argument
that we made for u, we deduce that lgl satisfies (8.1.47), and that lgl > 0. Therefore,
z has a constant sign, which is a contradiction. This completes the proof. tr

Pnoor or THBoRnM 8.1.4. Parts (i) and (ii) follow immediately from Corol-
lary 8.1.10. It remains to show (iii). Consider u e G, so that u satisfies (8.1.37).

Let f : lReul, g:llmul, andu: f +is. Wehave lol : lul and lVul : lVul. It
follows that 'u also satisfies (8.1.37). Applying Corollary 8.1.10, this implies that

_Ao * s111 : lulou ,

and so

{ -of *wf:qS
L -Aglug:49,

where a: lulo. Applying Theorem 8.1.1, we deduce that a satisfies the assumption
of Lemma 8.1.11. Furthermore,

J(u):-allall2",<0.
It follows from Lemma 8.1.11 that there exist a positive function z and two non-
negative constants p,z such that f - p,z and g: vz. In particular, Rea and Imu
do not change sign, and so there exist c, d e lR such that u : cz I 'i, dz. This implies
that there exist a positive function p and 0 e IR such that u - eielr.Therefore, ry'

also satisfies (8.1.37), hence (8.1.4) follows by Corollary 8.1.10. By Theorem 8.1.1,
?y' e C2(RN) and tlt(r)---+ 0 as lrl -* m. Applying Gidas, Ni, and Nirenberg [125,
theorem 2, p. 370], we obtain that there exist a positive, spherically symmetric solu-
tion ip of (8.1.4) and E e IRN such thattlt(.) : p(.-y).Therefore, u(') : eigp(.-y).
Note that g, being radially symmetric, satisfies the ordinary differential equation

,, N-1g" +'-)----'g' + go*' - ag :0.
I

(^ -,) | ,u: o.

[RN
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It follows from Kwong [zto] that such a solution rp is unique. This completes the
Droot. n

RpuaRx 8.1.12. Note that we gave a self-contained proof of statements (i)
and (ii). On the contrary, the proof of (iii) relies on the two difficult results of
Gidas, Ni, and Nirenberg [125] and of Kwong [219]. We use property (iii) to prove
a strong version of the stability property (cf. Section 8.3).

We finally consider the case N :2. Note that the method for N ) 3 does not
apply to this case, since by Corollary 8.1.3, 7(u) : 0 for every u € A.

PRoor oF THEoREM 8.1.5. We proceed in four steps. We define

(8.1.51)

(8.1.52)

and

(8.1.53)

N : {u € }Il(RN) : V(u): 0 and u + 0},

c: inf{,9(tu) : tu e N},

4

1: roinf{S(ur) 
:tue l/}.

Let us first observe that ry > 0. Indeed, consider u € N. We have

[ tuP . -:-: [ tuto*'.J ' ' - u(a+2) J ' '

V(u^) :0,

S(u*): S(w*) ---+ c.
tn+oo

RN RN

On the other hand, it follows from Gagliardo-Nirenberg's inequality that there
exists C independent of u such that

I f ...I lul"+' < c(T(u))i I lul, .

i" p-ru

This implies that there exists o ) 0 such thatT(u) ) a, and so S(a) > ol2 for all
z € -ly', which implies 7 ) 0.

Srpp 1. The minimization problem (8.1.24) has a solution. We repeat the
proof of Berestycki, Gallout5t, and Kavian .24]1. It is clear that l/ I A. Let (o-)-ex
be a minimizing sequence. In other words, a^ * 0, V(u*): 0, and S(u^) -- 6.

Let w* : lu^l* (see the beginning of the proof of Lemma 8.1.7), so that (o-)-erv
has the same properties as (o-)-ex. Define now (u^)^as by u-(r) : w^(\!Jzr),
where

^*:w+.
We have

(8.1.54)

(8.1.55)

and

(8.1.56)

I u'*: '' 
'

RN
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In particular, (u-)-ex is also a minimizing sequence. It follows from (8.1.54),
(8.1.55), and (8.1.56) that (u^)^61q is bounded in Fll(nN). Therefore, there exists
a subsequence, which we still denote by (u-),,,ex, and there exists u e f/l(R.N) such
that u* - u in Ift(RN) as m ---+ oo. In particular (see the proof of Lemma 8.1.7),

I "x:" *:L I u"+', I "'
RN [&N RN

lrr: #prn:?ffi
RN

s lggr I u'-:',,
RN

T(u) < ln$"("*).
Therefore,

V(u)>0 and .9(u)<c.
We claim that V(z) : 0. To see this, we argue by contradiction. If V(u) > 0,
then in particular u + 0, so that there exists .\ e (0,1) such that u : )u satisfies
V(u):0. Thus u e N. Furthermore,T(u) : X2f @) <T(u), so that S(o) < ^9(u),
which implies that S(u) < c. This contradicts the definition of c. Therefore,
V (u) : 0. It follows that V (u*) -- V (u), which implies that

f _ f ,
J u': JY-/ u'^:^'/'

NRN RN

and so u satisfies (8.1.24).

Srpp 2. Every solution of (8.1.24) belongs to .4. Indeed, consider a solution
u of (8.1.24) (which exists by Step 1). There exists a Lagrange multiplier ) such

that
-Au: .\(lul'u - au).

On taking the tr2-scalar product of the equation with u, we obtain

lf r \
T(u) :1( llul'*'-, ll"l2l.

VJ,/
Since u satisfies (8.I.24), this implies that

and so .\ : 1. Therefore, z satisfies (8.1.4).

SrBp 3. u satisfies (8.1.24) if and only if u e G. Consider any solution u
of (8J.2$ and any u e A (A* a,by Step 2). It follows from Corollary 8.1.3 that
u€ly'and

^ ),wat
')?: ------------:2'

(8.1.57)

Since u € N, we deduce that,S(t') > S(r), and so u € G + o.
Assume further that u e G. Since u e G also, we have S(u) : S(u). It follows

from (8.1.57) that
f..

J lul':t,
[RN

which means that u satisfies (8.1,.24). Hence the result is established.
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Srpp 4. Conclusion. Properties (i) and (ii) follow from Step 3. We estab-
lish (iii) by following the argument from the proof of Theorem 8.1.4. n

DprtwtuoN 8.1.13. A function u e A is called a bound state of (8.1.4). A
function u e G is called a ground state of (8.1.4). By definition, this is a bound
state that minimizes the action ,S among all other bound states.

RsNllRx 8.1.14. Note that the ground state is unique, modulo space translations
and multiplication by 

"ut, 
as follows from Theorems 8.1.4 to 8.1.6.

Rpu.q.Rx 8.1.15. In the literature, one sometimes calls any positive solution
of (8.1.4) a ground state. It follows from Theorems 8.1.4 to 8.1.6 that these two
definitions are equivalent, modulo multiplicationby eig.

RpveRx 8.1.16. In the case .|y' : 1, every u e A is a ground state, since
A: G. This is not true anymore when N > 2. Indeed, in this case, it follows from
Berestycki and Lions [25] and Berestycki, Gallouiit, and Kavian [24] that there
exists a sequence (r-)-eN C ,4 such that ,S(u-) -+ oo as m -+ 6. This implies
that for mlarge, u^ / G.

RpveRx 8.1.17. Let u be the (unique) positive, spherically symmetric ground
state of (8.1.4) with a., : 1. For u ) 0,let u.(n) - a|/ou(.'ir). It follows that
u. satisfies (8.1.4), and so u. is the unique positive, spherically symmetric ground
state of (8.1.4). We have

,, tt, 2-N

lluall-# : a" 2

Therefore, if a ) 4fN, thereexists o ) 0 such that llu.llsr ) o for all tr > 0. On
the other hand, if a < 4f N, then llu,lls' -+ 0 as ar ---+ 0. In particular, there exist
ground states of (S.1.4) of arbitrarily small f/l norm (when ar varies).

8.2. An Instability Result

We begin with the following result of M. Weinstein [356].

THponpv 8.2.1. Assume (8.1.1) wi,th a: 4lN and let cu > 0. If p e A ("f.
Theorems8.1.4,8.1.5, and8.I.6),thenu(t,r):e'-tg(r)i,sanunstablesolutionof
(4.1.1) i,n the follow'ing sense. There erists (p-)-eN C HI(RN) such that

g* 
^-!9 

2n fIl(RN),

and such that the correspond'ing rnarirnal solut'ion um of (4.1.1) blows up i,n finite
time for both t > 0 and t < 0.

Pnoor'. We have E(p) :0, by Corollary 8.1.3. Therefore, E(^p) < 0 for every

^ 
> 1. On the other hand, it follows from Theorem 8.1.1 that | . le(') e ,'(Rt).

Applying Theorem 6.5.4, we deduce that the maximal solution of (4.1.1) with the
initial value )q, blows up in finite time for both t > 0 and I < 0. The result follows

f , 2-N.2 f ,- ,,I u'*ad--i- I lYul'.JJ
IRN RN

by letting, for example t em : (t + *)e. n
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tt 
In the case d > 4/N, we have the following result of Berestycki and Cazenave

r [23] (see also Cazenave [59, 60]).

II Tseonpv 8.2.2. Assume (8.1.1), (8.1.2), and w > 0. Suppose further that a >
4lN. If g e G (cf. Theorems 8.1.4, 8.1.5, and,8.1.6), thenu(t,r): ei-t,p(r) i.s

I an unstable solut'ion of (aJ,1) i.n the following sense. There erists (g-)-es c
I I/l(RN) such that

g* *-ltp zn I/1(RN),

I and, such that the correspond,'ing max'imal solut'ion u* of (4.1.i) blows up i.n f,nite
I t'ime for botht> 0 andt <0.

I RBURRx 8.2.3. As we will see, the proof of Theorem 8.2.2 is much more compli-

I cated than the proof of Theorem 8.2.1. On the other hand, the result is much weaker
(except when I{ : 1), since it only concerns the ground states (see Remark 8.1.16).

I It is presently unknown whether the other stationary states are unstable.

I Let us define the functional Q e C)(I,](RN),R) by

I (8.2.1) e@): I to"f - db | tur*' ror u € r/'(R'),
I RN IRN

and let

I 9.2.2) M:{u€ar(R.N) :ullandQ(u) :o}.
The proof of Theorem 8.2.2 relies on the following result.

I PRoposrrroN 8.2.4. Let a,w be as 'in Theorem 8.2.2. If u e I11(lRN), then u e G
i,f and only if u solues the following m'inim'izat'ion problem:

I [ueiri,I (8.2.3) ls(r) :min{s(u) :ucM}.

I For the proof of Proposition 8.2.4, we will use the following lemma.
I

Lprr,rlre 8.2.5. G'iuen u € }lr(RN), u * 0, and. ). > 0, setP(),,u)(r) : )#u()r).

I 
The foltowing propert'ies hold:

I (i) There erists a unrque ).(r) > 0 such that P(\. (u),u) e M .

r (ii) The functi,on ) -r ,S(P(), u)) i,s concaue on (.\.(u), m).

I (iii) ).(u) <7 i,f and only if Q@) <0.
(iv) ).(u) : I if and' onlY i'f u e M.

I (v) ,S(P(), u)) < S(PQ.@),u)) for euery I ) 0, Al \.@).
I (vi) *s(p(), u)) : *Q(p\,u)) for euery ), > 0.

(vii) l2(), u)l* : P(,\, lul.) for euery ) ) 0, where " i,s the Schwarz syrnmetriza-

I tton.
I 1.'i ri) If u* ---+ u 'inHt(Rt) weakly and, ,i,n r'+2(RN) stronglg, then P(),,u^) -

PQ,,u);n.F/l(JRN) weakly ond'in r'+2(RN) strongly for euery 
^ 

> 0.

II
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PRoor'. Let u € F/t(RN), u + 0, and let ux:P(\,u). We have

12 r ,., r r* r(8.2.4) s(u1) : i J V"f .; J l"l'- fi J l"l"*' .

RN nRN IRN

Property (vi) follows easily. Let ).(u) be defined by

).(z)r€i : r#( 
| rr"f)( /,",".,) 

-'

RN RN

Elementary calculations show that with )-(u) defined as above, properties (i), (ii),
(iii), (iv), and (v) are satisfied. Property (vii) follows easily from the definition
of Schwarz's symmetrization (see the beginning of the proof of Lemma 8.1.7). Fi-
nally, given 

^ 
> 0, the operatoytl + PQ,,u) is linear and strongly continuous

t/t(RN) * I/1(RN). Therefore, it is also weakly continuous. The L"+2 continuity
is immediate. Hence (viii) follows.

Conollenv 8.2.6. The set M 'is nonernpty. If we set

(8.2.5) m:inf{S(u):ueM},

then Q(u) < S(") - m for euerA u € f/l(lRN) such that Q@) < 0.

Pnoor'. It follows from Lemma S.2.5(i) that M is nonempty. Let u € A1(nN) Ue

such that Q@) < 0, and let /(.\) : S(P(\,u)). By Lemma 8.2.4(iii), )*(u) < 1,

and, by (ii), / is concave on ().(u),1). Therefore,

/(1) > /().(u)) + (1 -.\.(u))/'(1).

Applying Lemma 8.2.5(vi), we obtain

s(") > /(,\.(")) + (1 - ).(u))Q(u) > "f(I.(")) + Q@) .

Since by Lemma 8.2.5(i) P(\.(u),u) e M, we deduce that /().(u)) > *, and so

,S(rr) > m+ Q@),

which completes the proof.

PRoor or PRoposruoN 8.2.4. We proceed in three steps.

Srsp 1. The minimization problem (8.2.3) has a solution. We know that
M + g by Corollary 8.2.6, so that (8.2.3) has a minimizing sequence (u-)-6ry.
In particular, Q(u*) : 0 and S(u^) -- rn, where rn is defined by (8.2.5). Let
w^: lu*l*, and u*: P(A*(w*),w*). It follows from Lemma 8.2.5(i) that u^ €
M. Furthermore, it follows from Lemma 8.2.5(vii) that u*: lP(A*(w^),r*)l*.
Therefore,

S (u-) < S (P (\. (w^), a ^)) 
< S(P(.\. (u *), u *)) < S (, ^),
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v/here the last two inequalities follow from Lemma 8.2.5(v) and (i). In particu-
lar, (u*)*611 is a nonnegative, spherically symmetric, nonincreasing minimizing
sequence of (8.2.3). Furthermore, note that

s(u-) : fi;Qtu^,. w 
Jpu*12 

+f,

:W llvu*t'*; l"L

l"t
[RN

RN [RN

It follows that (u*)*Es is bounded in fll(RN). Since Q(u-) :0, we deduce from
Gagliardo-Nirenberg's inequality and the boundedness of (u-)-6ry in.L2(lRN) that
there exists C such that

llYu*llp < cllvu*llff .

Since Na > 4, we obtain that llVu-lllz is bounded from below, and since Q(u^) :
0. there exists a > 0 such that

(8.2.6) llu^lly-+, > o for all rn ) 0.

By Proposition 1.7.1, there exist u e .F11(R.N) and a subsequence, which we still
denote by (r-)-ex, such that u^ -) ?, as n1 -+ Qi in H1(R.tr) weakly and in
,"+z1RN) strongly, and so by (8.2.6), u + 0. Therefore, we may define u :
2().(u),o). By Lemma 8.2.5(i), u e M and Lemma 8.2.5(vii), P(\(a),u*) * u
in .F/1(RN) weakly and in ,'+2(RN) strongly. Therefore,

,S(u) < lim inf ,S(P( )* (u), u-)) < lim inf 5(P ()* (u*), u*))
m+6

: liminf S(u*) : m,
m+m

where the last three inequalities follow from (v), (iv), and (8.2.5), and so u satis-
fies (8.2.3).

SrBp 2. Every solution of (8.2.3) satisfies (8.1.4). Consider any solution u
of (8.2.3). For o ) 0, let u(z) : otuo(or). One easily verifies that

Q(u,) - oN-z-zO(r) :0,

and so uo € M. Since u : ul satisfies (8.2.3), we deduce that /(o) : S(u") satisfies

f'(I):0. One computes easily, by using the property uo e Mlthat

"f'(r) : (S'(rr), ul1-,,11, ,

where,g'is the gradient of the Cl functional ,S (i.e., S'(u): -Aa* wu-lul'u).
It follows that

(8.2.7) (S'(r), u) p-,,p, : 0.

On the other hand, Q'@) : -2L,u - Ylul'r, and so since u € M, we obtain

(8.2.8) (Q'(u),u)p-,.11' : -aT(u) <0,
Finally, since u satisfies (8.2.3), there exists a Lagrange multiplier ) such that
,5'(u) : )Q'@)- Applying (8.2.7) and (8.2'8), we deduce that.\ : 0, and so

S'(u) :0, which means that u satisfies (8.1.4).

m+@
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SrBp 3. Conclusion. Consider

(8.2.9) (.: min{S(u) : u e A} .

Let u € G. In particular, ^9(u) : l. Applying Corollary 8.1.3, one obtains easily
that u e M. Therefore, ^5(u) ) rn, where rn is defined by (8.2.5). In particular,

(8.2.10) (. ) m.

Consider now a solution u of (8.2.3). By Step 2, u e A. Since ,S(u) : m, it
follows from (8.2.9) that m ) l. Comparing with (8.2.10), we obtain m: (. The
equivalence of the two problems follows easily. n

Pnoop oF THEoREM 8.2.2. Let p e G, and let 91 : P(A,g) for ) > 0. It
follows from Proposition 8.2.4 and Lemma 8.2.5 that

(8.2.11) Q(px) < 0

and

(8.2.12) ,S(p.r) < m: S(p)

for all l > 1. Lel us be the maximal solution of (4.1.1) with the initial value cp1.

By conservation of charge and energy,

(8.2.13) S(uq(t)) :,S(p,r) for all t € (-?'"i"(p.r),T'"""(p.r)).

By continuity, we deduce from (8.2.11) that Q(u1(t)) < 0 for ltl small. On the
other hand, if t is such that Q@;(t)) < 0, then it follows from Corollary 8.2.6,
(8.2.13), and (8.2.12) that

(8.2.14) Q@x(t)) < S(pr) -m- -d < 0.

By continuity, (8.2.25) holds for all t e (-7*i"(p.r),?-"*(p.r)). Applying Proposi-
tion 6.5.1, we deduce that / defined by (6.5.15) satisfies

f"(t): SQ(ur(t)) < -8d for all t € (-?*i"(p.l),?-""(pr)).

It follows easily that both [.1"(91) and T^u*(ps) are finite (see the proof of The-
orem 6.5.4). Hence the result follows, since rpl --+ cp in r/t(RN) as ) J 1 (apply

^ 
< r\'I'heorem E.1.1). I

REMARK 8.2.7. Theorems 8.2.1 and 8.2.2 show the instability of ground states
when a > 4lN. When a < 4fN, it follows from the results of Section 8.3 that the
ground states are, to the contrary, stable.

RsN4,Anx 8.2.8. The method of proof of Theorem 8,2.2 can be adapted to more
general nonlinearities. See Berestycki and Cazenave [23], F\rkuizumi and Ohta [118],
and Ohta 12821.
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8.3. A Stability Result

Our goal in this section is to establish the following result of Cazenave and
Lions [66] (see also P.-L. Lions [235, 236] and Cazenave [58])

THBonpu 8.3.1. Assume (8.1.1), (8.1.2), and w > 0. Suppose further that a <
4lN. If g e G (cf. Theorems 8.1.4, 8.1.5, and,8.i.6), thenu(t,r) : ei'tg(r) is
a stable solut'ion of Q.L1) i,n the following sense. For eaery € > 0, there edsts
d(e) > O suchthatif r/ € Hl(RN) sati,sfi,esllp-rblln'S d(e), thenthe correspond'ing
marimal solut'ion u of (4.1.1) sat'isfies

(8.3.1)
?ERltt,Ltr" ll'(t,') - 

eiqe(' - v)lls' < e'

In other words, there eri,st functi,ons d(r) e R and y(t) e IRN sucft. that

(8.3.2) sup llu(t, ') - eie(ttrr. - s(t))lls' < e.
r€iR

Rpuanx 8.3.2. Theorem 8.3.1 means that if ry' is close to rp in Ifr(RN), then
the solution of (4.1.1) with initial value ry' remains close to the orbit of g, modulo
space translations. Note that a < 4f N, which implies that all solutions of (4.1.1)

are global (see Remark 6.8.1).

Rprr.ranx 8.3.3. The space translations appearing in (8.3.1) and (8.3.2) are nec-

essary. Indeed, let tp €G. Given e > 0 and g € RN such that lyl : 1, Iet

g,(r) : ei'"'ug(r) and u"(t,r) - "ie(x'v-et) 
ei"g(r - 2ety) .

One easily verifies that u. is the solution of (4.1.1) with initial value pr. Further-
more, g€ ---+ g in Ht(Rt) as e J 0, but one easily verifies that for every e ) 0,

?ER;tfi 
ll"'(t) - "i'ellu' 

: 2llPlln' '

On the other hand, it is clear that if I € C is spherically symmetric and if Ty' is also
spherically symmetric, one can remove the space translations in (8.3.1) and (8.3.2).
In other words,

::R JPfi llu(t) - eie sll Y' < e '

This follows from a trivial adaptation of the proof of the stability theorem in the
subspace of I/1(JRN) of spherically symmetric function. Alternatively, this follows
from the observation that if /,g e fll(R.N) are spherically symmetric, then

sLtf, 
ll/(') - s( - y)lln, : llf - glln' .

Ronenx 8.3.4. The rotations eid appearing in (8.3.1) and (8.3.2) are necessary.

Indeed, let g e G and let u(t,x) : e"tq(r). Given e ) 0, let

gu(r) : (t + e!t/"r1(1 + e;is; and uu(t,r) - eiu(L+e)t(1+ e)*9((r + e)ia1.

One easily verifies that uu is the solution of (4.1.1) with initial value g'. Further-
more, g€ - g in I/l(RN) as e ] 0, but one easily verifies that for every e ) 0,

sup inf llu,(t,.) - e( - y)llu, : sup i_+fN ll""(t,.) - u(t,. - a)lln, > llplln, .

tefu s€RN tert sen'
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Roltaex 8.3.5. Theorem 8.3.1 only asserts the stability of ground states. Except
when N - 1, where A: G, one does not know whether the other standing waves

are stable.

The proof of Theorem 8.3.1 relies on the following result.

PRoposIrtoN 8.3.6. Assume 0 <a < 4lN and,cu )0. Letr)0, andtetE be

d,efined bs (8.1.L6). If

(8.3.3)

and

(8.3.4) -u:inf{E(o) :uef},
then the following propert'ies hold:

(i) The mi.ni,mizat'ion problem

(8.3.5)

has a solut'ion.

(ii) 1/ (u-)-ex sat'isfi,es llr^ll* --+ 1/i and, E(u^) --. -t)t then there etist a
subsequence (r-o)r.x and a fami.ly (gr)rex C IRN sach that (u^u(.-yr))rex
has a strong timit u en al(nN). In part'icular, u sat'isfies (8.3.5).

PRoor'. The proof relies on the concentration-compactness method introduced by
P.-L. Lions [235,236] in the form of Proposition 1.7.6. We proceed in three steps.

Stpp 1. 01u<a. Itisclearthatf la.Let u€f and)>0; set

us(x): I#z()r).
It follows easily that z1 € | and that

E(ux):+ tlV,t2- lz- 1tur+'.2 J o*2J t*'
RN RN

Since Na ( 4, we have ,O(u1) ( 0 for ) small, and so u > 0. Next, we claim that
there exist d > 0 and K < x such that

(8.3.6) E(")> lllull2",-K for allue l.

t:{,€HI(RN) 'lWf :,}
RN

luer
I E(") : min{E(u) : ?r € f}

This follows immediately from Gagliardo-Nirenberg's inequality

f ' 
/ r ^\i!s" \4-(N-2)o

J wr+2 ="lJ tv"r)" lJ ,r)
RN RN RN

and the property Na < 4. Therefore, u ) -K > -oo.
SrBp 2. Every minimizing sequence of (8.3.5) is bounded in fIl(RN) and

bounded from below in tr*+2(lRN). Let (ur,),20 be a minimizing sequence. Since
un e l, (un)n>o is bounded in .L2(RN), then by (8.3.6) (r,")>o is bounded in
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I/t(RN). This proves the first part of the statement. Furthermore since z > 0, we

have E(u) < -u12 for n large enough. It follows that

(8.3.7)

[RN

Hence the result is established.

Srpp 3. Conclusion. We need only prove (ii). Let (in)n>_o satisfy lli.ll1" --
J1t and E(i") '-'+ -u. Setting

J7un: 
wilr;un'

we deduce that (z,)r,>s is a minimizing sequence of (8.3.5). Note that by rescaling,
we may assume that r : 1. We now apply Proposition 1.7.6 to the minimizing
sequence (un)r>o (note that o : 1). We claim that

(8.3.8) ,. 
- 

1
lt- Lt

where p is defined by (1.7.6). Note first that, since (un)n>o is bounded from below

in tr"+2(lRN), we have p > 0 by Proposition 1.7.6(ii). Suppose now by contradiction
that

(8.3.e)

so that

(8.3.10)

I w^Y*'.+,.

o<p<1.
We use the sequences (os)7,2s and ('r.or)*>o introduced in Proposition 1.7.6(iii). It
follows from (1.7.15)-(1.7.16) that

Iiminf(.B(u, *) - E(r*) - E(wp)) 2 0,

limsup(.E(ur) +,O(tup)) 3 -u.
/c-co

Next, observe that, given u € Hl(Rl{) and o ) 0, we have

E(u\ : lntoul + oo - ,l [ 61"+z ." \*) e2- \**/ ' a * 2 ;l t*t

Applying the above inequality with and ap = llllupll;2, and since o6o6 € l, we

obtain that

Similarly,

E(u*)> d.# lWrt*'.

E(,r,)r--q*X#It xt'+'

with br : Llllwrll*, and so

E(u1") + E(w*) > -,(oi'+b;') .# | W*Y*'+b3+ f @rY*' .

RN RN
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Finally, note that oi2 - p.andbo2 + 1- p,by (L.7.I4). In particular, by (S.3.9)

d :: min{p-?, (t - p)-?} > i.
Therefore, using (1.7.16), then (8.3.7) we deduce that

timinf(.8(u6)+ E(?rfr)) ) -u *ffi t11gr [ fu*rl"*,
R"N

)-u**r-,,
which contradicts (8.3.10). Therefore, tfre proof of the claim (S.3.S) is complete. We
finally apply Proposition 1.7.6(i), and we deduce that for some sequence (yp);,;s C
IRN and some u € I/1(IRN), unr(. - Ak) -- u in .t2(lRN) (and in particular, 

" 
E f ;

and in ,t"+2(RN). Together with the weak lower semicontinuity of the I/1 norm,
this implies

E(u)< Jgr1r",; :-t/.
By definition of v, we have E(u) : -u. In particular, E(u"o) -- E(u), and it
follows that llVu"ollu'- llYull1,, which implies that unu( -yk) ---+ u strongly in
Ht(R"). n

Lnltntn 8.3.7. Let0<a<4/N and,u>0. There etists p.>0 suchthat

f ,,,
J lul" : u for euery ground stateu o/ (8.1.4).

RN

(8.3.11)

PRoor'. The result follows from uniqueness of the ground state up to translations
and rotations (cf. Theorems 8.1.4, 8.1.5, and 8.1.6). Alternatively, when N )
2 the result follows from (8.1.19), (8.1.22), and property (ii) of Theorems 8.1.4
and 8.1.5.

Conorrany 8.3.8. Let0 < a < 4fN, u ) 0, and let p, be defi,ned by (8.3.11).
If u e FIt(Rt), then u'is a ground state of (8.1.4) if and only i.f u solues the
min'imiz at'i o n pro b I em

(8.3.12)
( uet
L s(") : min{,S(u) : u e l},

where I i.s defi,ned bg (8.3.3). In ad,d'it'i,on, the problem.s (8.3.12) and (8.3.5) are
equ'iualent.

Pnoor'. We proceed in four steps.

Srpp 1. Problem (8.3.12) is equivalent to problem (8.3.5), which has a
solution by Proposition 8.3.6. Indeed, if u € l, then S(u) : E(u) * wp,f 2, and so
problem (8.3.12) is equivalent to problem (8.3.5).

Srpp 2. We have k ( l,wherc / is defined by (8.2.9) and k is defined by

(8.3.13) k:inf{S(o) :uef}.
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Indeed, consider u € G. We have S(u) : (., and by Lemma 8.3.7, u e l. By
definition of k, this implies k < /.

SrBp 3. Every solution of (8.3.12) belongs to ,4. Consider a solution u
of (8.3.12), and let

us(r) :,\#u()r) for ) > 0'

We have ur € | and u1 : u. I\ follows from (8.3.12) that

which means that

(8.3.14)

[RN

Now, since u satisfies (8.3.12), there exists a Lagrange multiplier ) such that S'(u) :
.\u. and so there exists d such that

(8.3.15) _A,u * 5qs: lulau.

On taking the.L2-scalar product of (8.3.15) with u and applying (8.3.14), we obtain

. 4-(N-2)a-,,
0u1t : 

-- w^ -t \u) ,

from which it follows that d ) 0. Define now u by

u(r) : 6* u@i r) .

We deduce from (8.3.15) that u € ,4, which implies

as(r^)l^:r : o,

r(u): dh I wr*'

(8.3.16)

One computes easily that

S(u) > (..

S(z) : aL-J4;4 51"1+ff1 - D.

Applying (S.3.16) and Step 2, we obtain that

t>d|9.4(+rye-6).
On the other hand, it follows from Corollar, ,.r., that (.) 0, and by (8.3.11) and

Corollary 8.1.3,
up, _4-(N-2)ao
2 - 2a 

+1

and so 
r > as#.* .#(1 _ d).

This means that /(d) ( 0, where

4-(N-2)o 4-(N -2\ct 4-l{a
/(t) : s-----ta- - --t ,;-t + Zo .

One checks easily that /(t) > 0, if s f 1. Therefore, 6 : 1, which implies in view
of (8.3.15) that u e A.
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SrBp 4. Conclusion. It follows in particular from Steps 2 and 3 that l,: k.

Therefore,ifu€G,thenu€land,S(u) :k,whichimpliesthatusatisfies(8.3.12).
Conversely, let u be a solution of (8.3.12). We have u e A by Step 3, and since

^9(u) 
: k : (, it follows that u e G. !

PRoon oF THEoREM 8.3.1. Assume by contradiction that there exist a sequence
(/-)-ex c fll(lRN), a sequence (t-)-ery C lR, and e ) 0 such that

(8.3.17) llrb*-plln, I o,
m+6

and such that the maximal solution u* of (4.7.L) with initial value r/- (which is
global, cf. Remark 8.3.2) satisfies

(8.3.18)

Let us set

(8.3.1e)

(8.3.18) is equivalent to

(8.3.20)

j:f 
,Nf,- llu*(t*, ') - 

"nu 
p(' - v) lla' > e .

u*: u*(t*),
It follows from Corollary 8.3.8; Theorems 8.1.4,8.1.5, and 8.1.6; and (8.3.19) that

i1Lll,*-ullp,2e.
Applying Corollary 8.3.8, we deduce from (8.3.17) that

I Vt^l' ----+ Lt, and S({)A , k,
I m+6 rn+oo

R"N

where k is defined by (8.3.13). From conservation of charge and energy, we deduce
that

I W^P - F, and S(u^) ---+ kJ m-co m+6
RN

as well. Therefore, (o-)-ex is a minimizing sequence for the problem (8.3.12),
hence of the problem (8.3.5) (see Corollary 8.3.8). From Proposition 8.3.6(ii) it
follows that there exist (y-)-6x C IRN and a solution u of the problem (8.3.5) such
that llu- -u('- a*)lln, --+ 0. But u e G by Corollary 8.3.8, and so u('- a^) € G,
which contradicts (8.3.20). !

Rruenx 8.3.9. Note that the proof of Theorem 8.3.1 only makes use of the
following two properties. The conservation laws of (4.1.1) (charge and energy),
and the compactness of any minimizing sequence. Therefore, the method is quite
general and may be applied to many situations. See, e.g., Cazenave [58], Cazenave
and Lions [66], P.-L. Lions 1235, 236]), and Ohta [282, 283,2841.

RpltaRx 8.3.10. One does not know in general about the functions 0(t) and y(t)
of (8.3.2). If both 9 and ry' are spherically symmetric, one may let A(t) = 0 (see

Remark 8.3.4). Remarks 8.3.3 and 8.3.4 display examples for which one may let d

and y be linear in d. One does not know whether this is true in general. Concerning
this question, see the remarkable papers of Soffer and Weinstein [316, 317]. They
consider in particular a one-dimensional equation with a potential. In this case,

y : 0, but they also show that one may let d be linear in t.
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8.4. Comments

REMARK 8 .4. 1 . There are other methods to study the stability of standing waves,
based on the study of a linearized operator. See Shatah and Strauss [311], Gril-
lakis, Shatah, and Strauss [i54, 155j. See also Gongalves Ribeiro [151], Blanchard,
Stubbe, and VazquezlS3l, M. Weinstein [358,357], Rose and Weinstein [303], and
Cid and Felmer [81]. The stability of excited states has also been studied, in par-
ticular by Jones [198] and Grillakis [153].

By using the techniques of Section 8.1, one can establish the following useful
result of M. Weinstein [356] relating the ground states of (8.1.4) with the best
constant in a Gagliardo-Nirenberg inequality.

LpuvIn 8.4.2. Let R be the (unique) spherically syrnmetric, pos'it'i.ue ground state
of the elli,ptic equat'ion (6.6.3), i,.e.,

-A.R + R: lRl'R in IRN

wi,th a : 4lN (see Definiti'on 8.L.13 and' Theorems 8.1.4, 8.1.5, and 8.1.6). It
follows that the best constant i,n the Gagli,ardo-Ni,renberg i,nequali,ty

I tt^,.tto+2 - 
C

o + Zrv, l L.+z =,llY,!ll2r"ll,bll7",

i.s c : llBll,Y.

Pnoor'. We follow the argument of M. Weinstein [356]. We need to show that

I

I

I

I

I

(8.4.1)

where

:-r 7/^.\ 2llRllz"lnr J lul :ur;Tju+o''*' q f-2 '

llV"ll?,llull?,
Jt&t- 

-.

llulll:i,
We set

o : 
'r|r\f.'*oJ(u) '

and we consider a minimizing sequence (r")">0. We observe that by Gagliardo-
Nirenberg's inequality, o ) 0. We consider u' defined by un@) : p'nun(\nfr) with

, llu"llntn: ffiufri
so that llu.llr : llVu.ll1z: 1 and

and ,n:VE,
llv"^117,

I
llr"ll;:1[') : J(un) : J(un),-] o > o.

By symmetrization (see the proof of Lemma 8.1.7), we may assume that u,, is
spherically symmetric, and so there exist a subsequence, which we still denote by
(rn)rro, and u € Ht(RN) such that un -)'u in }/l(lRN) weakly and in r'+2(lRN)
strongly (see Proposition 1.7.1). Since llull1,--1-z : lim7,*so llu^117.+, - 6-aFz 2 Q,

it follows that u 10. This implies thatI
(8.4.2) J(u) :6 and llalll, : llVulll, : 1.
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In particular, *l(, * tw)11:o : 0 for all tr e Ht(RN) and, taking into ac-

count (8.4.2), we obtain

,.-. , 0^. _o j2r,,ro,,
-A?,+ru:o 2 IUl u.

Let now u be defined by u(r): au(br) with a, : (af o(a+2))* and b: (alZ1I,
so that u is a solution of (6.6.3) and

J("):J(u):6.
Since u satisfies equation (6.6.3), we deduce from Pohozaev's identity (see Lem-
ma 8'1'2) that 

1rr--.rr2 1 rr^.rro+2
Sllv 

ullLz : - oU rllulllil, ,

and that 2llYull27" : Nllull?., (see formulae (8.1.21) and (8.1.22)), and so

(8.4.3) r(u):#1,1f, : ;fin"nZ".
Since R also satisfies equation (6.6.3), it satisfies the same identity. Since u mini-
mizes J, we must have J(R) > J(u), which implies that llullr,'< ll,l?llr,. On the
other hand, R being the ground state of (6.6.3), it is also the solution of (6.6.3)
of minimal L2-norm by (8.1.19) and (8.1.22), so that llrtllz,, S ll"llr,. Therefore,

llfillz, : llull*, and the result now follows from (8.4.3). D



CHAPTER 9

F\rrther Results

In Sections 9.1 and 9.2 we present some results that follow easily from the
techniques that we developed in the previous chapters. On the other hand, we

describe in Sections 9.3 and 9.4 two results that do not fall into the scope of these
methods. Finally, we briefly describe in Section 9.5 some further developments.

9.1. The Nonlinear Schr6,dinger Equation with a Magnetic Field

In this section we study the nonlinear Schrcidinger equation in IR3 in the pres-

ence of an external, constant magnetic field. Given b € IR, b + 0, we consider the
(vector-valued) potential iD defined by

iD(r) : |{-r",*t,o) for r: (rr,rz,r3) e IR3,

which is the vector potential of the (constant) magnetic field d :

.6 : (0,0, b) .

We define the operator ,4 on ,2(R3) by

D(A): {u e .12(n3) : Vu *;oz e ,02(R3) and Lu*2iQ.Vu - lol2u e ,Lt(Rt)},

and
Au: Au+2iA.Yu-lQl2u for u€ D(A).

We consider the nonlinear Schrcidinger equation

(e.1.1) Inut*Au*e@):0
L u(0) : p,

and we refer to Avron, Herbst, and Simon [5, 6, 7], Combes, Schrader, and Seiler

[93], Eboli and Marques [109], Kato [202], Reed and Simon [301], and B. Simon [313]
for its physical relevance. We begin with the following observation.

Lnulte 9.1.1. A i,s a self-adjoi,nt, 10 operator on,L2(R3).

PRoor'. Since 2(lR3) c D(A), D(A) is dense in .L2(Rt). Furthermore, given
'u,1) € D(A), (Au,u)1, : -(Va *iQu,Yu 1-iou)1". Therefore, .4 is S 0 and
symmetric. It now remains to solve the equation Au - \u - f for every / € ,2 (R3)

and ) > 0. This follows easily by applying Lax-Milgram's lemma in the Hilbert
space I/ : {u € r2(R3); Vu * i,Qu € ,2(lR3)}, equipped with the scalar product
(u,r)n : (Yu * i.Qu,Yu * i'Qu)72 * \(u,u)1". f}

-*curl (iD), that is,

283
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We then may apply the results of Section 1.6. In particular, D(,4) is a Hilbert
space when equipped with the norm

llull'o,,: llAull2," + llulll,,
and i,A generates a group of isometries (I(t))16e on the Hilbert space (D(,4))-.
The operators (7(t))16e restricted to any of the spaces D(A), XA, ,2(R3), or X\
are a group of isometries, where Xa is defined by

Xa: {u € ,2(R3) : Vz * ?ou € ,2(R3)},

and

llull'xo : llVu + iaull!" + llull2," .

In addition, A can be extended to a self-adjoint, ( 0 operator on (D(,4)). (which
we still denote by A), and .4 is bounded Xa - Xi and I'(R3) --+ (D(,4))..
Furthermore, we have the following result.

LBivtue 9.1.2. The following properti,es hold:

(l) Xe.-- .LP(IR3) for euery 2 < p < 6.

(ii) ,s(R3) ,--. XA for eaery E < q 32.
(iii) ,(A) .-- .Lp(R3) for euery 2 S p < 6.

Pnoor. Let u € Xa. We have

tvg,t)t : | *" (*fr"+ .;ou)) I ".".I \tul /l
on the set {r e IR3;u(o) I 0}. It follows that

(e.1.2) lV(l"l)l < lV, * ioul a.e.

Therefore, lll"llla' < ll"llro. Hence (i) is true. Note alsothat 2(R3) C Xa, from
which we deduce that the embedding Xl ,- tp(R3) is dense, and so (ii) follows
from (i) by duality. Finally, let u € D(,4) and set / - Au e ,L2(1R3). For every
j e {L,2,3}, let uj :1ju * ioiu. We have

(9.1.3) Ari -ui: -(0i -i0i)f -2i(Yu+i,@u).(diQ - VQi) -ui.
Next, observe that l01O-VOil < b. Furthermore, V*iO is by definition a bounded
operator Xt - r'(Rt), and so, by duality, v - ?o is bounded r2(R3) -, xT.
In particular, the right-hand side of (9.1.3) belongs to X) and llAu3 - uillxl <
Cllullofel. It follows easily that ui € Xa and lluill;" < Cllullp<e1. Letting
successively i :1,2,3 we obtain the inequality llVu * i.Qullyo < Cllullplay. Ap-
plying (i), we deduce that llVz * rOulllo < Cllullaat. Therefore, by (9.1.2),

lllV(l"l)lllr. < Cllulla1t. Claim (iii) follows by Sobolev's embedding theorem. n

Lnlrue 9.1.3. If e>0 andI<-pl@, then(I -eA)-t'is cont'inuous[r(ft3) -+
I,P(R3) and ll(I - eA)-rllce,,r,o) < I.

Pnoor'. Let g e Cl(lR+,lRa) be such that both d and 0t are bounded, 0 ) O,

0' ) 0, and 9(0) : 0. By applying the method of proof of Proposition 1.5.1, we
need only show that

(e.1.4) (Au,g(lul2)u)"' < 0 for all u € D(A).
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Consider p € 2(R3) such that 0 < p < I and p(r) : 1 for lrl ( 1, and set
p*(r) : p(rlm) for m ) 1. Let u € D(A). We have

(e.1.5) (Au,0(lul2)u)r, : Jlg*( Au, p*0(lulz)u)u .

In addition, since p*0(lul2)u has compact support,

(Au, p*o(ul')u) 
"": - 

Re I o 
" 

. v (p^0(lul\a)
J

R3

f^r
- 2rm I p^eluf)no . Vu - I p*lal'0(l"l')l"l' .

d'. i,
It follows from the Cauchy-Schwarz inequality that

t^f^t
-2rm I p^01u12)aa. Vz ( I p^laPefuP)lul' + | p^e(ul2)lvul2,

.IJJ
R3 [R3 nR3

and so

(Au, p*o|ulr)u) 
", 

< - Re [ ," ,v (o*e(ul2)") * [ p^e(ul2)lyul2 ."1,i.
An elementary calculation shows that

- Re (vz .V(p*0(lul2)u)) + p*e(ul2)lYul2

: - p*0' (1u12 7 (1u12 1v u12 - Re(n2 v u\) - lv p *. V o ( 
| 
z l'z )

S -!v p^. Vo(lul2) a.e. where o(") : 
- 

[" e67ao,2 "" Jo

therefore,

(Au, p*o(lul')u) 
""

Applying (9.1.5), we obtain (9.1.4).

1f<: I o(lul')L,p* ------+ 0.
ZJ m+@

R3

Finally, we have the following estimate of (T(t))1Ee.

LEMMA 9.1.4. There edst d > 0 and C I x such that T(t) 'is cont'inuous

It(R3) -' l,-(R3) for euery t e (-d,6) andt f 0. Moreouer,

llr(t)ulll,* s 
ftWn",

for euery u e .L1(lR3) and t e (-6,5), t + 0.

PRoor'. For every , such that sin(bt) I 0, the following formula holds (see Avron,
Herbst, and Simon [5]).

I(t)u' ' b r -
@) : G@nA; 

"in(bt) 
I e-tt r"'u't) u(a)da,
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where

F(r,a,U :9#t *f,tA, - a)z * (,2 - s2)2) cotg(bfi -f,{,rr, - *ra,).

Therefore,
lbl

ltlTl'i"(br)l '
lly(r)llc(r,,r-) <

from which the result follows easily. T

Consider now 9 as in Example 3.2.11 with N: 3; i.e.,

g(u):vu* f (',u('))+ (w xlul2)u

with y e Zp(RS)+ r'"(R3) with p > 312, W e .01(m3)+ r-(R3) real-valued po-

tentials, W even, and /(r, u) is locally Lipschitz in u, uniformly in r, and satisfying

lf(r,u) - f(r,u)l < C(t + lul' + lol")lu-ul for some 0 ( a < 4. We set

f ('t ^ 1 ^ ^)G(u): J \rrAn"@)12 
+ F(r,u(r))+;(w * lul2)(r)lu(r)l2 jdx

K-

with

We have the following result (see Cazenave and Esteban [62]; see also de Bouard [96]
for related results for a more general equation).

Tsponeu 9.1.5. If g i,s as aboue, then the followi,ng properti.es hold.

(r) For eaery g € X,q, there etist T^n(g),7^u*(g) > 0, and a un'ique, mat:i-
mal solution u e C((-Tmi',7r.r*), Xe)nOt((-?r"i", ?rrr*), X\) of problem
(9.1.1). The solut'ion u 'is marimal i,n the sense that if T^u* < m (respec-
tiuely, T^in ( *), then llu(t)lla + oo os t I T^u* (respect'iuely, as t !
_?Li").

(ii) There 'i,s conseruat'ion of charge and energy; that'is,

ll"(t)llr, : llpllu and E(u(t)): n(p) for all t € (-4.i,,7,,.*).

(iii) There 'is cont'inuous dependence of the solution on the i,nitial ualue in the
sense that both functi,ons T^in(g) and T^u*(g) are lower sem'icont'inuous,
and that if p^ - 9 i.n Xa and i,f l-Tt,Tzl C (-T-i"(p),7^^*(9)), then
1f,m + u i,n C(l-T1,Tz], Xe), where u^ 'is the marimal solut'ion o/ (9.1.t)
with i,ni,ti,al ualue g*.

(iv) If 9 e D(A), thenu € d((-?-1"i",?-.*),D(,4))nC1((-?^in,T^u*),r'(Rt)).

PRoor'. It follows from Lemmas 9.1.1 to 9.1.4 that -4 and g satisfy the assumptions
of Theorems 4.I2.I and 5.7.1.

Rpil,t,cnx 9.1.6. By conservation of energy and Lemma 9.1.2(i), there exists d ) 0

such that if llpllx, S d, then the maximal solution u of (9.1.1) is global and
sup{llu(t)ll; n : t e lR} < * (compare the proof of Corollary 6.I.2).

flzt 1 r
F(r, z) : Jo f @, s)ds and E(u) : i I to"-t iQul2 dr - G(u) .

n
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Rpuenx 9.1.7. In addition to the assumptions of Theorem 9.1.5, suppose that
W+ e ,s(R3) + ,-(R3) for some q > 312, and that there exists 0 < d < 4/3 such

that F(r, u) < CQ + lul6)lul2 for all u € C. It follows that for every p € Xn, the
maximal solution u of (9.1.1) is global and sup{llu(r)llx" , , € R} < oo (compare
the proof of Corollary 6.1.2).

Concerning the existence of solutions of (9.1.1) for initial data in -L2(JR3), we

have the following result (see Cazenave and Esteban [62]).

THponpu 9.1.8. Let g be as 'in Theorem 9.1,5 and assume fur"ther that a < 4/3
and, that W € ,s(R3) + r-(R3) for some q > 312. Let

r:max [o+2. 2P .'o ].t 'p-r's-r)'
and let (q,r) be the correspond'ing admi,ssi,ble pai,r. It follows that for euery g €
tr'(Ru), there erists a un'ique solut'ion u € C(R,r2(R3)) n rt"(R.,I'(1R3)) ru2tft,

u1 e .L1qo.(R, (D(A)).) o/ (9.1.1). In add'it'ion, ll"(t)llu : llpllu for all t € lR, ond
u € ,ilc(lR,rp(R3)) for euery adm'iss'ible pai,r (1,p). Further"rnore,'i.f g* + 9'in
,2(R3) and, if u* denotes the solut'ion of @.1.1) with i.niti,al ualue g, then u^ -+ 11

'in u € tril"(re, rp(R3)) for euery admissi,ble pai,r (1, p).

Pnoop. One adapts easily the proofs of Theorem 4.6.4 and Corollary 4.6.5. !

Rpuenx 9.1.9. Under certain assumptions on g, one can adapt the methods
of Section 6.5 and show that some solutions of (9.1.1) blow up in finite time (cf.
Gongalves Ribeiro [150]).

RBURRx 9.1.10. For a certain class of nonlinearities, equation (9.1.1) has sta-
tionary states of the form u(t,r) : ei'tg(r) (cf. Esteban and Lions [ttO]). One
obtains stability results that are similar to those of Sections 8.2 and 8.3. For some

nonlinearities, the ground states are stable (cf. Cazenave and Esteban [62]), and for
other nonlinearities, the ground states are unstable (cf. Gongalves Ribeiro 1151]).

9.2. The Nonlinear Schr6dinger Equation with a Quadratic Potential

We already studied the nonlinear Schrodinger equation in IRN with an external
potential V, with y € rp(Rl/)+r-(RN) for some p > t, p > N/2. Here we extend
these results to the case of potentials U lhat are not localized, but have at most
a quadratic growth at infinity, the model case being U(r) : lrl2. More precisely,
consider a real-valued potential I/ e C-(IRN) such that U ) 0 and

D"U e ,-(RN) for all a € NN

such that lo] > 2. We define the operator .4 on -L2(IRN) by

{ ogl -- {u e Ht(RN) : Ululz € ,r(RN) and Au - Uu e r'(Rt)},
lAu:Lu-Uu foru€ D(A).

We consider the nonlinear Schr<idinger equation

(e.2.r) {o"r*Au*s(u):o
I u(0) : p.
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We begin with the following observation.

Lpurr,re 9.2.1. The operator A i,s self-ad,joi.nt and, < 0 operatoron ,L2(IRN).

Pnoor'. Since 2(RN) c D(A), D(A) is dense in ,'(Rru). Furthermore, given
u,a e D(A),

(Au,u)1": - Re [ ," Yu + UuD .

R'"

We deduce easily that ,4 is < 0 and symmetric. Therefore, it remains to solve
the equation Au - \u: / for every f € ,2(lRN) and ) > 0. This is done eas-

ily by appiying Lax-Milgram's lemma in the Hilbert space 11 : {u € fIl(lRN) :

Ulul2 e ,t(Rlr)], equipped with the norm defined by

llullza : llYull2y, + [ upf + \llull!, for all u € H.
J

[RN

!

We may then apply the results of Section 1.6. In particular, D(A) is a Hilbert
space when equipped with the norm

ll"llTr"t: llAull2,, + llull;" ,

and iA generates a group of isometries (y(f))r€R on the Hilbert space (D(A))*.
The group (I(t))rem restricted to either of the spaces D(,4), X,a,,L2(R.N), X| is a
group of isometries, where Xa is defined by

Xa : {u€ }r1(RN) : Ulul2 € 11(RN)}

ano

llrll'x^ : llvull!, + llull2y" + | u1u12 .

p1",v

In addition, .4 can be extended to a self-adjoint, ( 0 operator on (D(,4))- (which
we still denote by ,4), and ,4 is bounded Xt - X| and ,'(Rt) -' (D(,4))".
Furthermore, we have the following result.

Lpuun 9.2.2. The follouing propert'i,es hold;

(i) Xa.- f11(RN).

(ii) //-1(RN) * XA.

(iii) ,(,4) -'Zp(RN) for euery2<p<q suchthatl>i- #
Pnoor. Claim (i) follows from the definition of Xn, and (ii) then follows by
duality. We now prove (iii) for l[ ) 3, the proof for ly' : 1,2 being easily adapted.
Let u e D(,4) and let / : ,4u. Consid er p > 2 and take the .L2-scalar product of
the equation Lu-Uu: / with lulo-2u. (In fact, a rigorous proof would require a

regularization; see the proof of Lemma 9.2.3 below.) One obtains easily

J l"lo-'lv"lz 3llf li."ll"lloi,l,_" .

RN
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Since p2lule-z19u1z : 4lV(lulp/2)12, it follows from Sobolev's inequality that

ll"ll'"#+ 3 cllf li.,ll"ll?"'"-', .

Hence (iii) follows, by letting p: H+ if l/ > 5 and taking any p < oo if l/
then applying Hdlder's inequality.

Lnvue 9.2.3. If e > 0 and 1 <p ( oo, then (I - €A)-L ts cont'inuous ;rlnRlv) *
ZP(RN), and ll(I - eA)-rllcs.,,r,1 <-1.

Pnoor'. Let 0 e Ct(R+,IR1) be such that both I and 0'are bounded,0 ) 0,
0' ) 0, and d(0) : 0. BY applying the method of proof of Proposition 1.5.1, we
need only show that

(Au,0(lul2)u)r," < 0 for all u e D(A) .

We have

(Au, 0 (lul2 )u) p : (au, g (lul2)u) y" - J u e 11"1\l"l' < (Lu, 0 (lul2)u) 7",
NRN

and we already know that (see the proof of Proposition 1.5.1) (Au, 0(lul2)u)p, 3 0.

The result follows.

Finally, we have the following estimate of (y(t))r€R.

Lpuue 9.2.4. There erist d > 0 and C < x such that T(t)
Zt(RN) - ,o"(lRN) for euery, € (-d, 6), t + 0, and

/i)+r
!

2S Cont',tnuous

(e.2.2)

for euery ?, € ,l(RN) and' ltl < 5, t + 0.

PRoor'. This is a delicate result, based on a calculation of the kernel associated
to 7(t). See Oh 12771, proposition 2.2. n

Rpuenx 9.2.5. Estimate (9.2.2) holds for |tl < d. In fact, (9.2.2) does not in
general hold for allt 10. This can be seen in the special case U(r) : a2lrl2l4,
where there is the following explicit formula (N4ehler's formula; see Feynman and
Hibbs [112])

/ ,, \+ f .

T(t)u(r): { --+ ^ ) 
" 

/ "tta*irnttl"l'+lsl2)cos(ot)-2r'v)) 
u@)da.

\ 4zrz sin(ot) / J,

We see that ll7(t)ullr{",,"*1 < @/Ari,lsin(r,.'t)l)# if sin(c..,1) l0 and that this
estimate is optimal.

Consider now a real-valued potential V : IRN -+ IR such that V a ff1nN) +
,-(RN) for some p )- L, p > N12.

Let
g(u) : vu * f (',u(')) + (w * lul2)u

a
llY(t)ullr- < ;:,-n- ll"llz,'

Itlz
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as in Example 3.2.11, and set

G(u): | {I"Oru(r)1z 
+ F(r,u(r)) +f;W* lul2)(z)lu(af}a,

[RN

andlf^rr^
E(u) : i J V"f dr +, J uWf dr - G(u).

NRN RN

We have the following result (see Oh [277, 278) for a similar result in the case where
g(u) : -)lul"u).

Tsponpu 9.2.6. If g i,s as aboue, then the following properties hold:

(i) For euery (p e X,q,, there erist T^in(e),7^u*(p) > 0 and a un'ique, man-
,imal solut'ion u e C((-4rir,?rru*), X,q) n Ct((-?r"i",?*^*),X|) of prob-
Iem (9.2.1). The solut'ion u 'is ma,rimal i,n the sense that 'if T*u* < oo
(respecti,uely 4.'i' ( x), then ll"(t)ll" -+ oo os t I T^u* (respect'iuely, as

t J -?'"i").
(ii) There'i,s conseruati,on of charge and energg, that'is,

llu(t)ll;z : llplln" and E(u(t)): O(p) for all t € (-?,,n,4o.").

(iii) There 'is cont'inuous dependence of the soluti,on on the ini.tial ualue 'in the
sense that both functions T^in(g) and T^"*(g) are lower semiconti,nuous,
and, th,at if p* - 9 i,n Xn and i.f [-Tr,Tr] c (-?-i.(p),7^,*(p)), then
ltm + u i,n C([-T1,Tz],X,q), where u* is the marimal solut'ion of (9.2.1)
wi,th i,ni,tial ualue g^.

(iv) If 9 e D (A), then u €C( ( -4.t", 4n.* ), D(A) ) nCr ( ( -?-i,, ?,,.* ), r' (Rt) ).

Pnoor'. It follows from Lemmas 9.2.1 to 9.2.4 that ,4 and g satisfy the assumptions
of Theorems 4.12.1 and 5.7.7. tr

Rrrrlenx 9.2.7. By conservation of energy and Lemma9.2.2(i), there exists d > 0

such that it llpllx" ( d, then the maximal solution z of (9.2.1) is global and
sup{llu(t)ll7s o : t € R} < * (compare the proof of Corollary 6.1.5).

Rnv,qnx 9.2.8. In addition to the assumptions of Theorem 9.2.6, suppose that
W+ ers(RN) +r-(R.N) for some Q ) 7, q > Nl2,and that exists 0 < 6 < 4lN
such that F(r,u) < C0 + lul6)lul2 for all u € C. It follows that, for every I € Xe,
the maximal solution u ot (9.2.I) is global and sup{llu(t) llx, ' 

, € R} < oo (compare
the proof of Corollary 6.L2).

Concerning the existence of solutions of (9.2.1) for initial data in .L2(lRN), we

have the following result.

Tunonpv 9.2.9. Let g be as 'in Theorem 9.2.6 and, assume further that a < 4lN
and that W e trq(]RN)+roo(RN) for some e) I, e> N12. Let

f 2p 2q )r:max<a+2)----rr-j;),
I p-L q-t)
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and let (q,r) be the corresponding admi.ssi.ble pai,r. It follows that for eaery I €
,'(Rt), there erists a unique solut'ion ?r € C(lR.,r'(Rt))n rfl".(lR.,r'(R.N)) ?rzrh

u1 e ,Lfu"(R, (D(,4)).) of (9.2.r). In add'it'ion, ll"(t)llz" : llpl}," for all t € IR, and
u € ril.(R,rp(RN)) for eaery admissible pai,r(1,fi. Furthennore,'if g^-+ 9 in
,'(Rt) and if u^ denotes the solut'ion of $.1.1) with i,ni,ti,al ualue g, then u* --+ u
in u € tr["(m, Ip(RN)) for euery admi,ssible pai,r (1, fl.

PRoor'. One adapts easily the proofs of Theorem 4.6.4 and Corollary 4.6.5. D

RBrrtaRx 9.2.10. Under certain assumptions on g, one can adapt the methods of
Section 6.5 and show that some solutions of (9.2.1) blow up in finite time. More pre-
cisely, if we assume that lr. VUI < C(l"l' * U) and that g satisfies the assumptions
of Proposition 6.5.1, one can show that (with the notation of Proposition 6.5.1)

The proof of the above inequality is similar to that of Proposition 6.5.1. Assume
further that g satisfies (6.5.24), (6.5.25), and (6.5.26), and that

u +!r-vil > o.

If.9 eXa is such that | . le(.) e ,'(IRt) and E(p) < 0, then T^u*(p) ( oo and
T^i,(p) < oo (compare the proof of Theorem 6.5.4).

RpuaRx 9.2.17. In the model case t/(r) : lrl2 and g(u) : \lul"u, where .\ > 0

and 4lN S a < 4lW -2) (AlN So ( €, if l/ : 1), it follows from Remark 9.2.10
thatif e€Xe issuchthatE(9) (0,thenT^"*(p) (ooandT^i"(p) (oo. Fora
more detailed study, see Carles [51, 52, 53], Fukuizumi [117], and Zhang 1369, 370].

9.3. The Logarithmic Schriidinger Equation

Let O c IRN be any open domain. We consider the following nonlinear Schrcj-
dinger equation:

(e.3.1) { o"r* A'u*vu*ulog(lul2) : g

I u(0) : e,

where V is some real-valued potential. The equation (9.3.1) arises in a model of
nonlinear wave mechanics (see Bialinycki-Birula and Mycielski [31]). We cannot
apply the results of Section 3.3 for solving the problem (9.3.1) because the function
z H zlog(lzl2) is not Lipschitz continuous at z : 0, due to the singularity of
the logarithm at the origin. Furthermore, it is not always clear in what space
the nonlinearity makes sense. For example, if Q : IRN and u € fIl(lRN), then
ulog(lul2) does not in general belong to any Lp for p <2, nor to ,F/-l(mN) (tfris

f"(t) : r67(e)+ /rstlr +2)F(u)- ar/Re(/(u)a))dr
NRN

*' | (" *;" "") tuf d,r * n | ((' . l" "r)* t,t,) tuf dr
ITN RN

-'I (,*r" ou) tuf dr
RN
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is again due to the singularity of the logarithm at the origin). However, we will
solve the problem (9.3.1) by a compactness method, but before stating the precise

existence result, we need to introduce some notation. Define

F(r) : lzl2log(lzl2) for every z e C.

Furthermore, let the functions A,B,a,b be defined by

( -s2log(s2) if o(s(e-3
,4(s) :i ^" ;_; _r ,r : _; B(s) :F(s)+A(s),

1 cs-* 4e-3s-e-3 ifs) e -,

and A(s) B(s)
o(s) : -J-, 0(s, : ;

Extend the functions a and b to the complex plane by setting

a(z) - 3o(l"l), b(") : \a(l"l) for z €C.,2 t'0.l2l lzl

It follows in particular that ,4. is a convex Cl-function, which is C2 and positive
except at the origin. Let A* be the convex conjugate function of A (see, e.g.,

Brezis [43]). The function .4* is also a convex Cl-function, which is positive except
at the origin. Define the sets X and X' by

X:{u€rh"(Q) :,A(lul) €,1(f))}, x': {ue -r,1."1o) :,A"(lul) €r1(o)}.
Finallv. set

and ( r /r^,r\ \
llullx, :inf{,t > 0' I A"(+) S i 5 for u€ x' .t I \e/- )

We have the following results (see Cazenave [58], Iemmas 2.1 and 2.5, and Kra-
nosel'skii and Rutickii [218]).

Lrrranae 9.3.1. The spaces X and X' are l'inear spaces. The inner product spaces

(X, ll . lly) and (X',ll ' lly,) are refieriue Banach spaces and' X' i's the topologi'cal
dual of X. Furtherrnore, the following properties hold:

(i) If u* 
^=ou'in 

X, then A(1"^l) 
-*t 

A(l"l) i'n LL(Q).

(ii) If u* + 1t, a.e. and i'f" m-a

Io1u-l) * [e11u1y.*,
{-, *'* 

{
then un 

^-1, 
i'n X.

Ls\4\44 9.3.2. The operator u e a(u) maps cont'inuouslg X - X'. The 'image

under a of a bounded subset of X i,s a bounded subset of X' .

Finally, consider the Banach space 14/ : I/oI(O) o X equipped with the usual
norm. It follows from Proposition 1.1.3 that

W*:H_L(Q)+X'.

ll,llx : r"r 
{r , r, lr(#) = '} ror u € X

cl
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Define

r f ._,, I f -.,,, r t
E(u):; lV"f -i lvWf -; ll"l'log(lul2) forevery u€w,

zJ zJ zJooo
where the potential V e Lo(A) +r-(O) for some p) 1,p> Nl2.We have the
following result.

Lpuua 9.3.3. The operator L : u,-, L,u-tVu* ulog(lul2) maps cont'i,nuously
W ---+ W*. The 'image under L of a bounded subset of W i,s a bounded subset of
W*. The operator E 'is conti,nuous W --+ IR,

PRoor'. One easily verifies that for every € ) 0, there exists C. such that

(9.3.2) lb(u) - b(z)l S C"(lul' + lul")lu - ul for all u, u € C.

Integrating inequality (9.3.2) on Q, and applying Hcilder's and Sobolev's inequali-
ties, we obtain easily that u *, b(u) maps continuously Hot(0) -- H-r(0) and that
the image under b of a bounded subset of I/01(O) is a bounded subset of I/-1(A).
The same holds for A, and also for v ++ Vu (by Holder's inequality), and so the
first part of the statement follows from Lemma 9.3.2. Finally,

(e 3 3) E(u):| | tv"r -; I vtuf +l I ou , -; Isl,t)
oQQC,

The first term in the right-hand side of (9.3.3) is continuous Ilor(Cl) --+ JR, and it
follows from Lemma 9.3.1(i) that the third term is continuous X -* X'. Further-
more,

lB(r) - B (u)l < C"(lul'+" + lulr+")lu - ul

by (9.3.2). Integrating the above inequality on f,), and applying Hcilder's and So-

bolev's inequalities, we deduce that

f
I lB(ul- B(")l<c(1*llull21y' + ll"ll?r')llu-ullp for all u,o € r/01(Q).

f)

Therefore, the fourth term in the right-hand side of (9.3.3) is continuous r/j(CI) -'
R.. Finally, if V : V1 + V2 with V1 e Ip(O) and V2 e .L@(Q), then

(e.3.4)

Thus the second term in the right-hand side of (9.3.3) is continuous Ilj(O) -* m,

which completes the proof. !

Our main result of this section is the following (see Cazenave and Haraux [63]).

THEoREM 9.3.4. Let V be a real-ualued potential such that V e Lp(A) + ,-(f,)
for some p > I, p > N12. The followi,ng propert'i.es hold:

(i) For euerA g eW, there erists a un'ique, morimal solut'ion u € C(IR,W) n
Cr(lR,W*) of problem (9.3.1). Furlherntore, supre* llu(t)llry < co.

I lvll"l, S ll% llr" ll"ll, .- + llvzlll.-llull1, .

I Li-
o
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(ii) There 'is conseruation of charge and energy; that is,

ll"(t)llr, : llpllu and E(u(t)) : n@) for alt t e R.

(iii) There 'is continuous depend,ence of the soluti,on on the i,ni,ti,al ualue 'i,n the

sense that if 9* '--+ I 'in W, then tum + u i,n W uniformly on bounded

'interuals, where u* 'is the marimal solut'ion o/ (9.3.1) wi,th i.niti,al ualue g^.

For the proof of Theorem 9.3.4, we will use the following two lemmas.

Lplr.lue 9.3.5. We haue

ltm (1olog(lol2) - ulog(lul2)Xt - u))l < alu - ul2 for alt u,a e C.

PRoor'. Note that

Im ((u log(lul2) - ulog(lul2))(t - u)) : 2(log lul - log lul)Im(uu - ut) .

Assuming, for example, 0 < lol < lul, we see that

t,,l _lul .lu_ulllog lul - Iog lull 
= = lrl lrl

and

lIm(uu - uo)l: lu(u - o) + o(a - u)l < 2lullu - ul.
Hence the result follows. n

Lnnrne 9.3.6. Gi,uenk € N, selOr: f,)n{r e O: lrl <k}. Let (u-)*ex C
,*(R,I/d(O)) be a bounded sequence. If (u^la)*Ery is a baunded sequence of
lVt'*(R,H-l(Oe)) for euery k e N, thenthere erists a subsequence, wh'ichwe sti,ll
d,enote bgr (u-)-en, and there ex'ists u € ,-(lR,f/d(O)) such that the followi,ng
propert'ies hold:

(i) ,ln* € l4ll'*(lR,Il-t(fl*)) for euery k e N.

(ii) um(t) - u(t) i'n H[(O) 0's nL '--+ oo for euery t e R.

(iii) For euery t e. R, there erists a subsequence mi Euch that umi (t, r) -, u(t, r)
as le '- a for a.a. r e {1.

(iv) un(t,r) - u(t,r) as m "+ a for a.a. (t,r) e JR x o.

PRoor'. Fix k e N. (r-lou)-Es is a bounded sequence of ,L-((-k, k),,F/1(O6)) n
W',*((-k,k),H-|(Qp), so that (by Proposition 1.1.2) there exist a subsequence
(which we still denote by (u-)-eN) and u € ,-((-k,k),Hl(Ok)) such that
u^(t)lor - u(t) in f1t(O1). Letting k -- oo and considering a diagonal sequence,

we see that there exist a subsequence (which we still denote by (u-)*6ry) and
u € ro"(1R,//t(f,)) such that u*(t)la* - u(t) in Hl(Ok) for every k € N and every
, € IR. This implies in particular that u*(t) - u(t) in Ht(Q). Therefore, u €
,-(R,ff;(Cr)), and (ii) holds. In addition, since the embedding f/t(Cl*) .- L2(Qp)
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is compact, we have u*(t)la* -* u(t)lou in ,2(Ok) for every k e N and every t € JR.

Applying the dominated convergence theorem, we deduce that

- "l' ;:L0 for every k € N.

In particular, there exists a subsequence mi fot which u-, *+ u a.e. on (-k, k) x O;
as j --+ m. Letting k --- oo and considering a diagonal sequence, we see that (iv)
holds. F\rrthermore, given t € lR and k € N, there exists a subsequence rn7 for which
u*j (t) -- u(t) a.e. on Q; as J - oo. Letting k --r oo and considering a diagonal
sequence? we see that (iii) holds. Finally, it follows from (i) and Remark 1.3.13(i)
that ulau e l4lr'-(R.,ff-r(Or)). Hence (i) is established. n

Pnoor oF THEoREM 9.3.4. We apply a compactness rnethod, and we proceed

in four steps. Consider g e W.

Srpp 1. Construction of approximate solutions. We have V :Vr * Vz with
V1 e Lr(A) and V2 € ,-(Cr). Given rn € N, define the potentials Vf and Vi by

vr:@: 
{ f""' ',i',2lill,iZ ror j :1,2

I-r | ,^
Qr

Define the functions o- and b^ by

(a(z) itlzl>_j h t,\_a*(z): { ",r' ..',', -T Lm\o)-
I mza(fi) it lzl t fi,

{uAl iflzl<m
| *b(^) if lzl> m.

1r ^ lf ^ 1r ^ i f 1lE^(u):: llVul'-; lV{l"l'-; lu{1"(+; lo-(lul) -; /v-(l"l),zJ zJ zJ zJ z.l
oof,2f,lr)

Finally, set

s*(u) : V(u + vi, - a*(u) + b^(u) for u € Hd (c)) .

Since 7f , Vi e ,-(f,)) and both a* and b^ are (globally) Lipschitz continu-
ous C --+ C, we see that g,,, is Lipschitz continuous Z2(O) ---+ ,2(Q). It follows
from Corollary 3.3.11 that there exists a unique solution u- e C(lR,aol(n)) n
C1(lR, FI-r (Cl)) of the problem

(e.3.5)

In addition,

(9.3.6) llu^(t)ll1z : llpllr, and E*(1u*(t)) : E*(p) for all t € JR,

where

and the functions O- and ilr- are defined by

! l,"f I Lu* * g*(um) : g

I u-(0) : cp.

a*Q) :; 
lr'o 

a*(s)d,s and V^(z) :; 
lr'o

b^(s)ds for all z e C.
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SrBp 2. Estimates of the approximate solutions. It follows from (9.3.6) that
u- is bounded in ,L-(lR, It(O)). Note that, by the dominated convergence theorem,

(e.3.7) E^(p) *:Ln@).
Applying (9.3.6) and (9.3.7), we deduce that (note that iD- ) 0 and compare
inequality (9.3.4))

ll"* (t) ll n' < C + C llv{ ll u llu* (t) ll21r' + llV ^ 
(u* (t) ) | | r' .

Note that llvillu < llyrlll'. Note also that we may assume that ll7rlll" is arbi-
trarily small, by modifying V2. In particular, we may assume that Cllvf ll1' 3 1-lA.

Finally, one easily verifies (see the proof of Lemma 9.3.3) that there exists C such

that

therefore,

(e.3.8)

.1
ll,p-(u-(r))11,, < illr-(r)ll?r, + cllu^(t)1127, ,|1.'..\''||IJl_4||

u- is bounded in tr-(R, Ho(f,l)).

g*(u*) is bounded in .L-(lR., r;& (C),,)),

Finally, it follows from elementary calculations that for every e > 0, there exists C.
such that

ls*@)l < lv{ll"l + lv{llul + C,(lull-'+ lrll+') .

We deduce easily from Holder's and Sobolev's inequalities and (9.3.8) that, given
k€N,

(e.3.e)

where Qr : 0 r\ {r e C) : lrl < k}. In particular, (g*(u^))m€N is bounded
in.L-(lR,H-l(Ok)), and it follows from (9.3.5) that (u-loo)-ex is bounded in
wt,-(R, H-t(clr)).

Srnp 3. Passage to the limit. By Step 2, (u-),,,ex satisfies the assumptions
of Lemma 9.3.6. Let z be its limit. It follows from (9.3.5) that, for every tft € 2(Cr)
andevery@e2(R),

[ $"f t Lu^ + s*(u*),',lrlo,,ooft)at:0.
J
R

Furthermore, the function h*(t,r) : g^(um)rh@)Q(t) has compact support. We

therefore deduce from (9.3.9) that h^ is bounded in L# (R. x f,)). By property (iv)
of Lemma 9.3.6,h*--+ (Vu+ulog(lul2))rhf a.e. on iR x O. Since h- has compact

This means that
r f f

(e.3.10) | (-(tu^,rbl6' (t) -t \u*, Nil6(t))dt + I I s*@-)r,6 dr dt : 0 .

J JJ
R RA

It follows easily from (9.3.8) and from property (ii) of Lemma 9.3.6 that

[ ?\uu*,rrio'G) * (u*,6Eyg(t))dt *-LJ
(e.3.11) R

I euu,rro'G) + fu, z.,h)dft))dt .

J
]R



9.3. THE LOGARITHMIC SCHRODINGER EQUATION 297

support, it follows from Proposition 1.2.1 that h* ---+ (Vu*uloe(l"l'))l!d in ,Ll(R x

f,l). Applying (9.3.10) and (9.3.11), we thus obtain

f rr
I G\o",rt)O'(t) + \u, N!)Q(t))dt + | I fv" * u log l"l\'h[ d.r d,t :0 ,J' JJ'

IR

which implies that

IRO

| (o"t * Az * Vu t ulog lzl2, 1r)D,,D!(t)dt : 0.

R

It follows that, for all t e JR,

(9.3.12) iut + Lu*Vu* ulog(lzl2) :0 in H-l(Ok) for everv k e N.

In addition, u(0) : g by property (ii) of Lemma 9.3.6. Finally, we deduce easily

from (9.3.6), (9.3.7), and (9.3.8) that lliD-(u-(t))llz,'is bounded (see Step 2)'

Applying property (iii) of Lemma 9.3.6 and Fatou's lemma, we deduce that u(t) e X
for all t € lR and that

sup llu(t)ll;s 5= oo.

Since X is reflexive, it follows that u is weakly continuous IR -* X. In partic-
ular, u € ,-(lR,X) (see Remark 1.2.2(i)). Therefore, u € ,oo(lR,W), so that
u e Wr'@(R,W") by equation (9.3.12) and Lemma 9.3.3. In particular, equa-

tion (9.3.12) makes sense in W* for all i e R. Therefore, we may take the W -W*
duality product of it with iu, and we obtain that

(u1,u)s-,yt :0 for all t € JR ,

which means that the function t r-' llu(t)112"2 is constant; hence there is conservation

of charge. Thisimpliesthat foreveryd e R, llu-(t)llz, - ll?r(t)ll1:, andsou-(t)---+
u(t) in L'(O). Therefore, by boundedness of u- in fli(O) and Holder's and So-

bolev's inequalities, u*(t)'- u(t) in 1,0(C)) for every 2 1q < # tZ < q < oo

if N:1,2). We now may pass to the limit in (9.3.6). We apply the weak lower

semicontinuity of the -Fl1 norm for the gradient term, we apply property (iii) of
Lemma 9.3.6 and Fatou's lemma to the term O-' and we apply Hcilder's inequality
to the other two terms. Taking (9.3.7) into account, we finally obtain

(e.3.13) E(u(t)) < E(e) for all t € R.

In conclusion, we have obtained the existence of a function u € ,o"(R, I4l) n
il/t'-(R, W'") that solves problem (9.3.1) and for which there is conservation of
charge and the energy inequality (9.3.13).

Srpp 4. Conclusion. Let us first prove uniqueness in the class .L@(IR., W) ft
l7t'-(R, W.). Let u and u be two solutions of (9.3.1) in that class. On taking
the difference of the two equations and taking the W - W* duality product with
i,(u - u), we obtain that

(u, - ur,a - u)w.,w: - Im [ @bs(lrlz) - u log(lul2))(t - d) .

J

o
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In view of Lemma 9.3.5, this implies that

Uniqueness follows by Gronwall's lemma. Next, let u be a solution of (g.3.1).
Considering the reverse equation and applying uniqueness (see Step 1 of the proof
of Theorem 3.3.9), we deduce that u satisfies conservation of energy. Furthermore,
by weak tr2 continuity and conservation of charge, u € C(lR,rr(O)). Since ,u is
bounded in Hd(fl), it follows easily that the terms

Thus, by conservation ofenergy,

llr(t) - u(t)1127" 
= 

t 
lo' llr(r) - 

u(s)112", ds .

rf
I Vl"l' and I nfu) are continuous lR -- IR..t/

OO

(e.3.14)

Since both terms in (9.3.14) are iower semicontinuous lR -+ R (the second one by
Fatou's lemma), we deduce easily (see Cazenave and Haraux [63], lemma 2.4.4)
that they are in fact continuous lR. ---r lR. In particular, u € C(lR,H01(fr)) and
u € C(lR, X) (bV Lemma 9.3.1(ii)). Therefore, u e C(lR, W), and by the equation
and Lemma 9.3.3, u € Cl (R,I4z*). Finally, one proves continuous dependence by a
similar argument (compare Step 3 of the proof of Theorem 3.3.9). This completes
the proof. tr

Rguenx 9.3.7. Strangely enough, one can apply the theory of maximal mono-
tone operators to the equation (9.3.1). In particularT one can obtain stronger regu-
larity if the initial value is smoother, and one can construct solutions of (9.3.1) for
initial data in ,2(O) (see Cazenave and Haraux [63] and Haraux [lb7]). Note that
one does not know whether the L2 solutions are unique.

RBvenx 9.3.8. At least in the case where f) : IRN and l/ :0, equation (9.3.1)
has standing waves of the form u(t,r) : e"'tg(r) for euery ar € lR. The ground
state, which is unique modulo space translations and rotations (cf. Section 8.1) is
erplicitly known. It is given by the formula

P(r): "o*"-# ,

and it is stable in the sense of Section 8.2 (cf. Cazenave [58] and Cazenave and
Lions [66]). Equation (9.3.1) has other interesting properties that are unusual with
regard to Schr<idinger equations when f,) : lR.N. For example, it follows easily
from conservation of energy that for every solution z of (9.3.1) (cf. Cazenave [58],
proposition 4.3)

iPfi '#"" 
llz(t)ll',' > o'

Another interesting property is that every spherically symmetric (in space) solu-
tion of (9.3.1) has a relatively compact range in L'(q (cf. Cazenave [58], proposi-
tion 4.4).

t^t
I lV"l" + | A(lul) is continuous lR. - lR.

JJoa
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9.4. Existence of Weak Solutions for Large Nonlinearities

LetQ C IRN be anyopendomain, andlet 4 > 0ando > 0. Considerthe
following problem:

(e.4.1) I uut * L'u - rylulu: o,

I u(0) : e.

We already know that if c < 4lW -2) (a < oo, if ly' :!,2), the problem (9.4.1)

has a solution u € ,-(R,I/ot(fl))n wl'*(lR.,fl-t(CI)) for every p € H01(o) (see

Sectiong.4). Inaddition, if Q:lRN,orif N:1,orif N:2 anda (2,the
solution is unique (see Corollary 4.3.3 and Remarks 3.5.4 and 3.6.4). However,

those results do not apply when a > al@ - 2). We present below a result of
Strauss [324] (see also [321]) that applies for arbitrarily large a's. Before stating
the result, we need some definitions. Let us denote by V the Banach space

y:Hol(c))nr"+2(CI)

equipped with the usual norm (see Proposition 1.1.3). Since 2(fl) is dense in both
frd(ft) and .L"+2(o),

v*:H-r(Q)+r3#(Cr),
where the Banach space .F/-l(Q) + l#(Q) is equipped with its usual norm (see

Proposition 1,1.3). Since A is continuous ff61(fl) -* fI-l(O) and u -' lulou is

continuous tra+2(Q) -- L#(f,)), it follows that the operator

IV --+V-

I r* L,u-qlul'u

is continuous. Therefore, if. u € ,oo(R, V) nWr'*(R, V*), then equation (9.4.1)

makes sense in V". FinallY, we define

E(u):* [p"f+--L- [WY*' forau u€v.zJ a+zJ

We have the following result (see Strauss [324]).

THsonpt\4 9.4.1. Let 11 > 0 and, a ) 0. It follows that for eaerA I e V, there

ex,ists a solut'ion u € ,oo(lR, V) nWL'*(R, y*) of equat'ion (9.4.1) that sati'sfies

ll"(t)llu : llpllu

E(u(t)) s E(e)

Rpunnx 9.4.2. Note that, in particular. u € C(R,y*), and so u is weakly
continuous R - f4(0) and lR - tr"+2(f)); in particular, u(t) € V for all t e lR.

Therefore, u(0) makes sense (in V) and E(u(t)) is well defined for all , € lR.

Rertanx 9.4.3. Note that when a < 4lW -2) (" ( oo, if .ly' : 1,2), then
14(CI) * L"+2(Q), therefore, 7: flol(O).

(e.4.2)

and

(e.4.3)

for all t eR.
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RBu.lnx 9.4.4. As observed before, when c < 4lW - 2) (" < oo, if N : 1),
Theorem 9.4.1 follows from the results of Section 3.4.

Before proceeding to the proof of Theorem 9.4.1, we establish the following two
lemmas.

LButvta 9.4.5. V and,V* are refl,eriue.

PRoor'. We need only show that V is reflexive. By Eberlein-5mu[an's theorem,
we need to show that, given any bounded sequence (u-)-en c V, there exist a
subsequencen?7. and u€V suchthat ?.tr*o^uinV ask--+oo. Let p:a+2. We
recall that if u e V and ,e € V", then

(u,p)v,v, : \u,erln:.,H-t + \u,gz)ro,r,, ,

where g : pr*92 with W e H-1 (Q) and, p2 € Ip(Q) (see Bergh and Lcifstrom [28],
proof of Theorem 2.7.1). Note that there no ambiguity concerning the possible de-
compositions of rp, since if 1b e H-r(A) o Lp' (Q), then (2, ,lt) n;,n-, : (u,$) 7,,7o, .

If (u-)-ex is bounded in V, then, in particular, (r-)-ex is bounded in H01(O)
and in L"+2(Q).Since both spaces are reflexive, there exists a subsequence rnp and
there exist u € I/d(O), u e Lo+z(Q) such that u^^ - u in I4(0) and, u,^* ^ 1)

in Z'+2(O). In particular, umr" + u and u^r -+ ?J in D'(A); hence ar : u e V. It,
follows that for ever/ cp1 € H-l(O) and cp2 € Lp(Q),

\u^0,9t)nt,H-1 + \u**,pz)r"n,r,', ff*\u,vt)nt,n-r * (u, gz)rp,rp, .

This implies that u*o ^ u in V. tr

Lpvue 9.4.6. Let (u*)*6ry be o bounded, sequence en .L-(lR,ffd(O)) and in
Wt,-(R,V"). h follows that there erists a subsequence, wh,ich we still denote by
(u-)-ery, andthere eristsu € r*(lR,H01(CI))nlyr,-(R,y*) suchthatthefollowi,ng
propert'ies hold,:

(i) u^(t) .. u(r) tn H[(O) as nt, + x for euery t eF-.
(ii) For euery t e R, there erists a subsequence rnp such that u*k (t, r) -, u(t, r)

ask'-oofora.a.r€dl.
(iii) u^(t,r) -- u(t,r) as m -+ 6 for a.a. (t,r) e IR x Cl.

PRoor'. Let k e N and let O6: On{r e Q;l"l <k} for k e N. Consider an
integer q > Nl2. It follows from Sobolev's embedding theorem that.Floq(O6) -,
Lo+'(Qr), from which we obtain by duality Z*#1Oo; .-- H-q(Ct/"). Therefore,
u*ln* is bounded in .L-((-k, k),111(Ok)) nW1,*((-k,k), H-q(Qk)). Therefore
(by Proposition 1.1.2), there exist a subsequence (which we still denote by (u-)-ex)
and u € ,Lo"((-k, D,HL(A;)) such that u^(t)lau - ?r(r) in flr(CIk). Letting
k -t oo and considering a diagonal sequence, we see that there exist a subsequence
(which we still denote by (u-)-ero) and u € r-(lR,fft(O)) such that u-(t)loo -
u(t) in I/t(Or) for every k e N and every t e IR. This implies in particular that
um(t) ^ u(t) in flt(O). Therefore, u € roo(lR,I/d(O)), and (i) holds. In addition,
since the embedding f/i(f)r) -, L2(Qp) is compact, we have u*(t)lor--- z(t)ls*
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in .L2((-l*) for every k e N and every, € lR.. Applying the dominated convergence
theorem, we deduce that

frft Ilu*-ul2' o foreverYk€N'
J _ulr rn+oo

In particular, there exists a subsequence mi for which umi -4 u a.e. on (-k, k) x 07.

as j --+ oo. Letting k -.+ oo and considering a diagonal sequence, we see that (iii)
holds. Furthermore, given t € lR and k e N, there exists a subsequence mj for
which umi (t) -- u(t) a.e. on O7. as j --+ oo. Letting k --' oo and considering a

diagonal sequence, we obtain (ii). Finally, it follows from (i) and Lemma 9.4.5

that u-(t) - u(t) in V (hence in I/") for all i € IR. By Theorem 1.2.4 and
Remark 1.3.13(i), u € ,o"(lR, V) nwr'*(R, y*). This completes the proof. tr

PRoor oF THEoREM 9.4.2. We construct the solution u by a compactness
method, and we proceed in three steps.

Srpp 1. Construction of a sequence of approximate solutions. Given an in-
teger nr ) 1, let

r / -\ _ | -qlzl'z if lzl < m
lm1a1- \ _n^", if lzl> m.

In particular, /- is globally Lipschitz continuous C -- C. Let

f tzl
G*(z) : I f^(s)ds.

Jo

Givenu€lfol(Q), let

S^(u)(r): f*(u(r)) for a.a. r € O

and

E^(u):+ llvul2+ lt*@).
'{', *

Applying Corollary 3.3.11, we see that there exists a unique solution u- €

c(R, /4(f))) n cl(lR, r/-r(o)) of

(e.4.4)

Furthermore,

(e.4.5) ll"*(t)llu : llpll*
and

(9.4.6) E*(u^(t)): E^(p) for every t e R.'

Srnp 2. Estimates of u^. Since G- > 0, it follows from (9.4.5) and (9.4.6)

that

(e.4.7)

and

(e.4.8)

{ ,"7 * A,un * g^(um) : g

L u*(0) : p.

u- is bounded in .L-(lR,flot(Cl))

G*(u*) is bounded in .L*(1R, rt(Q)) .
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On the other hand, one easily verifies that
, , r,9.c.2lS*Q)l;-' < (o * 2)G-(z) for all z € C and all m e N.

Applying (9.4.8), we deduce that

(e.4.e) g*(u^) is bounded in ,L-(lR,2,3# 1Cr); .

Therefore, it follows from (9.4.4) that

(e.4.10) ul" is bounded in ,L-(lR,V").

Srep 3. Conclusion. It follows from (9.4.7) and (9.4.10) that we may apply
Lemma 9.4.6 to the sequence un. Let u be the limit of u^. By Lemma 9.4.6(i)
and (ii), the weak lower semicontinuity of the i/I norm and Fatou's lemma, we
deduce that u(t) € Z'+z(Q) for every t € lR and that (9.4.3) holds. In particular,
u e Z-(lR.,r"+'(Q)), and so u e -t6(1R,,7). Furthermore, it follows from prop-
erty (i) that u(0) : 9. Finally, we deduce from the equation (9.4.4) that for every
d € 2(R) and every $ eD(0),

[ @, * Lu* + s^(u^),r/,)o,,ro(t)at: o.
]R

This means that
f tl(e.4.11) I ?(tu*,1r)0',ft) t (u*,Nil^(t))dt+ I I s*(u*)t6drdt :0.

J JJ
]R RO

It follows easily from (9.4.7) and from property (i) of Lemma 9.4.6 that

(e.4.12)

I euu*,rb)6'(t) r (r^,o.b)ae))dt ;:i
o,

J e<t",$)6'(t) + (u,N!)S(t))dt.
]R

Furthermore, the function h^(t,r) : g^(u*)rh@)4(t) has compact support.
Therefore, it follows from (9.4.9) that h^ is bounded in L#(R x Cl). By prop-
erty (iii) of Lemma 9.4.6, h^ -- -qlul'u${ a.e. on lR. x O. Since h- has compact
support, we deduce from Proposition 1.2.1 that h* -- -qlul"ut!@ in Ir(lR x f)).
Applying (9.4.11) and (9.4.12), we thus obtain

r tr
| (-(t",'b)6'(t) + (u, Nlt)Q(t))dt - n I I lul'{d dr dt : 0 ,
J J Jn]R ]R

which implies that

J {n"r* Au - rtlulou,rlt)o,,o|ft)at:0.
JR

Since u € .Loo(IR,V), we obtain easily that u1 e ,L-(R, l/*) and that u satis-
fies (9.4.1). It remains to establish conservation of charge. This follows easily by
taking the V - 1/* duality product of the equation with iu1 € V*. This completes
the proof.



9.5. COMMENTS

RsN4enx 9.4.7. In the case where a>  l(N -2),it is not known whether the
solution given by Theorem 9.4.1 is unique or not, even when Q : lRN. We do not
know either whether the energy is conserved.

Rnuenx 9.4.8. Remember that Theorem 3.3.5 applies to the case ? < 0 and

a<al(N -2). Onthecontrary, inthecase a>  l(N -2), themethodof proof of
Theorem 9.4.1 does not apply when 4 < 0. We do not know whether it is possible

to construct (local) solutions of (9.a.1) in this case.

9.5. Comments

The conservation laws that we used in these notes are conservation of charge

and energy, and the pseudoconformal conservation laws. They are related to the
invariance of the equation for some groups of transformations. On this subject,
consult Ginibre and Velo [tSO], Olver [285]. When N: I and 9(u) : )lul2u, there
are infinitely many conservation laws (cf. Zakharov and Shabat [367]), while in
general, there do not seem to be other useful conservation laws (cf. Serre [310]). In
relation with the invariance properties of nonlinear Schrodinger equations, one can

construct families of explicit solutions for some nonlinearities (cf. Fushchich and

Serov [121, 122,723]). Unfortunately, these solutions do not in general belong to
the energy space.

Nonlinearities of different types than those studied here were also considered.

See Baillon, Cazenave, and Figueira [9], Cazenave [57], Stubbe and Vazquez 1328,
329], Adami, and Teta [2] and Adami, Dell'Antonio, Figari, and Teta [1], and

Colin [85, 86].

Quasilinear Schr<idinger equations require in general completely different meth-
ods for proving the existence of solutions, making an essential use of the smoothing
properties of the Schr<idinger group. See, for example, Biagioni and Linares [29],
Chang, Shatah, and Uhlenbeck [77], Chihara [79], Colliander et al. [88, 91],

Hayashi [166], Hayashi and Hirata [170], Hayashi and Kaikina [171], Hayashi, Kaik-
ina, and Naumkin [173], Hayashi and Kato [176], Hayashi and Naumkin [180],
Hayashi and Ozawa [190, 191], Katayama and Tsutsumi [201], Kenig, Ponce, and

Yegal2I2,215], Klainerman and Ponce [217], Ozawa and Tsutsumi1292), Taka,oka

[331, 333], and Y. Tsutsumi [3a6]. See also Lange 12221tor a suggestive numerical
study.

Systems of Schrddinger equations or coupled systems with other equations
(Klein-Gordon, for example) are also of a great interest. See, for example, Cipo-
latti and Zumpichiatti [84], and Colin and Weinstein [87] (systems of Schrcidinger

equations); Castella [54] (Schrodinger-Poisson system); Baillon and Chadam [10],
Bachelot [S], and Ozawa and Tsutsumi [290] (Schrcidinger-Klein-Gordon system);
Ginibre and Velo [145], Guo, Nakamitsu, and Strauss [156], Nakamitsu and Tsut-
sumi [254], and Y. Tsutsumi [345, 347] (Maxwell-Schrcidinger system); Schochet

and Weinstein [307], Lee ,.2241, Ozawa and Tsutsumi [289, 291], Glangetas and

Merle [146, 147], Kenie, Ponce, and Vega [213], Merle 1247], Ginibre, Tsutsumi,
and Velo [131], Bourgain [30], Bourgain and Colliander [40], Colliander and Staffi-
lani [92], Masselin [241], Takaoka 1332], and Tzvetkov l3 9] (Zakharov system); and

Ghidaglia and Saut [124], Cipolatti [82, 83], Ozawa [288], Hayashi [167], Hayashi

and Hirata [168, 169], and Ohta 1279,280,281] (Davey-Stewartson system).
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Stochastic nonlinear Schrcidinger equations (i.e., with a probabilistic noise)
were also considered. They display interesting phenomena, in particular concern-
ing blowup. See de Bouard and Debussche [98,99, 100, 101], and de Bouard,
Debussche, and Di Menza [1021.
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