
Journal of Functional Analysis 281 (2021) 109092
Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Uniqueness of ground state and minimal-mass 

blow-up solutions for focusing NLS with Hardy 

potential

Debangana Mukherjee a, Phan Thành Nam b,c,∗, 
Phuoc-Tai Nguyen a

a Department of Mathematics and Statistics, Masaryk University, Brno, Czech 
Republic
b Department of Mathematics, LMU Munich, Theresienstrasse 39, D-80333 
Munich, Germany
c Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 
D-80799 Munich, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 January 2021
Accepted 17 April 2021
Available online 4 May 2021
Communicated by Benjamin Schlein

MSC:
35Q55
35B44
35A02
35A15
35Q40

Keywords:
Nonlinear Schrödinger equation
Inverse square potential
Hardy-Gagliardo-Nirenberg 
inequality
Ground state solutions

We consider the focusing nonlinear Schrödinger equation with 
the critical inverse square potential. We give the first proof of 
the uniqueness of the ground state solution. Consequently, 
we obtain a sharp Hardy-Gagliardo-Nirenberg interpolation 
inequality. Moreover, we provide a complete characterization 
for the minimal mass blow-up solutions to the time dependent 
problem.

© 2021 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: mukherjeed@math.muni.cz (D. Mukherjee), nam@math.lmu.de (P.T. Nam), 

ptnguyen@math.muni.cz (P.-T. Nguyen).
https://doi.org/10.1016/j.jfa.2021.109092
0022-1236/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jfa.2021.109092
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2021.109092&domain=pdf
mailto:mukherjeed@math.muni.cz
mailto:nam@math.lmu.de
mailto:ptnguyen@math.muni.cz
https://doi.org/10.1016/j.jfa.2021.109092


2 D. Mukherjee et al. / Journal of Functional Analysis 281 (2021) 109092
Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Ground state problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Dynamical problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3. Hardy-Gagliardo-Nirenberg inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1. Existence of ground states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2. A-priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3. Uniqueness of ground state solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4. Basic properties of the NLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1. Local well-posedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2. Global existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3. Finite time blowup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5. Minimal mass blowup solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1. Compactness of minimizing sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2. Blowup profile at t → T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3. Virial identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6. Extension to the case c|x|−2 with c < c∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1. Introduction

In this paper, we consider the Cauchy problem for the focusing nonlinear Schrödinger 
(NLS) equation with the critical inverse square potential

{
i∂tu(t, x) = (−Δ − c∗|x|−2)u(t, x) − |u(t, x)|p−2u(t, x), x ∈ Rd, t > 0,

u(0, x) = u0(x), x ∈ Rd.
(1.1)

Here

d � 3, 2 < p < 2∗ = 2d
d− 2 and c∗ = (d− 2)2

4 .

Since c∗ is the best constant in Hardy’s inequality

∫
Rd

|∇φ(x)|2dx � c∗

∫
Rd

|φ(x)|2
|x|2 dx, ∀φ ∈ H1(Rd),

the term −c∗|x|−2 is thus called the Hardy potential.
The classical focusing NLS equation (without Hardy potential) is a huge subject; see 

e.g. [6,35] for excellent textbooks. In the last decades, a considerable amount of work 
has been devoted to the study of the NLS equation with an inverse square potential. 
Since the singularity of |x|−2 is critical to the Laplacian (as we can see from Hardy’s 
inequality), its effect cannot be simply understood by perturbation methods. Therefore, 
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several well-known results for the classical NLS are not standardly extended to this 
case.

The scale-covariance operator Hc = Δ − c|x|−2 plays an important role in quan-
tum mechanics [14]. The heat equation associated with Hc has been first studied by 
Vazquez-Zuazua [37]. In the subcritical case c < c∗, the Strichartz’s estimates for Hc

have been established by Burq-Planchon-Stalker-Tahvildar-Zadeh [5], using Rodnianski-
Schlag’s approach [28] (originally developed for potentials decays like |x|−2−ε for large 
|x|) but bypassing some dispersive estimates thanks to Kato-Yajima smoothing and 
Morawetz estimates. In particular, the key results in [5] ensure the local well-posedness 
of the corresponding NLS from standard techniques. For further results in the subcritical 
case c < c∗, see Zhang-Zheng [40], Killip-Murphy-Visan-Zheng [17] and Lu-Miao-Murphy 
[20] for the long-time behavior of solutions; Killip-Miao-Visan-Zhang-Zheng [16] for the 
global well-posedness and scattering in the energy-critical case; Csobo-Genoud [8] for 
the classification of the mass-critical blow-up solutions; and Bensouilah-Dinh-Zhu [2] for 
the stability and instability of standing waves.

The critical case c = c∗ is more interesting, but less understood. In this case, the 
analysis is more subtle and intricate in several aspects, for example the energy space of 
the NLS (1.1) is strictly larger than H1(Rd) and the endpoint Strichartz’s estimates fail 
[5]. Nevertheless, the non-endpoint Strichartz’s estimates for (1.1) remain valid, as proved 
by Suzuki [32], and hence the local well-posedness in the energy-subcritical p < 2∗ follows 
from the abstract framework in Okazawa-Suzuki-Yokota [25,24]. In another development, 
the existence and the asymptotic behavior of the standing waves of the NLS (1.1) have 
been established by Trachanas-Zographopoulos [36].

In spite of the above remarkable works, there are still several open questions regarding 
the NLS with an inverse square potential. In the present paper, we will prove the unique-
ness of the ground state solution, thus extending the fundamental results of Coffman [7]
and McLeod-Serrin [21] for the classical NLS. As a consequence, we also obtain the full 
characterization for the minimal mass blow-up solution for (1.1), in the spirit of Merle 
[22].

To simplify the representation, we will mostly focus on the critical case c = c∗, but 
our results can be extended easily to the subcritical case c < c∗. The precise statements 
of our results are represented in the next section.
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2. Main results

2.1. Ground state problem

Let us start by recalling some fundamental facts. By Hardy’s inequality∫
Rd

|∇u(x)|2dx− c∗

∫
Rd

|u(x)|2
|x|2 dx � 0, ∀u ∈ H1(Rd)

and Friedrichs’ method, we may extend the operator

H = −Δ − c∗|x|−2

to be a non-negative self-adjoint operator on L2(Rd).
The energy space associated with (1.1) is the quadratic form domain Q of H, which 

is the Hilbert space with norm

‖u‖Q =
(
‖
√
Hu‖2

L2(Rd) + ‖u‖2
L2(Rd)

) 1
2
.

Obviously

H1(Rd) ⊂ Q ⊂ L2(Rd).

Moreover, H1(Rd) is strictly included in Q. In fact, it is possible to construct a function 
ϕ ∈ Q such that ϕ(x) ∼ |x|− d−2

2 as |x| → 0,1 and hence

Q 
⊂ L2∗
(Rd) (2.1)

while H1(Rd) ⊂ L2∗(Rd) by Sobolev’s embedding. On the other hand, a fundamental 
result of Brezis-Vázquez [3, Theorem 4.1] ensures the continuous embedding

Q ⊂ Lp(Rd), ∀ p ∈ [2, 2∗). (2.2)

Actually, there is a stronger result proved by Frank [10, Theorem 1.2] that Q can be 
continuously embedded into fractional Sobolev spaces:

Q ⊂ Hs(Rd), ∀s ∈ (0, 1). (2.3)

See also Solovej-Sørensen-Spitzer [29] for a previous result on relativistic particles and 
Vazquez-Zuazua [37] for a local version of (2.3). Consequently, for every 2 < p < 2∗ and 
ϕ ∈ Q the following energy functional is well-defined

1 Note that the function ψ(x) = |x|−
d−2
2 is exactly the “ground state” of Hardy’s inequality, namely 

(−Δ − c∗|x|−2)ψ = 0 for all x �= 0, but ψ /∈ L2(R2) and hence Hardy’s inequality is strict.
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E(ϕ) := 1
2‖

√
Hϕ‖2

L2(Rd) −
1
p
‖ϕ‖p

Lp(Rd).

The Euler-Lagrange equation associated to the minimizer of this energy functional 
under the mass constraint (namely ‖ϕ‖L2(Rd) is fixed) reads

HQ− |Q|p−2Q− μQ = 0 (2.4)

with a constant μ ∈ R (the Lagrange multiplier or chemical potential). Note that any 
solution of (2.4) gives a solution of the NLS (1.1) of the form

u(t, x) = e−iμtQ(x).

By a standard scaling argument (i.e. replacing u(x) by au(bx) with constants a, b > 0) 
from now on we will fix the Lagrange multiplier μ = −1 for simplicity.

Our first main result is the existence and uniqueness of a radial positive solution to 
the ground state equation.

Theorem 1 (Existence and uniqueness of the ground state solution). Let d � 3 and 
2 < p < 2∗. Then there exists a unique radial positive solution Q ∈ Q to the equation

HQ−Qp−1 + Q = 0. (2.5)

As a consequence of Theorem 1, we obtain a sharp interpolation inequality.

Theorem 2 (Hardy-Gagliardo-Nirenberg inequality). Let d � 3 and 2 < p < 2∗. Then we 
have

‖
√
Hu‖θL2(Rd)‖u‖1−θ

L2(Rd) � CHGN‖u‖Lp(Rd), θ = d

2 − d

p
, (2.6)

for all u ∈ Q, with the sharp constant

CHGN = ‖Q‖
p−2
p

L2(Rd)(1 − θ)
1
p

(
θ

1 − θ

) d(p−2)
4p

. (2.7)

Moreover, any optimizer of the interpolation inequality (2.6) has the form

u(x) = zQ(λx)

with constants z ∈ C and λ > 0. Here Q is the unique solution in Theorem 1.

While the existence of solution to (2.5) is well-known (it essentially follows from 
Weinstein’s method [38]), the uniqueness part has remained an open problem for a while. 
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Our result in Theorem 1 can be extended to the subcritical case 0 < c < c∗ where it is 
also new (see Section 6 for further discussions).

For the classical NLS (without the inverse square potential), the uniqueness of the 
ground state solutions goes back to Coffman [7] who treated the cubic NLS (p = 4) in 3D 
and McLeod-Serrin [21] who handled the general case. It is worth noting that the radial 
symmetry of the ground state solution generally follows from rearrangement inequalities 
(see e.g. [19,4]), although the symmetry can be also derived from the equation itself by 
the moving plane method (see Gidas-Ni-Nirenberg [11] and Kwong [18]). However, it 
seems that the existing methods for the classical NLS do not apply easily to (2.5) due 
to the strong effect of the critical Hardy potential.

Our ideas of proving the uniqueness in Theorem 1 are as follows. First, since the 
solution behaves as |x|−(d−2)/2 close to the origin (similarly to the non-integrable ground 
state of Hardy’s inequality), we introduce the function

v(x) = |x| d−2
2 Q(x)

which is uniformly bounded and decays fast at infinity. The equation for v admits a 
generalized Pohozaev type identity, following the spirit of the recent work of Shioji-
Watanabe [34] (although the uniqueness result in [34] does not apply in our case as the 
condition (II) in [34, Theorem 1] is so restricted). Then the conclusion follows from a 
careful implementation of the general shooting argument of Yanagida [39], taking the 
specific scaling of equation (2.5) into account.

We will prove Theorems 1 and 2 in Section 3.

2.2. Dynamical problem

Next, we consider the NLS (1.1) with an initial datum u0 ∈ Q.

Definition 1 (Weak solutions). A function u is called a weak solution to (1.1) in (0, T )
with initial datum u0 ∈ Q if

u ∈ C([0, T );Q) ∩ C1([0, T );Q∗)

and it satisfies the Duhamel formula

u(t) = e−itHu0 + i

t∫
0

e−i(t−s)H |u(s)|p−2u(s)ds ∀t ∈ (0, T ). (2.8)

Here we ignore the x-dependence in the notation. If T = ∞ then u is called a global 
solution.
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For the reader’s convenience, we collect some basic properties of equation (1.1) with 
initial datum in the energy space Q. Recall that Q is the unique ground state solution 
of (2.5).

Theorem 3 (Basic properties of focusing NLS with Hardy potential). Let d � 3 and 
2 < p < 2∗. For any u0 ∈ Q the followings hold true.

(i) (Local well-posedness). There exist a constant T = T (‖u0‖Q) > 0 and a unique 
weak solution u ∈ C([0, T ); Q) ∩ C1([0, T ); Q∗) of (1.1) in (0, T ). The mass and 
energy conservation laws hold, i.e.

‖u(t)‖L2(Rd) = ‖u0‖L2(Rd), E(u(t)) = E(u0), ∀t ∈ [0, T ). (2.9)

Moreover, the above solution u admits a unique continuation up to a maximum time 
T ∗ such that either the solution is global, namely T ∗ = ∞, or the solution blows up 
at finite time, namely T ∗ < ∞ and

lim
t↗T∗

‖
√
Hu‖L2(Rd) = ∞. (2.10)

(ii) (Sufficient conditions for global existence). The solution of (1.1) is global in one of 
the following three cases: 2 < p < 2 +4/d; p = 2 +4/d and ‖u0‖L2(Rd) < ‖Q‖L2(Rd); 
2 + 4/d < p < 2∗ and

E(u0)‖u0‖qL2 < E(Q)‖Q‖qL2 , ‖
√
Hu0‖2

L2‖u0‖qL2 < ‖
√
HQ‖2

L2‖Q‖qL2

with

q = 4d + 4p− 2pd
dp− 2d− 4 . (2.11)

Moreover, in any of the above cases, ‖
√
Hu(t)‖L2(Rd) remains uniformly bounded 

in t ∈ (0, ∞).
(iii) (Sufficient conditions for blowup). The solution of (1.1) blows up at finite time if 

2 + 4/d � p < 2∗, |x|u0 ∈ L2(Rd) and either E(u0) < 0, or

E(u0)‖u0‖qL2 < E(Q)‖Q‖qL2 , ‖
√
Hu0‖2

L2‖u0‖qL2 > ‖
√
HQ‖2

L2‖Q‖qL2

with q as in (2.11).

Most of the results in Theorem 3 are known or easily obtained by adapting the analysis 
for the usual NLS. More precisely, the local well-posedness is due to Suzuki [32], based 
on the abstract result of Okazawa-Suzuki-Yokota [25,24] (the uniqueness in (i) was not 
addressed explicitly but it follows from the standard method in [6] using the Strichartz 
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estimates for Hardy potential by Suzuki [32, Proposition 4.8]; see also Mizutani [23, 
Corollary 2.3]). In the global existence (ii), the first case (of subcritical nonlinearity) is 
standard; the second case is analogous to Weinstein’s famous theorem for the usual NLS 
[38]; the last case follows from the strategy in the usual NLS of Kenig-Merle [15] (we 
will recall the representation of Holmer-Roudenko [13] for the energy subcritical case, 
see also Ogawa-Tsutsumi [26] for an earlier work on the radial case). In the blow-up 
conditions (iii), the first case (of negative energy) can be found in Suzuki [33, Theorem 
4.1], while the other case follows from the analysis for the usual NLS [15,13].

For the sake of completeness, in Section 4 we will briefly recall standard arguments 
in the proof of Theorem 3. Some key ingredients, e.g. Virial’s identities, will be useful 
later.

Now we concentrate on the mass-critical case p = 2 +4/d. Our new result is a complete 
characterization of the minimal-mass blow-up solutions. Recall that Q is the unique 
ground state solution of (2.5).

Theorem 4 (Minimal mass blow-up solutions). Assume d � 3 and p = 2 + 4/d.

(i) (Existence). Let γ ∈ R, λ > 0 and T > 0 arbitrarily. Then

u(t, x) = eiγei
λ2

T−t e−i |x|2
4(T−t)

(
λ

T − t

) d
2

Q

(
λx

T − t

)
∀x ∈ Rd, t ∈ [0, T ) (2.12)

solves the NLS (1.1) in (0, T ) and blows up at the finite time T .
(ii) (Uniqueness). For any finite time T > 0, if u ∈ C([0, T ); Q) ∩ C1([0, T ), Q∗) is a 

solution of (1.1) in (0, T ) with ‖u0‖L2 = ‖Q‖L2 and blows up at T , then u is given 
in (2.12) for some constants γ ∈ R and λ > 0.

Theorem 4 is an extension of Merle’s celebrated result [22] (for the classical NLS) to 
the case of Hardy potential. A similar result was obtained recently by Csobo-Genoud [8]
in the subcritical case c < c∗ (although the uniqueness result for the ground state was 
not available in [8]).

A crucial ingredient of the proof of Theorem 4 is a compactness lemma on the minimiz-
ing sequences of the Hardy-Gagliardo-Nirenberg inequality (2.6). In the classical NLS, 
the compactness lemma follows standardly from the concentration-compactness method. 
This method was also used in [8] for the subcritical case c < c∗, but the analysis cannot 
be extended to the case c = c∗. In the present paper, we will prove the compactness re-
sult for the critical case by a refined method based on geometric localization techniques. 
This enables us to implement the approach of Hmidi-Keraani [12] to achieve the full 
characterization for the mass-critical blow-up solutions.

Finally, let us remark that all the results in Theorems 1, 2, 3, 4 hold true in the 
subcritical case, where the Hardy potential −c∗|x|−2 is replaced by −c|x|−2 with c < c∗. 
In fact, the proof in the subcritical case is similar, even simpler, as will be explained in 
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Section 6. Moreover, if c < c∗, then some results in Theorems 3 and 4 can be extended 
to the energy–critical case p = 2∗; see [2,9] for further details. In the case c = c∗, the 
restriction p < 2∗ is natural due to (2.1).

Organization of the paper. Section 3 is devoted to the proof of Theorem 1 and Theorem 2. 
In Section 4, we present basic properties of problem (1.1). In Section 5, we demonstrate 
the characterization of blow-up solutions with minimal mass. Finally, in Section 6, we 
discuss the extension to the subcritical case 0 < c < c∗.

Notations.

• When there is no confusion, we will write u(t) instead of u(t, x), ||u||Lp instead of 
||u||Lp(Rd).

• For u, v ∈ Q, we use the notation

〈u,Hv〉 =
∫
Rd

uHvdx =
∫
Rd

(
∇u · ∇v − c∗

|x|2uv
)
dx

and

‖
√
Hu‖L2 = 〈u,Hu〉 1

2 .

• The notation A � B (resp. A � B) means A � C B (resp. A � C B) where C is a 
positive constant depending on some initial parameters.

• �(z), �(z) and z̄ denote the real part, the imaginary part and the complex conjugate 
of z ∈ C respectively.

3. Hardy-Gagliardo-Nirenberg inequality

In this section we prove Theorems 1 and 2.
Following Weinstein’s strategy [38], we consider the Hardy-Gagliardo-Nirenberg in-

terpolation problem

CHGN = inf
u∈Q\{0}

‖
√
Hu‖θL2‖u‖1−θ

L2

‖u‖Lp

, θ = d

2 − d

p
. (3.1)

Recall from (2.2) that

‖
√
Hu‖L2 + ‖u‖L2 � ‖u‖Lp .

By a standard scaling argument, i.e. changing u(x) �→ u(λx) and optimizing over λ > 0, 
we find that
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‖
√
Hu‖θL2‖u‖1−θ

L2 � ‖u‖Lp , θ = d

2

(
1 − 2

d

)
. (3.2)

Thus CHGN > 0.

3.1. Existence of ground states

This part follows from the standard direct method in the calculus of variations, using 
the rearrangement inequalities and the compactness of radial functions (see [30,31], [36, 
Lemma 3.1]). We will give a short proof for the reader’s convenience.

Let {un} be a minimizing sequence for CHGN. By the Hardy–Littlewood and the 
Pólya–Szegö rearrangement inequalities (see [19, Theorem 3.4] and [27,4]) we can assume 
that the functions un’s are non-negative and radially symmetric decreasing. By a scaling 
argument we can also assume that

‖un‖L2 = ‖
√
Hun‖L2 = 1, ‖un‖Lp → C−1

HGN.

Since |x| �→ un(x) is decreasing, we have the pointwise estimate

|un(x)|2 � 1
B(0, |x|)

∫
|y|�|x|

|un(y)|2dy � C|x|−d

with a constant C > 0 independent of n. Therefore, by Helly’s selection theorem we find 
that, up to a subsequence when n → ∞, we have the pointwise convergence

un(x) → u0(x) for all x 
= 0.

This implies that for any ε > 0,

1{|x|�ε}(un − u0) → 0 strongly in Lp(Rd)

as n → ∞ by Dominated Convergence Theorem. On the other hand, from the uniform 
bound ‖un‖Lq � C for p < q < 2∗, we find that

1{|x|<ε}(un − u0) → 0 strongly in Lp(Rd)

as ε → 0, uniformly in n. Thus un → u0 strongly in Lp(Rd), and hence

‖u0‖Lp = lim
n→∞

‖un‖Lp = C−1
HGN.

On the other hand, by the Banach-Alaoglu theorem, up to a subsequence as n → ∞
again, we can assume that

un ⇀ u0,
√
Hun ⇀

√
Hu0 weakly in L2(Rd).
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Hence, we have

‖u0‖L2 � lim inf
n→∞

‖un‖L2 = 1, ‖
√
Hu0‖L2 � lim inf

n→∞
‖
√
Hun‖L2 = 1.

In summary, we have proved that

‖
√
Hu0‖θL2‖u0‖1−θ

L2

‖u0‖Lp

� CHGN.

Thus u0 is a minimizer for the variational problem (2.6). From the above proof, since 
the minimizing sequence {un} are nonnegative radially symmetric decreasing, the limit 
u0 is also nonnegative radially symmetric decreasing.

Euler-Lagrange equation. By standard variational techniques, we can show that the 
above minimizer u0 satisfies the Euler-Lagrange equation

θHu0 + (1 − θ)u0 − (CHGN)
p
2 up−1

0 = 0. (3.3)

Here the relevant coefficients come from the constraints

‖u0‖L2 = 1 = ‖
√
Hu0‖L2 , ‖u0‖Lp = C−1

HGN.

If we define

u0(x) = αQ(βx), β =
(

1 − θ

θ

) 1
2

, α = (1 − θ)
1

p−2 (CHGN)−
p

p−2 ,

then (3.3) becomes

HQ + Q−Qp−1 = 0. (3.4)

Moreover, Q is nonnegative radially symmetric decreasing and

‖Q‖L2 = β
d
2α−1‖u0‖L2 =

(
1 − θ

θ

) d
4

(1 − θ)−
1

p−2 (CHGN)
p

p−2 . (3.5)

3.2. A-priori estimates

The following a-priori estimates will be important for the proof of the uniqueness of 
Q.

Lemma 5 (A-priori estimates). Let Q ∈ Q be a nonnegative radial solution to (3.4). Then 
Q ∈ C2(Rd \ {0}) and Q is strictly positive. Moreover,
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lim
|x|→0

|x| d−2
2 Q(x) ∈ (0,∞), (3.6)

and

lim
|x|→∞

|x|mQ(x) = 0, ∀m > 0. (3.7)

Proof. Since Q ∈ Q, by a standard bootstrap argument, together with Sobolev embed-
dings, one can show that Q ∈ C2(Rd \ {0}).

The equation (3.4) can be rewritten as

Q(x) = (I − Δ)−1
(
c∗|x|−2Q(x) + Q(x)p−1

)
=

∫
Rd

G(x− y)
(
c∗|y|−2Q(y) + Q(y)p−1

)
dy (3.8)

where G is the Green function of I−Δ (the Yukawa potential). Recall that [19, Theorem 
6.23]

G(x) =
∞∫
0

(4πt)−d/2 exp
(
−|x|2

4t − t

)
dt

and

0 < G(x) �
∞∫
0

(4πt)−d/2 exp
(
−|x|2

4t

)
dt = cd

|x|d−2 , ∀x ∈ Rd \ {0} (3.9)

and

lim
|x|→∞

− logG(x)
|x| = 1. (3.10)

In particular, since Q(x) is the convolution of G(x) > 0 and c∗|x|−2Q(x) +Q(x)p−1 �
0, we find that Q(x) > 0 for all x ∈ Rd.

The formula (3.6) has been proved by Trachanas-Zographopoulos [36, Theorem 1.2].
Now we consider the decay of Q at infinity. We take |x| large and decompose the 

integral domain in (3.8) into |x − y| < |x|1/4 and |x − y| � |x|1/4.
In the region |x − y| < |x|1/4, by the triangle inequality we have

|y| > |x| − |x|1/4 � |x|/2 � 1

for |x| large. Combining with the upper bound (3.9) and Newton’s Theorem [19, Theorem 
9.7] (here Q is radial) we can bound
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∫
|x−y|<|x|1/4

G(x− y)
(
c∗|y|−2Q(y) + Q(y)p−1

)
dy

�
∫

|x−y|<|x|1/4

1
|x− y|d−2

(
Q(y) + Q(y)p−1

)
dy

�
∫

|x−y|<|x|1/4

1
|x|d−2

(
Q(y) + Q(y)p−1

)
dy. (3.11)

On the other hand, since Q ∈ L2(Rd) ∩ Lp(Rd), by Hölder’s inequality and keeping in 
mind that p > 2, we have

∫
|x−y|<|x|1/4

Q(y)dy �

⎛⎜⎝ ∫
|x−y|<|x|1/4

dy

⎞⎟⎠
1/2 ⎛⎜⎝ ∫

|x−y|<|x|1/4

|Q(y)|2dy

⎞⎟⎠
1/2

� |x|d/8

and

∫
|x−y|<|x|1/4

Q(y)p−1dy �

⎛⎜⎝ ∫
|x−y|<|x|1/4

dy

⎞⎟⎠
1/p ⎛⎜⎝ ∫

|x−y|<|x|1/4

|Q(y)|pdy

⎞⎟⎠
(p−1)/p

� |x|d/8.

Thus from (3.11) it follows that

∫
|x−y|<|x|1/4

G(x− y)
(
c∗|y|−2Q(y) + Q(y)p−1

)
dy � |x|d/8

|x|d−2 � |x|−5/8. (3.12)

Here we have used d � 3 in the last estimate.
In the region |x − y| � |x|1/4, using (3.10) we have

G(x− y) � e−|x−y|/2 � e−|x−y|/4e−|x|1/4/4

for |x| large. Hence,

∫
|x−y|�|x|1/4

G(x− y)
(
c∗|y|−2Q(y) + Q(y)p−1

)
dy

� e−|x|1/4/4
∫
Rd

e−|x−y|/4
(
|y|−2Q(y) + Q(y)p−1

)
dy. (3.13)

By Hölder’s inequality we can bound
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∫
Rd

e−|x−y|/4Q(y)p−1dy �

⎛⎝∫
Rd

e−|x−y|p/4dy

⎞⎠1/p ⎛⎝∫
Rd

|Q(y)|pdy

⎞⎠(p−1)/p

� 1

and ∫
Rd

e−|x−y|/4|y|−2Q(y)dy �
∫

|y|�1

|y|−2Q(y)dy +
∫

|y|>1

e−|x−y|/4Q(y)dy

�

⎛⎜⎝ ∫
|y|�1

1
|y|d−1/2 dy

⎞⎟⎠
4/(2d−1) ⎛⎜⎝ ∫

|y|�1

|Q(y)|(2d−1)/(2d−5)dy

⎞⎟⎠
(2d−5)/(2d−1)

+

⎛⎜⎝ ∫
|y|>1

e−|x−y|/2dy

⎞⎟⎠
1/2 ⎛⎜⎝ ∫

|y|>1

|Q(y)|2dy

⎞⎟⎠
1/2

� 1.

In the last estimate we have used that Q ∈ Lq(Rd) for all 2 � q < 2∗ and that

2d− 1
2d− 5 <

2d
d− 2 = 2∗

for all d � 3. Thus (3.13) gives us∫
|x−y|�|x|1/4

G(x− y)
(
c∗|y|−2Q(y) + Q(y)p−1

)
dy � e−|x|1/4/4 (3.14)

for |x| large.
Putting (3.12) and (3.14) together, we obtain

Q(x) =
∫
Rd

G(x− y)
(
c∗|y|−2Q(y) + Q(y)p−1

)
dy � |x|−5/8 + e−|x|1/4/4 � |x|−5/8

for |x| large.
Next, assume that we have proved that Q(x) � |x|−m for |x| large, with some constant 

m > 0. Then for |x| large, in the region |x −y| � |x|1/4 using again the triangle inequality 
|y| > |x| − |x|1/4 � |x|/2 we get

Q(y) + Q(y)p−1 � |x|−m.

Inserting this pointwise bound into (3.11) we find that∫
1/4

G(x− y)
(
c∗|y|−2Q(y) + Q(y)p−1

)
dy
|x−y|<|x|
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�
∫

|x−y|<|x|1/4

1
|x|d−2

(
Q(y) + Q(y)p−1

)
dy

�
∫

|x−y|<|x|1/4

1
|x|d−2 |x|

−mdy � |x|d/4
|x|d−2 |x|

−m � |x|−m−1/4 (3.15)

for all d � 3. Putting the latter bound together with (3.14) we obtain

Q(x) =
∫
Rd

G(x− y)
(
c∗|y|−2Q(y) + Q(y)p−1

)
dy � |x|−m−1/4 + e−|x|1/4/4 � |x|−m−1/4

for |x| large.
Thus in summary, we have proved that if Q(x) � |x|−m for |x| large, then Q(x) �

|x|−m−1/4 for |x| large. By induction, we conclude that for any constant m > 0, then 
Q(x) � |x|−m for |x| large. Consequently, we get (3.7), namely

lim
|x|→∞

|x|mQ(x) = 0, ∀m > 0.

The proof is complete. �
3.3. Uniqueness of ground state solution

Now we study the uniqueness of positive radial solutions to equation (3.4). Thanks to 
Lemma 5, it suffices to show that there exists at most one positive radial C2 solution to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−HQ + Q−Qp−1 = 0 in Rd \ {0},

lim
|x|→0

|x| d−2
2 Q(x) ∈ (0,∞),

lim
|x|→∞

|x|mQ(x) ∈ [0,∞),

(3.16)

for some m > d+2
2 . Here the first equation in (3.16) is understood in the classical sense 

in Rd \ {0}.
Note that if Q is radial solution of (3.16) then using the polar coordinate r = |x| we 

can write ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d2

dr2Q + d− 1
r

d

dr
Q + c∗

r2Q−Q + Qp−1 = 0 in (0,∞),

lim
r→0+

r
d−2
2 Q(r) ∈ (0,∞),

lim rmQ(r) ∈ [0,∞).

(3.17)
r→+∞
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By putting

v(r) = r
d−2
2 Q(r), (3.18)

we deduce that v ∈ C2((0, ∞)), v > 0 in (0, ∞) and v satisfies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d2

dr2 v + 1
r

d

dr
v − v + r−

(d−2)(p−2)
2 vp−1 = 0 in (0,∞),

v(0) ∈ (0,∞),

lim
r→+∞

rm− d−2
2 v(r) ∈ [0,∞).

(3.19)

We will prove that there exists at most one positive solution v of (3.19). In the following 
we will use the notation vr instead of d

drv.

Pohozaev identity. By using the computation in Shioji-Watanabe [34] with

f(r) = r, g(r) = −1, h(r) = r−
(d−2)(p−2)

2 ,

we obtain the generalized Pohozaev identity

d

dr
J(r, u) = G(r)u(r)2 ∀r ∈ (0,∞) (3.20)

where

a(r) := r
d(p−2)+4

p+2 , (3.21)

b(r) := d + 2 − (d− 2)(p− 1)
2(p + 2) r

(d−1)(p−2)
p+2 , (3.22)

c(r) := [(d + 2 − (d− 2)(p− 1)]2

2(p + 2)2 r−
d+2−(d−2)(p−1)

d+2 ,

G(r) := b(r) + 1
2cr(r) −

1
2ar(r)

= − (d− 1)(p− 2)
p + 2 r

(d−1)(p−2)
p+2 − [(d + 2 − (d− 2)(p− 1)]3

2(p + 2)3 r−
d+5−(d−3)(p−1)

p+2 ,

J(r, v) := 1
2a(r)vr(r)

2 + b(r)vr(r)v(r) (3.23)

+ 1
2(c(r) − a(r))v(r)2 + 1

p
a(r)r−

(d−2)(p−2)
2 v(r)p.

We will follow the general strategy in [34], but we use the following result to relax the 
condition (II) in [34, Theorem 1].
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Lemma 6. Assume 2 < p < 2∗ and m > d+2
2 . Let v ∈ C2((0, ∞)) be a positive solution 

of (3.19). Then

vr(r) + 1
r

r∫
0

s(−v(s) + s−
(d−2)(p−2)

2 v(s)p−1)ds = 0 ∀r ∈ (0,∞). (3.24)

Moreover,

lim
r→0+

rγvr(r) = 0 ∀ γ >
(d− 2)(p− 2)

2 − 1 (3.25)

and

lim
r→+∞

rνvr(r) = 0 ∀ ν < m− d

2 . (3.26)

Proof. From (3.19), we have, for any 0 < r′ < r,

rvr(r) − r′vr(r′) +
r∫

r′

s(−v(s) + s−
(d−2)(p−2)

2 v(s)p−1)ds = 0. (3.27)

Note that
r∫

0

s1− (d−2)(p−2)
2 ds < ∞

since

1 − (d− 2)(p− 2)
2 > −1

as p < 2∗. Consequently, from (3.27), we deduce that the limit

k = lim
r′→0+

r′vr(r′)

exists as a real number. Letting r′ → 0+ in (3.27) yields

vr(r) −
k

r
+ 1

r

r∫
0

s(−v(s) + s−
(d−2)(p−2)

2 v(s)p−1)ds = 0. (3.28)

Integrating this equation over (ε, ̃r) with 0 < ε < r̃ implies

v(r̃) − v(ε) − k ln
(
r̃

ε

)
+

r̃∫ 1
r

r∫
s(−v(s) + s−

(d−2)(p−2)
2 v(s)p−1)dsdr = 0. (3.29)
ε 0
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Using again p < 2∗ we get

∣∣∣∣∣∣
r̃∫

0

1
r

r∫
0

s(−v(s) + s−
(d−2)(p−2)

2 v(s)p−1)dsdr

∣∣∣∣∣∣ < ∞.

By letting ε → 0 in (3.29) we find that k = 0. Thus (3.24) follows from (3.28).
Moreover, by (3.24) and since p < 2∗ and γ > (d−2)(p−2)

2 − 1,

lim
r→0+

rγvr(r) = − lim
r→0+

rγ−1
r∫

0

s(−v(s) + s−
(d−2)(p−2)

2 v(s)p−1)dsdr = 0.

Thus we obtain (3.25).
Next we prove (3.26). From (3.19), there exists r0 > 0 large enough such that

v(r) � r
d−2
2 −m ∀r ∈ [r0,∞). (3.30)

We use (3.27) for large numbers r0 < r′ < r. Since m > d+2
2 , we deduce from (3.30)

and the third equality in (3.19) that

lim
r→+∞

r∫
r′

sv(s)ds � lim
r→+∞

r∫
r′

s
d−2
2 −m+1ds = 2(r′) d+2−2m

2

2m− d− 2 (3.31)

and

lim
r→+∞

r∫
r′

s1− (d−2)(p−2)
2 v(s)p−1ds � lim

r→+∞

r∫
r′

s
d−2m(p−1)

2 ds = 2(r′)
d+2−2m(p−1)

2

2m(p− 1) − d− 2 .

(3.32)

Therefore, we see from (3.27), using (3.31) and (3.32), that the limit

K = lim
r→+∞

rvr(r)

exists as a real number. Letting r → +∞ in (3.27) implies

K

r′
− vr(r′) + 1

r′

∞∫
r′

s(−v(s) + s−
(d−2)(p−2)

2 v(s)p−1)ds = 0. (3.33)

By integrating over (r, R) with r0 < r < R, we find



D. Mukherjee et al. / Journal of Functional Analysis 281 (2021) 109092 19
K ln
(
R

r

)
− v(R) + v(r) +

R∫
r

1
r′

∞∫
r′

s(−v(s) + s−
(d−2)(p−2)

2 v(s)p−1)dsdr′ = 0.

(3.34)

Since m > d+2
2 , we derive∣∣∣∣∣∣

∞∫
r

1
r′

∞∫
r′

s(−v(s) + s−
(d−2)(p−2)

2 v(s)p−1)dsdr′
∣∣∣∣∣∣ < ∞.

This, together with the fact that v decays at infinity and (3.34), implies K = 0. Conse-
quently, we infer from (3.33) that

(r′)νvr(r′) = (r′)ν−1
∞∫

r′

s(−v(s) + s−
(d−2)(p−2)

2 v(s)p−1)ds. (3.35)

From (3.31) and (3.32) and the fact that p > 2, we deduce

(r′)ν−1

∣∣∣∣∣∣
∞∫

r′

s(−v(s) + s−
(d−2)(p−2)

2 v(s)p−1)ds

∣∣∣∣∣∣ � (r′)ν−m+ d
2 . (3.36)

Consequently, as ν < m − d
2 , it follows

lim
r′→+∞

(r′)ν−1

∣∣∣∣∣∣
∞∫

r′

s(−v(s) + s−
(d−2)(p−2)

2 v(s)p−1)ds

∣∣∣∣∣∣ = 0. (3.37)

Combining (3.35) and (3.37) leads to (3.26). �
Now we are ready to conclude

Proposition 7 (Uniqueness of (3.19)). Assume 2 < p < 2∗ and m > d+2
2 . Then problem 

(3.19) admits at most one positive solution.

Proof. Let v and ṽ be two positive solutions of (3.19). We will prove that v = ṽ by using 
a shooting argument.

Step 1. We show that if v(0) = ṽ(0) then v = ṽ in (0, ∞).

Proof. Let R > 0. From Lemma 6, we see that, for any 0 < r < R,

v(r) = v(0) −
r∫ 1
σ

σ∫
s(−v(s) + s−

(d−2)(p−2)
2 v(s)p−1)dsdσ
0 0
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= v(0) −
r∫

0

⎛⎝ r∫
s

1
σ
dσ

⎞⎠ s(−v(s) + s−
(d−2)(p−2)

2 v(s)p−1)ds

= v(0) −
r∫

0

(
ln r

s

)
s(−v(s) + s−

(d−2)(p−2)
2 v(s)p−1)ds.

Similarly, we have

ṽ(r) = ṽ(0) −
r∫

0

(
ln r

s

)
s(−ṽ(s) + s−

(d−2)(p−2)
2 ṽ(s)p−1)ds.

Keeping in mind that v(0) = ṽ(0), v, ̃v are bounded in [0, R] and p > 2, we deduce from 
the above equalities that

|v(r) − ṽ(r)| �
r∫

0

(
ln r

s

)
s(|v(s) − ṽ(s)| + s−

(d−2)(p−2)
2 |v(s)p−1 − ṽ(s)p−1|)ds

� C(R)
r∫

0

(
ln r

s

)
s(1 + s−

(d−2)(p−2)
2 )|v(s) − ṽ(s)|ds.

Since p < 2∗ we have

1 − (d− 2)(p− 2)
2 > −1,

and hence

r∫
0

(
ln r

s

)
s(1 + s−

(d−2)(p−2)
2 )ds < ∞.

Therefore, by Gronwall’s inequality, we find that v = ṽ in [0, R). Since R > 0 is arbitrary, 
we deduce that v = ṽ in [0, ∞). �
Step 2. We show that

d

dr

(
ṽ(r)
v(r)

)
= 1

rv(r)2

r∫
0

s1− (d−2)(p−2)
2 (v(s)p−2 − ṽ(s)p−2)v(s)ṽ(s)ds ∀r ∈ (0,∞).

(3.38)

Proof. Since v and ṽ are two solutions of (3.19), we obtain

(rvr)r + r(−v + r−
(d−2)(p−2)

2 vp−1) = 0, (3.39)
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(rṽr)r + r(−ṽ + r−
(d−2)(p−2)

2 ṽp−1) = 0. (3.40)

Multiplying (3.39) by ṽ and multiplying (3.40) by v, then integrating over [r′, r] with 
0 < r′ < r, we obtain

r(vr(r)ṽ(r) − v(r)ṽr(r)) − r′(vr(r′)ṽ(r′) − v(r′)ṽr(r′))

+
r∫

r′

s1− (d−2)(p−2)
2 (v(s)p−2 − ṽ(s)p−2)v(s)ṽ(s)ds = 0.

(3.41)

Since p < 2∗, thanks to Lemma 6, limr′→0+(r′vr(r′)) = limr′→0+(r′ṽr(r′)) = 0. There-
fore, by letting r′ → 0 in (3.41), we obtain (3.38). �
Step 3. We show that if ṽ(0) < v(0) then

d

dr

(
ṽ(r)
v(r)

)
> 0 ∀r ∈ (0,∞). (3.42)

Proof. If v does not intersect ṽ then v(r) > ṽ(r) for any r ∈ (0, ∞) by the continuity. In 
this case (3.42) follows immediately from (3.38).

Now we suppose that v intersects ṽ at least one point. Denote by r1 ∈ (0, ∞) the first 
intersection of v and ṽ. Put w = ṽ/v. By (3.38), wr(r) > 0 for any r ∈ (0, r1].

Suppose by contradiction that (3.42) does not hold. Then there exists r2 > r1 such 
that wr(r) > 0 for any r ∈ (0, r2) and wr(r2) = 0. Hence we see that w(r2)v(r) > ṽ(r)
for any r ∈ (0, r2) and

w(r2) > 1, w(r2)v(r2) = ṽ(r2), w(r2)vr(r2) = ṽr(r2). (3.43)

From the generalized Pohozaev identity (3.20), for r < r2 we have

w(r2)2J(r2, v) − J(r2, ṽ)

=
r2∫
r

G(s)(w(r2)2v(s)2 − ṽ(s)2)ds + w(r2)2J(r, v) − J(r, ṽ).
(3.44)

The left hand side of (3.44) can be estimated by (3.43) as

w(r2)2J(r2, v) − J(r2, ṽ) = w(r2)2 − w(r2)p

p
a(r2)r

− (d−2)(p−2)
2

2 v(r2)p < 0. (3.45)

For the right hand side of (3.44), since wr(r) > 0 for any r ∈ (0, r2), it follows that 
0 < w(r) < w(r2) for any 0 < r < r2 and w(r)v(s) < ṽ(s) for any s ∈ (r, r2). From 
(3.20) and G(r) < 0 < v(r) it follows that
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d

dr
J(r, v) = G(r)v(r)2 < 0, ∀r ∈ (0,∞).

Consequently, J(r, v) is strictly decreasing with respect to r. Moreover, since v satisfies 
the third limit in (3.19) with m > d+2

2 and the limit (3.26) with ν < m − d
2 , we have

lim
r→+∞

a(r) 1
2 vr(r) = lim

r→+∞
r

d(p−2)+4
2(p+2) vr(r) = 0,

lim
r→+∞

b(r)vr(r)v(r) � lim
r→+∞

r
(d−1)(p−2)

p+2 + d−2
2 −mvr(r) = 0,

lim
r→+∞

c(r)v(r)2 � lim
r→+∞

r−
d+2−(d−2)(p−1)

d+2 +d−2−2m = 0,

lim
r→+∞

a(r)v(r)2 � lim
r→+∞

r
d(p−2)+4

p+2 +d−2−2m = 0,

lim
r→+∞

a(r)r−
(d−2)(p−2)

2 v(r)p � lim
r→+∞

r
d(p−2)+4

p+2 − (d−2)(p−2)
2 + (d−2−2m)p

2 = 0.

(3.46)

Inserting these limits into the formula of J(r, v) we obtain

lim
r→+∞

J(r, v) = 0.

Similarly

lim
r→+∞

J(r, ṽ) = 0.

Therefore

J(r, v) > 0 ∀r ∈ (0,∞). (3.47)

This leads to

r2∫
r

G(s)v(s)2ds + J(r, v) = J(r2, v) > 0.

Combining the above estimates, we can estimate the right hand side of (3.44) as follows

r2∫
r

G(s)(w(r2)2v(s)2 − ṽ(s)2)ds + w(r2)2J(r, v) − J(r, ṽ)

= w(r2)2
⎛⎝ r2∫

r

G(s)v(s)2ds + J(r, v)

⎞⎠−
r2∫
r

G(s)ṽ(s)2ds− J(r, ṽ)

� w(r)2
⎛⎝ r2∫

G(s)v(s)2ds + J(r, v)

⎞⎠−
r2∫
G(s)ṽ(s)2ds− J(r, ṽ) (3.48)
r r
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=
r2∫
r

G(s)(w(r)2v(s)2 − ṽ(s)2)ds + w(r)2J(r, v) − J(r, ṽ)

� w(r)2J(r, v) − J(r, ṽ)

for all r ∈ (0, r2). Here in the last estimate, we have used G(s) < 0 and w(r)v(s) < ṽ(s)
for all s ∈ (r, r2).

Next, by (3.23), we have

w(r)2J(r, v) − J(r, ṽ) = 1
2a(r)(w(r)2vr(r)2 − ṽr(r)2)

+ b(r)(w(r)2vr(r)v(r) − ṽr(r)ṽ(r))

+ 1
p
a(r)r−

(d−2)(p−2)
2 (w(r)2v(r)p − ṽ(r)p).

(3.49)

Since p < 2∗ it follows that

d(p− 2) + 4
2(p + 2) >

(d− 2)(p− 2)
2 − 1,

and hence by (3.21) and (3.25) we deduce

lim
r→0+

a(r) 1
2 vr(r) = lim

r→0+
r

d(p−2)+4
2(p+2) vr(r) = 0.

Similarly

lim
r→0+

a(r) 1
2 ṽr(r) = lim

r→0+
r

d(p−2)+4
2(p+2) ṽr(r) = 0.

Moreover, p < 2∗ also implies that

(d− 1)(p− 2)
p + 2 >

(d− 2)(p− 2)
2 − 1,

and hence by (3.22) and (3.25) we deduce

lim
r→0+

b(r)vr(r) = lim
r→0+

d + 2 − (d− 2)(p− 1)
2(p + 2) r

(d−1)(p−2)
p+2 vr(r) = 0.

Similarly

lim
r→0+

b(r)ṽr(r) = lim
r→0+

d + 2 − (d− 2)(p− 1)
2(p + 2) r

(d−1)(p−2)
p+2 ṽr(r) = 0.

Since p < 2∗, we have
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d(p− 2) + 4
p + 2 − (d− 2)(p− 2)

2 > 0,

which implies

lim
r→0+

a(r)r−
(d−2)(p−2)

2 = lim
r→0+

r
d(p−2)+4

p+2 − (d−2)(p−2)
2 = 0.

Combining the above equalities and taking into account that v, ̃v, w are bounded near 
0, by letting r → 0+ in (3.49) we deduce

lim
r→0+

(w(r)2J(r, v) − J(r, ṽ)) = 0. (3.50)

From (3.44), (3.48) and (3.50), we deduce that

w(r2)2J(r2, v) − J(r2, ṽ) � 0,

which contradicts (3.45). Therefore, we conclude (3.42). �
Step 4: Conclusion. Suppose by contradiction that there exist two distinct solutions v
and ṽ of (3.19). By Step 1, we know that v(0) 
= ṽ(0). Without loss of generality, we may 
assume that 0 < ṽ(0) < v(0). We see from (3.47) that J(r, ̃v) > 0 for any r ∈ (0, ∞). 
Define

X(r) := J(r, ṽ)
(
v(r)
ṽ(r)

)2

− J(r, v), r ∈ (0,∞). (3.51)

By inserting (3.23) into (3.51), we deduce

X(r) = 1
2a(r)

(
v(r)2

ṽ(r)2 ṽr(r)
2 − vr(r)2

)
+ b(r)v(r)

(
v(r)
ṽ(r) ṽr(r) − vr(r)

)
+ 1

p
a(r)r−

(d−2)(p−2)
2 v(r)2(ṽ(r)p−2 − v(r)p−2).

By using the argument as in Step 3, we obtain

lim
r→0+

X(r) = 0. (3.52)

From (3.42), we find

v(r)
ṽ(r) <

v(r0)
ṽ(r0)

∀r ∈ (r0,∞).

By combining this and (3.46), we deduce

lim X(r) = 0. (3.53)

r→+∞
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On the other hand, we observe that

d

dr
X(r) = 2J(r, ṽ)v(r)

ṽ(r)
d

dr

(
v(r)
ṽ(r)

)
.

This, together with the conclusion in Step 3, yields d
drX(r) < 0 for any r ∈ (0, ∞). 

However, the latter fact contradicts (3.52) and (3.53). Thus we conclude that problem 
(3.19) admits at most one solution. This ends the proof of Proposition 7. �

Now let us conclude.

Proof of Theorem 1. The existence has been proved in subsection 3.1, in particular (3.4). 
The uniqueness in the critical case c = c∗ has been derived from the transformation 
(3.18), Lemma 5 and Proposition 7. �
Remark 8. In the case 0 < c < c∗ we can replace (3.18) by

v(r) = rκQ(r), (3.54)

with κ is defined in (6.4), and then obtain the uniqueness by the same way.

Next, we prove Theorem 2.

Proof of Theorem 2. The existence of a minimizer for (2.6) has been proved in subsection 
3.1. The sharp constant follows from (3.5). It remains to prove that any minimizer for 
(2.6) has the form u(x) = zQ(λx). This part follows a standard technique, but let us 
quickly explain for the reader’s convenience. If u is a minimizer for (2.6), then by the 
convexity of gradients [19, Theorem 7.8] we know that |u| is also a minimizer. Moreover, 
by the rearrangement inequality [19, Theorem 3.4] and the fact that |x|−2 is strictly 
radially symmetric decreasing, we know that |u| must be radially symmetric decreasing. 
Up to dilations, |u| is nonnegative radial solution to equation (2.5). Thus the uniqueness 
result in Theorem 1 ensures that |u| equals Q up to dilations. In particular, we know 
that |u| > 0.

Note that if |u| > 0 and

‖∇u‖L2 = ‖∇|u|‖L2

then u/|u| is a constant. This can be seen, e.g. as in [8, Proposition 3], using the identity

|∇u|2 = |∇(|u|w)|2 = |∇(|u|)w + |u|(∇w)|2 = |∇|u||2 + |u|2|∇w|2,

with w = u/|u|. Here the cross term disappears since

2�(w)∇w = ∇|w|2 = 0
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as |w|2 = 1. Thus from ‖∇u‖L2 = ‖∇|u|‖L2 we find that w is a constant, namely u/|u|
is a constant. Thus u(x) = zQ(λx). �
4. Basic properties of the NLS

In this section we prove Theorem 3.

4.1. Local well-posedness

As previously explained, due to the sharpness of the Hardy potential H, the energy 
space associated to (1.1) is Q which is strictly larger than H1(Rd). Therefore, the well-
posedness results in [6] do not apply directly to our case.

Nevertheless, the existence and uniqueness of a local weak solution

u ∈ C([0, T );Q) ∩ C1([0, T );Q∗)

of (1.1) in a small time interval (0, T ) can be obtained by adapting the fixed point 
argument in [6]. We refer to [25, Theorems 2.2, 2.3] (see also [32, Section 4.3]) for details.2
Moreover, the conservation laws (2.9) also follow from [25, Theorem 2.3].

Fortunately, the local existence can be derived by examining abstract assumptions 
stated in [25]. The uniqueness is strongly based on the Strichartz estimates for H which 
were recently established in [32,23]. The blowup alternative follows from a standard 
argument.

Next, we show that the short-time solution obtained previously can be extended 
uniquely to a maximum life time T ∗. This step is nontrivial as the fixed point argument 
only works in short-time. Normally this requires a further argument using Strichartz 
estimates, as explained carefully for the usual NLS in [6]. Note that the Strichartz es-
timates with inverse square potentials are more subtle than that of the usual NLS, 
and indeed there is no end-point estimates as proved by Burq, Planchon, Stalker, and 
Tahvildar-Zadeh [5]. Fortunately, the following non-end-point estimates are sufficient for 
our purpose.

As usual, let d denote the dimension of the space Rd, we call a pair (q, r) admissible
if

q, r � 2, 2
q

+ d

r
= d

2 , (q, r, d) 
= (2,∞, 2). (4.1)

We recall the following results of Suzuki [32, Proposition 4.8] (see also [23, Corollary 
2.3]).

2 Conditions (G1)–(G5) in [25, Theorem 2.2] are verified under the assumption p < 2∗.
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Lemma 9 (Strichartz estimates). Assume (q, r) and (q̃, ̃r) are admissible pairs and q, ̃q >

2. Let I ⊂ R be a time interval containing 0. Then the following estimates hold

‖e−itHψ‖Lq(I;Lr(Rd)) � C‖ψ‖L2(Rd), (4.2)∥∥∥∥∥∥
t∫

0

e−i(t−s)HΨ(s)

∥∥∥∥∥∥
Lq(I;Lr(Rd))

� C‖Ψ‖Lq̃′ (I;Lr̃′ (Rd)), (4.3)

for all ψ ∈ L2(Rd) and Ψ ∈ Lq̃′(I; Lr̃′(Rd)).

Using the above Strichartz estimates we obtain the following technical result.

Lemma 10. Assume that u, v ∈ C([0, T ); Q) ∩ C1([0, T ); Q∗) be two weak solutions of 
(1.1) in (0, T ), possible with different initial data u(0) and v(0), such that

u(τ) = v(τ), for some τ ∈ [0, T ).

Then there exists θ ∈ (0, T − τ) such that

u(t) = v(t), for all t ∈ [τ, τ + θ].

Proof. By Duhamel’s formula we can write, for 0 � t � T − τ ,

u(t + τ) = e−i(τ+t)Hu0 + i

τ+t∫
0

e−i(τ+t−s)H |u(s)|p−1u(s)ds

= e−itH

⎛⎝e−iτHu0 + i

τ∫
0

e−i(τ−s)H |u(s)|p−1u(s)ds

⎞⎠
+ i

t∫
0

e−i(t−s)H |u(s + τ)|p−1u(s + τ)ds

= e−itHu(τ) + i

t∫
0

e−i(t−s)H |u(s + τ)|p−1u(s + τ)ds.

Similarly, we have

v(t + τ) = e−itHv(τ) + i

t∫
0

e−i(t−s)H |v(s + τ)|p−1v(s + τ)ds.

Let θ ∈ (0, T − τ ] and put ũ(t) = u(t + τ) and ṽ(t) = v(t + τ). For t ∈ [0, θ],
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|ũ(t) − ṽ(t)| =

∣∣∣∣∣∣
t∫

0

e−i(t−s)H(|ũ(s)|p−1ũ(s) − |ṽ(s)|p−1ṽ(s))ds

∣∣∣∣∣∣ .
Therefore, by using (4.3), the elementary inequality

||a|p−1a− |b|p−1b| � p(|a|p−1 + |b|p−1)|a− b| ∀a, b ∈ R

and Hölder inequality, we obtain

‖ũ(t) − ṽ(t)‖Lq((0,θ);Lr(Rd))

� C‖|ũ|p−1ũ− |ṽ|p−1ṽ‖Lq′ ((0,θ);Lr′ (Rd))

� Cθ
q−q′
qq′

(
‖ũ‖p−1

L∞((0,θ);Lr(Rd)) + ‖ṽ‖p−1
L∞((0,θ);Lr(Rd))

)
‖ũ− ṽ‖Lq((0,θ);Lr(Rd))

� Cθ
q−q′
qq′

(
‖u‖p−1

L∞((0,T );Q) + ‖v‖p−1
L∞((0,T );Q)

)
‖ũ− ṽ‖Lq((0,θ);Lr(Rd)).

Let θ0 > 0 be such that

Cθ
q−q′
qq′

0

(
‖u‖p−1

L∞((0,T );Q) + ‖v‖p−1
L∞((0,T );Q)

)
= 1

2 .

Here we note that θ0 does not depend on τ .
Hence, for any θ � min{θ0, T − τ}, it follows that

‖ũ(t) − ṽ(t)‖Lq((0,θ);Lr(Rd)) �
1
2‖ũ(t) − ṽ(t)‖Lq((0,θ);Lr(Rd)),

which in turn implies ũ = ṽ on [0, θ]. Therefore u = v in [τ, τ + θ]. This completes the 
proof of the technical lemma. �

Now we can conclude the uniqueness.

Lemma 11 (Uniqueness). For any given initial datum u0 ∈ Q and for any T > 0, the 
equation (1.1) has at most one weak solution u ∈ C([0, T ); Q) ∩C1([0, T ); Q∗) in (0, T ).

Proof. Assume that u, v ∈ C([0, T ); Q) ∩C1([0, T ); Q∗) are two solutions with the same 
initial datum u0. Set

τ∗ := sup{τ ∈ (0, T ) : u = v in (0, τ)}.

We know that 0 < τ∗ � T . We suppose by contradiction that τ∗ < T . Then there exist 
τ̃ and ε such that 0 < ε < θ0 and τ̃ < τ∗ < min{τ̃ + ε, T − ε} and u = v in (0, ̃τ ]. By 
Lemma 10, one can choose θ = min{θ0, T − τ∗} such that u = v in [τ̃ , ̃τ + θ]. Therefore 
u = v in (0, ̃τ + θ]. However,
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τ̃ + θ = τ̃ + min{θ0, T − τ∗} > τ∗,

which leads to a contradiction. Thus τ∗ = T and consequently u = v in [0, T ). �
Unique continuation. Next, for every given initial datum u0 ∈ Q, we can define

T ∗ = T ∗(u0) := sup{T > 0 : there exists a local weak solution of (1.1) in (0, T )}.

From the above analysis we obtain the uniqueness of the weak solution in (0, T ∗). This, 
combined with [25, Theorem 2.3], implies that u ∈ C([0, T ∗); Q) ∩C1([0, T ∗); Q∗). More-
over, the conservation laws in (2.9) hold for every t ∈ (0, T ∗). Thus in summary, for 
given u0 ∈ Q, there exists a unique weak solution u of (1.1) in the maximal time interval 
[0, T ∗).

Blow-up alternative. Now for any u0 ∈ Q, let u be a weak solution of (1.1) in the maximal 
time interval [0, T ∗). We prove that if T ∗ < ∞, then

lim
t↗T∗

‖
√
Hu‖L2 = ∞. (4.4)

We observe from [25, Theorem 2.2] that for any τ ∈ (0, T ∗) and ϕ ∈ Q with ‖ϕ‖Q � M

for some M > 0, there exists TM > 0 independent of τ such that problem{
i∂tu(t, x) = Hu(t, x) − |u(t, x)|p−1u(t, x) x ∈ Rd, t > τ,

u(τ, x) = ϕ(x) x ∈ Rd,
(4.5)

admits a local weak solution in (τ, τ + TM ).
If T ∗ < ∞, we suppose by contradiction that there exist M > 0 and an increasing 

sequence {τk} converging to T ∗ such that ‖u(τk)‖Q � M for all k � 1. We can choose 
k large enough such that τk + TM > T ∗. By the above observation, problem (4.5) with 
τ = τk admits a solution in (τk, τk + TM ). Consequently, problem (1.1) has a weak 
solution in (0, τk + TM ), which contradicts the maximality of T ∗. Thus (4.4) holds true.

4.2. Global existence

Now we come to part (ii) of Theorem 3. By the blowup alternative, it is sufficient 
to show that ‖

√
Hu(t)‖L2 remains bounded uniformly in t. Our starting point is the 

following estimate

E(u0) = E(u(t)) = 1
2‖

√
Hu(t)‖2

L2 −
1
p
‖u(t)‖pLp

� 1
2‖

√
Hu(t)‖2

L2 −
1

pCp
HGN

‖
√
Hu(t)‖pθL2‖u(t)‖p(1−θ)

L2

= 1
2‖

√
Hu(t)‖2

L2 −
1

pCp
HGN

‖
√
Hu(t)‖pθL2‖u0‖p(1−θ)

L2 (4.6)
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which follows from the conservation laws (2.9) and the Hardy-Gagliardo-Nirenberg in-
equality (2.6). Here recall that θ = d/2 − d/p.

Case 1: 2 < p < 2 + 4/d. In this case pθ = pd/2 − d < 2, and hence for any ε > 0 small 
we have

‖
√
Hu(t)‖pd/2−d

L2 � ε‖
√
Hu(t)‖2

L2 + Cε.

Inserting this in (4.6) implies that ‖
√
Hu(t)‖L2 is bounded uniformly in t.

Case 2: p = 2 + 4/d. In this case, pθ = 2 and the sharp constant in (2.7) satisfies

pCp
HGN = 2‖Q‖

4
d

L2 .

Therefore, the lower bound (4.6) boils down to

E(u0) = E(u(t)) � 1
2‖

√
Hu(t)‖2

L2 −
1
2‖

√
Hu(t)‖2

L2

(
‖u0‖L2

‖Q‖L2

) 4
d

.

Consequently, if ‖u0‖L2 < ‖Q‖L2 , then ‖
√
Hu(t)‖L2 is bounded uniformly in t.

Case 3: 2 + 4/d < p < 2∗. Multiplying (4.6) by ‖u0‖qL2 with q determined by

p(1 − θ) + q = qpθ

2 , namely q = 4d− 2p(d− 2)
dp− 2d− 4

we obtain

E(u0)‖u0‖qL2 � 1
2‖

√
Hu(t)‖2

L2‖u0‖qL2 −
1

pCp
HGN

(
‖
√
Hu(t)‖2

L2‖u0‖qL2

) pθ
2

= f(‖
√
Hu(t)‖2

L2‖u0‖qL2) (4.7)

with

f(s) := 1
2s−

1
pCp

HGN
s

pθ
2 , s � 0.

Following the argument of Holmer-Roudenko [13] (the function f in [13] is defined slightly 
different from ours), we will use the fact that f is strictly increasing in [0, s0] and strictly 
decreasing in [s0, ∞) where

s0 =
(
Cp

HGN
) 2

pθ−2

= ‖
√
HQ‖2

L2‖Q‖qL2 .

θ
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Now we prove that if

E(u0)‖u0‖qL2 < E(Q)‖Q‖qL2 , ‖
√
Hu0‖2

L2‖u0‖qL2 < s0, (4.8)

then

‖
√
Hu(t)‖2

L2‖u0‖qL2 < s0 (4.9)

for all t > 0. First, (4.9) holds at t = 0 by the second condition in (4.8). Moreover, from 
(4.7) and the first condition in (4.8) it follows that

f(‖
√
Hu(t)‖2

L2‖u0‖qL2) � E(u0)‖u0‖qL2 < E(Q)‖Q‖qL2 = f(s0).

Therefore, since f is strictly increasing in [0, s0], by the continuity of t �→ ‖
√
Hu(t)‖2

L2

‖u0‖qL2 we conclude that ‖
√
Hu(t)‖2

L2‖u0‖qL2 will never reach the maximum point s0, 
namely (4.9) holds true for all t. Consequently, (4.9) implies that ‖

√
Hu(t)‖L2 is bounded 

uniformly in t, which ensures the global existence of u(t).

4.3. Finite time blowup

We will use the following result of Suzuki [33, Subsection 3.1].

Lemma 12 (Virial identities). Let d � 3 and 2 < p < 2∗. Let u ∈ Q be a solution of (1.1)
on [0, T ). If |x|u0 ∈ L2(Rd), then |x|u(t, x) ∈ L2(Rd) for all t ∈ [0, T ) and the function

Γ(t) :=
∫
Rd

|x|2|u(t, x)|2dx (4.10)

satisfies the following identities for all t ∈ [0, T ),

Γ′(t) = 4�
∫
Rd

xu(t, x) · ∇u(t, x)dx, (4.11)

Γ′′(t) = 16E(u0) + 4 + 2d− dp

p

∫
Rd

|u(t, x)|pdx. (4.12)

Moreover, for any v ∈ Q and for any real-valued, radial function ϕ such that |x|ϕv ∈
L2(Rd) we have∣∣∣∣∣∣�

∫
xϕv(t, x) · ∇v(t, x)dx

∣∣∣∣∣∣ � ‖xϕv‖L2(‖
√
Hv‖L2 + ‖v‖L2). (4.13)
Rd
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Note that (4.13) ensures that the right side of (4.11) is finite as soon as u(t) ∈ Q.
Now we prove part (iii) of Theorem 3. Assume that the solution u(t) of (1.1) exists 

on [0, T ). We will show that, with Γ(t) in (4.10),

Γ′′(t) � −λ < 0 (4.14)

for all t ∈ [0, T ), where λ > 0 is a constant depending only on u0. Note that by Taylor’s 
expansion

0 � Γ(t) = Γ(0) + tΓ′(0) + t2

2 Γ′′(st)

(for some st ∈ [0, t]) the bound (4.14) implies that

0 � Γ(t) � Γ(0) + tΓ′(0) − t2

2 λ

for all t ∈ [0, T ). Since the latter bound cannot hold true for large t, we conclude that 
u(t) must blow up at a finite time.

It remains to prove (4.14). If E(u0) < 0, then (4.14) follows immediately from the 
Virial identity (4.12) and the fact that 4 + 2d − dp � 0:

Γ′′(t) = 16E(u0) + 4 + 2d− dp

p

∫
Rd

|u(t, x)|pdx � 16E(u0) < 0.

Now instead of E(u0) < 0, we assume

E(u0)‖u0‖qL2 < E(Q)‖Q‖qL2 , ‖
√
Hu0‖2

L2‖u0‖qL2 > ‖
√
HQ‖2

L2‖Q‖qL2 .

We use again the argument of Holmer-Roudenko [13]. Note that

‖
√
Hu0‖2

L2‖u0‖qL2 > ‖
√
HQ‖2

L2‖Q‖qL2 = s0

at time t = 0, and

f(‖
√
Hu(t)‖2

L2‖u0‖qL2) � E(u0)‖u0‖qL2 < E(Q)‖Q‖qL2 = f(s0)

for all t < T due to (4.7). Since f is strictly decreasing in [s0, ∞), by the continuity of 
t �→ ‖

√
Hu(t)‖2

L2‖u0‖qL2 we conclude that

‖
√
Hu(t)‖2

L2‖u0‖qL2 > s0 (4.15)

for all t < T . Finally, multiplying the Virial identity (4.12) with ‖u0‖qL2 , then using 
(4.15) together with the facts that p > 2 and 4 − d(p − 2) � 0 we obtain
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Γ′′(t)‖u0‖qL2 = 4d(p− 2)E(u0)‖u0‖qL2 + 2(4 − d(p− 2))‖
√
Hu(t)‖2

L2‖u0‖qL2

� 4d(p− 2)E(u0)‖u0‖qL2 + 2(4 − d(p− 2))‖
√
HQ‖2

L2‖Q‖qL2

= 4d(p− 2)
(
E(u0)‖u0‖qL2 − E(Q)‖Q‖qL2

)
< 0. (4.16)

Here in the last equality we have used

4d(p− 2)E(Q)‖Q‖qL2 + 2(4 − d(p− 2))‖
√
HQ‖2

L2‖Q‖qL2 = 0.

Thus (4.14) holds true, and hence u(t) blows up at a finite time. This ends the proof of 
Theorem 3.

5. Minimal mass blowup solutions

5.1. Compactness of minimizing sequences

In this subsection we offer another, free-rearrangement proof of the existence of 
minimizers of the Hardy-Gagliardo-Nirenberg inequality (2.6). This proof implies an im-
portant consequence, that any (normalized) minimizing sequence of (2.6) is pre-compact 
(without the radial assumption). This will be a crucial ingredient of our analysis of finite 
time blow-up solutions in Theorem 4. For the completeness we will work on the general 
case 2 < p < 2∗ (instead of focusing on the mass-critical case p = 2 + 4/d). We have

Theorem 13 (Compactness of minimizing sequences). Let d � 3 and 2 < p < 2∗. Let 
{un} be a minimizing sequence for the Hardy-Gagliardo-Nirenberg inequality (2.6) such 
that

lim inf
n→∞

‖un‖L2 > 0, lim sup
n→∞

‖un‖Q < ∞.

Then there exist a subsequence of {un} and constants λ > 0, z ∈ C such that

un(x) → zQ(λx) strongly in Q.

Proof. By dilations, we can assume that

‖un‖L2 = ‖
√
Hun‖L2 = 1, ‖un‖Lp → C−1

HGN.

Since {un} is bounded in Q, thanks to (2.3) and Sobolev’s embedding theorem we have, 
up to a subsequence when n → ∞, there exists u0 ∈ Q such that

un ⇀ u0 weakly in Q and Hs(Rd) for all 0 < s < 1,

un(x) → u0(x) for a.e. x ∈ Rd,

1B(0,R)un → 1B(0,R)u0 strongly for all 2 � p < 2∗, for all R > 0.
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We need to show that ‖u0‖L2 = 1. This will imply that un → u0 strongly in L2(Rd), 
and hence un → u0 strongly in Lq(Rd) for all 2 � q < 2∗ by interpolation, which allows 
us to conclude by Fatou’s lemma as in the above argument.

We assume, for the sake of contradiction, that ‖u0‖L2 < 1. Then from the local 
convergence, we can find a sequence Rn → ∞ such that when n → ∞,∫

Rn�|x|�2Rn

|un(x)|2dx → 0,
∫

|x|�Rn

|un(x)|2dx → m < 1.

Fix smooth functions χ, η : Rd → [0, 1] such that

χ2 + η2 = 1, χ(x) = 1 if |x| � 1, χ(x) = 0 if |x| � 2

and define

χn(x) = χ(x/Rn), ηn(x) = η(x/Rn), n ∈ N.

By the IMS formula we have the decomposition

〈un, Hun〉 = 〈χnun, H(χnun)〉 + 〈ηnun,−Δ(ηnun)〉

− c∗

∫
Rd

η2
n

|x|2 |un(x)|2dx−
∫
Rd

(|∇χn(x)|2 + |∇ηn(x)|2)|un(x)|2dx

� 〈χnun, H(χnun)〉 + 〈ηnun,−Δ(ηnun)〉 + o(1)n→∞. (5.1)

Then by Hölder’s inequality,

〈un, Hun〉θ
⎛⎝∫
Rd

|un|2dx

⎞⎠1−θ

�
(
〈χnun, H(χnun)〉 + 〈ηnun,−Δ(ηnun)〉 + o(1)n→∞

)θ

×

×

⎛⎝∫
Rd

|χnun|2dx +
∫
Rd

|ηnun|2dx

⎞⎠1−θ

� 〈χnun, H(χnun)〉θ
⎛⎝∫
Rd

|χnun|2dx

⎞⎠1−θ

+ 〈ηnun,−Δ(ηnun)〉θ
⎛⎝∫
Rd

|ηnun|2dx

⎞⎠1−θ

+ o(1)n→∞. (5.2)
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The first term on the right-hand side of (5.2) can be estimated using (2.6):

〈χnun, H(χnun)〉θ
⎛⎝∫
Rd

|χnun|2dx

⎞⎠1−θ

� C2
HGN‖χnun‖2

Lp .

For the second term on the right-hand side of (5.2), we use

〈ηnun,−Δ(χnun)〉θ
⎛⎝∫
Rd

|ηnun|2dx

⎞⎠1−θ

� C2
GN‖ηnun‖2

Lp

where

CGN = inf
ϕ�=0

‖
√
−Δϕ‖θL2‖ϕ‖1−θ

L2

‖ϕ‖Lp

.

Since it is well-known that CGN has a minimizer (which is indeed unique up to transla-
tions and dilations), we must have CGN > CHGN. Denote

C2
GN

C2
HGN

= 1 + ε0 > 1.

Thus in summary, from (5.2) we deduce that

〈un, Hun〉θ
⎛⎝∫
Rd

|un|2dx

⎞⎠1−θ

� C2
HGN

(
‖χnun‖2

Lp + (1 + ε0)‖ηnun‖2
Lp

)
+ o(1)n→∞.

(5.3)

Next, from

∫
Rn�|x|�2Rn

|un(x)|2dx → 0

we deduce that ∫
Rn�|x|�2Rn

|un(x)|pdx → 0.

Combining with the elementary estimate as+bs � (a +b)s with a, b � 0 and s = 2/p < 1, 
we obtain
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‖χnun‖2
Lp + ‖ηnun‖2

Lp =

⎛⎝∫
Rd

|χnun|pdx

⎞⎠
2
p

+

⎛⎝∫
Rd

|ηnun|pdx

⎞⎠
2
p

�

⎛⎝∫
Rd

|χnun|pdx +
∫
Rd

|ηnun|pdx

⎞⎠
2
p

=

⎛⎝∫
Rd

|un|pdx + o(1)n→∞

⎞⎠
2
p

= ‖un‖2
Lp + o(1)n→∞.

Therefore, (5.3) reduces to

〈un, Hun〉θ
⎛⎝∫
Rd

|un|2dx

⎞⎠1−θ

� C2
HGN

(
‖un‖2

Lp + ε0‖ηnun‖2
Lp

)
+ o(1)n→∞. (5.4)

Since {un} is a minimizing sequence for (2.6), (5.4) implies that

‖ηnun‖2
Lp → 0,

and hence

‖χnun‖2
Lp = ‖un‖2

Lp + o(1)n→∞. (5.5)

To conclude, we come back to use (5.1):

〈un, Hun〉 � 〈χnun, H(χnun)〉 + o(1)n→∞

and the fact ∫
Rd

|χnun|2dx → m < 1 =
∫
Rd

|un|2dx

together with (2.6) and (5.5). All the above estimates give

〈un, Hun〉θ
⎛⎝∫
Rd

|un|2dx

⎞⎠1−θ

� (〈χnun, H(χnun)〉 + o(1)n→∞)θ
(∫

Rd |χnun|2dx + o(1)n→∞

m

)1−θ

� mθ−1C2
HGN‖χnun‖2

Lp + o(1)n→∞

� mθ−1C2
HGN

(
‖un‖2

Lp + o(1)n→∞
)

+ o(1)n→∞.
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Thus

〈un, Hun〉θ
(∫

Rd |un|2dx
)1−θ

‖un‖2
Lp

� mθ−1C2
HGN + o(1)n→∞.

Since m < 1, this is a contradiction to the fact that {un} is a minimizing sequence for 
(2.6).

Thus we must have un → u0 strongly in L2(Rd), and hence un → u0 in Lp(Rd) by 
interpolation. This allows us to conclude that u0 is a minimizer, and that un → u0
strongly in Q. By Theorem 2, we know that u0(x) = zQ(λx) for some constants λ > 0
and z ∈ C. This ends the proof. �
5.2. Blowup profile at t → T

Now we come back to Theorem 4. We will focus on the mass-critical case p = 2 +4/d, 
where the sharp constant in the Hardy-Gagliardo-Nirenberg inequality (2.6) is

CHGN =
(

d

d + 2

) d
2(d+2)

‖Q‖
2

d+2
L2 . (5.6)

We will prove

Lemma 14 (Mass concentration as t → T ). Assume p = 2 + 4/d. Let u be a solution 
of (1.1) in [0, T ) such that ‖u0‖L2 = ‖Q‖L2 and limt↗T ‖u(t)‖Q = ∞. Let {tn} be an 
increasing sequence converging to T and denote un(x) = u(tnx). Then

|un|2 → ‖Q‖2
L2δ0 in (D(Rd))

in the sense of distributions.

Here (D(Rd))′ denotes the space of distributions in Rd and δ0 is the Dirac measure 
concentrated at x = 0.

Proof. Denote

vn(x) = λ
d
2
nun(λnx) with λn = ‖

√
HQ‖L2

‖
√
Hun‖L2

.

Then limn→∞ λn = 0 and

‖vn‖L2 = ‖un‖L2 = ‖u0‖L2 = ‖Q‖L2 ,

‖
√
Hvn‖L2 = λn‖

√
Hun‖L2 = ‖

√
HQ‖L2 ,

‖vn‖
2+ 4

d

L2+ 4
d

= λ2
n‖un‖

2+ 4
d

L2+ 4
d
.
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Using the above identities and the energy conservation, we obtain

E(vn) = 1
2‖

√
Hvn‖2

L2 −
d

2(d + 2)‖vn‖
2+ 4

d

L2+ 4
d

= λ2
n

(
1
2‖

√
Hun‖2

L2 −
d

2(d + 2)‖un‖
2+ 4

d

L2+ 4
d

)
= λ2

nE(un) = λ2
nE(u0) → 0.

Consequently,

lim
n→∞

‖vn‖
2+ 4

d

L2+ 4
d

= lim
n→∞

(
d + 2
d

)
‖
√
Hvn‖L2 =

(
d + 2
d

)
‖
√
HQ‖L2 ,

and hence

lim
n→∞

‖
√
Hvn‖

d
d+2
L2 ‖vn‖

2
d+2
L2

‖vn‖
L2+ 4

d

=
(

d

d + 2

) d
2(d+2)

‖Q‖
2

d+2
L2 = CHGN.

It means that {vn} is a minimizing sequence for (2.6).
By Theorem 13, there exist a subsequence, still denoted by {vn}, and constants λ > 0, 

z ∈ C such that vn(x) → zQ(λx) strongly in Q. Since

‖vn‖L2 = ‖Q‖L2 , ‖
√
Hvn‖L2 = ‖

√
HQ‖L2

we know that

λ = |z| = 1.

In particular, we obtain

|vn|2 → |Q|2 in L1(Rd).

Next, for any φ ∈ C∞
c (Rd), we can write

〈|un|2, φ〉 =
∫
Rd

|un(y)|2φ(y)dy

=
∫
Rd

|vn(x)|2φ(λnx)dx

=
∫
Rd

(|vn(x)|2 − |Q(x)|2)φ(λnx)dx +
∫
Rd

|Q(x)|2φ(0)dx

+
∫

|Q(x)|2(φ(λnx) − φ(0))dx.

Rd
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It follows that

|〈|un|2, φ〉 − ‖Q‖2
L2φ(0)| � ‖φ‖L∞

∫
Rd

||vn(x)|2 − |Q(x)|2|dx

+
∫
Rd

|Q(x)|2|φ(λnx) − φ(0)|dx. (5.7)

Since |vn|2 → Q2 in L1(Rd), the first term on the right-hand side of (5.7) tends to zero 
as n → ∞. Moreover, since λn → 0 and φ ∈ C∞

c (Rd) it follows that φ(λnx) → φ(0) as 
n → ∞ for all x ∈ Rd. By invoking dominated convergence theorem, we derive that the 
second term on the right-hand side of (5.7) tends to zero as n → ∞. As a consequence, 
|un|2 → ‖Q‖2

L2δ0 in (D(Rd))′. �
5.3. Virial identities

To conclude the proof, we will use the Virial identities in Lemma 12. Strictly speaking, 
the results in Lemma 12 hold under the condition |x|u0 ∈ L2(Rd), which is not available 
here. However, this condition can be relaxed in the mass-critical case.

Lemma 15 (Virial identity in the mass-critical case). Let u be a solution of (1.1) in [0, T )
such that ‖u0‖L2 = ‖Q‖L2 and limt↗T ‖u(t)‖Q = ∞. Then for all t ∈ [0, T ) we have 
|x|u(t) ∈ L2(Rd) and ∫

Rd

|x|2|u(t, x)|2dx = 8E(u0)(T − t)2. (5.8)

First, by using the a-priori estimate (4.13) in Lemma 12 we can easily adapt a result 
of Banica [1, Lemma 2.1] to our case.

Lemma 16. Assume p = 2 + 4/d. Let u ∈ Q such that ‖u‖L2 = ‖Q‖L2 . Then for any 
θ ∈ C∞

0 (Rd), there holds

∣∣∣∣∣∣
∫
Rd

∇θ · �(ū∇u)dx

∣∣∣∣∣∣ �
√

2E(u)

⎛⎝∫
Rd

|∇θ|2|u|2dx

⎞⎠
1
2

.

Now we provide

Proof of Lemma 15. Let φ ∈ C∞
0 (Rd) be a radial, non-negative function such that 

φ(x) = |x|2 for |x| � 1. Since φ is non-negative radially symmetric, we can write 
φ(x) = ζ(r) with r = |x|.
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By Taylor’s Theorem for all r, ρ ∈ R, there exists r̃ ∈ [r, r + ρ] such that

0 � ζ(r + ρ) = ζ(r) + ρζ ′(r) + ρ2

2 ζ ′′(r̃) � ζ(r) + ρζ ′(r) + c1ρ
2, (5.9)

where c1 = 1 + maxr∈R
|ζ′′(r)|

2 . We note that, the right-hand side of (5.9) is a second 
degree polynomial in ρ, hence |ζ ′(r)|2 − 4c1ζ(r) � 0, which implies |ζ ′(r)|2 � Cζ(r) with 
C = 4c1. Therefore, we have

|∇φ(x)|2 � Cφ(x) for x ∈ Rd. (5.10)

For R > 0, define ψR(x) = R2ψ( x
R ) and

ΓR(t) :=
∫
R

ψR(x)|u(t, x)|2dx ∀t ∈ [0, T ).

An easy computation yields

Γ′
R(t) = 2

∫
Rd

∇ψR �(ū∇u)dx ∀t ∈ [0, T ).

Since ‖u(t)‖L2 = ‖Q‖L2 , it follows from Lemma 16 and (5.10) that

|Γ′
R(t)| � 2

√
2E(u)

(∫
Rd

|∇ψR|2|u|2dx
) 1

2

� 2
√

2E(u0)
(∫
Rd

C2ψR|u|2dx
) 1

2

� C
√

E(u0)
√

ΓR(t).

Integrating between fixed t ∈ [0, T ) and tn we obtain,

|
√

ΓR(t) −
√

ΓR(tn)| � C|t− tn|. (5.11)

By the mass concentration in Lemma 14 we derive

ΓR(tn) =
∫
Rd

ψR(x)|un(x)|2dx → ‖Q‖2
L2ψR(0) = 0. (5.12)

By letting n → ∞ in (5.12) and employing (5.11), we deduce that ΓR(t) � C(T − t)2. 
This implies
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∫
Rd

ψR(x)|u(t, x)|2dx � C(T − t)2.

Letting R → ∞ and using monotone convergence theorem lead to |x|u(t) ∈ L2(Rd) for 
all t ∈ [0, T ) and

Γ(t) :=
∫
Rd

|x|2|u(t, x)|2dx � C(T − t)2.

This allows to extend Γ(t) by continuity at t = T by setting Γ(T ) = 0 and consequently 
Γ′(T ) = 0. We obtain the (4.12), which in the mass-critical case p = 2 + 4/d boils down 
to

Γ′′(t) = 16E(u0).

Combining with Γ(T ) = Γ′(T ) = 0 we find that

Γ(t) = 8E(u0)(T − t)2.

Consequently,

Γ(0) =
∫
Rd

|x|2|u0|2dx = 8E(u0)T,

Γ′(0) = 4�
∫
Rd

xu0(x) · ∇u0(x)dx = −16E(u0)T. �

5.4. Conclusion

For any T > 0, λ > 0 and γ ∈ R, define

ST,λ,γ(t, x) := eiγei
λ2

T−t e−i |x|2
4(T−t)

(
λ

T − t

) d
2

Q

(
λx

T − t

)
x ∈ Rd, t ∈ [0, T ). (5.13)

It is straightforward to check that for any T > 0, λ > 0 and γ ∈ R, the function ST,λ,γ

is a minimal-mass solution of (1.1) which blows up at finite time T > 0.
Next we conclude by using the strategy of Hmidi-Keraani [12]. We observe that for 

any u ∈ Q, for any real-valued function θ ∈ C∞
0 (Rd, R) and s ∈ R, there holds

E(ueisθ) = E(u) + s�
∫
Rd

u∇θ · ∇udx + s2

2

∫
Rd

|∇θ|2|u|2dx. (5.14)

We can take s = 1/(2T ) and choose θ(x) approaching |x|2/2 (using appropriate cut-off 
functions). This gives
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E(u0e
i|x|2
4T ) = E(u0) + 1

2T �
∫
Rd

xu0 · ∇u0dx + 1
8T 2

∫
Rd

|x|2|u0|2dx

= E(u0) −
4E(u0)

2T + 1
8T 2 (8E(u0)T 2) = 0.

Here we have used the Virial identity (5.8) in the last equality. Thus the function

v0 = u0e
i|x|2
4T

satisfies that ‖v0‖L2 = ‖Q‖L2 and E(v0) = 0. Hence v0 is a minimizer for the Hardy-
Gagliardo-Nirenberg inequality (2). By Theorem 2, there exist λ1 > 0, γ1 ∈ R such 
that

u0(x)e
i|x|2
4T = eiγ1λ

d
2
1 Q(λ1x), x ∈ Rd,

which is equivalent to

u0(x) = eiγ1e−
i|x|2
4T λ

d
2
1 Q(λ1x) x ∈ Rd.

Define λ0 = λ1T > 0, γ0 = γ1 − λ2
1T , then we can write

u0(x) = eiγ0ei
λ2
0

T e−i |x|2
4T

(
λ0

T

) d
2

Q

(
λ0x

T

)
= ST,λ0,γ0(0, x) x ∈ Rd.

By the uniqueness, we conclude that u(t, x) = ST,λ0,γ0(t, x) for all t ∈ [0, T ). This 
completes the proof of Theorem 4.

6. Extension to the case c|x|−2 with c < c∗

Instead of (1.1), we may also consider the NLS with subcritical inverse square potential

{
i∂tu(t, x) = (−Δ − c|x|−2)u(t, x) − |u(t, x)|p−2u(t, x), x ∈ Rd, t > 0,

u(0, x) = u0(x), x ∈ Rd,
(6.1)

with d � 3, 2 < p < 2∗ = 2d/(d − 2) and

c < c∗ = (d− 2)2

4 .

All the results in Theorems 1, 2, 3, 4 hold true in this subcritical case. In fact, the 
proof in this case is often simpler since now the quadratic form domain of −Δ − c|x|−2

is simply H1(Rd).
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Let us quickly explain how to adapt our proof to this case. We will focus on Theorem 1, 
namely the existence and uniqueness of the positive radial solution to

−ΔQ− c|x|−2Q−Qp−1 + Q = 0. (6.2)

(our result is new for the case c < c∗ as well). The existence part is easy and we only 
consider the uniqueness part. The main difference when c < c∗ is that we have the 
following analogue of the asymptotic formula (3.6)

lim
|x|→0

|x|κQ(x) ∈ (0,∞) (6.3)

with

κ := d− 2
2 −

√(
d− 2

2

)2

− c. (6.4)

Then in the proof of the uniqueness of Q, when c < c∗ we will replace (3.18) by

v(r) = rκQ(r),

and proceed exactly the same as in the critical case to get the desired result.
Let us explain (6.3) in more detail. If Q ∈ H1(Rd) is a positive radial solution of (6.2), 

then using the polar coordinate r = |x| we find that Q satisfies

d2

dr2Q + N − 1
r

d

dr
Q + c

r2Q−Q + Qp−1 = 0 in (0,∞).

Put

� := d− 2 − 2κ
d− 2

and

W (s) := rκQ(r) with s = r
,

then W satisfies

d2

ds2W + d− 1
s

d

ds
W − 1

�2
s

2(1−�)
� W + 1

�2
s

2(1−�)−κ(p−2)
� W p−1 = 0 in (0,∞).

Equivalently, we can write

ΔW − 1 |x|
2(1−�)

� W + 1 |x|
2(1−�)−κ(p−2)

� W p−1 = 0 in Rd \ {0}.

�2 �2
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Since � ∈ (0, 1) and p < 2∗ = 2d
d−2 , we have

lim
|x|→0

|x|
2(1−�)

� = lim
|x|→0

|x|
2(1−�)−κ(p−2)

� = 0.

Therefore, by a similar argument as in [36, Proof of Theorem 1.2], we deduce that W (0)
is well defined as a positive number. Thus (6.3) holds true.
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