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Chapter 1

Principles of Quantum Mechanics

1.1 Hilbert spaces

4 N
Definition (Hilbert Spaces). A space S is a Hilbert space if

o S is a complex vector space;

e il is equipped with an inner product (-,-) which is linear in the second argument

and anti-linear in the first
(@, 2y) = M, y),  (Az,9) = Mz, y);

L “ (A, - |]) is a Banach (complete normed) space with norm ||z|| = \/{x,x).
y

A Hilbert space . is separable if there exists a finite or countable family of vectors {u,, }n>1

which forms an orthonormal basis. In this case, we can write

r = Z(umx)un, Vo € .

n>1

Consequently, we have Parsevel’s identity

22 =" [(un, 2) 2, Va € 2.

n>1
We will always work with separable Hilbert spaces.

4
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Review: Riesz (representation)/Banach-Alaoglu/Banach-Steinhaus theorem.

1.2 Operators on Hilbert spaces

é N
Definition (Operators on Hilbert Spaces). By an operator A on 5 we mean a linear
map A : D(A) — € with a dense, subspace D(A) (domain of A).

The adjoint operator A* is defined by

D(A*) = {x e H|IAw e H: (x,Ay) = (A'z,y), Vye D(A)}.

. The operator A is self-adjoint if A = A*. )

The concept of self-adjointness is very important in quantum mechanics. Mathematically, it

enables various rigorous computations, thanks to the Spectral theorem.

~
Theorem (Spectral theorem). Assume that A is a self-adjoint operator on a separable

Hilbert space 7. Then there exists a measure space (2, 1), a real-valued measurable

function a : Q — R and a unitary transformation U : S — L*(Q) such that
UAU* = M,.
Here M, is the multiplication operator on L*(Q), defined by

(Muf)(z) = a(2)f(z), D(M,)={f € L*(Q),af € L*()}.

. We can choose Q) = o(A) x N C R? and a(\,n) = \. )

In practice, the self-adjointness is not always easy to prove. It is however easier to check

whenever an operator A is symmetric, namely

(x, Ay) = (Az,y), Vzx,y € D(A).
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Exercise. Prove that the followings are equivalent:
1. A is a symmetric operator;

2. (x,Az) € R for all x € D(A).

3. A* is an extension of A, namely D(A) C D(A*).

Thus if A is self-adjoint, then A is symmetric. But the reverse is not true. Two useful methods

to find self-adjoint extensions for symmetric operators are Friedrichs’ extension and
Kato-Rellich theorem.

é Y
Theorem (Friedrichs’ extension). Assume that A is bounded from below, namely

(x,Az) > —C|z||?, Vz € D(A)

with a finite constant C' independent of x. Then A has a self-adjoint extension Apr by

Friedrichs’ method. The Friedrichs extension preserves the ground state energy

inf  (z,Az) = inf (x, Apz).
zeD(A),||z]|=1 z€D(AF),||z=1

The quadratic form domain Q(Ar) is the same with Q(A). Recall that we define Q(A) as
the closure of D(A) under the quadratic form norm ||z g4y = /{z, (A + C + 1)z). However,

the domain D(Ap) is often not known explicitly. For the latter issue, the Kato-Rellich

theorem gives a better information on the domain of the extension.

é Y
Theorem (Kato-Rellich theorem). Assume that we can write A = Ay + B, where Ay is

self-adjoint and B is a small perturbation of Ay, in the meaning that
[Bz| < (1 —€)||Aoz|| + Ccllzl|, Vz € D(Ao) C D(B),

for some constant € > 0 independent of x (we say that B is Ag-relatively bounded with

the relative bound 1 —e). Then A can be extended to be a self-adjoint operator on the

| same domain of Ag.

Z

Review: Bounded/compact/Hilbert-Schmidt/trace class operators.



1.3. PRINCIPLES OF QUANTUM MECHANICS
1.3 Principles of Quantum Mechanics
4 N

Definition (Principles of Quantum Mechanics). A quantum system can be described by
a (separable) Hilbert space € .

e A pure state is a rank-one projection |x){x| with a normalized vector x €

(we use the bra-ket notation). A mixed state is a trace class operator T' on
FC such that T =T > 0, TrI' = 1. By Spectral theorem any mized state is a

super-position of pure states, namely

I'= Z€n|xn><xn|

n>1
where {x,} is an orthonormal family in A and &, >0, > &, = 1.

The Hamiltonian H is a self-adjoint operator on J which corresponds to the

energy (x, Hx) or Tr(HT'). The ground state energy is

Ey:=info(H) = inf (x,Hx) = inf L Tr(HT).

]| =1 r>0,Tr T

If the infimum exists, then the ground state solves the Schrodinger equation

Hzx = Eyz. Other elements of the spectrum o(H) corresponds to excited states.

At a positive temperature T > 0, the minimizer of the free energy

Er=_inf {Tr(Hr) FTT (r 1og(r)>}

>0,Tr =1

15 given uniquely by the Gibbs state

Ty = Zpte ™ 8T Zp =Tr(e /1) (if the partition function Zyp is finite).

The evolution of the quantum system is determined by the time-dependent

Schrodinger equation z(t) = e .
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Exercise. Prove that if the infimum

Ey:=info(H) = Hglgrnlil@, Hzx) = Fgol,%«fr=1 Tr(HT).

is attained for a mixed state T', then it is also attained for a pure state |x)(z].

Exercise. Prove that any ground state |z)(x| satisfies the Schrédinger equation
Hzx = Eyzx.

Hint: For anyy € €, define v. = (v+¢cy)/|x+ey||. Then the functional ¢ — (x., Hx.)

has a local minimum at € = 0.

Exercise. Assume that the partition function is finite for some temperature Ty > 0.

1. Prove that Zr it is finite for all T € (0,Ty). This implies that the Gibbs states is
well-defined for all T € (0,Tp).

2. Prove that the free energy is finite for all T € (0,Tp) and

lim Er = Ey  (the ground state energy).
T—0

Hint: You can use the Gibbs variational principle Er = —T log Zr.
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1.4 Many-body quantum mechanics

4 Y
Definition (Tensor product). Let J4 and 5 are two Hilbert spaces. The tensor
product space J4 ® % is a Hilbert space

J4 Q@ 7 = Span{u @ v |u € JA,v € F4}.
Here the closure is taken under the norm of 76 @ 7 which is given by the inner product
(U1 @ uz,v1 ® Vo) s = (U1, V1) (U2, V2) 5 -

Let Ay and Ay are operators on 6 and 7, respectively. Then the tensor product
operator A; ® Ay is an operator on 64 ® 7 defined by

Al X Ag(ul X UQ) = (Alul) X (AQUQ), D(Al & Ag) = D(Al) X D(AQ)

More generally, we can define the tensor product space F4 Q@ 5 & ... ® Hy and the
tensor product operator Ay ® As ® ...® An. In particular, if 764 = 766 = ... = Hy, then

we write

HRR ... R = HE.

Remarks:

e The tensor product 4 ® 74 is different from the direct product 4 x 4. In

particular, for any A € C we have
(Aup) @ us = AMug ® ug) = ug @ (Aug)

and similarly
(>\A1) ® A2 = )\(Al ® AQ) = Al ® (}\Ag)

e The notation J ® 74 ® ... ® ¢y is consistent thanks to the Associative Property
(A4 @ H) @ I = IO © (M © H3).

The same applies to the tensor product operator A1 ® As ® ... ® An.
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Exercise. Assume that {u,}n>1 is an orthonornal basis for F4 and {vm,}m>1 is an

orthonornal basis for 7. Prove that {u, @y, }mn>1 s an orthonornal basis for 76Q.56.

Exercise. Let 56 and 76 be two Hilbert spaces. Assume that the sequence {uy }n>1 is

bounded in 7€ and the sequence {v,}n>1 converges weakly to 0 in . Prove that

Up U, =0 weakly in 764 ® 6.

Exercise. Prove that for any d, N > 1, we have L*>(R¥) = L?(R4)®V.

.

Definition (Many body quantum systems). Consider a quantum system of N particles,
where the i-th particle is described by the Hilbert space F and the Hamiltonian h;.
Moreover, assume that the interaction between the i-th and j-th particles is described by
an operator W; on 5 @ J¢;. Then the combined system of N particles is described by

the interacting Hamiltionian

N
=Y ht Y W
i=1 1<i<j<N
acting on the tensor product space 74 ® ... ® #y. Here to simplify the notation we
identify h; with 1,4 ®...Qh; ®...®@1 4, (the identity 1 is put everywhere except the i-th
position). The same applies to W;;, for example Wiy is identified to W1aQ1 4 ®...Q1 4 . )

Remarks: The above expression is a bit formal as we did not specify the domain of relevant

operators. In practice, we will consider the case where W;; is relatively bounded with respect

to

h; + hj, with an arbitrary small relative bound. In this case, by the Kato-Rellich theorem

the interacting Hamiltonian is self-adjoint on the same domain with the non interacting

Hamiltionian

HY =hy + ...+ hy.
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Exercise (Non-interacting Hamiltonian). Assume that for any i = 1,2,...,N, the
Hamiltonian h; is self-adjoint on . Consider the N-particle system with the non-
interacting Hamiltonian HY = hi + ... + hy on J6 @ ... @ Hy.

1. Prove that HY is self-adjoint with the domain

D(HY) = D(h) ® D(ha) ® ... ® D(lin) " 5

Here the closure is taken with the operator norm || Wy | o = Vx| + [ H{ Y ]|.

2. Prove that the ground state energy of HY, is

N
inf o(HY) = Zinfcr(hi) (both sides can be —o0).

=1

3. Prove that if u; is a ground state of h;, then u1 @ ... @ uy is a ground state of HY.

In practice, we will mostly consider identical particles. For instance, every electron in the
universe has the same mass, electric charge and spin. To work with identical particles, we
will always assume that the corresponding one-body operators h; is the same for all ¢, and
that the interaction operator W;; is the same for all ¢ and j (in particular, W;; = W};). The
notations h; and Wj; are still useful to indicate which particles that the operators act. Then
the N-body Hamiltonian .
Hy =Y hi+ Y Wy
i=1 1<i<j<N

leaves invariant two important subspaces of #“V: the symmetric subspace and the anti-
symmetric subspace, which correspond to the Bose-Einstein statistics and the Fermi-

Dirac statistics.

é N
Definition (Particle statistics). Let 5 be the Hilbert space of one particle. For every

permutation o € Sy, we define the permutation operator Uy, : SN — 9N by
Up(1 ® Ug ® ... ® UN) = Uo(1) ® Up(2) ® ... ® Ug(n)-

e For N identical bosons, the corresponding Hilbert space %N is the symmetric
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subspace of SV, namely

Uy,(Uy) =Ty, YUy € #%N  VoeSy.

e For N identical fermions, the corresponding Hilbert space %N is the anti-

symmetric subspace of %N, namely
U,(Wy) =sign(o)¥y, YUy e %N Vo Sy.

The latter identity is called Pauli’s exclusion principle.

Exercise. 1. Prove that the operator U, defined as above is a unitary transformation.

2. Prove that the operators

Py =N Y U, Po=(N)"D sign(o)U,

ocESN oceSN

are orthogonal projections, namely Py = P} = P2.
3. Prove that %N = P (A#®N) and AN = P_(H4%N).

Exercise. Assume that {u,},>1 is an orthonormal basis for 7. Prove that

{P:t<ull ® ul'2 ® ® uiN)}il ..... in>1

is an orthogonal basis for F®s/«N .

The simplest example for a bosonic state is the Hartree state (pure tensor product state)

u®N (21, .. xn) = u(xy)..u(zy)

where u is a normalized vector in .7#°. The simplest example for a fermionic state is the

Slater determinant

(u1 ANug N ... A UN)(Z'l, ...,Q?N) =

\/% det [(ui(xj))lgiijN]
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where {u;}¥ | is an orthonormal family of /#. Here we put the factor 1/v/N! to ensure that

the Slater determinant is normalized (you should check why?).

The behavior of a many-body quantum system depends crucially on the particle statistics.

This can be seen already in the non-interacting case.

Exercise (Non-interacting Hamiltonian with particle statistics). Let h be a self-adjoint
operator on €. Consider the non-interacting Hamiltonian HR, = hi + ...+ hy on
A Fals N

1. Prove that HY is self-adjoint with the domain

D(HY) = P.D(h) @ D(W) ® ... D(h) "%
2. Prove that in the bosonic case, the ground state energy of HY is
inf o(HY) = Ninfo(h) (both sides can be —oc).

In particular, if u is a ground state for h, then the Hartree state u®Y is a ground state
for HY.
3. (Hard) Prove that in the fermionic case, the ground state energy of HY, is

N
info(HY) = Z Ai(h)  (both sides can be —o0).
i=1
Here \; is the i-th min-maz value of h. In particular, if h has the lowest eigenvalues
A1, ., AN with etgenfunctions uq, ..., uy, then the Slater determinant uy A us A ... A uy

is a ground state for HY.

In general, non-interacting systems are “easy to understand”. The interacting systems are
much more difficult. When the number of particles becomes large, basic physical properties
of interacting systems are impossible to compute, even numerically. In computational
physics (even chemistry) people often use approximate theories: it is desirable to replace the
linear, many-body theory by nonlinear, one-body (or few-body) theories. A major task

of mathematical physics is to develop/justify these approximations.

Since the underlying Hilbert spaces .2#®+/«" are too large, it is often useful to restrict to

smaller classes of quantum states. For bosons, by restricting the consideration to only Hartree
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states, we obtain the Hartree theory (also called the Gross-Pitaevskii theory in the con-
text of the Bose-Einstein condensate and superfluidity). For fermions, by restricting the
consideration to only Slater determinants, we obtain the Hartree-Fock theory. These the-
ories are consistent with the mean-field approximation and typically predict the leading

order behavior of many-body quantum systems when the number of particles becomes large.

To go beyond the leading order approximation, we need to take the particle correlation
into account. The correction to the leading order approximation can be formulated in terms
of quasi-free particles, leading to Bogoliubov theory for bosons, and the Hartree-Fock-
Bogoliubov theory for fermions (the latter is a generalization of the Bardeen-Cooper-

Schrieffer theory in the context of superconductivity).

In this course we will develop mathematical tools to derive rigorously these approximate
theories. In particular, we will employ the framework from quantum field theory, including

the Fock space formalism and the method of second quantization.



Chapter 2

Schrodinger operators

é N
Definition. A typical many-body Schrodinger operator has the form

N

Hy=) (B + V(@) + > Wwi—1)

i=1 1<i<j<N

acting on L*(R) or the bosonic space L?*(RY)®N or the fermionic space L*(R%)®N,

where
e —A, the usual Laplacian on L?*(R%), is the kinetic operator of a particle;

e V:R? = R an external potential;

L © W =W(-.): R? - R an interaction potential (it is even, hence W;; = W, ). )

Recall that the bosonic space L?(R%)®Y contains all symmetric functions, namely
Un (21, ey Tiy ooy Ty oy ) = UN(T1, ooy gy ooy Ty oy TN), Vi F g
while the fermionic space L?*(R?)®Y contains all anti-symmetric functions
UnN(T1, ey Tiy ooy Ty ooy @N) = =V (21, oy Ty oy T4,y oo TN),  ViEF

In this chapter the particle statistics does not play an important role, so at first reading you

may think of Hy acting on the full space L?(R*Y) for simplicity.

We will study some general spectral properties of the Schrodinger operators. We will always

15
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assume that the interaction potential W is relatively bounded with respect to —Aga. For the

external potential, we distinguish two different cases:
e The trapping case V(x) — 400 as |z| — oo;
e The vanishing case V(z) — 0 as |z| — oo.

The spectral properties of these two cases are very different. In the first case, the Hamiltonian
Hpy has discrete spectrum with eigenvalues converging to infinity. This follows the same
analysis that we have discussed in MQM1 (we will recall below). In the second case, the
interaction operator is not a compact-perturbation of the kinetic operator, leading to a

big change on the essential spectrum in comparison to the one-body Schrodinger operator.

2.1 Weyl’s theory

Let us quickly remind some important tools to study the Schrodinger operators. First we

recall some general facts from spectral theory.

é N
Definition (Spectrum). Let A be a self-adjoint operator on a Hilbert space 7. Then

its spectrum s
o(A) ={NeR: (A—\)" is a bounded operator }.

The discrete spectrum ogis(A) is the set of isolated eigenvalues with finite multiplic-

ities. The essential spectrum is the complement

Oess(A) = 0(A)\oais(A).

Exercise. Consider the multiplication operator M, on L*(Q, ) which is self-adjoint
with the domain D(M,) = {f € L*: af € L*}. Prove that

e A€ o(M,) iff wla™*(A\—e, A\ +¢€)) > 0 for alle > 0, namely o(M,) = ess-range(a).
e \ is an eigenvalue of M, iff u(a=*()\)) > 0.

o )\ € oais(M,) iff X is an isolated point of o(M,) and 0 < p(a™' (X)) < oo.
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By the spectral theorem, any self-adjoint operator is unitarily equivalent to a multiplication
operator. However, this abstract result is not very helpful in application, as it is hard to
compute the measure .

Here is a general characterization of the spectrum.

f N
Theorem (Weyl’s Criterion). For any self-adjoint operator A on a Hilbert space € :

e \ € o(A) iff there exists a Weyl sequence {u,} C D(A) such that

lunll =1, (A= XNu,|| >0 as n— oco.

o \ € 0ess(A) iff there exists a Weyl sequence {x,} C D(A) such that

. lunll =1, wuw, — 0 weakly, [[(A—Nu,| —0 as n— oco. )

In practice, Weyl’s Criterion is very useful to study the essential spectrum. A famous conse-

quence of Weyl’s Criterion is

é Y
Theorem (Compact perturbation does not change essential spectrum). Let A be a self-

adjoint operator on a Hilbert space. Let B be a symmetric operator which is A-relatively
compact, namely D(B) C D(A) and B(A+ i)' is a compact operator. Then A+ B is
self-adjoint on D(A) and

Uess(A + B) = Uess(A>-

Exercise. Prove the above corollary using Weyl’s Criterion theorem.
Hint: You can write B = B(A +1i) (A +1).

2.2 Min-max principle

A useful tool to study the discrete spectrum below the essential spectrum is the min-max

principle.

( Theorem (Min-Max Principle). Let A be a self-adjoint operator on a Hilbert space F€ . ]
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Assume that A is bounded from below and define the min-max values

o(A)=  inf , Au) .
S P A
dim M=n [uf|=1

Then we have
inf oess(A) = foo(A) := lim p,,(A).

n—oo

. Moreover, if p,(A) < poo(A), then py, ..., p, are the lowest eigenvalues of A.

Remarks:

e In the above definition, the condition M C D(A) can be replaced by M C © for any
subspace © which is dense in the quadratic form domain Q(A). Thus in practice, we
can compute the min-max values even if we do not know the domain of A. For example,
if A is the Friedrichs’ extension of a (densely defined) operator Ay, then the min-max

values can be computed using the domain of Ajg.

e It is obvious that p,(A) is an increasing sequence when n grows. Thus the limit

foo(A) :=lim,, o i1, (A) always exists, even it can be +o0.

o If uw(A) = o0, then the strict inequality p,(A) < peo(A) trivially holds for all
n = 1,2,.... Consequently, all min-max values become eigenvalues and they converge
to +oo. In this case we say that A has compact resolvent because (A + C)~!is a

compact operator for any C' > —puy(A)).

e The min-max values is monotone increasing in operator, namely if A < B, then
pn(A) < pp(B), ¥Yn=1,2,..

In particular, if A < B and A has compact resolvent, then B has compact resolvent.

2.3 Sobolev inequalities

Next, we turn to the fact that the Schrodinger operators are defined on the real space RV,

Therefore, we recall some standard results from real analysis.
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4 )
Definition (Sobolev Spaces). For any dimension d > 1 and s > 0, define

H'(R?) i= {f € L*®%) | [6]"J(k) € L*@®%) }
with f the Fourier transform of f. This is a Hilbert space with the inner product

ummzfﬁ%waﬂ%wmk

. .

Remarks:

e We use the following convention of the Fourier transform

~

Fy = [ ey,

e On the Sobolev space H*(R?), we can define the weak derivative via the Fourier trans-

form

D2 f(k) = (=2mik)* F (k)
which belongs to L?(R%) for any multiple index a = (o, ..., ag) With |a| = a1 +...4+ay <

S.

e In the above definition and the Sobolev inequalities below, the power s is not necessarily
an integer. In the course we will mostly think of s as an integer for simplicity. The
non-integer case (the so-called fractional Sobolev spaces) is useful for studying

relativistic quantum mechanics.

Theorem (Sobolev Inequalities/Continuous embedding). Let d > 1 and s > 0. Then

£ llzomey < Cllfllasmey, Y € HY(R?)

where
REpE = if s <d/2,
2<p< o0, if s=d/2
2 < p<oo, if s > d/2.
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We say that H*(RY) C LP(R®) with continuous embedding. When s > d/2 we also have
the continuous embedding H*(RY) C € (R?) (the space of continuous functions with

sup-norm,).

Remarks:

e In the case s < d/2, the power p* := 2d/(d — 2s) is called the Sobolev critical
exponent. In fact, this is the only power works for the following standard Sobolev
inequality

111z ey < CI(=A)*"2 fll 2y

(on the right side we do not put the full norm of H*, but only the seminorm of H °).

e In principle, for any given power s > 0, the Sobolev inequality becomes weaker when

the dimension d grows. For example,

H'(R)Cc L*(R)N¥(R), H'®R>)cC (]| L/®), H'R)cC () L’R.

2<p<oo 2<p<6
Similarly,

H*(R*) ¢ LA(R*)NE(R*)  but H*R*) ¢ €(RY).

e A common difficulty of many-body quantum mechanics is that we will often work on

spaces with very high dimensions, making the use of Sobolev inequality less efficient.

é Y
Theorem (Sobolev compact embedding). Let d > 1 and s > 0. Then for any bounded

set Q C RY, the operator 1q : H*(RY) — LP(R?) is a compact operator, where

2<p < 25 if s <dj2,

2<p< oo, if s > dJ2.

. When s > d/2, we also have the compact embedding 1q : H*(R?) — € (R?). )

Remark: An easy way to remember the Sobolev compact embedding is that if u,, — 0 weakly

in any Sobolev space H*(R?) with s > 0, then for any R > 0 we have

lunL(J2] < R) 2 — 0.
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Then the strong convergence in LP follows by a standard interpolation (Holder inequality);

this is the reason we have to avoid the critical power (end-point).

Exercise. Assume that u, — 0 weakly in a Sobolev space H*(RY) with s > 0. Prove

that up to a subsequence n — oo, we can choose R, — oo such that
Jun1 (2| < Ro)llz2@ay — 0.

Is it really necessary to take a subsequence?

2.4 IMS formula

Another helpful result from real analysis is the IMS formula, named after Ismagilov,
Morgan, Simon and Israel Michael Sigal. This provides with a localization technique

in the position/configuration space.

é Y
Theorem (IMS formula). For any smooth function ¢ : R — R (e.g. €* or Lipschitz),

we have ) )
©*(—Agra) + (=Aga)p
2

Consequently, if smooth functions {goj}g?zl form a partition of unity,

= p(—Aga)p — [Vo|*.

k
Z ’80]|2 = ]le')
j=1

then

—Aps = Y 0;(—Ara)p; — ) [Vl

Exercise. Prove the IMS formula using the integration by part.
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2.5 Schrodinger operators with trapping potentials

Theorem. Consider the Schrodinger operator
N

Hy=) (-Ap+V(@)+ >, W

i=1 1<i<j<N

acting on L*(R¥N) or L2(RY)®N or L2(RY)®N . Assume that
o W e LP(RY) + L®°(R?) with p > max(d/2,1)

o VeIl

P (RY) and V(z) = 400 as |z| = oo.

Then Hy, originally defined on the core domain of smooth functions with compact sup-
port, is bounded from below and can be extended to be a self-adjoint operator by Friedrichs

method. Moreover, Hy has compact resolvent, namely it has discrete spectrum with

. eigenvalues converging to +oo. )

Proof. Step 1. We prove that Hy is bounded from below.

Consider the external potential V : R? — R. For any € > 0 we can write

V=Vi+Vo, [Vilpr@sy <e, Vo>-C lim Vi(z)= +oo.

|z|—o0

Consider a wave function ¥y € C®(R¥) (or a symmetric/anti-symmetric one) by Holder’s

inequality we have
<\IIN,‘/1($1)\I/N>:/N‘/i(l‘1)|\I/N(I1,...,ZL‘N)|2dIL'1...dIN
R4
)P 2% 1/q
> ( Vi(z1)] d.rl [ 1y z) d.rl> dy...dey
RA(N-1)
with

Here we have

1/p
([ Wienlde) ™ = Vil <=
R

The condition p > max(1,d/2) implies that ¢ < oo for all d > 1, and moreover ¢ < 2d/(d—2)
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in case d > 3. Thus by Sobolev’s inequality for H!(RY),

1/q
(/ (e, )Py g/ (1= A, )20y 2das.
R R4

In summary,

(W, Vi(21)Uy) > —Ce /

RA(N—-1)

([ 10— 20" 205 )dzs...doy = ~Ce(Wy, (1= Ay, ) Uy).
R4
This bound can be written in the compact form

Vi(zy) > —Ce(1 — Ayy).

Similar estimates holds for Vj(x2), ..., Vi(zn). Thus

Consider the interaction potential W : R¢ — R. For any € > 0 we can write

W =W+ Wy, [[Willppge <&, [[Wallr= < C:

Similarly as above, for any wave function ¥y € C°(R¥) (or a symmetric/anti-symmetric

one) by Holder’s inequality and Sobolev inequality we can bound

<\I]N, Wl(.fCl — $2)\IIN> = W1($1 — .Z'Q)“IJN(.CEl, ...,.IN)PdJ]l...dQ?N

RAN

1/p 1/q
Z _/ ( |W1($1—$2)|pd$1> (/ |\I/N(J?1,...,$N)|2qdl‘1> dl'z...dIL'N
RA(N-1) Rd Rd

_/dw . Wil e ®ay (C/d (1 — Am)l/?\I/N|2dx1>d$2._,de
RAY= R

Z _OE<\IIN7 (1 - A171)\IJN>

v

Here again we use the notation % + % = 1 and the condition ¢ < oo, ¢ < 2d/(d — 2) for
d > 3. The only difference to the previous treatment of the external potential is that we use
the translation-invariance of the interaction potential and the Lebesgue measure which
ensure that
1/p
([ Wi = wo)lPday) " = [Willgage) < =
Rd
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The above estimate also holds for Wi (x; — x;) for any ¢ # j. Thus

> Uy Wim —z)Uy) = —Ce Y (Ty, (1-A,)Ty)
1<i<j<N 1<i<j<N
N

> —CNe Z(‘IIN, (—A,)¥y) — Cen.

i=1
The potential W5 is bounded, and hence for the total interaction part, we have

> (Un, W(a —2;)¥y) > ~CNe Y (Uy, (=A,,)Ty) = Ce.

1<i<j<N i=1

Conclusion of the lower bound. Combining the above estimates for the external and

interaction potentials we conclude that

N

Vi) + Y Wr—a;) > Z Va(z;) = C(N + 1) Y (=A,,) = Cen.

i=1 1<i<j<N i—

This holds for any € € (0,1). We can choose ¢ = ¢y > 0 small enough such that C(N +1)e <
1/2. Thus

N N
Hy =) (=Dp + V() + D>, Wlni—x;)>) < - %Am + Vz@z‘)) — Cn.
i=1 1<i<j<N i—1

Since V5 is bounded from below, we conclude that Hy is bounded from below.

Consequently, Hy can be extended to be a self-adjoint operator using Friedrichs’ method.

Step 2. We need to prove that Hy has compact resolvent. From the above lower bound

Hy > é ( — %Ami + Vz(%)) - Cy.

and the Min-max principle, it suffices to prove that the operator

N

ﬁN = Z (— %Aa)i + VQ(%))

=1
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has compact resolvent. This operator can be written as

N
~ 1
HN = _EARdN + U(X), U(X) - Z‘/Z(IZ)7 X = (Z‘l, ,I‘N) < RdN'

=1

If Hy is an operator on the full space L2(R%), then we can interpret Hy as a one-body

Schrodinger operator on L*(R*Y). The condition lim, Va(z) — 400 implies that
lim U(X) = +oo.

Therefore, —fAgav + U(X) has compact resolvent (we have proved this in MQM1). Conse-
quently, the original operator Hy has compact resolvent.
Now consider the case when Hy is an operator on the bosonic space. Then by the definition,

the min-max value of Hy is

wn(Hy) = inf sup (U, HyUy) .
dimM=n weM
[[ull=1

Here the infimum is taken over all symmetric subspaces M of C°(R%). The infimum does
not increase if we ignore the symmetry condition on M, namely the min-max values of
the bosonic Hamiltonian Hy are bigger than or equal to those of the Hamiltonian on the
full space L?(R*). Thus the bosonic operator Hy has compact resolvent. Similarly, the

fermionic operator Hy also has compact resolvent. g.e.d.

2.6 Schrodinger operators with vanishing potentials

Now we turn to the case when the external potential vanishes at infinity. A motivating
example is the Atomic Hamiltonian with the Coulomb potentials W (z) = |z|™' and
V(z) = —Z|z|™, x € R3.

We start with the self-adjointness of the many-body Hamiltonian for general potentials.

Theorem (Kato theorem). Consider the Schridinger operator

N

Hy=) (A +V@)+ Y Wiz

i=1 1<i<j<N
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acting on L*(R¥Y) or L2(RY)®N or L2(RY)®N . Assume that

W,V € LP(RY) + L°(RY), p > max(d/2,1)

Then Hy is self-adjoint operator with the quadratic form domain

Q(Hy) = H'R™) or HIR¥™) = PLHY(RY)  or HY(RY) = P_H'(R™).

Moreover, if we assume that

W,V € LP(RY) 4+ L®(RY), p > max(d/2,2)

then the domain of Hy is

D(Hy) = H*R™)  or H2(R™) = P,H*R¥)  or H>(R3N) = P_H*(RY). )

.

Proof. Part 1. Consider the case W,V € LP(R?) + L>*°(R?),p > max(d/2,1). Proceeding

exactly as in the case of trapping external potentials (now we just do not have V5(z) — oo

as |x| — o0), then we obtain the lower bound

N
> A, —Cy.
=1

Thus Hy is bounded from below. Consequently, it can be extended to be a self-adjoint

Hy >

DO | —

operator by Friedichs’” method.

Moreover, by the same argument we also get the upper bound

N
Hy < QZ_A% + Cy.

i=1
Thus the quadratic form domain of Hy is the same with the non-interacting Hamiltonian

N

> Ay = —Agan,

=1

namely
or H}R™) = p_H"(R¥).

QUHy) = H'(R™) or H;(R™) = P, H'(R™)
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Part 2. Consider the case W,V € LP(R?) 4+ L*°(R%), p > max(d/2,2). We can prove that
the external and interaction potentials are relatively bounded with respect to the kinetic

operator.

Let us consider the interaction potential W : R? — R. For any € > 0 we can write
W=Wi+Wa, [Wilpgey <e, [[Well= < Ce.

For any wave function ¥y by Holder and Sobolev inequalities (for H?(R?)) we can bound

||W1<I1 — 1’2)\111\7”2 = /dN |Wl<l’1 — 1’2)|2“IIN(IE1, ...,.1’N>|2dx1...d$N
R
2/p 2/q
S / < |W1($1—[L’2)|pdl‘1 / |\IJN(£B1,...,I'N)|quL’1> d.Ig...dl‘N
Rd(N 1) Rd d

< [ Il (€ [ 10 800 ) e

< Ce?[|(1 = Ag) Tvf*.

Here we use the the notation

2.2

p q
The condition p > max(d/2,2) implies that ¢ < oo for all d > 1, and moreover q < 2d/(d—4)
if d > 4, allowing to use the Sobolev inequality. The above estimate also holds for Wi (x; —z;)

for any ¢ # j. Thus
Yo W@ —z)¥y|<Ce Y (1-A )WNH<CHWH§: Ag) U + Cen-
1<i<j<N 1<i<j<N i=1

In the latter estimate we also used that the non-negative operators (—Ag,), ..., (—A.)

commute. Since W; is bounded, by the triangle inequality we conclude that
H > Wl —%qu<&NW§: 2)Un| + Cen.
1<i<j<N

The external potential can be treated similarly. Thus can choose ¢ = ey > 0 small enough

such that

H(_fijm > Wiai- )‘I’NIIS—IIZ Au)Un| + Cn.

1<i<j<N
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By the Kato-Rellich theorem, we conclude that Hy is a self-adjoint operator on the same

domain of
N

D (—As) = —Agav,

i=1

namely
D(Hy) = H*R™) or H2(R™) = P, H*(R™)  or H>(R*N) = P_H*(RY),
q.e.d.
Remarks:

e For the atomic Hamiltonian, the Coulomb potential can be written as
|7t = |27 (2] < 1) + |27 (2] > 1) € LP7H(R?) + LPFE(R?), Ve >0,

Thus the condition L” 4+ L* in the above Theorem is clearly satisfied.

e For Coulomb potential, instead of using Sobolev inequality you may also use Hardy’s

inequality

e The self-adjointness of the Atomic Hamiltonian was first proved by Kato in 1951. There
is a nice story behind his proof; see “Tosio Kato’s Work on Non-Relativistic Quantum
Mechanics” by Barry Simon https://arxiv.org/pdf/1711.00528.pdf.

2.7 HVZ theorem

Unlike the case of trapping external potentials, the Hamiltonian with a vanishing external
potential has continuous spectrum. If the interaction potential is positive, the essential

spectrum was determined by Huntiker, Van Winter and Zhislin in 1960s.

é Y
Theorem (HVZ theorem). Consider the Schréodinger operator
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acting on L*(R¥) or L2(RY)®N or L2(RY)®«N . Assume that W > 0 and
W,V € LP(R?) 4 LYR?), oo > p,q > max(d/2,2).

Then

. Oess(Hn) = [EN—1,00), En_1 =info(Hn_1). )

Remarks:

e The condition W > 0 is needed for the inclusion oes(Hy) C [En_1,00). The inclusion

[En_1,00) C 0ess(Hy) always holds true without the condition W > 0.

e For the one-body operator —A + U(z) on RY if U vanishes at infinity, then it is
a compact perturbation of the free Schrodinger operator —A. Therefore, by Weyl’s

theorem, we know that
Oess(—A+U) =0(—A) =[0,00).

The picture changes completely for the many-body Hamiltonian Hpy. The reason is
that the interaction W(z; — ;) does not vanish at infinity even if the function
W : R? — R vanishes at infinity (because z; and x; may converge to infinity while

their distance remains bounded).

e The difference Ey — Ex_1 (so called binding energy) is the energy needed to remove
one particle from the bound state of a system of NV particles. The HVZ theorem tells
us that Fy < Ey_1, and if Ey < Ex_; then Hy has a ground state (by the Min-max
principle).

Proof of HVZ theorem. We will use Weyl’s criterion theorem. For simplicity we consider the
case when Hy acts on the full space L?(R%); the bosonic and fermionic cases follow small

modifications.

Step 1. We prove that [En_1,00) C 0ess(Hpy). In this step we do not need W > 0.
We take A > 0 and prove that
Enx_ 1+ )€ O'eSS(HN).

By Weyl’s theorem, we need to find a Weyl sequence {1 },5; € L2(RY) such that

||\I’5\?)|| =1, \1/5\7;) =0, [[(Hy—Ey-1— )\)\IJE\T;)H —0 as n— .
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The choice of the Weyl sequence:

e Since Ey_; = info(Hy_1), we have Ey_y € o(Hx_1) (the spectrum is closed).
Therefore, by Weyl’s theorem, there exists a Weyl sequence {¥'%) },5; € L2(RUN-D)
such that

1T =1, |[(Hyot — Ex-)0% ] =0 as n— oo

e Since A > 0, we have A € 0es(—Aga). Therefore, by Weyl’s theorem, there exists a
sequence {u™} C L*(R?) such that
™) =1, u™ =0, [[(=Apa—Nu™|| =0 as n— oco.

e Then we can choose

namely

\115\7;) (1, .., N) = \I/%L)_l(xl, s xN_l)u(")(xN).

It remains to check that {\P%)}nzl is a desired Weyl’s sequence for Hy. It is actually
correct. However, to make the proof easier, let us refine the choice of \Ilgf,l)_l and u™ a

bit: by a standard density argument we can choose such that
supp \IJE(,LL C Brav(0,R,,), suppu™ C {z € R?: 2R, < |z| < 3R,}

for some sequence R,, > 4R,,_; (you should check why?).

Now let us prove that \Ifs\?) = \115@1 ® u™ is a good choice. First,
11 = MR ) = 1.

Moreover, since the functions {u™} have disjoint supports, the functions {\Ifs\?)}nzl also have

disjoint supports. In particular, {\I/%l)}nzl is an orthonormal family, and hence

\IIE(;) — 0  weakly in L*(R¥).
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Next, we decompose
N-1
HN = HN_1 + (—AmN) + V(ZEN) + Z W(ZL’Z - xN).

=1

Therefore, by the triangle inequality
|(Hy = Enoy = MU < ||(Hy-1 — EN_lw‘”)n + (= By = VT

|V ()T + Z W (z; — zn) U],

We have
[(Hy—1 — Ex- )W) = [|(Hy-1 — Ex—0) 85 | lu™]] = 0,
(A, W M= 151 (=A = Na™| = o,
HV<:cN> DN = 11 V™ = [V (@)1(|jz] > 2R,)u™] — 0,
W (s — )OS || = W (2 — 2n)1(|j2; — 2n| > R)WS u™]| = 0.

For the last two convergences are obvious if we know that V(z) — 0, W (z) — 0 as |z| = 0.
More generally, if V. W € LP 4 L9 then we can use Holder and Sobolev inequalities as in the
proof of the self-adjointness, plus the fact that

IV (2)L(lz] = 2Ry)||r+20 = 0, [[W(z)L(|z] = Bn)l[Lr+1s — 0.
Here u(™ is bounded in H?(R?).

This concludes the proof of [Ey_1,00) C 0ess(Hy).

Step 2. Now we prove that oess(Hy) C [En—1,00). In this step we need W > 0.

Take A + En_ 1 € Oess(Hy). We prove that A > 0. By Weyl’s theorem, there exists a Weyl
sequence {U{"},51 € L2(RY) such that

oW =1, W —~0, |(Hy—Eyx1—N0W|=0 as n— o

From the above properties, we find that {\If } is bounded in H?(R), and hence the weak
convergence in L? can be upgraded to U — 0 in H2(RY) (see the exercise below). By

Sobolev compact embedding theorem, we find that up to a subsequence as n — oo, we can
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find R,, — oo such that

1% 150,870 = 0.
Physically, the latter convergence shows that \IJE\?) is not localized, namely at least one of
N particles must escape to infinity. To trace the behavior at infinity, we use the IMS

localization technique.

e We choose two smooth functions y,n : R? — R such that

C
X+ n*=1pe, suppx C {Jz| < R,}, suppn C {|z| > R,/2}, |Vx|+|Vn| < o

e On R we have the partition of unity

Lgav = n*(z1) + X (21) = 7 (21) + 0 (22)x*(21) + X (22)X* (21)
= 07 (1) + 0 (22) X (1) + 77 (23)X° (22)x*(21) + - + X (2n)- X (1)
=2 ¢+

Then we have |[Vp;| < Cy/R, for all j > 0 and

supp ¢o C Brav (0, NR,), suppy; C {|z;| > R,/2} forall j > 1.

Next we apply the IMS formula for ¢, ..., pn:

N N N C
N
Hy =Y oilineg; = > [Vo,l? > oHnp; — -5

J=0 J=0 J=0

Therefore, by the choice of \I/X;):
n—oo

N
En_1+ = lim (0, HyO{) > liminf Y (0, 0 Hyo ).
n—oo
=0

To conclude, let us show that for any 7 =0,1,2,..., N, we have

(O 0, Hn o O) > Ex 1[0, 8511 + 0(1)n e
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For j = 0, using poHnpo > Ene? and the fact ||‘If§\7,z)]lB(0,Rn) — 0 we get

(O, oHnpo ) > EnlleolW|> =0 as n— oo
Therefore, we can also write

<‘1’§\7)7 SOOHNWO‘IJE\T;)> > EN—1||<P0‘1’5\7)H2 + 0(1) 00

For j = N we decompose

N
Hy = Hy 1+ (=Ayy) + V(zy) + Z W(x; —xn) > En1+ V(zn)

=1

(here we use W > 0). Therefore,

onHyon > Exv_19% — |V(en)1(lzy] > R,/2)|.
Thus

(W, 03 Hno U5 > Enallon U012+ (BF, [V (@) 1(|Jox| > Ra/2)[05)
> ENAH@N‘I’S\T/L)W + 0(1)n-s00-

Of course the same bound holds for 7 =1,2,..., N — 1 as well. In summary, we have proved
that

N N

Ey_1+A > liminf > (O, 0 Hyo0y)) > liminf ) Ex_1lle; V)2 = Ex_y.
j=0 j=0

n—0o0

Thus A > 0. This ends the proof of ous(Hy) C [En_1,00).
So far we have proved e (Hy) = [Enx_1,00) when Hy acts on the full space L?(R*Y). When

Hy acts on the bosonic/fermionic space L?(R?)®s/a™ we can proceed exactly the same, except

that in the direction [Exn_1,00) C 0ess(Hy) we should choose the Weyl sequence as
o) = P @ u € LA(RY)EweN,

q.e.d.
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Exercise. Let 74 and 76 be two Hilbert spaces such that 75 C 76 and
lullm > ullg, ue€ .

Assume that the sequence {u,}n>1 is bounded in 5 and u, — 0 in J4. Prove that
u, — 0 in J4.

2.8 How many electrons that a nucleus can bind?

Now we take a closer look at the Atomic Hamiltonian

al Z 1
Hatom — <_ Az _ _) -+ R
N Z A Z |z — 2]
i=1 1<i<j<N
which describes a system of N quantum electrons of charge —1 moving around a clas-
sical nucleus of charge Z > 0 fixed at the origin in R3. The particles interact via the
Coulomb potential. Physically, the Hamiltonian H4°™ is an operator on the fermionic
space L?(R3)®N (electrons are fermions). Mathematically, we may also consider Hafom
as an operator on L*(R3") or L*(R3)®Y. We will consider the nuclear charge Z > 0 as an

arbitrary positive number, although it is an integer in practice.

In this section, we address the following question: for a given nuclear charge 7, is there
a ground state for Hy? i.e. “how many electron that a nucleus can bind?”. From
experimental chemistry, it is observed that a nucleus of charge Z can bind up to Z + 1 or
Z +2, but higher negative ions do not exist. Proving this fact rigorously for the Hamiltonian
H&°™ is a long-standing problem in mathematical physics, call the ionization conjecture.
In the following, we will represent two fundamental results, one for the existence (Zhilin’s

theorem) and one for the non-existence (Lieb’s theorem).

Recall that from Kato’s theorem, we know that Ha™ is self-adjoint with domain H?(R3")

or H? /S(R3N ), and that its ground state energy

Ey = inf o(HY™)
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is finite. Moreover, from the HVZ theorem we know that
Oess(H]thom> = [EN—la OO)

where Ey_; is the ground state energy of H4°} (with the same nuclear charge Z). Conse-
quently, H3°™ has a ground state if we have the strict binding inequality Ey < En_;.
In principle, when Ey = Ey_1, H3¥™ may still have a ground state (although the ground

state is very unstable as one particle can escape to infinity without losing any energy).

Theorem (Zhilin’s Existence Theorem). Consider H3™ as an operator on L*(R3N)
or L2(R*)®a/sN_ For any 1 < N < Z + 1, we have the strict binding inequality

Ey < Ex_1. Consequently, the Hamiltonian H°™ has a ground state.

Proof. We will prove Ey < Exn_1 by induction. This holds for N =1 as E; = —}L < 0 (the
hydrogen atom). Assume that we have proved Ey_1 < Ey_s for some N < Z. Now we show

that Ey < En_1. By the variational principle, we need to find a wave function ¥y such that
<\IIN, H?{}Jom\l/]v> < Eyn_1.

Let us consider the case when H3™ acts on L*(R3Y); the bosonic and fermionic cases follow

simple modifications.

e From the induction hypothesis Fny_1 < En_2 and the HVZ theorem, we know that
Ho™ has a ground state Wy_; € L2(R3WV-D),

e Take a smooth function ¢ : R® — R with suppyp C {z € R® : 1 < |z| < 2} and
||<P||L2(R3) = 1. For any R > 0 we choose

pr(z) = #s@(%)-

Then
supppr C {z € R*: R < |z| < 2R}, |l¢glle = 1.

e We choose the trial state

Uy =Un_ 1R pgrE€ L2(R3N).
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Then

1UNL2@sny = ¥ N-1ll L2@sov-y @Rl L2(r3) = 1.

It remains to show that (U, H3™W ) < En_;.
Similarly to the proof of the HVZ theorem, we decompose

Hatom — Hatom (_ Aa: _ >
N N—-1 + N |xN’ Z |xl _xN‘

Therefore,

Z x)|?
(U, HY""Wy) = Ey1 + ||V90R||%2(R3) - /3 Mdﬁ
R

||
+Z/

By the choice of pg, we have

—— | Un_i (21, . N 1)| ’@R(xN” dry...dzy.
v | —xN]

1
HVSORH%%RS) = @HV@H%%RS)

and

2 2
[ ZestelPy, 2 [ Zetlty,
o Rlu ™ Il

Moreover, by Newton’s theorem

len@P, [ _le@P o _ [ lea@P, _ [ lel)l
r |y — 7| re max(|yl,[z|) T Jrs |zl re Dz
Consequently,
N-1
[ o) Plonan) P o
i1 R3N |xz—xN]
N

| 2

- Z_I/RW I‘WN71($1,...,33N71)|2< lor(zn)l®

i1 R3 |x, - xN|

2
< 2/31\] ) |\I/N 1 ZL’l,...,ZEN_l)| ( |S0( )| dx)dxl...de_l

rs B[zl
N1 [ le@)l
R rs |7 .

d.z:N>dm1...de,1
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In summary, we obtain

) N-1-Z [ |p(@)]
atom 2
(Un, HY" U ) < En_1 + ﬁHV@HL?(RS) + R /Rg || ar.

Under the condition N < Z 4+ 1,ie. N —1—Z <0, for R > 0 sufficiently large we have

Lo N-1-Z [ [e)P
e 2 dx < O,
el + —— [ 2

which implies that
Eyn < (Un, Hy™Uy) < Ey_y.

This concludes the proof when H&°™ acts on L*(R*"). When H{°™ acts on L2(R3)®/+N we
choose
Uy =PUn 1 ® pp € L*(R?)Zas:N

and proceed similarly. q.e.d.

In the above proof we have used

N\
Theorem (Newton’s theorem). Let p be a positive measure on R® such that it is ra-

dially symmetric, namely du(Rx) = du(x) for any rotation R € SO(3). Then we

/ du(z) :/ dp(x) W eR
. R [y — 2| Jrs max(|y|, |z]) )

have

Newton’s theorem follows from the fact that the Coulomb potential is the Green function of

Laplacian, namely
—~A(4r|z)"' =8 (the Dirac-delta distribution).

In fact, here we only need A(|z|™') = 0 for all  # 0 (which can be checked easily), namely
|z|7! is a harmonic function on R*\{0}. The Mean-value theorem states that the

average value of a harmonic function over a ball or sphere is equal to its value at the center.

Exercise. Consider H3*™ as an operator on L*(R3N) or L2(R3)®«/sN. Prove that if
1 < N < Z+1, then H{Y°™ has infinitely many eigenvalues below the essential

spectrum.
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Theorem (Lieb’s Nonexistence Theorem). If N > 27 + 1, then the Hamiltonian H3°™

does not have a ground state on L*(R3N) or L?(R?)®a/sV

Proof. Assume that Hy has a ground state Wy. Then it satisfies the Schrodinger equation
HyVUy = EnyVy.
Multiplying the Schrédinger equaiton with |zy|¥y and integrating we get
= (len ¥y, (Hy — EN)¥n) =

7 1
= \ HYom _ By — A, — — — | Uy ).
<|$N| N> ( N—1 N N |33N‘ + Zz:: |$l > N>

We have

o (len|Un, (HYD — Ex)Wy) > 0. This follows from HY¥Y > Ex_; > Ey on the
(N — 1)-particle space, by the HVZ theorem.

o (onlOy, =Dy Wn) = 5(Wn, (Jonl(=A0y) + (— A, )|en])Ux ) > 0 (the left side is
real, why?). This follows from the IMS formula and Hardy’s inequality

(—A)|ZL‘| ;_ |JZ|(—A) _ |x|1/2(—A)|x|1/2 o |V(|$‘1/2)|2

— e1/2(_ /2
el =2 ||
1

_ |IE|1/2<—A 4| |2>‘ |1/2 >0 on L2(R3).

Thus N
[z N] 2 / [z N| 2
-7 Un|® <= Z 2> Uyl
+Z/3N|xl—x || | 121: reN |T; — N || |

Similarly we get for all j € {1,..., N}

|25 2
7z > — |
Z/m—l’;“ N’
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Averaging over j € {1,..., N} we get

N
Z /|x2|xj| Uy 2 Z /|EJ+|$J‘ |2>% Z 1= 2=

1<z JSN 1<’L JSN 1<i,j<N
i#] i#] ]

Thus Z > %, i,e. N <27+ 1. Here we have the strict inequality at the end because
x| + |z,
s il
1<i,j<Ni#j i = ]

for a.e. (x1,...,oxy5) € R, qg.e.d.
Remarks:

e For Z = 1 (hydrogen atom), Lieb’s theorem implies that the negative ion H~~ does

not exist. This is sharp because it is known (mathematically) that H~ exists.

e For larger Z, the factor 2 in Lieb’s bound is not sharp. For fermionic ground states,
the above proof can be modified by multiplying the Schrédinger equation with |2 x|?W

instead of |zx|¥y, leading to the non-existence when (my paper)
N > 1227 +32'3.
When Z — oo, the non-existence of fermionic ground states is known when
N>(1+¢)Z

for any € > 0. This so-called asymptotic neutrality was first proved by Lieb, Sigal,
Simon, and Thirring (PRL 1984) and improved later in (CMP 1990a, CMP 1990b).

The non-existence of fermionic ground states when
N>Z+C

for a universal constant C' (possibly C' = 2) remains an open problem.

e When H3™ acts on the full space L*(R3Y) or the bosonic space L*(R3)®*N  a ground
state exists up to N ~ 1.21Z. This was proved by Benguria and Lieb (PRL 1983). This
is an evidence that the particle statistics changes dramatically the spectral properties

of the quantum system.


https://arxiv.org/abs/1009.2367
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.52.994
https://projecteuclid.org/download/pdf_1/euclid.cmp/1104180306
https://projecteuclid.org/euclid.cmp/1104200838
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.50.1771

Chapter 3

Hartree theory

é Y
Definition. Let V : R — R and w : R — R even. We define the Hartree functional

&) = [ (IVu@P + V@lule)P)do+ 5 ([ ju@)Pluty)Pute - sy
R R4 x R4
and the Hartree energy
e = inf{€x(u) : v € H'(RY), |lull 2ray = 1}
If a Hartree minimizer uq exists, then it satisfies the Hartree equation
( — A+ V(@) + (w |u?)(z) — ,u)uo(x) =0, zcR?

for a constant p € R (called the Lagrange multiplier or chemical potential).

The Hartree equation is also often called the Gross-Pitaaevskii equation or nonlinear
Schrédinger equation, in particular when w = ady (Dirac-delta distribution). In this case,

the functional becomes
En(u) ::/ (|Vu(x)|2+V( u(z / lu(z)|*dx
Rd
and its minimizer satisfies

( — A+ V(x) + alup(x)|* — u)uo(x) =0, zcR%

40
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The Hartree/GP/NLS equation is an important topic in many areas of mathematics, e.g.
nonlinear analysis, calculus of variations, and partial differential equations. In this chapter
we study basic properties of Hartree theory and in the next chapter we discuss its connection

to quantum Bose gases.

Connection to many-body quantum mechanics. Consider a system of N identical

bosons in R¢, described by the Hamilttonian

N
Hy =) (=g + V() + Y Wz — ;)
i1 1<i<j<N

acting on L?(R%)®N. As usual, VW : R? — R and W is even.

Since the underlying Hilbert space is too large, it is often useful to restrict the consideration
to the Hartree states

U = U®N, ”UHL2(Rd) =1.

The corresponding energy expectation (per particle) is exactly given by the Hartree functional

1

F ™) = [ (V@ PV @la@)R) +5 [ [ @) Plut) Pule—y)dady = &)

with w = (N — 1)W. By the variational principle, the Hartree energy is always an upper
bound to the ground state energy (per particle) of the full N-body problem, namely

N = inf <\IJ,HN\I/> S NGH.
”\I/”LQ(Rd)@sN:l
The matching lower bound is nontrivial. We will prove that, under appropriate conditions

on the potentials,
EN = NGH —|—0<N)

Moreover, we will prove that Hartree minimizers will give the leading order information to
the ground states of the N-body problem, leading to a rigorous justification of the Bose-

Einstein condensation for some weakly interacting bosonic systems.

3.1 Existence of minimizers: trapping potentials
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4 N
Theorem (Existence of Hartree minimizers: trapping case). Consider the Hartree func-

tional

euu) == [ (IVu@P +V@l@P)dz+5 ([ @) Put)lut iy
with

e w e [P(RY) + L®(RY) with p > max(d/2,1),

o VeIl (RY) and V(z) — +oo as |z| — oo.

Then the minimization problem

ey := inf {SH(u) u € HY(RY), [ull z2ray = 1}

has a minimizer (in particular ey is finite).

Proof. We use the direct method of Calculus of variations.

Step 1 (Boundedness from below). Let u € H*(RY) with ||u|;2ge) = 1. For any & > 0
we can write

w=w; +wy, |willppwey <&, [Jwalpeorey < C.

Then

JIL W@ P Pl oy < sl [[ oo Pluto)Paody < .

Moreover, by Holder and Young inequalities

J[L R sty = [P o)

< WMul®llzolllws| * uf*|l .

< lJullZo lw [l ol Z2

with
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The condition p > max(d/2,1) implies that 2¢ < 2* where

2" =00 ford <2, 2= for d > 3.

d—2

By Sobolev inequality
lullZ2: < Cllullf = CIVullZ2 + 1).

Thus

J[ -l Plut)Plus(e = pldsdy < <C(1Tuls + 1)
Rd xRd
The total interaction energy is bounded by
J[ )PPt - pldsdy < = Vuls + ..
R4 xRd
Similarly, for the external potential we write
V=WVi+Vo, [Villprwaey <e, Va22>-C, ‘llim Va(z) = +00.
T|—00
Using Holder and Sobolev inequalities we get
/Rd Vi(@)[[u(z)Pde < eC([|Vullz> + 1).
By choosing ¢ small enough, we find that
L @ Pl Flute = plasty+ [ Vi@llu)lds < 519ulfs + €
R xR4
for a constant C' independent of u. Consequently, we get the lower bound

1
Eaw) = [ 5Vl + Valul?] -
R4 2

Since V5 is bounded from below, we know that Eg(u) is bounded from below uniformly in .
Thus ey is finite.
Step 2 (Minimizing sequence). Since ey is finite, there exists a minimizing sequence

{tn}n>1 C HY(R?) for ey, namely

tunll2mey =1, Eu(u,) —en as n— oo.
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From the above lower bound, we find that

[ 19w + 20afu
R

is bounded. Thus {u,} is bounded in the quadratic form domain of Q(—A +2V5) = Q(—A+
V5). By the Banach-Alaoglu theorem, up to a subsequence, we can assume that u, — wug

weakly in Q(—A + V32). We will show that ug is a minimizer for ey.

Step 3 (Conservation of mass). The condition V5(z) — +o00 as |z| — oo implies that the
operator —A + V5 has compact resolvent. Consequently, we have the compact embedding
Q(=A+V,) C L*(R?) (exercise). Thus the weak convergence u,, — ug in Q(—A+V3) implies

the strong convergence u,, — ugy in L?(R?). Therefore,

||u0||L2(Rd) = nlglolo ”un||L2(Rd) =1

Step 4 (Semi-continuity). It remains to show that

liminf &y (uy,) > En(uo).

n—o0

Since u, is bounded in Q(—A + V5) € HY(R?) and u, — wup strongly in L?(R%), by inter-
polation (Sobolev’s and Hélder inequalities) we find that u, — g strongly in L¢(R?) for all
2<q¢g<2(2"=00if d <2and 2* =2d/(d —2) if d > 3). Consequently,

i [ [ )PPt = y)ndy = [ [ o) Pluol) e - e

(see an exercise below). Similarly, for the external potential V = V; + V5, using Vi € LP(R?)

we have

lim [ Vi) fun () P = / Vi) o) P

n—o0

(see an exercise below). Finally, since u,, — 1y weakly in the quadratic form domain Q(—A -+

V5), by Fatou’s lemma for norms (see an exercise below) we have

timinf [ ([, + Valu, ) > /(yvu0\2+x@|uo|2).
In summary,
en = liminf Ex(u,) > Eu(uo).

n—oo
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This implies that ug is a minimizer for ey. qg.e.d.

Exercise. Let A be a positive self-adjoint operator on a Hilbert space € with compact
resolvent. Prove that we have the compact embedding Q(A) C F.

Hint: By Spectral Theorem you can write A = 3 o) Ap|un)(un| with A, — oo. The
identity 1 : Q(A) — J is a compact operator because it is the strong limit of finite-

rank operators By, = > | |tm) (U]

Exercise. Let V € LP(RY) with p > max(d/2,1). Prove that if u, — uy weakly in
HY(R?), then
lim [ V(2)|u,(z)?de = /V(:L’)|u0(x)|2d$.

n—oo

Exercise. Let w € LP(RY) with p > max(d/2,1). Let {ty}tn>1, {vn}>1 be bounded
sequences in H*(RY) such that u, — ug strongly in L*(R?) and v, — vy weakly in
L*(R%). Prove that

i [ o) Plont)Pote — ey = [ juato)Ploo)Pute - p)dsdy.

n—oo

Exercise. (Fatou’s lemma for norms) Assume that v, — v weakly in a Hilbert space.
1. Prove that

liminf ||v,|| > ||v]|.
n—oo

2. Prove that ||v,|| — ||v|| if and only if v, — v strongly.

3.2 Existence of minimizers: vanishing potentials

Now we turn to the case when the external potential V' vanishes at infinity. This case is
significantly more difficult since some mass may escape to infinity, leading to a possible
lack of compactness. In fact, the existence of Hartree minimizers is not always guaranteed!
We have to investigate all possibilities of losing mass at infinity. This is nicely done by the
concentration-compactness method which has been developed since the 1980s by several
people, including Lieb (Invent 1983) and Lions (ATHPC 1984a, AIHPC 1984b).


https://eudml.org/doc/143081
http://www.numdam.org/article/AIHPC_1984__1_2_109_0.pdf
http://www.numdam.org/article/AIHPC_1984__1_4_223_0.pdf
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7~

Theorem (Existence of Hartree minimizers: vanishing case). Consider the Hartree

functional
&= [ (VP +V@l@P)e+3 [ u@Plu)Pue - oy
with w,V € LP(RY) + LP(RY), max(d/2,1) < p,q < co. For any \ € [0,1] define
eh(n) 1= inf { £ (u) : u € B (RY), [ulZaqme) = A}

We denote by eX()\) the corresponding energy with V.= 0 (“energy at infinity”). Then

we always have the binding inequality

eq(1) < eff(\) +e%(1—X), VAel0,1]
Moreover, if we have the strict binding inequality

ey (1) <eff(A) +e(1—X), VYA€]0,1),

then the variational problem ej;(1) has a minimizer. In fact, for the existence of mini-

mizers for ey (1), we only need the strict binding inequality when efy(\) has a minimizer.

N\

Remarks:

e From the physical point of view, the binding inequality

en(1) <ef(\) +eX(1—N), VYAe€0,1]

is rather obvious since the ground energy cannot be increased when we split the system

into two parts: one with mass A staying bounded, and one with mass (1 —\) at infinity.

e The strict binding inequality

en(1) <ef(N) +e(1—2X), YA€[0,1)

tells us that there is no possibility to put any positive mass at infinity (note that in
the strict binding inequality we only requires A < 1). It is a nontrivial condition and

depends heavily on the potentials V) w.
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e For repulsive interactions (w > 0), the energy at infinity is simply zero (see an exercise

below). In this case, the binding inequality becomes
en(1) < eg(V), VA€ [0,1]

which is similar to the monotonicity Ey < Ey_; in the HVZ theorem (both always
hold true). The strict binding inequality

(1) < efi(N), YA€ [0,1)
is thus similar to the binding condition Fy < Ex_1 in the N-body quantum problem.

Proof. Step 1 (Boundedness from below). By the same analysis of the trapping case,

we have
1
Lv@lu@pas+5 [ PPl - iy < 51Vl +0
RexR4 2
for all u € H*(RY) with ||u||;> < 1. Therefore,
v 1 2
i) > L |vul - ©
This implies that ej;()\) is finite for every A € [0, 1].

Step 2 (Binding inequality). Let A € [0,1). By a standard density argument, we can find
a sequence {a, }n>1 C H'(R?) such that

supp(an) < {laf <nh [ o= &f{an) < V) + oo
R

(Explanation for the density argument: By the definition of ej;()\), for any > 0 small we
can find a function f,, € H'(R?) such that || f,]|2. = X and Y (f,.) < efy(\) + 1. Then since
CH(R?) is dense in H'(R?) and the mapping f — Ex(f) is continuous from H*(RY) to R, we
can replace f, by f, € CHR3) with [|f,]|%, = A and &Y (f,) < el(\) + 2n. By re-labeling
n — 0 by n — oo, we get the sequence {a,}.)

Similarly, we can find a sequence {b, },>1 C H'(R?) such that

supp(by) € {|z| > 2n}, / Bal2= 1=\ E2(b) < (1 — A) + o(1)nsme.
]Rd
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(Explanation for the choice of b,: by the density argument, we can take b, with compact
support. Then since the functional £}(f) is translation-invariant (i.e. EY(f) = EY(f(. —v))
for any y € R?) we can put the support of b, inside {|x| > 2n}.)

Now we define the trial state

On = ap + by, VYn>1.

Since a,, and b, have disjoint support, we find that

/ |§0n|2 - / ‘an|2 +/ |bn|2 =L
R4 R4 R4

On the other hand, we can show that
gI‘{/(SDn) = gl‘i/(an) + ggl(bn) + 0(1)n-s00-

This part is similar to the Step “Splitting of energy” below. Thus by the variational principle

we have the binding inequality Therefore,

(V) < Jim £ (o) < lim (& (@) + E}(.)) = e () + ch(1 - ),

Step 3 (Minimizing sequence). Let {u,},>; C H'(R?) be a minimizing sequence for

ey (1), namely

|tn || L2may = 1, Exf (un) — e (1).

From the lower bound .
Ex (un) > §”Vun||%2 -C

we find that {u,} is bounded in H*(R?). By the Banach-Alaoglu theorem, up to a subse-

quence, we can assume that u, — uy weakly in H'(R?).

Step 4 (Splitting of mass). Since u, — uy weakly in L?(R?), Fatou’s lemma tells us

A= luo? < liminf/ lu, > = 1.
Rd n—oo R4

Moreover, if we denote

Up = Up — Ug,
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then

[ 0 = T = el = ol + ol = 2Rt i) > 142 =22 =1 %
R

Step 5 (Splitting of energy). We prove that

lim (&} (un) — &Y (o) ~ E(va) ) = 0.
n—oo
For the kinetic energy, since v, = u,, — ug — 0 weakly in H'(R?), we have

V|2 = [Vuollzz + [[Vunll7z = 2R(Vuo, Vu,) — 0.

For the external potential energy,

[ Vil = [ Vil < [ Vi]lao+ ol = fuof]
R4 R4 R4
= [ WI(foal + 2ol
R4

< / |V||vn|2+2\/ / |V||vn|2\/ / Vluol? = 0,
R4 Rd R4

Here we used that [ |V/||ug|? is finite because ug € H'(RY), and [|V||v,]*> — 0 because

v, — 0 in H'(RY) (see a previous exercise).

For the interaction energy, we have

| / 1 (&) 2 ()2 = [1t0(2) Plao () = [on(2) Plon(y) ] w( — y)dzdy]

< /
R4 xR4

Writing w,, = ug + v, and expanding the difference

[t () [ ()7 = Juo (@) |uo(y)[* = [on(@)*|on(y)*| [w (@ — y)|dzdy.

[t () un ()7 = Juo (@) |uo()* = [on()]*|on(y)]?

we find several terms (whose absolute values) like

[on (@)L fn (@) [uo(W)l19n (W)],  |vn(@)[[uo(@) | Fn()]gn (y)]

where the functions f,, g, are bounded in H'(R?). By the Cauchy-Schwarz inequality, we
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can bound

[, @l a@lllon oo - )ldody

2

< ([, @Rl Pt - i) ([ @)l - pldsdy) o

Here we used
[ 1@Plg@Plet - gy < 0
R xR4

because f,, g, are bounded in H'(R?) (the interaction energy is bounded by the kinetic
energy by Step 1) and

[ loaa)Pluo) Pt — )dedy - 0
RIxR4

because v, — 0 weakly in H'(R?) and ug € H'(R?) (see a previous exercise). Moreover, by

the Cauchy-Schwarz inequality again

/Rded [0y () [Juo (2)]] fro (W) || g () [|w (2 — ) |dzdy
s (/Rded |on () o ()| fu () [? lw (2 — y)ydxdy>l/2

< ([ lon@luota)llon( Pl = pldsdy) ™ =0,

Here we used that f,,, g, are bounded in H'(R?) and |v,uo|'/? — 0 strongly in L*(R?) (see

an exercise below). Thus in summary, for the interaction energy we obtain

[ )Pl = o) Plual)l? = foa(o) o) ot = pidsds] = 0.

We conclude that
lim (sg () — EY (uo) — gg(vn)) —0.

n—oo

Step 6 (Conclusion from binding inequality). From the above estimates we find that

eg(l) = lim é’g(un) = Eﬁ/(uo) + nli_)rrologg(vn) > eK(A) + el (1 — N).

n—o0

On the other hand, we have the binding inequality e};(1) < efj(A\) + €% (1 — X). Thus here we
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must have that
lim Ex(v,) = ep(1 = N),

n—oo

namely v, is a minimizing sequence for €% (1 — \), and
Eit (uo) = ey (M),

namely u is a minimizer for ef;()\). In principle we only know that A < 1.
Step 7 (Conclusion from strict binding inequality). If A < 1, we have
er(1) = efy(A) +en(1 = A)
(and e};(A\) has a minimizer). This violates the strict binding inequality. Putting differently,

if the strict binding inequality holds, then A = 1, and ef;(1) has a miminizer. g.e.d.

Exercise. Assume that f, — 0 in H'(R?) and let g € H'(R?). Prove that |f.g|"/* — 0
strongly in LP(R?) for any 2 < p < 2* (with 2* = 00 if d > 2 and 2* = T if d > 3).

Exercise. Consider the Hartree functional

&= [ (1@ + V@l P)r+5 [[ @) P -y

with V,w € LP(RY) + LI(RY) for some max(d/2,1) < p,q < oo. Let X € [0, 1] and define

the Hartree enerqy
el (V) = inf {En(w) |u € H'RY), ul[ 320 = A}.

1. Prove that
eg()\) < e%()\) < 0.

2. Deduce that if V,w > 0, then

e (\) = el (N) = 0.

Here is an example of the application of the previous theorem.
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Theorem (Existence of minimizers for bosonic atoms). Consider the Hartree functional

for atoms

with Z > 0. Then for any 0 < X\ < Z, the variational problem

E(Z,)\) = inf {5H<u) lue HY(R), /R ul? = )\}

has a minimizer.
A\ y

Proof. Since the Coulomb potential |z|~! belongs to L37¢(R3) + L37¢(R3), we can apply the
previous theorem. Here we are considering a positive interaction potential. Therefore, the

binding inequality becomes
E(Z,)N) <E(ZXN), YO<XN <)

and it suffices to show that when A < Z we have the strict binding inequality
E(Z\) < E(Z,XN), YO<)XN <A

when F(Z, ') has a minimizer. It suffices to construct a trial state u such that

ul* <A Eulu) < B(ZN).

R3

In fact, from this trial state, by the the monotonicity of the ground state energy in the mass

and the variational principle we get
E(Z,)) < E(Z,[ull}s) < Eulu) < E(Z,X).
We construct the trial state by following the idea of Zhilin’s theorem.

Step 1 (A localized function). We prove that for R > 0 large there exists a function
ur € H'(R?) such that

supp(ug) C {|z| < R}, /|uR|2 <N, Eulur) <E(ZN)+o(R ) g
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Let ug be a minimizer for E(Z,N). Let x,n : R* — [0,1] be smooth functions such that
X>+n*=1, x(z) =1if |[z| < 1/2 and x(z) = 0 if || > 1. Define

Xr(z) = x(¢/R), ur = Xrto-

Clearly we have

supp(ur) © ol < B). [ unf’ < [ uof = x.

It remains to estimate the energy difference Ey(ugr) —En(ug). For the kinetic energy, by using

the partition of unity
X?{ + 771%2 =1, XR(x) = X(JI/R),

and the IMS formula we can estimate

/ Vurl - / Vuol? < / IV (eruo)l? + / IV (nieuo) / Vo ?

= [ (Ve + (9 uf? < O
For the potential energy, we have

— U — |u U Ul = o(R™7).

For the interaction energy, since the interaction potential is positive, we simply use to point-

wise estimate |ug(x)| < |ug(z)] to get

2
L[ Pl g, L] ey,
R3xR3 \x - y\ R3xR3 ’35 - Z/’

Thus we have

8H<UR) < 5H<U0) -+ 0<R71> = E(Z, )\/) + O(Rfl).

Step 2 (A function “ at infinity”). Take a smooth function v : R® — R with
suppv C {x € R* : 1 < |z] < 2}, / lv* = e.
Rd

For any R > 0 we choose

)= (7).
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Then
suppvg C {r € R®: R < |z| < 2R}, / lvg|* = ¢.
R3

Step 3 (The trial state). We choose the trial state
©r = upr +vp € HY(RY).
Since ur and v have disjoint supports, we have
HSORH%2 = |lug + URH%2 = HURH%2 + ”URH%Z <\N+e
We can choose £ > 0 small such that X' +& < .

Step 4 (Strict binding inequality). Now we estimate Eu(pr) — En(ug). For the kinetic

energy, since ur and vg have disjoint supports
IVerlz: = Vurlz = [IVorl7. = O(R™).
For the potential energy,

Z [ 9 9 A 9 Z 1,
~ [ i llenl —unP] == [ Zponlr ==3 [ ol
| s o R Jus To

For the interaction energy, using Newton’s theorem (vg is radial) we can bound

%//MXRS IsoR(%)l2 |§0R(y)||x :ZLTR(SU)I LUR(?JN | | |
_ %// (IuR(m)|2+ IvR(r:)l )(IuR(yEl _+y||vz:(y)| ) = lur(@)[*lur(y)]
- %// 2\uR(IL’)\QIUR(yilzj:y\rR(x)\QIUR(@/)L
_ %// 2Jup()] Ivzalzl(lzg(';’lrjgx)l R (Y)]

1 2lug(x)Plvr(y)]? + [vr(z)|*|vr(y)?
=3 // ly|

N lwr()> N +e/2 [|uy)?
= (Wer2) vyl R /\y!'
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Thus in summary

N+e/2—27 [ |v(y)? _
Enlpr) — Eulur) < / / ()l + O(R™?).
R ]
Moreover, from the choice of ur we have
gH(UR) S GH()\/) + O(R_l).

Thus

: N+e/2=Z [|o@)? 1

Here we are choosing M 4+ & < A < Z, therefore
N+e/2—7<0.
Thus if we take R large enough, then

Enlwr) < en(N)

which completes the proof. g.e.d.

Exercise. Consider the Hartree functional

Entlu) == /R (IVu(x)P—Z’ Jao 4 ¢ //RR ,x'_“;, @@y, ,

with parameters Z > 0 and 1 < s < 2. Prove that the minimization problem
en 1= inf {Eu(w) |u € H'(RY), Jullp2eey = 1}

has a minimizer.
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3.3 Existence of minimizers: translation-invariant case

Now we consider the special case when the external potential is zero. This corresponds to

the “problem at infinity”. In this case, the Hartree functional

&= [ IVaPar+ g [ uo)Plut)Put - iy

is translation-invariant, namely
E(u) = ES(u(- —y)), VYuec HY(R?Y), VyeR
We know that if w > 0 (and w vanishes at infinity), then the corresponding energy
en(A) = inf{&x(u) [u € H' (R, [ull7> = A}

is simply zero. However, if w < 0 (or if w has a non-trivial negative part), then in principle
the energy e%(\) can be negative. Thus even if we start with a general (non-zero) external
potential V', understanding the problem at infinity is still very helpful to justify the binding
inequality

Ex() < EEN)+EXA—-N), Yo<A< 1

On the other hand, the method in the previous section is not enough to deal with the

translation-invariant case, because the binding inequality
EN() <&XN)+ERL—N), YO<A<I1

cannot hold true with V' = 0 (just take A = 0). Therefore, we will need the following result.

Theorem (Existence of Hartree minimizers: translation-invariant case). Consider the

/\Vu YPdz + = //R . o) |lu(y) Pw(x — y)drdy
dyRd

with w € LP(RY) + LP(RY), max(d/2,1) < p,q < co. For any X € [0,1] define

Hartree functional

() i=inf {Eh(u) : u € H'(RY), |[u2aqze) = A}
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Then we always have the binding inequality

AN < e (V) + (A =X), Yo< XN <A\
Moreover, if we have the strict binding inequality

ef(A) < e(\V) + (A =X), Vo< X <A,

then €%(\) has a minimizer. In fact, for the existence of minimizers for e%(\), we only

need the strict binding inequality when both eX(N') and e% (A — N') have minimizers.

Remarks:

e Note that in the above strict binding inequality we do not include the case X = 0 (and

the case A = \). This is the main difference to the previous section .

e Since ef()\) < 0 for all N (see a previous exercise), the strict binding inequality in

particular implies the non-vanishing condition e%(\) < 0.

The main difficulty in the proof of the above Theorem is as follows: if ug is a minimizer for
e (N), then
Un (1) = ug(z — yn), Yn € R

are also minimizers for e};()\). On the other hand, if lim,,_,« |y,| = +00, then u,, — 0 weakly
in H1(RY). Similarly, there are several minimizing sequences for e%()\) that converge weakly
to 0. Thus to apply the method of calculus of variations, we have to modify minimizing

sequences using appropriate translations.

Exercise. Assume that u, — ug strongly in L*(RY). Let {y,}>°, C R? such that

n=1

|yn| = 400 and denote
V() = up(x — yn), Vo €R?Y VneN.
Prove that v, — 0 weakly in L*(RY).
The following key lemma provides a proper understanding of the vanishing case in the

translation-invariant setting, namely the situation when we have the weak convergence to 0

up to all translations.
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Lemma (Concentration-Compactness Lemma.). Let {u, },>1 be a bounded sequence in

HY(RY). Then there are two alternatives:

e Vanishing case: u,, — 0 strongly in L"™(R?) for all 2 < r < 2*, where 2* = oo if
d<2and2*=2d/(d—-2)ifd> 3.

e Non-vanishing case: There ezist a subsequence {u,, }r>1 and a sequence {yx} C

R? such that vy, := uy, (- — yr) converges weakly to a function vy # 0 in H'(R?).

Proof. We define “the largest mass that stays in a bounded region”

M({u,}) := lim limsup sup/ |, () [2d.
lz—y|<R

=1
R—o0 n—o0 yERd

There are two possibilities.

Case 1: Non-vanishing: 2({u,}) > 0. Then by the definition, there exists R > 0 such
that

lim sup sup / |, (z)[2dz > 0.
lz—y|<R

n—oo yERd

Thus there exists a subsequence {u,, }, a sequence {y;} C R? and € > 0 such that
/ ()P > >0, Vk> 1.
le—yx|<R
Define vy, := uy,, (x — yx). Then the above lower bound can be rewritten as

/ log(2)|*de > e >0, Vk>1.
lz|[<R

On the other hand, ||vg||g1 = ||tn, ||z is bounded. Therefore, up to a subsequence we can

assume that v, — vy weakly in H*(R?). By the Sobolev’s embedding theorem we find that

/|<R lvo(2)[?dz = lim |og () |2dx > €.

Thus vg # 0, as desired.
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Case 2: Vanishing: M({u,}) = 0. Then for all R > 0 we have

lim sup/ |, (2)|?dz = 0.
lz—y|<R

n—o0 yGRd

Fix R > 0 sufficiently large. We can write the space R? as a union of finite balls

R = | ] B(z, R/2).

z2€74

Let x : R4 — [0,1] be a smooth function such that x(z) = 1 if |[z| < R/2 and x(x) = 0 if
|z| > R. Define x,(z) = x(z — 2z). Then

1< Z X:(x)® < C, Z Vy.(z)? <C, VzeR? Vse(0,00).

z€R4 z€R4

For any z € R?, by Hélder inequality we have
. NG 1-6
/ Xunl” < (/ Ixzun|> (/ Ixzun|q>
R4 R4 R

2<r<gq, 0<0<1, 204+q(1—-0)=r.

for any

In particular, for » > 2 and sufficiently close to 2, we can choose

0=-—-1, ¢q= < 2", such that ¢(1—6)=2.

r
2 4 —1r

The conditions ¢ < 2* and ¢(1 — #) = 2 allow us to use Sobolev’s inequality

1-0
([, henl)™" = Il <l
R

Thus in summary, for » > 2 and close to 2 we have

r/2—1
[l < ([ euP) ™ Il
R4 Rd

Summing over z € R? we obtain

r/2—1
Lur <3 [t <fsw [ P ™S vl

d
2z€R4 YyeZ 2€R4
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r/2—1
< C’( sup / !un(m)\z(h?) HunH%ﬂ(Rd) — 0.
lz—y|<R

y€Rd

Here we have used Y, pa [[X:tn|l3n < Cllun||3: (see an exercise below), together with the
fact that ||, | g1 (ray is bounded and the vanishing condition. Thus u,, — 0 strongly in L" (R%)
with r > 2 and close to 2. Since {u,} is bounded in H'(R?), by interpolation (Sobolev’s and
Holder’s inequalities) we conclude that u,, — 0 strongly in L"(R?) for any 2 < r < 2*. q.e.d.

Exercise. Let {u,}n>1 be a bounded sequence in H'(RY). Define

M({un}) :

im lim sup sup/ |up () dz
lz—y|<R

=1
R—o0 n—soo yGRd
and
M ({u,}) = Sup{||v||ig(Rd) |3 a subsequence u,, (- — yi) — v weakly in H*(R?)}.

(Here {uy,,} is a subsequence of {u,} and the sequence {yy} C RY can be chosen arbi-

trarily). Prove that

M({un}) = M ({un}).

Exercise. Let {X, }n>1 be a sequence of smooth functions x, : R — [0, 1] satisfying

sup S [en (@) + [ Vaxn ()] < o0.

d
zeR n>1

Prove that
> lxaullin < Cllullfpgey,  Yu € H'(R?).

n>1

The constant C' > 0 is dependent on {Xn}n>1, but independent of .

Proof of the existence theorem. The finiteness of eX(\) and the binding inequality
e <ef (V) +ef(A=X), Yo< XN <)

have been proved before. Thus it remains to prove the existence of minimizers under the
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strict binding inequality
AN < ef(\) + el (A= X)), Yo< N <\

From the lower bound

1
Eﬂ(u) > 3 » ]Vu|2 —C

we find that any minimizing sequence for e%(\) is bounded in H'(R?). Thus by the concentration-

compactness lemma, there are two possibilities: vanishing case and non-vanishing case.

Vanishing case: u, — 0 strongly in L"(R?) for all 2 < r < 2*. In this case, using
w € LP(RY) + LY(RY) with p,q > max(d/2,1) we find that

/ / it ()Pl () P ( — )y = 0.

In fact, if w € LP(R?) for example, then by Holder and Young inequalities

//Rd iy [t () Pt () |0 (2 = ) ldwdy < [l | ol # funl*l| o < o 0] o utn] 72 = 0.
X

Here
1 1
— 4+ _/ — 1
p D
and the condition p > max(d/2, 1) implies that 2 < p’ < 2*. Consequently, we find that
ey (A) = lim &) (u,) > 0.

n—oo

However, it contradicts with the strict binding inequality (which particularly implies that
e (N) < 0).

Non-vanishing case: Up to subsequences and translations, we can assume that u, — ug

weakly in H'(R?) with ug #Z 0. As proved in the previous section , we can split the energy

lim (Eg(un) — E(ug) — EX(uy — u0)> = 0.

n—oo

Denote X := |lug||7. > 0. Then

lun — o2 = |[unll72 + |luoll3e — 2R {(tn, ug) — A+ X — 2N =X = ).



62 CHAPTER 3. HARTREE THEORY

Thus by the variational principle we have

eS(A\) = lim EY(un) > E(ug) + n11_>rrolo EX(un — up) > N (N) + e (A — X).

n—oo

In comparison to the binding inequality
en(A) < eg(N) +eg(A = X)

we find that EY(ug) = e (N) (i.e. ug is a minimizer for e} (\)).
Moreover, if the strict binding inequality holds, then we must have ' = A (as we have known

already that X' = [|ug||?. > 0. Thus ug is a minimizer for ef;(\). g.e.d.

Here is an application of the above abstract theorem.

4 N
Theorem (Choquard-Pekar Problem). Consider the Hartree functional with gravita-
tional interaction potential

2
/]Vu]Q // ©)fuy) — =" dady.
R3xR3 |l' — |
Prove that for every X > 0, the minimization problem
() = inf {Eh(w) |u € B'®RY), Julllz = A}
L has a minimizer. )

Proof. Recall that —|z|™! € L375(R3) + L3™(R3). We need to check the strict binding
inequality
NN < efg\) +el(A=X), Vo< N <\

Step 1: We prove that e%()\) < 0 for all A > 0.
In fact, take ¢ € H*(R?) with ||¢||2, = X. For every R > 0 define

or(z) = R p(z/R).

Then |¢g|7. = A and

¥
Efon) = Vel — o [ IO g,
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By taking R > 0 sufficiently large, we conclude by the variational principle

en(A) < Exlpr) < 0.

Step 2: We prove that for all A > 0, for all 0 < 0 < 1,
(00) > ().
Indeed, take a minimizing sequence {uy, },>1 C H'(R?) for e} (6)), i.e
luallZe = 0A, Ei(un) — eq(O).

Define
Up,

s vnzz)\
g Ienl:

Then by the variational principle we have

Unp =

e (N) < E%(v,) = =[|[Vun |22 — — // dxd
H( ) H( ) 6” ||L 292 R3XR3 ‘x_y‘ Yy
1 1
= (5= 7)) IVual + 9250 (un)
1

Lo o).

< —Exluy) — 7

Step 3: Using the estimates in Step 1 and Step 2, for every A > X' > 0 we can bound

A N) + e (A= N) = e (%)\) + e%(A - XA)
> (5) e+ (A5 o

> (%)e%()\) + (A;\/\/)e%()\) =ef ().

Thus the strict binding inequality holds, and hence ell(\) has a minimizer for every \ >

0. q.e.d.

The above analysis can be also adapted to treat the Hartree problem with a general potential

vanishing at infinity.
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Exercise (Choquard-Pekar Problem with an external potential). Consider the Hartree

&)= [ (Il + ViaP) - //RR |$|_|“y| I geay

R3

functional

with real-valued potentials V,w € LP(R?) + LY(R?), co > p,q > max(d/2,1). Assume
that V<0 and V # 0. Prove that for every A > 0 the minimization problem

eV ()) := inf {5g(u) lu e HY(RY), [[ul2: = /\}

has a minimizer.

3.4 Hartree equation

Theorem (Hartree equation). Consider the Hartree functional

&w= [ (V@ +V@l@P)e+3 [ u@Plu)Pue -y

with V_,w € LP(RY) + L®(RY), V, € LP

loc

(R?) with p > max(d/2,1). Assume that for

some A > 0 the minimization problem
efi(N) = inf {&X (1) : u € H'RY), Jull3aqge) = A}
has a minimizer ug. Then ug satisfies the Hartree equation

(= 2+ V@) + @ Juol) @) — k) Juo(w) =0,

in the distributional sense, namely

/d [V@ - Vg + Vpug + B(w * [ug|*)ug — ;@uo] =0, Ve CTRY.
R

. Here the constant j1(\) € R is called the Lagrange multiplier or chemical potential. )

Proof. Let us consider the case A\ = 1 for simplicity. By the variational principle, for every
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¢ € C*(R?) we have

2T ) > &V
H(Huo—l—apHLz)_ it (o)

for all € € R sufficiently close to 0. Therefore,

0= d V( Uy + €

e (T =2 | [V Vo + Vouo + )ity — i
de H ||u0+5@||L2>|€ 0 i 2 Up + ()OU0+§O(1U*|U0| )UO Hpug

with
n= [ (Vuo@ + V@luo@P) s+ [[ o) Pluotu) Pt - sy
Rd R xRd
Replacing ¢ by iy (with i* = —1) we find that
0= 23/ [VE Vg + Vug + @(w * |ue|?)ug — ,u@uo} :
R4

Thus for all ¢ € C°(R?) we have

/d [V@ - Vug + Vpuy + o(w * |u0]2)u0 — p@uo] =0.
R

3.5 Regularity of minimizers

é Y
Theorem (Hartree equation). Assume that ug € HY(R?) is a solution to the Hartree

equation
(=2 +V(@) + (w |uol)(@) - #)uo =0.
in the distributional sense. Assume that p € R, V. =V, + V5 and
o Vi,w e LP(RY) + L>=(RY) with p > max(d/2,2);
e 0 <Vhe L2 and |[VVi(z)| < C(Va(z) 4+ 1).

loc

Then ug € H2(RY) and —Aug, Vug € L2(RY), (w* |up|?)ug € L2(R?). In particular, the

Hartree equation holds in the pointwise sense.

.

Remark: The conditions V5 > 0 and |VV,(z)| < C(Vi(z) 4+ 1) allow trapping potentials, e.g.
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Vo(z) = 400 as |x| — oo and it does not grow faster than exponentially.

Proof. Potentials vanishing at infinity. First let us consider the case V5, = 0, namely
V' = Vj vanishes at infinity. In this case, since V' € LP + L*° with p > max(d/2,2), it is

relatively bounded with the Laplacian with an arbitrarily relative bound, namely
IVelre <ellAplzz + Cellpllze, Yo € HA(RT), Ve > 0.

Moreover, we have w * |ug|? € L>°(R%). Indeed, if w € L? for example, then by Young’s and

Sobolev’s inequality we find that

2

1o < Cllwllzolluoll 7.

[lw s Juo [z < [lwllzellugll o = llwllzolluol
Here 1/p+1/p’ =1 and the condition p > max(d/2,2) ensures that 2p’ < 2*. Thus we have

IV () + (w s |uol*)(2)pll 2 < %HA@HH +Cllellze, Vo € HARY).
By the Kato-Rellich theorem,

A= A4 V(@) + (1) (z) - p
is a self-adjoint operator on L?(R¢) with domain H?(R¢)
On the other hand, the Hartree equation can be rewritten as
(uo, Ap) =0, Vi € CZ(R).

Using
—Cgo(Rd)MDM) _ —Cgo(Rd)H.”H%Rd) _ HZ(]Rd)

(as ||.[[p(a) is comparable to ||.|| z2(ray) We find that
(ug, Ap) =0, Vi € H*(RY).
This implies that uy € D(A*). Since A is self-adjoint, we find that uy € D(A) = H*(R?).

General potential. Now we consider the general case when V' = V| + V5. Define

AO = —A—f—‘/Q
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Then Ay is a self-adjoint operator on L?(R¢) with domain
D(Ag) = H*(R) N D(V3), D(V3) := {u € L*(R) | Vau € L2(Rd)}
(exercise). Now we prove that

O (llellan + 1Vaglln) < lellpan < el + 1Vawllzz, Vo € D(Ay),

namely the norm |¢||pa,) is equivalent to ||p|/g2 + |[Vap|[r2. Recall that |¢||p,) =
| Aop|lz2 + |l¢llzz- The second bound follows from the triangle inequality. For the first

bound, using the IMS formula we can write

Af = (AP + V7 4+ Vo(=A) + (=A)V;
(AP + V7 =2(=A) + (Va + 1)(=A) + (=A) (Vo + 1)

(~A) + V2 = 2=8) + 2/ Vo + -A) Vo + 12V + 1]

(A2 + V2 = 2(=A) + 2/ Vo + 1(=A)\/ Vo + 1 — 252_‘/_2:21).

Then by the condition |VVi(x)| < C(Va(x) + 1) and the Cauchy-Schwarz inequality

AG > (AP + V7 = 2(=A) = O(Va + 1)
> (1— g)((—A)2 + v;) —C., Vee(0,1).

Putting differently,
[AoelZz > (1 =) 1A amay + 1Vl i2@e — Cellelliz, Ve €(0,1), Vi € D(A).

Thus
1
= (Nl + 1Vaellz2 ) 1l pasy < llell + Va2

In particular, we have

=R = D(4y).

Next, using the bound

Vi(2) + (w Juol*) (@)¢llze < ell Apllze + Cellllze, Vo € H*(R?), Ve >0
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we conclude, by the Kato-Rellich theorem that
A= —A+V(2) + (w = [uo*) (x) — p.

is a self-adjoint operator on L?(R%) with domain D(A) = D(Ap). The Hartree equation can
be rewritten as

(ug, Ap) =0, Vi € CZ(R?).

Using

D(Ao)

= 0=(RY)"" = D(Ay) = D(A).

we find that
(ug, Ap) =0, Vo € D(A).

Since A is self-adjoint, we conclude that uy € D(A*) = D(A) = H*(R%) N D(V3). Thus
—Au, Vu, (w * Jug|*)ue € L*(RY)

and hence the Hartree equation holds in the usual sense of L*(R?), which is equivalent to the

pointwise equality (almost everywhere). g.e.d.

Exercise. Let V : RY — R be a measurable function. Consider the Schrédinger operator
A=—-A+V(z) on L*(R?) with D(A) = H*(RY)ND(V). Prove that A is a self-adjoint

operator.

3.6 Positivity of minimizers

é Y
Theorem (Positivity of Hartree minimizers). Consider the Hartree functional

W= [ (VP +V@lu@P)e+3 [ @l Pue - oy

with Vy € L (RY), V_,w € LP(RY) + L*(RY), p > max(d/2,1). Assume that the

loc

minimization problem

efy(\) := inf {Sl‘f(u) cu e H'(RY), ||U||%2(Rd) = )\}
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has a minimizer uy € H*(R?) and it satisfies the Hartree equation
( — A+ V() + (w* |ug)?) () — u)uo(x) =0, forae xR

Then we have

e Positivity of minimizer: There exists a constant z € C, |z| =1 such that
zug(z) = |up(x)| >0,  for a.e. v € R

Moreover, |ug| is also a Hartree minimizer.

e Positivity of mean-field operator: We have
—A+V(2) + (w* [uol*)(z) — p 2 0.

Moreover, this operator has the ground state energy 0, and |ug| > 0 is its unique
ground state up to a phase factor (i.e. all ground state are given by z'|ug| with
ZeC, |Z=1).)

.

We start with recalling a very useful bound.

’
Theorem (Diamagnetic inequality). For any u € H'(R?), we have |u| € H*(R?) and

IV|u|(2)| < |Vu(z)|, for ae. z€R%

This is equivalent to the convexity of gradient: for real-valued functions f,g €
H'(RY),
IVV 2+ @2@)]” < [Vf(@) +|Vg@)P?, forae zeR

In the latter bound, if we have the equality
IVV 2+ (@) = V(@) + [Vg(@)?,  for ae. v € R

and f(x) > 0 for a.e. * € R or g(x) > 0 for a.e. * € R%, then f(z) = cg(x) for a

constant c independent of x € R,

D

.

Remarks:
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e The the convexity of gradient holds true also for complex valued functions as

V@ @E| < V7@ + 1916l < VA @) + V().

e A more general form of the diamagnetic inequality: For any given vector field A €
L2

2 (R3 R?) we have the pointwise estimate

IV|u|(z)| < |(V +iA(z))u(z)], for a.e. x € RY

This explains the name “diamagnetic inequality”.

Proof. Step 1. Consider u = f +ig with real-valued functions f,g € H'(R%). Then we have

the pointwise formula

0 if u(z) =0,
VIul(@) = § @)V f (@) + 9(x)Vg(x) if u(z) #0
fu(a)] |

In fact, for any € > 0 we define

Ge=VuPP+e? —e=+/f+g*+e? -

Note that

f2() 2o
0 <G (x) = NiEn +€2+€ <V fHx) + ¢*(z) € L*(R?)

and

f(@)V[(z ) ( )Vyg(x)
\/f2 +€2 '

By the Cauchy-Schwarz inequality, we have the pointwise estimate

VG.(x) =

96.(n) < WL ZOVETDERVCL < JIR7GIP + 9P < 126

Since {G.} is bounded in H'(R?) and G.(x) — |u(z)| pointwise as € — 0, we obtain G, — |u|
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weakly in H'(R?). Moreover, since

0 if u(z) =0,
VGS D = T T x x
- f@)V[( |1)L(J;)9‘( )Vg(x) if u(x) # 0.

strongly in L? (by Dominated convergence), we find that V|u| = D.

Step 2. By the Cauchy-Schwarz inequality we have, when u(z) = f(z) +ig(z) # 0,

[f(2)Vf(x) + g(x)Vg(2)]
ju()]
- VP@ 4@ VIVI@)P+ V)P
- ju()|
= VIVF(@)P + V()] = [Vu(z)|.

|V]ul|(z)| =

Step 3. In the above Cauchy-Schwarz inequality, the equality

IV 2+ %) = VIVF(@)? +|Vg(z)?, forae xR

occurs if and only if
f(x)Vg(z) — g(x)Vf(x) =0, for ae. xR

Now assume that g(z) > 0 for a.e. z € R? (the case f(z) > 0 is similar). Then the above
equality implies that

V(f(fﬂ)) _ [@)Vy(z) —g(x)V f(x)

g(z) g*(z)

=0, forae zeR%L
g()

Thus f/g = ¢ a constant. qg.e.d.

Exercise. Prove that if u, — uy weakly in H*(RY), then |u,| — |uo| weakly in H'(RY).

Now we apply the diamagnetic inequality to Hartree theory.

Proof of the positivity of Hartree minimizers. Step 1. By the diamagnetic inequality we
have
Ef (u) — Ea(lul) = [Vul[f2 — [[V]ul[[7= > 0.
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Therefore, if ug is a minimizer for ef;(\), then |ug| is also a minimizer.

Step 2. Now assume that 1y > 0 is a minimizer for e};(\). We prove that ug(x) > 0 for all

r € R? We write the Hartree equation as
(= A+ W(2))uglz) =0

with

W(z) = V(w) + (w*uol*)(x) — p(N)
The special case V, € L>°(R?). Then because w x [ug|* € L®(R?), we have W, € L®(R%).
Thus we can take a large number m > 0 and rewrite the Hartree equation as

(=A +mPug(z) = (m* — W)ug(x) >0, VoeR%

1

Since the operator (—A + m?)~! is positivity improving, this implies that ug(z) > 0 for

all x € RY,

Exercise (Positivity improving property). Let m > 0. Prove that the Yukawa potential

satisfies

1 ; > 1 |z|?
K(z):= | m—F——e"™*dk = —_ ( ——— 2t> dt > 0.
(z) /Rd 127k|? + m2* /0 (4rt)d/? exp a

Deduce that if 0 < g € L*(R?) and g # 0, then ((—=A+m?)"1g)(x) > 0 for a.e. z € R%.

The general case V, € L2 (R?). We have W, € L2 (R?). Thus for any R > 0 there exists

loc loc

m > 0 large such that
(—=A +mug(z) = (m* — W(z))ug(z) >0, V]z| <R.

The strict positivity u(xz) > 0 on |z| < R then follows from the following general result (see

[Lieb-Loss, Analysis, Theorem 9.10] for a proof, and even a more general version).

Theorem (Harnack’s inequality). Let m > 0 and 0 < f € H*(R?). Assume that

(=A+m?)f(x) >0, forae |z|] <R
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Then
f(z) > ¢ fy)dy, for a.e. |z| <r <R.

ly|<r

The constant ¢y = co(m, R,r) > 0 is independent of f.

Since ug > 0 and ug # 0, we can choose R > 0 large enough such that

/ uo(y)dy > 0.
ly|<R/2

Then by Harnack’s inequality, from (—A + m?)ug(x) > 0 for |z| < R we find that
up(z) > co/ uo(y)dy > 0, for a.e. |z| < R/2.
ly|<R/2

By sending R — oo, we obtain ug(x) > 0 for a.e. z € R%.
Step 3. Assume that ug > 0 is a strictly positive solution to the Schrodinger equation
(—=A +W(z))up(x) =0, x¢cR%

Then 0 is the ground state energy of —A 4+ W (x) and ug is a ground state. This follows from

the following general fact.

[ Theorem (Perron-Frobenius Principle). Let 0 < f € H?(RY), W € Li (RY) such that b
—Af(z)+W(z)f(z) =0, forae xR

Then —A + W >0, namely

[ (wer+wigl) 20, vpe o)
\ R J

Proof. Since f > 0, we can define g = ¢/ f. Then substituting ¢ = fg we find that

[1ver = [19GaE = [ 117919V HE = [ [IFPIVaP+19P1V 1+ 2RFT5)-9(9.)]

Moreover, by integration by part

[1ak0,58 == [ so@ilf) = = [ 1@l - [ 10,5 1aP)
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and hence by summing over j =1,2,....d

/ PV = / F—Apg? —2 / IV IR@(V)).

[1ver = [1wge + [ r-anigr

(vl wiel) = [15ev92 + [ AL Aof - JURED

In summary,

Therefore,

q.e.d.

Since C>°(RY) is the core domain of —A + W, the above quadratic form estimate ensures

that —A + W > 0 as an operator.

Step 4. Now let us conclude. Assume that ug is a Hartree minimizer. By Step 1, |ug| > 0
is also a Hartree minimizer. By Step 2, |ug| > 0 pointwise. By step 3, both ug and |ug| are
ground states for the Schrodinger operator —A + W (x). Let us prove that |ug(z)| = zue(z)

for a constant z € C independent of z € R,

In fact, we can write ug = f + ig with real-valued functions f,g. Then f, g are also ground
states for —A+W (x). By the diamagnetic inequality, | f| is also ground states for —A+W (z).
Since |f| > 0, arguing as in Step 2 we conclude that |f| > 0.

Next, let h € {f,g}. Since h and |f]| are ground states for —A + W (x), the function
O = h+i|f]

is also a ground state for —A + W (x). By the diamagnetic inequality again, |®| is also a

ground state for —A + W (x), and moreover we have the equality

[vieie = [ ver

IV/R2(z) + f2(7)] = /|VA() ]2+ |V|f](2)]?, for ae. z€R™

Since | f| > 0, the equality case in the diamagnetic inequality tell us that h(z) = ¢|f(x)] for

namely
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a constant independent of x. Thus

uo(x) = f(2) +ig(x) = cp|f ()] +icy| f(2)] = (cf +icy) [ f ()]

with ¢f +ic, independent of x € R?. This implies that zug(x) = |ug(z)| for a constant 2z € C
independent of x € R%. q.e.d.

3.7 Uniqueness of minimizers

In general, uniqueness is a hard question, and the answer depends a lot on the potentials. In
this section we will focus on a simple case where the interaction potential is of positive-type,

making the Hartree functional convex.

4 N
Definition (Positive-type potential). A potential w : R? — R is of positive-type if

w(z — y) is the kernel of a positive operator on L*(R%), namely

wafwzf/ﬁaﬂwwu—ymwyza

This property is equivalent to w > 0 because

(fyw* f)p2 = Rd%@(k)dk - /R PR [P0 (k) dk.

\ y

é N
Theorem (Uniqueness of Hartree minimizers). Consider the Hartree functional

&) = [ (IVu@P +V@lue)P)do+ 5[] ju@)Plut)Put - sy
Rd Ré xR
with V. € L (RY), V_,w € LP(R?) + L°(R?) with p > max(d/2,1). Assume further

w(k) >0, forae keR%

Then the followings hold true.

e Convexity of the functional: 0 < p — 51‘{/(\/5) 1s convez, namely for p; > 0,
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p2 > 0 such that \/p1,\/p2 € H'(R?) and for t € [0,1],

€5 (vor) + (L= 08X (Vpz) 2 & (Voo + (1 - B)pa).
e Uniqueness of minimizers: For any A > 0 the minimization problem
el (V) = inf {€F (u) : u € H'(RY, [[ul[3:(ge) = A}

has at most one minimizer ug > 0. This minimizer is unique up to a phase factor

. (i.e. all minimizers must be given by zuy with z € C, |z| = 1). )

Proof. Step 1. Let p; > 0, p» > 0 such that \/p1, /p2 € H'(R?). For any t € [0,1] we have

%// p1(x)p1(y)w(z — y)dedy + % // pa() pa(y)w(z — y)dedy
=5 [ [t + 1= 00a(@)] [t0100) + (1 = a0l — )y
—t(1=1) [[ (@) = o) (11(0) = pa(0) )l — )y > 0.

In the last estimate we used the fact that w is of positive-type. Combining with the convexity

of the gradient term

t / Va4 (1 t) / VBl > / Vo + (L= Bl

we find that for all ¢ € [0, 1],

L (Vo) + (1= D& (V) = & (Vo + (L= D) ).

Step 2. Assume that e};(\) has minimizers ug,vy. By a previous theorem, we know that
zug(z) = |ug(x)] > 0 and 2'vg(x) = |vg(x)| > 0 with phase factors z, 2’ € Z,|z| = |2/| = 1.
Moreover, |ug| and |vg| are also minimizers for e};(\), thanks to the diamagnetic inequality.

It remains to prove that |ug| = |vg].

By the above convexity of the Hartree functional, we have

1 1 1 1
ehi(3) = €K (luol) + 5EH (Juol) > & (\/ Sluol? + Sfol?) = e ().
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Here the last estimate follows from the variational principle and the constraint

/ (%\uolg + %]vg]2> =\

Thus we must have

e () + S8 = &5 (4 ol + 27

which in particular implies that for the gradient terms

1 1 1 1 2
L1902 [l = [y Sl 2ol

By the diamagnetic inequality, this means that

. forae zeR?

1
3 VIuol (@) + —IVlvol —‘V\/ |uo(2)[* + —Ivo( el

and because |ug| > 0, |vg| > 0 we must have |ug| = c|vg| for a phase factor ¢. Since

/ fuol? = / ool =

the phase factor is ¢ = 1. Thus we conclude that |ug| = |vg|. This completes the proof. ¢.e.d.

Note that in the above theorem, we did not discuss the existence of minimizers. In the
trapping case V(z) — 400 as |z| — oo, the existence of minimizers is guaranteed. However,
in the vanishing case V' (z) — 0 as || — oo, it may happen that the minimizers do not exist
if the mass is large enough. Using the convexity property, we can also prove the existence of

a critical mass \., where a minimmizer exists if and only if A < ..

4 Y
Theorem (Convexity and the critical mass). Consider the Hartree functional

En(u) = Vu(@)* +V(@)|u(z dx +3 o) [*lu(y)[w(z — y)dzdy
/]Rd ( //Rded

and the Hartree energy

V() := inf {Sg(u) € HYRY, |[ulla g = )\}
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with V,w € LP(R?) + LY(R?) with oo > p,q > max(d/2,1) and w(k) > 0. Then the
followings hold true.

e The mapping X — e};(\) is convex and decreasing. Consequently, there exists

a critical value 0 < X\, < oo such that
e\ > eff(A) = eff(NV), VA< A < N,

Here we used the convention ef;(0) = 0 and e} (c0) = co.

L The minimization problem e};(\) has a minimizer if and only if A\ < .. )

Proof. Exercise! q.e.d.

Let us give an example where the previous abstract theorems apply.

~
Theorem (Hartree minimizers for bosonic atoms). Let Z > 0 and consider the Hartree

functional for atoms

En(u) ::/RS <|Vu(x)| —m|u dx—i— //RR ‘x’_‘“y‘ D 4y,

and the Hartree energy

E(Z,)\) = mf{ ()|u€H(R3)/ |u|2:)\}.

RS

Then there exists a critical mass A\ = A\(Z) € [Z,27) such that E(Z, \) has a minimizer

if and only if A < A.. Moreover, the minimizer is strictlly positive, unique up to a

. phase, and radially symmetric. )

Proof. The Coulomb potentials satisfy all relevant conditions, in particular

—

|.|71(k) = 4n|k| ™2 >0, kR

The existence of the critical mass A. thus follows. The lower bound A.(Z) > Z has been
proved before. The upper bound A\, < 27 is an exercise (c.f. Lieb’s non-existence theorem
for many-body Schrédinger theory). From the above discussion, we know that when exists,

the minimizer ug is strictly positive and unique up to a phase. Morever, since the external
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potential V(x) = —Z/|z| is radially symmetric, the Hartree functional u — &£} (u) is rotation-

invariant. Therefore, the unique minimizer uy > 0 must be radially symmetric. q.e.d.

Remark: For bosonic atoms the critical mass is A.(Z) = 1.21Z. The linearity on Z can be
seen easily by scaling (how?). The value 1.21 is numerical. As we will see the behavior

Ae(Z) ~ 1.21Z also holds for the many-body Schrédinger theory in the limit Z — oc.

Exercise. Denote cq := 7 %/*T'(a/2) with the Gamma function

F(z):/ t=te~tdt.
0

(Note that I'(n) = (n — 1)! for n € N.) Prove that for all 0 < a < d we have

—

Co  Cd—a d
FraTT= Vk € R

Hint: You can write

Ca :/ effr)\|x\2)\a/271d)\

|| 0

and use the Fourier transform of the Gaussian.

3.8 Hartree theory with Dirac-delta interaction

So far we have study the Hartree theory with regular interaction potentials. The method
represented in this chapter can be adapted to treat Dirac-delta potentials, which model
short-range interactions appear often in physical set up. In this case, the Hartree theory

is often called the Gross-Pitaaevskii theory or nonlinear Schrodinger theory.

Exercise. Consider the Hartree functional with Dirac-delta interaction
a
&iw = [ (IVu@P + V@l + §lu(o)]*)ds
Rd
with a constant a > 0 and a function V : R — R satisfying

Ve e P (RY), V_e LP(RY) + LYRY), oo >p,q>max(d/2,1).

loc
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For every A > 0 define
el (V) = inf { & (u) s u € H' R, ull2aga = A}

1. Prove that if V(z) — 400 as |z| — oo, then e}t (\) has a minimizer for all X > 0.
2. Prove that if V € LP(R?) + L4(R%) and the strict binding inequality holds

en(\) <ep(N), YOS N <\,

then e}y () has a minimizer.
3. Prove that if efy(\) has a minimizer, then it has a unique non-negative mini-

mizer. (Hint: 0 < p— EY(,/p) is strictly convex).



Chapter 4
Validity of Hartree approximation

In this chapter we will derive rigorously the Hartree theory as an effective description for

many-body quantum systems.

We start from many-body quantum mechanics. Consider a system of N identical bosons

in R?, described by the Hamilttonian

N
Hy = Z<_Al“i + V(z;)) + A Z w(z; — ;)
i=1 1<i<j<N

acting on L?(R%)®N, As usual, V,w : R? — R and w is even. The parameter A\ > 0 is used
to adjust the strength of the interaction. In this chapter, we will focus on the mean-field
regime .

A= N 1
In this case, the Hartree functional obtained by taking expectation against the product state

u®V is independent of N:

F ™) = [ (1Vu@) PV @)+ [ [ @) PPty = o)

We consider the ground state energy of Hy

EN = inf <\I’,HN\I/>

W1l L2 (rdy@s N =1

and the Hartree energy

en:= inf  Ey(u).
HUHL2(Rd):1

81
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We will prove that under appropriate conditions on V,w, the Hartree theory describes cor-

rectly the leading order behavior of the ground state energy and the ground states of Hy

when N — 0.

4.1 Reduced density matrices

4 )
Definition. For any wave function ¥y € L*(RY)®N and any 0 < k < N, we introduce
the k-body reduced density matrix vfl,kl)v : this is an operator on L*(R%)®* with

kernel

N!
k
7&]3{(21,...,2]%21, "'7’2]/’0) = m/Rd(Nk)\PN<Zl, ...,Zk7xk+1’...,x]v)x

/ /
X UN (2L, .y 2y Tt 1y ooy TN )AThep1 .. AT N

Equivalently, we can interpret fyfpk])v as the partial trace over all but the first k variables

) N!
7 = =y s [ 2 (T

Note that vfpk])v is a non-negative, trace class operator on L*(R%)®* and

N!
(k) _
Tr%,N = (N—k:)!'

For example, the one-body density matrix 7\(1,1; is the operator on the one-body space

L*(RY) with kernel

’y\(pl])v(x,y) =N - Un(x, 29, ., )V N (Y, To, ..., xy ) dzg...dE .
RAN-1

Its diagonal part is called the one-body density

IO\I/N(‘T) =N |\I/N(I7ZL'2,...,LUN)|2d.ZU2...d‘/L‘N,
RA(N—1)

The function py, is the probability distribution of the particle density, namely fQ P, can
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be interpreted as the expected number of particles in 2 C R?; in particular

/ Po N = Tr'y\pu) = N.
R4 N

Exercise. Consider a wave function Wy € L*(R")®N and a one-body operator h on
L*(RY). Prove that

N
<‘I’N, Z hi‘IfN> = Tr(h%(yl])v)-
i=1

Moreover, prove that for any multiplication operator V(x) on L?*(R%) reqular enough
(e.g. V € C=(R?)) we have

TV = [ V(o

Exercise. Let v be a mon-negative trace class operator on L*(RY) with the spectral

decomposition ¥ = Y~ An|un)(un|. We define its density as

(@) =D Aalua ().

n>1

Prove that if v, — 7o strongly in trace class, then p,, — p,, strongly in LY (RY).

Remark: In physics littérature the density of an operator is often written as p,(z) = v(z, z).
Mathematically, the kernel of an operator on L?(R?) is often defined for a.e. (x,y) € R? xR,
making the discussion on the “diagonal part” v(z,z) a bit formal (as the set {(z,z) € R4}
has 0 measure in R? x R?). However, using the spectral decomposition y = Y -1 Ay |tn) (|

we can properly define the kernel

Y(z,y) = Z )‘nun(x)m

n>1

which makes sense for a.e. z,y € R and hence the formula p,(z) = v(x, z) becomes correct.
An equivalent way to define the density p, without using the spectral decomposition is to

use the formula
(V) = [ Vi ade
R
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for all regular multiplication operators V (x) on L?(R?).

The energy expectation of

N
Hy = Z<_A“ + V(z;)) + A Z w(z; — x;)
i=1 1<i<j<N

can be rewritten conveniently using the one- and two-body density matrices

A
<\I]N7 HN‘I’N> =Tr((-A + V)VSL) + 5 Tr(w%(;])v).

The complexity of the N-body problem lies on the fact that it is very difficult to characterize
the set of all two-body density matrices for N large. The so-called the N-representability
problem is (quantum) NP hard, see e.g. a paper of Liu, Christandl, and Verstraete (PRL
2007).

On the other hand, the set of one-body density matrices is well-understood.

Exercise. Let v > 0 be a non-negative, trace class operator on L?(R?) with Try = N.

Then there erists a wave function ¥y € L*(R)®N such that

1
S

Hint: Given the spectral decomposition v =Y - Ap|tn)(Us| you can choose

Uy = N2 A ugh.

n>1

The key idea of the mean-field approximation is to replace the complicated two-body
density matrix 7\(1,2; by the tensor product of the one-body density matrix
2) (1) 1

For the ground state energy of the Hamiltonian Hy, we will even go down to the level of
one-body density py, and try to prove that
1

N<U®N7HNU®N> %€H< pq}ﬁ)v


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.110503
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.110503
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which eventually leads to the validity of the Hartree theory.

4.2 Hoffmann—Ostenhof inequality

The approximation

1
N<U®N7HNU’®N> ~ gH( IO\I]TN)u

is nontrivial even for non-interacting systems. For the external potential, we have the exact

identity
N
(00 V@) = (Vo)) = [ Vialpuy (o)
=1

However, for the kinetic operator, in general we have

N
<\IIN’ Z _Aaci\IJN> = TI“(—A’}/\(I};) 7é /Rd |v\/ p‘I’N|2'
=1

Nevertheless, we still have the following sharp lower bound, which will be very useful to

justify the Hartree approximation.

Lemma (Hoffmann—Ostenhof inequality). For every wave function Uy € L*(R?)®sN

we have
N

(U So(-2:)w) 2 (Vo ~A V) = [ [Vl

i=1

Proof. Step 1. Since the one-body density matrix ,Yl(l}])v is a non-negative trace class operator,

we have the spectral decomposition

Yo =3 1) (fal

n>1

with an orthogonal family {f,},>1 C L*(R?) (the functions f, are not necessarily normal-

ized). Then we have the one-body density

puy (@)= | fula).

n>1
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Thus the Hoffmann—Ostenhof inequality is equivalent to

Z/ Vo 2dx>/’V /;un ‘dx

Step 2. We prove the latter bound for finite sums

S [ [ v

We can prove that by induction in m. The case m = 1 follows from the diamagnetic inequality

|V fi(x)] > |V|fi](z)|. For m = 2, by the diamagnetic inequality we have

/]Rd Vi@)Pde + /Rd [V fola)Pde = /Rd ‘V\/]fl(x)P + | fo(2)?

For m = 3, using the diamagnetic inequality twice we have

/Rd|vf1|2+/Rd |Vf2|2+/Rd|Vf3|QZ/Rd‘V |f1|2_,_|f2|22_|_/Rd|vf3|2
> [ [PVIRF+EF T

The same applies to other values of m.

Step 3. In principle passing from finite sums to infinite sum should be easy thanks to

standard density arguments. Let us explain it here. Of course it suffices to consider the case

when the left side is finite. For any m > 1, denoting

puy(z) € L*(RY).

Therefore, by Lebesgue Motonone Convergence Theorem, g,, — /pwy strongly in L?(R?) as
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m — 00. On the other hand, we have proved in Step 2 that

2 = 2 - 2
/Rd Vgl < Z/ 1V f() Pl < Z/ 1V f4(2) Pz < oo,

Thus the sequence {g,,} is bounded in H'(R?), and hence g,, — /py, weakly in H'(R?).

By Fatou’s lemma, we conclude that

LVt <timint [ (Vo <30 [ V£, @)Fde = Te=004))
n=1

Remark: In general, for any operator h > 0 on L*(R?) satisfying
(u, hu) > (ful, hlul),  Vu € L*(RY)

then we have the Hoffmann—Ostenhof inequality

N
<\I;N’Zhi\11N> = Tr(th\(IJl]z,) > <\/ p‘I’Nah\/p‘I’N>'
=1

The condition (u, hu) > (Ju|, h|u|) is equivalent to each of the following statements.
1. The resolvent (h + C)~! is positivity preserving, namely it maps positive functions to

positive functions

(f(x) >0 for a.e. x € Rd) = (((h +C) ) () >0 for ae. x € Rd).

t

2. The operator e~ is positivity preserving for all ¢ > 0.

Exercise. Let h > 0 be a self-adjoint operator on L*(R?) such that
(f(x) >0 for a.e. x € ]Rd) = <(6_thf)(x) >0 for a.e. x € Rd>, Vit > 0.
Prove that for any function u belongs to the quadratic form domain of h we have

(u, hu) = (lul, hlul).
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Since the heat kernel e'2(z;y) is positive, the operator €2 is positivity preserving for all

t > 0. Thus the above exercise gives an alternative proof of the diamagnetic inequality.

4.3 Omnsager’s lemma

Now we consider the approximation

1
N<U®N7HNU®N> %€H< ’O\I'TN>’

from the angle of the interaction terms. A simple but very useful observation is

Lemma (Onsager’s lemma). If 0 < w € LY(R?), then for all 0 < g € L*(R?) we have

the pointwise estimate
al 1 N
> wlai—xy) =) (g*w)(z;) — 5 || 9@)g@w(z —y)dzdy — —-w(0).
1<i<j<N =

Consequently, for any wave function ¥y € L2(RY)®N we have

<\IIN, Z w(x; — acj)\IfN> > %// pwy (Z)pwy (Y)w(z — y)dedy — gw(()).

1<i<j<N

Note that the condition @ € L'(R?) implies that w € L>. Thus the error term —Zw(0) is

of order N, which is much smaller than the main term.

Proof. Step 1. Since w > 0, the potential w is of positive-type. Therefore,

/ / F@fyw(e — y)dedy = (fow = f) 0

for any “reasonable function” f. By choosing
N
flz) = Z do(z — i) — g(z)

=1

with dy the Dirac-delta function and using the identity dy * ¢ = ¢ we obtain the pointwise
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bound

> w2 Slgrwis) - ; [ [ @@ - pisdy - Su),

1<i<j<N j=1

Remark: An alternative proof without using the Dirac-delta function: we write

N
Z w(xy — ;) + :%Zwmg—%

1<U<j<N 0,j=1
N

N 1 9
/ Z 2mik-(xg— a:])dk, _ 5 /U/;(k?)‘ 2627'('1:]{}~$j

j=1

dk.

Since w(k) > 0, we can complete the square

N

"> oRG(k) S P — [(h)P

7j=1

N
‘ § 627rzk x;

and find that
2 N 1
dk > R / w(k)g(k) > > dk — 5 / @(k)|g(k)|2dk

=0y [wgmerear— 5 [ a0 ra

=Y wrgley) - 5 [ D)G0PR

Step 2. Now we apply the above pointwise estimate with g = py,, and then take the

expectation against Wy. We obtain

(v, Y w(xi—xj)qu>2<@N,§:(w*p%)(x]~)%>

1<i<j<N

=5 [ es@pnn ot — sy - o
:/pm J(ow  puy ) dx——//pw P)pay (g (e — y)drdy — (o)

=5 [ @t — sy - Sw0),
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q.e.d.

Exercise. Consider the periodic function

w(z) =Y (k)™ **

kezd

with 0 < W € (1(Z). Prove that for any N > 2 and {x}Y_, C R? we have

Z w(x; —xj;) > NT/ w— gw(()).

1<i<j<N

4.4 Convergence to Hartree energy

’
Theorem (Convergence to Hartree energy). Assume that

Ve € L RY, w, V. € LP(RY) + LYR?Y), oo > p,q > max(d/2,1).

Let En be the ground state energy of
al 1
Hy =) (=4, + V(z)) + N1 > w(m— ;)

i=1 1<i<j<N

and let ey be the corresponding Hartree energy. Then En/N is increasing in N and

, En
1m — — éy.
N—o0 N H )y

.

Proof. Step 1. By the variational principle, it is easy to see that Fn/N < ey. Moreover,

we can prove that Ex/N is increasing as follows. By the symmetry of the wave function

Uy € L2(RY)®:N we can write

1 <\I/N,HN\I/N> = <\I/N, (_Am + V($1>)\IJN> + %<\IIN,’£U($1 — $2)\DN>

A (DA V@) Yl

N —1 : 2. &
=1 1<i<j<N-1
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1

= = (n, Hy 10y

where the operator Hy_; acts on the first (N — 1) variables. By the variational principle,

1 1

En_q
— Uy, HyU >:—<\If Hy 40 >>

for all wave functions ¥y € L?(R%)®:Y. Therefore,

By By
N — N-1

Thus En/N is increasing, and hence the limit exists. It remains to prove that the limit

limy o En/N is exactly ey.

Step 2. Now we consider the “easy case” 0 < @ € L*(R?). For any wave function ¥y €
L*(RY)®N by the Hoffmann—Ostenhof inequality we have
N
(Un S (A, + V()T > /|v WPNI%/VWN

=1

and by Onsager’s lemma we have

ﬁ@l’m Z w(z; — .rj)\IJN> > ﬁ [% // puy (T)pwy (Y)w(z — y)dedy — %w(O)

1<i<j<N

> o5 [ [ @ uts - sy - c.

In the last inequality we have used that w is positive-type to replace 1/(N — 1) by 1/N in

the main term. Thus

<x1/N, HN\I/N> > N6H<\/%> — > Ney - C.

In the last estimate we have used the variational principle for ey. In conclusion we have
N@H ZENZNGH_C

which implies the desired convergence Ey/N — ey.

Step 3. Now we consider the case W € L*(R?). Since @ has no sign, we will use Onsager’s

lemma for its positive and negative parts separately. The proof below is due to M. Lewin,
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using ideas of Lévy-Leblond and Lieb—Yau. We decompose
w=w —wy, W = (W)y>0, W= (w)_>0.

It is more convenient to consider Fsy. Take a wave function Wyy € Lz(Rd)@@zN . Then using
the bosonic symmetry we can rewrite the expectation (Voyn, HoyWay) as follows. For the

one-body terms, we have

2N

(Wan, 3= B, + V(@) War ) = 2N (W, (= Ay + V(1)) Tay )

i=1
N

= 2(Waw, Y (= A, + V(i) War ).

i=1

For the interaction terms involving w,, we write

<‘I’2N, Z U)l(xz' - CL’j)‘IJQN> = N<\I/2N,w1(x1 - $2)‘I’2N>
1<i<j<2N

2
=m<W2N7 Z wl(-ri_xj)\DZN>-

1<i<j<N
For the interaction terms involving wy, we decompose as the difference of two quantities

1
2N -1

<‘I’2N, Z w2($z’ - il?j)‘I’2N> = —N<\P2N,w2($1 - 932)‘112N>

1<i<j<2N

= N<\1’2N, wa(zy — $2)‘I’2N> — 2N<‘1’2N, wa(zy — $2)‘112N>

N 2N
2 2
= (Tan, Y walm - )W) - (Ve YD e — )Wy

N+1<i<j<2N i=1 j=N+1

Thus in summary, by introducing the notations yx = n4k, We can write
(Won, HonWon) = 2(Wan, HyWan)

where
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IIMZ
IIMZ

1<i<j<N

Next, we show that for any given v, ...,yy € R?, the operator Hy of variables T1,..., TN
satisfying
ﬁN 2 NGH - C.

Indeed, for any wave function ®y € L?(R4)®V by the Hoffmann-Ostenhof inequality and

Onsager’s lemma (twice) we have

N
~ 1
<<I>N,HN(I>N> = <©N,Z(—Ami)‘l>zv>+/VP¢N+m<(I)N, Z wl(%—%‘)q’N>
i=1 1<i<j<N
1 1w
ty T 2 el yﬂ‘N;/’“N Jwaly; = @)de

> [wvmts [Vt 505 ] / P ()0 () = )ty — 5 0(0)
s [Dg ws)(ws) ~ 5 [ [ s@gtyyuata - >dxdy—§w2<o>]

1 N

p<I>N * w2
J:1

for any function 0 < g € L}(R?). By choosing

N -1
we have
R 1 <
N1 Z(g *wo)(y;) — N Z(qu *w2)(y;) =0
7j=1 7j=1
and hence

(on Hyoy) > / VT + [ Voo + 5= [ eov@a@una = sy
_ 2N2 //p% 2)pon (y)ws(z —y )dxdy——( )( (0)+wz(0)>
>[IV + [Vony+ 5 [ [ ooa@po, st vy
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- % / / pay (T)pay (y)w2(r — y)drdy — ﬁ (wl(O) + w2(0)>

[ P® N N

Since this holds for any wave function ®y € L?*(R%)®" we conclude that for any given

Y1, YN € Rda
HN Z NeH - C.

Consequently, for any wave function Wyy € L*(RY)®<2Y we have

(Von, HonWon) = 2(Uyy, ﬁN‘I’2N> > 2Ney — C.

Therefore,
Eoy > 2Ney — C,
and hence 5 o
IN
> > — — N > 1.
A

Since N — Ex/N is increasing, we conclude that
Ey C
> — > —— VN 2>1.
€H = N = €H N Z

This concludes the proof of limy_,o Ex/N = ey when @ € L'(R?).

Step 4. Now we consider the general case w € LP(RY)+ L4(R?) with oo > p, ¢ > max(d/2,1).
Then we can take w. € C2°(R?) such that w. — w in LP + L7 as ¢ — 0. More precisely, we

write
w=f+g, feL’R), geLI(R)

and choose
w6:f6+g67 feags ecso(Rd>’ ||fs_f||LP+||gs_g||Lq <e.

We take a wave function ¥y € L*(R¥) such that(Vy, HyVy) < CN. Then using

N
Hy>2) (-A,)-CN
=1

N | —
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(why?) we have the a-priori estimate

N

<@N,Z(—Azi)\1}N> < CON.

i=1

By Holder’s and Sobolev’s inequalities, we can bound

(= Do =)o = [ e — el (o, o) P oy

o/ 1/p’
S < |(f6 — )(l’l — X9 |pdl'1 |\I}N ZE17...,ZL‘N>| pdﬁLj) dJJQ...d.IN
RA(N—1) R4

<C|fe = fllr@ay(¥n, (1 = Agy) W),

Here 119 + z% = 1 and the condition p > max(d/2,1) implies that 2p’ € (2,2*). Similarly,

<‘I]N7 |(g€ - 9)(% - 362)|‘1’N> < CHQs - gHLq(Rd)<‘I]N; (1 - A:vl)\I/N>-

Using the choice of f., g. and the bosonic symmetry we deduce that

N
1
7 2 (Uw(w—we)(w —2y)Un) = —Ce ) (U, (1 Ay,)¥y) > —CeN.
T 1<i<j<N i=1

On the other hand, since w. € C°(R?), we have w. € L'(R?) and from Step 3 we get

N

1
Z(_Al“z + V<xl)) + m Z ws(xi - xj) > NeH,s - Ca

i=1 1<i<j<N

where

ene =  inf {/(‘VUF + Vul?) // u () |u(y) | Pwe(z — )d.rdy}
||u||L2(Rd>:1

Thus in summary, we obtain the lower bound
<‘IIN,HN\I/N> > N€H’5 — CE — CeN
for any wave function Wy satisfying (U, HyWy) < C'N. This implies that

En
lim W>€H5_C€, Ve > 0.

N—o0
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The conclusion follows from the fact that ey, — ey as ¢ — 0 (exercise). qg.e.d.

Exercise. Assume that
Vi € L (RY),  wo, V- € L"(RY) + L(RY), 00 > p,¢ > max(d/2,1).
Let w. — wq in LP + L7 as € — 0% and define the Hartree energy

enci= it { [0V Vi) 5[] PP - ).

”u”LQ(]Rd):l

Prove that ep . — eno as € — 07,

4.5 Convergence to Hartree minimizer

Now we turn to the convergence of ground states. Heuristically, if Wy is a ground state of

Hpy, or more generally an approximate ground state, i.e.
(Un, HyWy) = Ex + 0o(N) N0,

then we expect that

\I]N ~ Ug

where ug is a Hartree minimizer. Here the approximation ¥y ~ ug@N means that most of the

particles in the N-body state ¥ occupy a common one-body state ug. This phenomenon is
called the Bose-Einstein condensation (BEC). Note that the approximation ¥y = uy"
has to be understood in an appropriate sense. In fact, ¥y and u[j@N are not close in the
usual norm of the Hilbert space L?*(R%)®*" (except the non-interacting case). The proper
meaning of the Bose-Einstein condensation can be formulated in terms of reduced density

matrices.

Definition. Consider the quantum states {Vy}n>1, where Uy is a wave function in

LA(RY)®<N. We say that there is the complete Bose-Einstein condensation if there
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exists a one-body state ug € L*(R?) such that

<Uo, WSJ)V%)

li = 1l
Nl—I>noo N
Remarks:
o If Uy =uf", then ’y\(l,l])v = Nlug){upl|, and hence
<U077\(1;11)VU0> 1
— b

e For any wave function Wy € L?(R%)®:N | (uy, fy\(I,lj)Vu0> is interpreted as the expectation
of the particle number in the condensate state ug. In general, we always have

(o, 74 ) 10) < Tr(74))

\I,N N-

The complete BEC means that we have the lower bound

<U077\(1/1])VU0> > N +o(N).

e By the variational principle, the complete BEC is equivalent to the fact that the

largest eigenvalue of yf;])v is N + o(N). Further equivalent statements of the BEC
are in the following exercise.

Exercise. Consider the quantum states {Vy}n>1, where Wy is a wave function in

L2(RY®N_ Let ug € L*(RY). Prove that the following statements are equivalent.

1. limpy e Nﬁl(uo,y(l) )y =1

vy Yo
2. N*17$i — |uo)(up| strongly in the operator norm.
3. N1y

+ — |uo)(uo| strongly in the trace class norm.

Hint: A = Nﬁlm(l,z)v — |ug) (uo| has trace 0, and exactly one negative eigenvalue (except

ifA=0).

In principle, the BEC is not equivalent to convergence of ground states. In fact, proving the

BEC is often more difficult than proving the convergence of ground states.
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4 Y
Theorem (Convergence to Hartree minimizer: “easy case”). Assume that

o 0< e L'(RY;
o Ve LX(RY) and V(z) — 400 as |z| — .
Let Uy € L*(R?)®:N e an approximate ground state of
al 1
Hy =) (=4 + V(z)) + S > wlw— ).

i=1 1<i<j<N

Then we have the complete BEC with optimal error estimate

(uo, Yy uo) = N + O(1).

Here ug is the unique Hartree minimizer (up to a phase factor). )

Proof. Step 1. Similarly to the previous section, using 0 < @ € L'(R?) and Onsager’s

lemma we have

ﬁ@ﬁv, Z w(w; — xj>qjN> > ﬁ [% // puy (@) puy (Y)w(z — y)dedy — gw(o)

1<i<j<N

> % / / Py (@)pwy (y)w(z — y)dzdy — C.

For the kinetic term, we do not use the Hoffmann-Ostenhof inequality. Thus we get

<‘11N, HN‘PN> > Te((—A+ V) + % // puy (@) puy (Y)w(z — y)dedy — C.

Here we keep the one-body density matrix because it is the relevant object for the BEC.

Step 2. The new idea now is to linearize the non-linear term. Since w is of positive-type,

Wwe call use

[ T@ st - sty = 0
with f = py, (z) — N|ug|® with ug the Hartree minimizer. This gives
ov | [ pun(@dpes Gl - y)dsdy
> [[ pos@lhato)Pute - sty - 5 [ [ luo@)Pluato)Pute - y)asdy,
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Recall that under our conditions on w, V', the existence and uniqueness of the Hartree mini-

mizer ug have been proved in the previous chapter. Moreover, we have the Hartree equation
Pmgto = 0, hm = —A+V + (w * |upl?) —
with the chemical potential

p= [ (9w + V@) e+ [ oo Pl ot - sy

1
—enty [ lun@)Plul)Pule - ydsdy
R xR4

Thus

% / / Py (2)py (y)w(z — y)drdy

> [[ pust@luntoPute — sy = 5 [ [ uale)Pluato) Pt - )y

— [ pullunf* )+ Nerw = ) = New+ T (ol s w0 = )34 ).

Combining the latter bound with the previous bound on <\II N, HyW N> we deduce that

(W, HyOy ) = Tr (A + V)h)) //pw z)puy (y)w(z — y)dedy — C

> Ney + Tr (hmf%(p)> - C.

Thanks to the uniform upper bound <\If N, HyW N> < Ney, we conclude that

Tr (hmw\p ) <.

Step 3. From the Hartree theory, we know that the one-body Schrodinger operator
hmf = —A +V+ (w * |U0|2) —

has the lowest eigenvalue 0 and uy is its unique ground state (up to a phase factor). Moreover,

since V(x) — oo when |z| — 00, hys has compact resolvent. Thus it has eigenvalues

0=XA <A< N\ <
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The strict inequality A; < Ay is called the spectral gap. By the min-max principle, if we
introduce the projection
P:|U0><U0|, Q:].—P,

then we have hy P = Phy = 0 and
hint@ = Qhmt@ > (A2 — A1)Q.
Next, let us decompose
T = (P + Q) (P+Q) = Py, P+ Pry Q + Quy, P+ Qi Q.
Then by the above properties of hy¢P, hy@ and the cyclicity of the trace we have
T (i, ) = Tr (Aur@1,Q) = Tr (QhurQ1), ) = o = A) Tr (@447,
Combining with the previous bound
Tr (hmfvf;;) < C.
and the spectral gap Ay — A\; > 0 we conclude that
C>Tr (Q’y&i) =Tr ((1 - P)v&};) =N — <U0,7\(1,1])VU0>-

This completes the proof of the BEC. q.e.d.

4 R
Theorem (Convergence to Hartree minimizer: general case). Assume that

oV, e LX(RY), w,V_ e LP(RY + LI(RY), oo > p,q>max(d/2,1).

loc

e The Hartree problem ey = infj| ,—1 Eu(u) has a unique minimizer uo (up to
a phase factor). Moreover, any minimizing sequence of eg has a subsequence

converging to ug (up to a phase) strongly in L*(RY).

Let Uy € L2(RY)®N be an approzvimate ground state for
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Then we have the complete Bose-Einstein condensation

1
lim (uo, ’7\(1/1)VU0>

N—oo N =L

Remarks:

e For the complete BEC on wug to hold, uy must be the unique Hartree minimizer
(up to a phase factor). In fact, if vy is another Hartree minimizer, then v§”" is an

approximate ground state and 'y(gN = Nluvg)(vg|. Therefore,
Yo

1
1 — lim <u0,7f1,])vu0>

i, = o ol

implies that vy is equal to ug up to a phase factor.

e The pre-compactness of the minimizing sequences holds when either V(z) — oo as

|z| — o0, or V € LP(R?) + L4(R?) and we have the strict binding inequality

en(1) <ef(\) +e(1—2N), Y0O< A<

Proof. We will use the Hellmann-Feynman argument, a general method to derive the

information on ground states from the ground state energy of perturbed Hamiltonians.

Step 1. For any € > 0, we define the perturbed N-body Hamiltonian

N
Hy.= HN+5ZPJ:Z-> P = |ug) (uo|

i=1

and call Ey . the ground state energy of Hy .. We prove that the complete BEC follows from

the following claim:
. . . . EN& - EN
lim inf lim inf ———— > 1.
e—=0t N—oo eN

Indeed, assume that the latter inequality holds true. Let ¥ € L*(R%)®+Y be an approximate

ground state for Hy. Then by the variational principle, we have
8<U0,7\(1;112,U0> = (Un, Hyv: V) — (YN, HnUN) > Ene — Ex +o(N),

and hence "
U, U Ey.—FE N
lim inf m > lim inf lim inf N, v+ o(N)
N—oo e—0+t N—oo {—jN

> 1.
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Step 2. Now we estimate Ey. — Ey. By the convergence to Hartree energy, we know that
EN = NBH + O(N)

where

en:= inf {/ (1Vuf? + Vuf?) // )2 >y2w(x—y)dazdy}.
[l L2 ray=1 Rd R4 xR

For our purpose, it is useful to introduce the Hartree energy for mixed states

ey 1= inf {Tr(( A+V)y // )w(x—y)dxdy}.
~>0 on L2(R%) Rded

Trvy=1

Here recall that p,(x) = y(x, x) is the density of v (defined properly by spectral decomposi-

tion). At first sight, it does not look very useful because ey and ey coincide!

Exercise. Prove that ey = ey. Hint: You can use the Hoffmann-Ostenhof inequality.

However, the advantage of ey is that its definition can be extended easily to the perturbed

problem. For any € > 0, we define

_ ) 1
o= inf, AT(ar VP +3 [ p@wuts - iy},
7>0 on L*(R%) 2 J Jrixra
Try=1

This is the relevant limit of the perturbed N-body energy En..

Exercise. Prove that
lim Ene €
f— H .
N—oo N o

Hint: You can follow exactly the proof of the “Convergence to Hartree energy”, without

using the Hoffmann-Ostenhof inequality.

Thus we have proved that for any € > 0,

lim —EN’€ — By _ € e
= €H,e — €EH-
N—oo N i~

Step 3. Finally, we prove that
lim e "M _ g
e—0t £
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The upper bound ey, < ey + ¢ follows by choosing the trial state v = |ug)(uo| for ep.. It

remains to prove the lower bound.

Let 7. be an approximate ground state for ég ., namely 7. > 0 on L*(R?), Tr(v.) = 1 and

i) = (A +V P +5 [ p@p yule = pdady < Fu+ o).
The key point is to prove that
Tr(Pre) = (ug, y-uo) — 1.
If the latter convergence holds, then by the Hoffmann-Ostenhof inequality we find that
Ene (1) > En(/prn) + eluo, Yettg) > em + € + o(€)
and the lower bound ey . > eg+e+o0(e) follows. Thus it remains to show that (ug, yug) — 1.

Convergence of density p,. . By the Hoffmann-Ostenhof inequality and the upper bound
e < ep + ¢, we find that

Eu(y/pr) < Enly/py) + e Te(Pye) < Ene(v:) < Bue +o(e) < e + O(e).

Thus ,/p,. is a miminizing sequence for ey when € — 0". Thanks to the assumption on the
pre-compactness of minimizing sequences for ey, up to a subsequence as € — 0% and up to
a phase factor of ug, we have ,/p;. — ug > 0 strongly in L*(R?). Since ,/p5. is bounded in
H'(R?) (as Eu(\/py.) is bounded), by Sobolev’s inequality we obtain

VP — ug strongly in L"(R?) for all 7 € [2,2%).

Linearized equation. Using /p,. — ug in L"(R?) for all r € [2,2*) and the assumption
we LP + L1 we get

1
3 [ 0@ = @) () = el y)dady -0
Rd xR4
which is equivalent to

: / / P (@) pr ()0 (z — )y = / o ()2, () — )dxdy
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1 2 2
=5 [ lwo(@)[ luo(y)Fw(z —y)dzdy + o(1)
= [ (ol <w)pr, + en

where

i= [ (W@ + V@@ P)d+ [ ) ) ot - y)dsdy

is the chemical potential in the Hartree equation
Bgtio = 0, hug = —A+V + (w * |up|?) — > 0.

Thus
Ere () = e + Tr(humeye) + £ (uo, veuo) + o(1).

Consequently,
Tr(hmey:) — 0.

Weak-limit in Hilbert-Schmidt topology. Using the operator lower bound

1
Pne > _§A_C

we find that
Tr((1 = A)y.) = Tr(1 — &)/, (1 = A)/2) < C.

Thus (1—A)Y25,(1—A)Y2 is bounded in trace class, and hence it is bounded in the Hilbert-
Schmidt topology. By the Banach-Alaoglu theorem for the Hilbert-Schmidt space, up to a

subsequence € — 0% we have
(1= A)25(1 = A)2 = (1= &) yp(1 — A)/2
weakly in the Hilbert-Schmidt topology, namely
Tr(K(1-A)Y2y,(1-A)?) = Tr(K(1-A)Y20(1-A)Y?), VK Hilbert-Schmidt operators.

for a non-negative trace class operator vy > 0 on L*(R?) (exercise). From this weak conver-



4.5. CONVERGENCE TO HARTREE MINIMIZER 105
gence and the fact that p,. — |ug|* strongly in L'(R?), we deduce that p,, = |ug|? (exercise).

Let us determine the limit vy. Since 7. — 7 weakly in Hilbert-Schmidt and Ay > 0, by

Fatou’s lemma we have
0 < Tr(hmeyo) < liminf Tr(hpey.) — 0.
e—07t

Thus hyiyo = 0. Since hys has a unique ground state wug, we have vy = A|ug)(ug| for some

A > 0. But we have proved that p,, = |ug|?, hence A = 1. Thus

Y= — Yo = |uo) (uo|

weakly in the Hilbert-Schmidt topology. Consequently,

(o, veuo) = Tr (‘U(J)(Uo’%) — 1.

This completes the proof. q.e.d.

Exercise. Let {A, },>1 be a sequence Hilbert-Schmidt operators on L*(RY). Prove that
A, — Ay weakly in the Hilbert-Schmidt topology if and only if A,(-,-) = Ao(+, ) weakly
in L?(R? x RY), where A, (x,vy) is the kernel of A,.

Exercise. Let {7, }n,>1 be a sequence of Hilbert-Schmidt operators on L*(R?) such that
Y => 0 and v, — vo weakly in the Hilbert-Schmidt topology. Prove that vy > 0 and for
any self-adjoint operator A > 0 on L*(RY), we have

Tr(Avo) < liminf Tr(A~,).
n—o0
Here Tr(Ax,) := Tr(AY2,AV?) = Tr(v,llmA%l/Q) € [0, oo.
Exercise. Let {7V, }n>1 be a sequence of trace class operators on L*(R?) such that 7y, > 0,

Trv, =1 and
Tr((1— A)Y24,(1 - AV < C.
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1. Prove that up to a subsequence, we have the weak convergence
(1= )29, (1 = A)2 = (1= A)/29(1 = A)2

in the Hilbert-Schmidt topology, where vo > 0 is a trace class operator on L*(RY).
2. Prove that
lim [ Up,, = / Up,,, YU € CZ(RY).
Rd

n—oo R4

Hint: If d < 3 you can show that (1 — A)~V2U(1— A)~Y2 is a Hilbert-Schmidt operator

on L2(R%). For general case d > 1, you may use the weak-* convergence in trace class.

4.6 Short-range interactions

So far we have derived Hartree theory with regular interaction potentials. Now we consider

the case of short-range potentials. Fix a constant § > 0 and consider the Hamiltonian

Hy =Y (A + V() + N1 Y NPw(N(z; - ay))

i=1 1<i<j<N

on L?(R4)®sN By restricting to the uncorrelated states u® and taking the formal limit
g
NPw(NPx) — béo(x), b= / w
Rd

we obtain the Hartree/Gross-Pitaevskii functional

el = [ (V0P + V@ua)? + S,

We consider the ground state energy of Hy

EN = inf <\II,HN\IJ>

H\IJHL2(Rd)®sN:1

and the Gross-Pitaevskii energy

egp:= inf  Egp(u).
HUHL2(RCI):1
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When V(z) — oo as |z| = oo and b > 0, egp has a unique minimizer (up to a phase) ug > 0

which solves the Gross-Pitaevskii equation

(=A+V +blup)* — p)up =0, pe€R.

7
Theorem (Convergence to Gross-Pitaevskii theory). Assume that

e 0<V eLE(RY, limyeV(z)=o00,

loc
e 0<we CP(RY).
Fir1<d<3and0< < 1/d. Then we have

r En
iIm — = eqp.
N—ooo N @

Moreover, if ¥ is an approzimate ground state for Hy, namely (Vy, HyVy) = Negp+

o(N), then we have the complete Bose-FEinstein condensation

(1)
oy Lo Yuyte)

N—o0 N y

Proof. Step 1. Denote wy(z) = N®w(NPz) and define the N-dependent Hartree energy

€g.N ‘= inf gH,N(“)
HUHLQ(Rd):I

where
Eunle) = [ (Vul@)P + Vlu(@)P)ds + 5 [ [ @) Plut)Pus(e - y)dsdy.

By the variational principle, we have the obvious upper bound

EN . <U®N, HNU®N>
— < inf <egn.
N = Jull2=1] N =

Note that

?ﬂ]\v(l{j) = / wN(x)e—iQWk-mdx _ Ndﬂw(Nﬂx)e—i%r(N—Bk),(Nﬂm)dx
R4 R4
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= / w(z)e 2N IR T gy — HNPE).
R4
Therefore, since @ € L'(R?) and 8 < 1/d we have

1@t = [ @ovonias =8 [ = o)
R4 R4 R4

Therefore, we can repeat the proof of the convergence to Hartree energy to obtain

. FE
Jim |~ enx| =0

Step 2. Next, we show that

lim Eg N — EGP-
N—oo 7

Since w > 0 by the Cauchy-Schwarz inequality we have
w(x)|[* + u(y) [
J 1@ Pty Pt —gasay < [y

ol [ Jult =0 [l
Rd R4

(S,H,N(U) < ggp(ﬂ), Yu € Hl(Rd)

Therefore,

and hence by the variational principle we get the uniform upper bound
eaN < egp, VN.
Moreover,
Ean(w) = Enx(w) =b [ fult = [ [ 1u@)Pluts) Pus(e — oy
— [[ @) txte = sy~ [ [ @) Pluto) P @ - sy
_ // lu(z) | (Ju(z)|? = Ju(y)[Hwy (z — y)dzdy

Using

@l = | = | [ it o - e
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1
< [ 2luly + tlo = IVuly + to — o - vl
0
and Holder’s inequality we find that

‘&;P(U 5HN( )‘

2 [ ([[ Wt + o= )Wty + ta = )~ (s~ )y

IN

2/0 /Rd y lu(y + 2)*lu(y + t2)||Vuly + tz)|dy> |z|w (2)dzdt
2/01 /Rd( y \u(y+z)|6dy>1/3(/Rd !u(y+tz)|6dy)l/6(/Rd |Vu(y+tz)|2dy)1/2|z\wN(z)dzdt

1
<2 [l Vulls [ |l < ON 2 ul] Valls
0 R

IA

When d < 3, we have the Sobolev’s embedding H'(R?) C L°(R?), and hence
Eap(u) = Em(w)| < ONFllully.

Now let uy be a ground state for the Hartree problem ey n. Then |juy| 2 = 1. Moreover,
using V,w > 0 we have

C Z 5H,N<UN) Z |VUN|2.
R4

Thus {uy}n>1 is bounded in H(R?). Therefore,
Eap(un) = Emn(uw)| < CNJuxllin =0 as N = oo,
Consequently,
ecp < Eap(un) < Eun(un) + 0(1)Nooo < epn + 0(1) Nooo-

Thus we conclude that

lim eg N = eqp.
N—oo

Combining with the result from Step 1, we obtain the energy convergence

lim —N =€
GP-
N—oo N

Step 3. Finally we prove the BEC. This can be done by the Hellmann-Feynman argument
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again. For any € > 0, we define the perturbed Hamiltonian

N
Hy.=Hyx+e» P, P = ug)(u

i=1

and call Fy . the ground state energy of Hy .. Then following the above proof of
En = Negp + o(N),

we also have
EN,& - NeGP@ + O(N)

where ;
eGpe 1= inf { Tr((—A+V +eP)y)+ = / pg(x)dx}
720 on L*(R%) 2 Jra
Try=1

Therefore, if Uy is an approximate ground state for Hy, then by the variational principle,
we have
1
(uo, vy uo) 1 1

N N
_ 0y PU :_<x1;, Hy U —\IJ,H\I/)

€GP,e — €GP
—5 .

1 1
> (E]\L6 — En+ 0(N)> = — <N@GP,5 — Negp + O(N)> 7 N—oo

eN eN

Thus to obtain the complete BEC it remains to show that

. €GP,e — €GP
lim ——————

e—0t €

=1.

Since e Tr(P~y) < & we get the uniform upper bound

€GP, — €GP
€

<1

For the lower bound, let . be an approximate minimizer for egp ., namely

b
Tr((—A+V +eP)y.) + —/ P> (z)dr = egp e + o(€).
Rd

2

Then using Tr(Pv) > 0 and the Hoffmann—Ostenhof inequality we get

Eap(y/P+.) < eape +0(g) < eap + O(e).
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Thus ,/p,. is a minimizing sequence for egp, and hence we deduce that | /p,- — ug strongly in
L*(RY). Since ,/p,. is bounded in H'(R?), by Sobolev’s embedding theorem we get ,/p,. — ug
strongly in LP(R?) for all p € [2,2%). When d < 3, we get 2* > 6 > 4, and hence

/ (9, — luof2)? — 0,
Rd

which is equivalent to

b

3 [ A= [ g @i [ )]s+ o).

= bTr(|uol®y:) + ecp — 1
Here p € R is the chemical potential in the GP equation
(—=A + V + blug|® — p)ug = 0.
Thus we find that

b
egpe +0(e) =Tr((—A+V +eP)v.) + 5/ pi (x)dz
Rd

= Tr((=A+V +blug|* — p)7e) + eap + 0(1)cs0.
Since we have prove egp. — egp, we get
Tr((—=A 4+ V + blug|* — pu)v.) — 0.
Note that ug is the unique ground state of the operator
h=—A+V+blul* — p.
Moreover, since V(z) — oo as |x| — 0o, h has compact resolvent. Thus h has eigenvalues
0=Xi(h) <Xs(h) < ...
Using the spectral gap A\y(h) > A\(h), we conclude that

Tr(Py.) — 1.
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Thus

b
egpe +0(e) =Tr((A+V +eP)vy.) + 5/ pze (x)dx
R4

2
> Eap(\/Pry) +€>€eqp+¢

> Tr((—A+ V)v.) + b /d p2 (z)dz + ¢

which gives the desired lower bound

. . €@Pe — €GP
liminf —————
e—0Tt S

> 1.

This completes the proof of the BEC. q.e.d.

Remarks:

e The same result holds true for all 0 < f < 0 ifd=1,2and all 0 < g < 1 if d = 3, but
the proof is more complicated. The case § > 1/d is interesting because in this case,
the range of the interaction potential N~# is much smaller than the mean-distance
between particles N~'/¢. This is called the dilute regime. In contrast, when 8 < 1 /d,
then the range of the interaction potential N~# is much bigger than the mean-distance

between particles N~1/4

, and hence each particle interacts with many others. This
is the reason why the case 8 < 1/d is easier to justify the mean-field approximation

(which is somewhat similar to the law of large numbers in probability theory).

e In the case d = 3 and f = 1, the result is still correct provided that in the Gross-
Pitaevskii functional

el = [ (V0@ + V@lu@)? + Fu@)P).

the constant b is not [ w but rather given by the scattering energy of w

b::inf{/ 2]Vf|2+w\f|2, lim f(x)zl}.

R3 |z|—o00

This variational problem has a unique minimizer 0 < f < 1 and it solves the zero-
scattering equation

(—2A+w)f =0.
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Moreover, we have

fla)=1- m + 0|2 ™Yo

and
1

" 8r

is called the scattering length of w. If w is the hard sphere potential of B(0, R),

a

then a = R. In general, we have Born’s series

b:87ra:/ wf:/ w—/ w(—2A +w) lw = ...
R3 R3 R3

Thus % f w is the first Born’s approximation for the scattering length (it is > a except
when w = 0). By scaling, the scattering length of N?w(N-) is a/N. The derivation
of the GP theory in this critical case is significantly more difficult. We will come back
to this problem later when we have more tools from the Fock space formalism and

Bogoliubov’s approximation.



Chapter 5

Fock space formalism

é N
Definition. Let 57 be a one-particle Hilbert space. The bosonic Fock space associ-
ated to F€ is the Hilbert space

F=FH)=PH>"=CoH o0 ..
n=0

e Any vector in F has the form W = (¥,,)°2 , where ¥,, € %™ and

oo
1Z1% = 1%nllZm
n=0

e The vector Q = (1,0,0,...) is called the vacuum.

e The expectation of the number of particles in the state ¥V = (V,,)>°, € F is

(e.9]

> nllalpenn:

n=0

This is the same to (¥, NV) where

N = i n]ljft@sn

n=0

is called the number operator. In particular, (2, NQ) = 0.

114
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5.1 Creation and annihilation operators

é Y
Definition. Let J be a one-particle Hilbert space and let F = F(H) be the bosonic
Fock space. For any f € 2 we can define the creation operator a*(f) and the

annihilation operator a(f) on F as follows:
o a*(f): AP — %" for alln=0,1,2,...

n+1

1
Z F(@)n @1, - - s Bi1, Tjs -« oy Trp1)-

(@ (/)V,)(z1,. ., Tpe1) = Vn 14

o a(f): %" — A% for alln =0,1,2, ... (with convention %~ ={0})

(a(f)V) (21, ..., Tp1) = \/ﬁ/m\y(xl, e Ty ) ATy,

. Here we think of 7 C L*(R?) to simplify the notation.

Remarks:
e a*(f)Q = fand a(f)Q2=0.
e f— a*(f) is linear, but f — a(f) is anti-llinear.

Example: If 77 is one-dimensional, .7 = span{f}, || f|| = 1. Then F(5¢) has an orthonor-

mal basis {|n)},—01,2.. where
0) = (1,0,0,...) =Q, [1)=(0,£,0,..), [2)=(0,0,f%%0,..), [n)=1(0,..,f%"0,..)
In this case,

a'(filny =vn+1n+1), n>0
a(f)ln) = valn—1), ¥n>1.
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Exercise. This problem allows us to think of L*(R) as the Fock space F(C).
Define the operators a and a™ on L*(R) by

el ) el )

Define the functions {f}n>0 C L*(R) by

fo(x) = 77_1/46_M2/2; frs1 =

1. Prove that [a,a*] =1 (identity).
2. Prove that afy =0 and af, 1 = vn+ 1f, for alln > 0.

3. Prove that { f, }n>0 is an orthonormal basis for L*(R).

Hint: You can use the fact that Span{p(z)e=*"/%|p(z) is a polynomial} is dense in
L*(R).

Exercise. Consider the Fock space F(.7). Prove that for all f € J, we have
la()llz < I fle N2, YT e Q).

Here Q(N) is the quadratic form domain for the number operator N .

Exercise. Consider the Fock space F (). Prove that for all f € 5, a(f) and a*(f)

are adjoints, namely

(@(f)¥, ) F = (¥, a"(f)®)r, V¥, ¢ e QWN).

é Y
Theorem (Canonical Commutation Relations - CCR). Consider the Fock space F ().

For all f,g € 5, we have

[a’(f)’ a(g)] =0, [a’*(f)’ a*(g>] =0, [a(f)v a*(g>] = <f7 g>%”-
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L Here [A, B] := AB — BA.

117

Proof. We may think of 57 C L*(R?) for simplicity.
Step 1. First, let us prove that [a(f),a(g)] = 0, namely

It suffices to show that

for any function ¥,, € %" and for any n > 2. By the definition of the annihilation

operator, we have
(a(f)a(g)Vn)(@1, .. Tn2) = (a(f)(alg)¥n)) (@1, ... Tn-2)
= (a(f) [(yh costn—1) = V[ g(zn) U (ys, ---,yn—l,xn)dan(%, oy Tp2)
=/nvn — 1/f(a:n1)</g(xn)\lln(x1, ...,xn,l,a:n)dxn>dxn,1
= /n(n—1) // f(@n1)g(@) ¥V (21, .oy Ty, Ty )dxy, 1 dz,.

Using Fubini’s theorem and the bosonic symmetry
\Ijn<x17 ceey Tn—1, In) - \Ijn<=r17 ooy Ly In—l)

we can write

(0()a(F)T) @1 ) = /(= 1) / / T T @O (21, s 12 0) 1
= \/n(n -1) // 9(Tn) f(Xn_1)Vp(21, ..., Ty Tpo1)dxy 1 dy,

= \/n(n - 1) // 9(n) f(2n_1)Vn(x1, o, Tpo1, Tp)dxp_1dxy,
= (a(f)a(g)¥,)(z1, ..oy Tp_2)-

Thus a(f)a(g) = a(g)a(f).

Step 2. Since a*(f) is the adjoint of a(f), using [a(f),a(g)] = 0 we have

0= ([a(f), a(g)])* = (a(f)alg) — alg)a(f))"

I
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—~~
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~—
~
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Thus [a*(f), a*(g)] = 0.

Step 3. Finally, we prove that

When testing with the vacuum, we have
a(f)a*(g)Q —a*(g)a(f)Q = a(f)g—0=(f,9).
Now consider any function ¥,, € %" with any n > 1. We have

()" (@) )1, ) = (4@ (0) V) ) (21, 20)

1 n+1
\/n—+1 Zg(yl)\pn(yla ey Yi—1, Yit1, "'7yn+l)) (mla LERE) xn)
i=1

n+1

:/f(l"nﬂ)Zg(ﬂfi)‘l’n(xl,---,xi—17$i+1>---,$n+1)d$n+1
i=1

= (a(p)

- <f7 g>\11n(x17 "'7xn) + Zg(l’z) / f(xn—‘rl)\lln(l‘l? ey Li—15 41y -0y CCn-l—l)dxn—‘,-l-
=1
On the other hand,

(@ (@a(F)E) (@1, s 7a) = (@ (@) (@(H)L)) ) (@1, )
= (a*(g)ﬁ/man(yla~-~7?Jn)dyn> (T1, s )

= Zg(xz) / f(yn)\lln(l‘h vy Lj—15, Tijg 1y ooy T, yn)dyn
i=1
= Zg(x,;)/f(xnﬂ)\lln(xl, ey Tim1, Tit1, ‘-‘7$n,$n+1)dl‘n+1-
i=1
Here in the last identity we simply “renamed” y,, to x,.1. Thus

a(f)a*(g)¥n — a*(g)a(f)¥n = (f,9)¥n(T1, ... Tn)

for all ¥,, € %", This means
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q.e.d.

Exercise. Assume that 7€ has an orthonormal basis {u,}n>1. Let a, = a(u,) on the

bosonic Fock space F(F€). Prove that F () has an orthonormal basis with vectors
N1, ma, ... = (nqngl)7V2 (@)™ (al)™.. Q.
Here ny,ng, ... € {0,1,2,...} and there are only finitely many of {ny} are non-zero.

Remark: Sometimes it is also convenient to write |0) = €.

5.2 Second quantization

Using the creation and annihilation operators, we can represent many operators on Fock

space in a convenient way.

~
Theorem (Second quantization of one-body operators). Let h be a self-adjoint operator

on the one-body Hilbert space . Then the operator on the bosonic Fock space F ()

dr(h) ::é(ihi) —00hd(h®1+10h)® ..

n=0 i=1

1s called the second quantization of h. It can be rewritten as

dI'(h) = Z (U, By )@ gy

m,n>1
Here {u,}n>1 is an orthogonal basis for # and a, = a(u,). The representation is

independent of the choice of the basis (provided that all (u,,, hu,) are finite). The

identity can be made rigorous at least on the domain

M
@D(hl +..+hy)CF.

1 N=0
N v

T C g

Example: When h = 1 (the identity) we obtain the number operator

N =dI'(1) = Z (U Up Y@y = Z Omen i, Gy, = Z&Zan.

m,n>1 m,n>1 n>1
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Proof. 1t suffices to prove that

N
th‘\I’N = Z (U, hup)ar a, Wy
i=1

m,n>1

for all U € 2N and for all N. Recall from a previous computation

N
(a;‘jnanqj]\f)(ml) ceey xN) = Z um($z) /un<y)\pn(ajla ey Li—1, Lit1y -3 TN, y)dy
=1
Therefore,

> i, ) (0,00, Yy ) (1, .. )

N
= Z<Um;hun>Zum(xi)/un(y>\I[N(x1;'~'7xi—1>xi+17~~'7xN7y>dy
m,n =1
N
= ZZ <Z<um:hun>um($z)> /Un(y)‘IfN(m,---,wi—1,$i+1,'--,wN,y)dy
=1 n m
N
ZZZ(hun)(ﬂfi)/un(y)\PN(:vl, ST 1, Tig1, e TN, Y)Y
i=1 n
N
=33 [ e x| @1, i, 21, a4 )
7,;1 n
= (Y fuadunl) | @1, wis, @ i, )
i=1 n '

- i [hi\I/N} (1, ., TN).

@
I
—

Here we have used the Parseval’s identity

Z(um, htiy Yy, = huy,
and the the resolution of the identity operator

Z |t ) (n| = 1

n

(both use the fact that {u,} is an orthonormal basis for .7#’). This completes the proof.
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q.e.d.

é N
Theorem (Second quantization of two-body operators). Let W be a self-adjoint op-

erator on %% such that Wiy, = Wa,. Then the operator on the bosonic Fock space
F(H)

@( Z VVZ]) :OEBOEBW@(W12+W23+W13)EB

n=0 1<i<j<n

15 called the second quantization of W. [t can be rewritten as

@ ( Z ) Z (U, ® Un, Wity ® Ug) o2 0,7 0,04

n=0 1<i<j<n m,n,p,qzl

Here {uy}n>1 is an orthogonal basis for 7 and a, = a(u,). The representation is

. independent of the choice of the basis.

Y
Proof. 1t suffices to prove that
2<<1>N, S WU\IJN> — <<I>N, 3"t @ 0, Wty @ uq>a;a;apaq\pN>
1<i<j<N ™m,n,p,q
for all @y, ¥y € S9N and for all N. Recall from a previous computation
(a(£)a(g)¥n)(z1, ..., tn—2) = /N(N — 1) //f 2)Un (21, .y TN 2, Y, 2)dydz.
Therefore,
<(I)N7 Z <um & U,y Wup ® uq)a;aZapanN>
m,n,p,q
= Z (U, @ Up, W, @ uq><aman<I>N, apaq\IJN>
m,n,p,q
= Z (U, @ Up, Wy, @ uy) / (Aman®N)(T1, ..oy TN—2)(apa YN ) (21, ..., xy—2)dzy...dT N2
m,n,p,q
= Z (U, @ Up, Wy, @ ug) / <\/N(N - 1) //um(y’)un(z’)QN(xl, ...,xN,g,y’,z’)dy’dz’> X
m,n,p,q

X <\/N(N - 1)//up(y)uq(z)\IfN(x1, e TN_2, Y, z)dydz)dxl...dx]v_g

= N(N —1) Z (U @ Uy, W, @ ug) /um(y')un(z’)up(y)uq(z)x

m,n,p,q
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X On(T1, . s tn_2, Y, 2 )UN(T1, s TN_2, Y, 2)d21...de N _odydy'dzdz’
Since {ty, ® U, }m.p 18 an orthonormal basis for J#%2?, we can use Parseval’s identity to get

Z(um ® U, Wty @ Ug) U, @ Un = Wi, @ ug.

m,n
Therefore,

<<I>N, Z (U @ U, Wy, ® uq>ajna:;apaq\IIN>

m7n7p7q

SNV 1) [ 3 © 0 Wty 10) a9 02y 5

m7n7p7q

X On(T1, . s TN_2, Y, 2 )UN(TL, s TN_2, Y, 2)d2y...dr N _odydy’dzd2’

=NV = 1) [ 00 e )

X On(T1, s TN_2, Y, 2 )UN(TL, s TN_2, Y, 2)dTy...d N _odydy’dzd2’

-----

p,q

— N(N — 1)<<I>N, WN%N\I:N> - 2<<I>N, 3 Wi,j\IJN>.

1<i<j<N

Here we have used

>y @ g) (1, ® tg] = 1 ypen

p.q

because {u, ® u,},, is an orthonormal basis for 72, Thus we conclude that

<<I>N, Z (U, @ Up, Wy, @ uq>afna;apaq\IlN> = 2<<I>N, Z VVi,j\I/N>.

m,n,p,q 1<i<j<N
for all @y, ¥y € 9N and for all N. This completes the proof. qg.e.d.

Remarks:

e From the method of second quantization, the typical Hamiltonian

N
HN:Zhi+ Z Wi
i=1

1<i<j<N
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on %N can be extended to be an operator on the bosonic Fock space F () as

@ Hy = Z hmn@,,an, + = Z Wonnpg Qo @y Qg

where a, = a(u,) with an orthonormal basis {u, } for . and

P = (U, D) 3 Winnpg = (Ui @ U, Wity @ Ug) a0 -

e In the littérature, when 2 C L?(R?) people also use the creation and annihilation

operators a} and a,, defined by

~ [ f@aidr. o) = [T, Vi e
These operator-valued distributions satisfy the CCR

[az,ay) =0, [ay,a;] =0, [ag,a;] = do(x —y).

) Ny

The advantage of these notations is that we can use the second quantization without

specifying an orthonormal basis for .7#°. For example, the typical Hamiltonian

N

Hy =) (-8, + V(@) + Y W(z—a)

i=1 1<i<j<N

on L?(R%)®N can be extended to be an operator on Fock space as

@HN—/ —A, +V(z))adx + = / Wi(x—y aaaxayd:rdy

5.3 Generalized one-body density matrices

Definition. Let U be a normalized vector in the bosonic Fock space F(7). Assume
that W € Q(N), namely (¥,NV¥) < co. We define the one-body density matrix
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(g, v f)oe = (¥, a"(f)a(g)¥), Vf,geH.

Exercise. Let U be a normalized vector in the bosonic Fock space F () with (¥, N'W¥) <
00. Prove that the one-body density matriz vy s a non-negative, trace class operator
and

Tryy = (U, NV) < o0.

Exercise. Let a normalized vector U € %N C F(H) with # = L*(R?). Prove that
the one-body density matrix vy defined by

<97’Y\Iff>% - <\I[7a*(f)a(g>\lj>7 vf7g e H

is the same to the operator defined via the kernel

’Y\I,([E, y) =N \I[(.TI, L2y .eny xN)\I;<y7 L2y eny xN)dede
(Rd)N—l

If ¥ € F(H) does not have a fixed particle number, then it is also important to know

(U, a(f)a(g)¥) and (¥, a*(f)a*(g)¥). This gives rise to an operator oy : F* — F.

é Y
Definition. Let 5 be a Hilbert space and let F* be its dual (i.e. the space of all
continuous linear functionals from S to C). Define the mapping J : & — F* by

J(f)(g) =(f,9), Vf,geHx.

Note that J is anti-linear. The adjoint J* : F* — F is an anti-linear map defined by
(J*u,v) 0 = (Ju,u) o = (U, JU) 3+, Yu € H* v € F.
By Riesz representation Theorem, J is an anti-unitary, namely

ST =1, JJ" =1
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In particular,
(Ju, Jv) o = (v, u) p = (U, V) ¢, Yu,v € H.

Remarks:

e The point here is that we do not identify 7 to ¢, but rather think of J#* = J#

with an anti-unitary J.

o If 27 = L*(R?), then we can simply take .J as the complex conjugation.

é Y
Definition. Let U be a normalized vector in the bosonic Fock space F () with (¥, N'W)
00. We define the pairing operator ay : 7% — 7 by

(9,00 ]f) = (¥,a(f)a(g)¥), Vf.ge .
Its adjoint o, : € — F€* is defined by

<O‘Eg7 Jf><%”* = <gaa\I’Jf>%” = <\Il7a(f)a’<g)\1/>’ Vf,g€ .

L Note that o, = JawJ.

Remarks:

e The advantage of introducing the anti-linear isomorphism J : # — % is that ay

and ay, are linear maps.
e The relation ay, = JayJ can be seen from the definition of o and the CCR:

(w9, J ) = (¥, a(f)a(g)¥) = (¥,a(g)a(f)¥)
= (fiawdg)w = (JoawJg, J )+, Vf, g€

e The relation af, = JayJ is equivalent to the fact that the kernel ay(-,-) of ay is
symmetric. We can think of 5 = L?(R?) for simplicity, where the kernel ag (-, -) of ag

is defined as

(oI f)@) = [avle )TNy, v € LR,

Then by the definition of ay, we can write

(9® fau( ) = / / T e (2, y)dady = / ) (0w f)(x)de
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= (g:awJ f) = (¥, a(f)a(g)¥), Vf,ge L*(R?).
Tn particular, since a(f)a(g) = a(g)a(f) by the CCR, we deduce that
(9@ fraw() = (f®g,au("))

and hence the kernel ay (-, -) is symmetric, i.e. an element of J#%=2.

é Y
Definition. Let U be a normalized vector in the bosonic Fock space F () with (¥, N'W)

0o. We define the generalized one-body density matrix 'y as an operator on
FC @& F* by the block matriz form

Ty — T Qg . T g
v = =
Of&, 1+ JyeJ* Jagd 14+ JygJ*

’
Theorem. Let ¥ be a normalized vector in the bosonic Fock space F () with (W, N'V) <

00. Then I'y > 0 on € @& F*. This is equivalently to the operator inequality
Yo > J* (1 +yw) tagd on S

Consequently,

L Tr(avag) < (1+ 1w lop) Tr(30) < oc. )

Proof. Step 1. By the definitions of vy, oy and the CCR we can write

B f Yo QN f
(fedg,T'vf ®Jg) wonr = <<Jg> ’ (Jalpj 1+ ny\I,J*) (Jg) >%®%*

= (fivw )+ (f,oautg)w + (Jg, JagJ )+ (Jg, (1 + JyaJ")Jg) s~
= (f,vef) o + (. awdg) e + (g, 0] [) e + 915 + (9,70 9)
= (U, a*(f)a(f)V) + (¥, a(g)a(/)V) + (¥, a*(f)a*(9)¥) + [lglI% + (¥, a*(g9)al9)¥)

= (v, ((5) + alo)) (o (0) + (1)) ¥) = [[(a*(0) + o)) w] > 0

for all f,g € 7. Thus I'y > 0.
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Step 2. From the above proof, we can also see that I'g > 0 is equivalent to
(firef) + {9, A +r)g) = 2R(g, aw S f), Vf,g€ .
By replacing f — Af and optimizing over A\ € C, we get
(frvaf)g, (1 +va)g) > (g, awt >, Vf,g€ .
Replacing g by (1 + v¢)~'g we get the equivalent formula
(forwf)e, (L +70)7 ) = (g, L+ ) aw T f)P, Vg€t
Then choosing g = ayJ f we find that
(firef) 2> {awdf,(1+ye) tawd f) = (f, J oy (1 + ) tawJf), Vfe A,

Thus we obtain the operator inequality

o > J (1 4+ vy) Loy on .
Step 3. Reversely, let us start from the operator inequality

o > JR (14 ) tagJ on .
Then

(fiyaf) = (awd f,(1+v0)  awd ) = (14 7e) " PawJ fIP, Ve

Therefore, by the Cauchy-Schwarz inequality we can bound

(foraf)lg, (1 +79)g) = 1(1+ve) " Paw FIPIL+ o) g
> ((L+79) g, (1+70) oy )P = [{g. L+ v9) ag )’ Vf.geH

which is equivalent to I'g > 0. g.e.d.

The above Theorem gives rise to a natural question: given an operator on 7 @ 7 of the
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I'.= 7 “
o 14 JyJ*

satisfying that I' > 0 and o* = JaJ, Try < oo. Then is I' the generalized one-body density

block matrix form

matrix of a state on the bosonic Fock space F ()7 The answer is yes, provided that we
extend the consideration to mixed states.

é N
Definition. Let G be a mixed state on the bosonic Fock space F = F (), namely
G >0 onF and Trr G = 1, with Trr(NG) < co. We define the generalized one-

body density matrix of G as an operator on F ® F* of the block matriz form

Ye 07¢!
FG o=
(ag 1+ J7GJ*>

where yg : H — F and ag : FH* — F are linear maps defined by

| el =T (NA0)G), (9,00 ) = Te(alfal9)G), Vg A |

In case G = |V) (V| for a normalized vector ¥ € F(J), we say that G is a pure state. All

of the results discussed above for pure states extend to mixed states, in particular
>0, aof=Jag), Trye=Trr(NG) < cc.

We will prove that any such a block-matrix operators on J# @& 7 is a one-body density
matrix of a mixed state. Moreover, the mixed state can be chosen in a special class called

quasi-free states.

5.4 Coherent/Gaussian/Quasi-free states

In this section we introduce some special states on Fock space which are relevant to the
analysis of the Bose-Einstein condensation and fluctuations around the condensate.

First, we consider coherent states of the form

Xn

U120 (1) — o2 Dy £
(& e =€ .
D5

n>0 :

This is the analogue of Hartree states u®" on Fock space. Similar to Hartree states, coherent
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states can be used to describe the Bose-Einstein condensate.

é Y
Definition. Let 5 be a one-body Hilbert space. For every f €  (not necessarily
normalized), we define the Weyl operator W (f) as a unitary operator on the bosonic
Fock space F = F () by

W(f) = exp(a*(f) — a(f))-

. Then W (f)S2 is called a coherent state.

Theorem. For every f € 5, the Weyl operator W (f) on F(H) satisfies

W*(f)a(g)W (f) = alg) + (g, f), W (fla*(9)W(f) =a"(g9) +(f,g9), Vge K.

Proof. We will use a “Gronwall argument”. In general, if we have two operator A and B,

then

%(e_tABetA) = e "Y(—AB + BA)e'r = e7[B, Ale'.

Therefore, integrating over ¢ € [0, 1] we find that
1
e “Be’ — B = / e B, Ale!dt.
0
Now we apply this identity to A = a*(f) — a(f) and B = a(g). By the CCR,

[B, A] = la(g), a"(f) — a(f)] = {9, )

and hence
eftA[B’A]etA — <g> f)eftAetA — <g,f>.

Therefore,

W*(Ha(g)W (f) —a(g) = e *Be* — B = /01 e (B, Ale'dt = (g, f).

By the adjointness, it is equivalent to
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q.e.d.

Exercise. Let f € J and consider Weyl operator W (f) on F(). Prove that the

corresponding coherent state is

_ - - fer
U=W()Q=e I1£117/2p0* (1)) — o= IIFII?/2 @ I
Vn!

n>0

Prove that
(U, N) = || f[I%-

Next, we consider excited particles outside of the condensate. We will focus on the quasi-
free states, where the excited particles come in pairs. The simplest examples of quasi-free

states are Gaussian states

4 Y
Theorem (Gaussian states). Let h > 0 be self-adjoint on H such that Tr(e™") < oo.

Then we have the following properties.

e The partition function is
Z :=Tre '™ — exp ( — Tr(log(1 — e_h))> € (0,00).

Consequently, the Gaussian state G = Z e~ js well-defined.

e The one-body density matrix of G is

1
el —1°

Yo =

This is a non-negative trace class operator on F, namely Tr(NG) < co.

e The Gaussian state G satisfies Wick’s Theorem, namely
Tr(a¥..al, |G)=0, ¥Ym>1
and

i (a7 o Gl = Z Tr(af(l)af@)G)...Tr(af@mfl)af@m)G), Vm > 1.

O'EPQm
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Here aif is either a(f,) or a*(f,) with arbitrary vectors (f1, f2,...) C . The set

of pairings P, is

Py ={0 € Sam | 0(2j = 1) <0(2j+1),j=1,..., m—1,

2 —1) < o(2f), j=1,...,m}.
. o(2j —1) <a(24), J m} )

Remark: Wick’s theorem is used extensively in quantum field theory, especially in con-

nection to Feynman diagrams. As an example, Wick’s theorem with order 4 gives
Tr(ajasaza,G) = Tr(aja;G) Tr(azasG) + Tr(ajasG) Tr(aya4G) 4+ Tr(ajasG) Tr(ajasG)

with a; = a(f;) for arbitrary vectors {f;} C . In case G is a normal state, i.e. [G,N] =0
(e.g. the Gaussian state), the pairing terms Tr(aja3G) and Tr(asa,G) are 0, and we get the

simplify formula
Tr(ajasaza,G) = Tr(ajasG) Tr(a3a4G) + Tr(ajasG) Tr(ajasG).

Proof. Step 1. The condition Tr(e™") < oo implies that h has compact resolvent. Therefore,

we have the spectral decomposition

h = Z)‘n‘unﬂunl

n>1

with an orthonormal basis {u, }n>1 for 7 and 0 < A} < Ay < ... with

Ze_)‘" = Tr(e™") < 0.

n>1

Then we can write

d0(h) = Adl(Jun) (un]) = D~ Muasan
n>1 n>1

where a,, = a(u,,). Since a}a, and a},a,, commute, we can decompose

ede(h) — e >pAnanan _ Hef)\naflan'
n

Next, recall that the bosonic Fock space () has an orthonormal basis

In1,m2, ... = (nalng!)TV2 (@)™ (al)™.. Q.
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Here ny,ng,... € {0,1,2,...} and there are only finitely many nj > 0. Let us compute

e_dr(h)]nl,ng, ) = He_’\i“f‘“ Ny, Mg, ...).
i

For every ¢ = 1,2, ... we have

a
aN©

* *
—Aaja; —Aaja;

ni,ng,..) = —e % (ala;)|ng, ng, ...) = —nse Ny, Ng, ...)

for all A > 0. Here we used the fact that |ny,ns,...) has exactly n; particles in the mode ;.

Integrating over A € [0, \;] gives

e Nidiai ni, Na, > = g M

ni, Na, >

for all ¢ = 1,2,... (The latter equality can be also deduced from the Spectral Theorem and

the fact that |nq,ns,...) is an eigenfunction of afa; with eigenvalue n;). Thus

e_dr(h)|n1,n2, > _ He—kiafai ni, N, > — He_Ami’nl,ng, >

7 %

—dr(h A

This means that all eigenvalues of e i and hence

) are [Iisie”

Z =Tre @M = Z He_/\""i = H [ 6_)‘1%} = H T _16)\1“

ni=0,1,2,... i>1 i>1  n=0,1.2,... i>1

The result can be rewritten in a “fancy way”

—logZ = Z log(1 — ef)‘i) = Tr(log(1 — eih))

i>1

which is equivalent to Z = exp(— Tr(log(1 — e™"))). To prove that Z is finite, we need to
check

H(l —e M) >0,

i>1

but this follows from the assumption 7,5, e = Tre™" < oo.

Exercise. Let {s;};>1 C (0,1). Prove that the following two statements are equivalent.

1. ) s 8i < 0.
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2. HiZl(l — Si) > 0.

Step 2. Now we compute the one-body density matrix vg. Since {u, }n>1 is an orthonormal

basis for 7, it suffices to prove that

(U, YoUe) = <um, (eh — 1)_1ue> = Opee(e™ —1)71, Vm, £ > 1.

We compute the left side using the definition of v and the fact that |ny, no,...) are eigen-

—Ain;

functions of e~4'" with eigenvalues [[is1e . This gives

(U, Youe) = Tr(aja,G) = 271 Tr <azame—dl“(h)>

=7z! Z (ny,na, ...|aame" T ™0y ny, )

Tl]'ZO,L.“
-1 —\in; *
=7 E He Mi(ng, ng, ..|ayam|ng, na, ...)
n;=0,1,... i>1
=71 E H e_’\i”ing5m:g.
n;=0,1,... i>1
Using
e*/\enené — d e e
dMy

we can simplify

(U, Youe) = OmeiZ Z ( _ di)\g) H‘f—Ai”i

n;=0,1,... i>1
=i 27 (= )(2) = bl = ) (= ) [
e M 1

= Inty e = Ot T

Thus we conclude that v¢ = (¢ —1)7!. The fact that Tryg < oo follows from the assumption

Tre " < 0o (why?).

Step 3. Finally, we prove Wick’s Theorem. We denote by ¢; either a; or aj (the indexes i

and j may be different). Our aim is to show that

Tr[eicacsey...cr,G) = Trle1ea G Tr[esey...cr G
+ Tr[e1c3G) Tr[cgey...cxG] + ... + Tr[e1¢G) Tr[eacs...cx—1G]
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and the result follows immediately by induction. By the same way of computing the partition

function and the one-body density matrix, we have
TI‘[61C2G] = f(Cl)[Cl, Cg]
where [¢1, ¢3] = ¢1¢9 — coc; € {0,—1,1} and

fler) = { (1—e M) tif ¢ =y,

(I—e¥)"" if ¢y = af.
Thus the desired equality is equivalent to
Tr[cicaesey...cr,G) = f(c1)[er, co] Tr[esey...cxG]
+ f(e1)[er, e3] Tr[eacy...cr,G) + ... + f(er)]er, cx] Treacs...cx1G].
Let us focus on the last equality. From the identity
C1C9C3Cy...Ck = [C1, Ca]C3Cy...Cf + ... + Cacq...Cp_1[c1, k| + cacsey...crcy

we deduce that

Tr [c1ca¢3¢4...cxG) = Tr [[c1, ca]esey...cr G

+ ... + Tr[cocy...cr1]c1, k]G] + Tr [cacsey...cpc1G) .

It is straightforward to see that ¢;G' = e** Gy where (+) if ¢; = a} and (-) if ¢; = a;. This
implies that

Tr [eacsey...cne1G] = €N Tr [cacsey...cpGer] = eV Tr [ercaesey...crG] .

From that and the definition of f we conclude that

Tr [e1cac3ey...cG] = 1[6_1’—;2]%% [escy...cr G
1, ¢ c1,c
+ 1[_1 e_jlj Tr [cacy...c,G] + ... + 1[_1—£LTI [cacy...cp 1G]

= f(c1)[e1, o] Tr[esey...crG]
+ f(e1)[er, e3] Tr[eacy...cr,G) + ... + f(er)|er, cx] Treacs...cx—1G].
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This completes the proof of Wick’s theorem. q.e.d.

Finally we define

é Y
Definition. Let G be a mized state on a bosonic Fock space F () with Tr(GN) < 0.

We call G a quasi-free state if it satisfies Wick’s Theorem, namely
Tr(a?..al, ,G)=0, ¥Ym>1
and

Tr(a¥..af Q) = Z Tr(af(l)af@)G)...Tr(af@m_l)af@m)(;), Vm > 1.

oc€Poy,

Here a¥f is either a(f,) or a*(f,) with arbitrary vectors (fi, fo,...) C H and Pay, is set

of pairings

Py, ={0€ Sy, |o2j—1)<o(2j+1),j=1,...,m—1,
o(2j—1)<o(2j), j=1,...,m}.

e If a quasi-free state is a pure state |W)(¥|, we call it a pure quasi-free state.

e [If a quasi-free state G commutes with the number operator, i.e. [G,N]| =0, we call

it a normal quasi-free state. In this case, the paring operator vanishes ag = 0. )

In principle, any quasi-free state G on F(5#) is determined completely by its generalized

Ya e7¢!
FG = .
<ag 1+ JyGJ*>

Moreover, from the general discussion in the previous section we know that I'¢ > 0 on

one-body density matrix

H B I, af, = JagJ and Trvys < co. The reverse is also true, namely any block-matrix
operator of this form is a
Thus a natural question is that given an operator on J @ 7 of the block matrix form

is the generalized one-body density matrix of a quasi-free state.

( 1
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Theorem 5.1. Consider a bounded linear operator on 7€ ® F*

I':.= g @ .
af 1+ JyJ*

with T' > 0, a* = JaJ, Try < oo. Then there exists a unique (mixed) quasi-free
state G on the bosonic Fock space F () such that I' = T'q, the generalized one-body

density matriz of G. O
A V.

The proof of this theorem requires to use Bogoliubov transformations which will be

introduced in the next chapter.

Exercise. Let N be the number operator on a bosonic Fock space F(H#). Let N € N

be a large parameter.

1. Prove that

N? = inf { Tr(N?G) | G a mized state on F () satisfying Tr(NG) = N}.

2. Let U be an arrbitrary coherent state satisfying (¥,N'W) = N. Prove that

(U, N?¥) = N2 + N.

3. Consider the variational problem

Ey = inf { Te(N2G) |G = WH(f)KW (), f € # and

K a (mized) quasi-free state such that Tr(NG) = N}.
Prove that Ex = N% + O(N?/3).

Hint: You can write N(N —1) =

basis {un} for €. You can use the result on the correspondence between G and I'g.

mun>1 U@ Amay With a, = a(u,) for an orthonormal



Chapter 6

Bogoliubov theory

6.1 Bogoliubov heuristic argument

In 1947, Bogoliubov suggested an approximation method to study the low lying spectrum of

interacting Bose gases. Recall that the typical N-body Hamiltonian with pair interactions
N
=Y W,
i=1 1<i<j<N

on %N can be extended to be an operator on the bosonic Fock space F () as

H = Z hmnainan—i-% Z WannpgQn, @y GGy

m,n=>0 m,n,p,q>0
where a,, = a(u,,) with an orthonormal basis {u, },>¢ for . and
P, = (s Ptin) 3y Winnpg = (Um @ U, Wity @ tg) a0 -

Bogoliubov suggested that after factoring out the contribution of the Bose-Einstein conden-
sate described by ug, then the contribution from excited particles (orthogonal to ug) can

be effectively described by a quadratic Hamiltonian on Fock space F({ug}*).

[Deﬁnition (Bogoliubov’s approximation method). 1

137
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e Step 1 (Ignoring higher order terms) In the second quantization form

H = Z hmnainan—i-% Z Wannpg @, @y GGy

m,n20 m,n,p,q=0
we ignore all terms with 3 or 4 operators af;o (af is either a? or a,,).

e Step 2 (c-number substitution) Replacing the operators ao# by a scalar number
vV NO with No > 0.

e Step 3 (Cancelation of linear terms) The linear terms containing only one

az;o are cancelled by the property of ug

hug = 0, h:=h+ No(W x |uo|?) — p.
e Step 4 (Quadratic approximation) We get H ~ Ey + Hp,, with £y, € R and

= 1
Hpog = Z (hmn + NoWnoon)ar,an + 5 Z (Nngnooa;az - h.c.).

m,n>1 m,n>1

Here we write X +h.c. for X+ X*. This quadratic Hamiltonian can be exactly

diagonalized, leading to an effective description for the spectrum of H.

Explanation:

e Motivation of Step 1 (Ignoring higher order terms): most of particles occupy
the condensate described by ug, and there are very few particles in the excited modes
{tn }nro. Therefore, the contribution from a¥ o is much smaller than alf | allowing us

to ignore terms higher than quadratic in af 0"

e Motivation of Step 2 (c-number substitution): the condensation on the mode ug
implies (ajag) = Ny > 1 while [ag, a] = 1. Hence we can think of ay and afj as they

commuted. The most natural candidate for the c-number substitution is thus v/ NN,.

Technically, since the term ajagapao is quite large, we should rewrite

k3 _ * *
apagapay = agap(agag — 1)
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before applying the c-number substitution. The first two steps result in

No(Ny — 1
H ~ NOhO() _|_ %WOOOO + \ NO Z |:(h0m + NOWOOOm)am —|— hc}
m>1
1
+ B & NoWinomo + NoWinoon )@yt + = @wmn@%+hg.
m;f 0 0n0 0 00 ) 9 m;1 0 00

e Step 3 (Cancelation of linear terms) essentially follows from Hartree equation.

More precisely, from the leading order behavior of ug, we can expect that
hug =~ 0, h:=h+ No(W x |uo|?) — p.
Consequently, for every m # 0,

hom + NoWooom = <Um7 (h + NO(W * ‘U0|2))U0> ~ <Um, MU0> = 0.

e Finally, given that the total particle number is N, we can rewrite Ng = N — N, where

N, = <Z ayay).

n>1

Therefore, when think of the mean-field situation Wygoo ~ 1/N we obtain

No(Ny — 1 N — N )2 N,

Nohoo + %Woooo = (N = Ny)hoo + (TJF)WOOOO — 70W0000

N? N, N2
= Nhoo + TWOOOO — N4 (hoo + NWoooo) — 70W0000 + 7+W0000

N2 N
~ Nhoo + 7W0000 — (hoo + NoWoooo) N+ — 5W0000

N(N -1 N(N -1 .
= Nhoo + %Woooo — puNy ~ Ey + %WOOOO - MZ Qa,,Qnp,

with NN 1)
EO = Nh()o + T_WOOOO = N@H.

Thus we end up with Step 4 (Quadratic approximation)

H ~ NeH—,uZa’;an

n>1
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1
+ Z (hmn + NOWmOnO + NOWmOOn)ainan + 5 Z <N0Wmn00aina;‘; + hC)

m,n>1 m,n>1

~ 1
= N@H —f- (hmn + N()Wmoon)a;lan + — N()Wmn[)oa;a:; + h.C. .
2

m,n>1 m,n>1

e The quadratic Hamiltonian

=~ 1
HBog = Z (hmn + NOWmOOn)a:nan + 5 Z (N(]Wmnooa:(naz + hc) .

m,n>1 m,n>1

acts on the excited Fock space F({ug}!). In principle, it can be rewritten as a
non-interacting Hamiltonian up to a unitary transformation U on F (called a

Bogoliubov transformation), namely
U*HBOgU = eBog + dF(g)

with epos the ground state energy of Hpo, and £ > 0 a one-body self-adjoint operator

on . = {up}*. Thus in summary,
H =~ NGH + HBog = N@H + €Bog + UdF(g)U*
The spectrum of the non-interacting Hamiltonian is easy to understand

o(dl'(§)) = { anek lex € 0(&),n,, =0,1,2, }

leading to an effective description for the spectrum of H. More precisely, the low lying

eigenvalues of H are of the form
NGH + €Bog + Z Nker
k

where e, € (&) called elementary excitations and nj, = 0, 1,2, ... Here we have finite
sum, namely there are only finitely many n; > 0. In particular, the lowest eigenvalue
is

inf U(H) ~ N@H + €Bog

and the ground state is approximately UQ (after removing the condensation). We will

see later that when U is a Bogoliubov transformation, then U(Q is a quasi-free state.
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Remark: Bogoliubov’s approximation is a quantized version of Taylor’s expansion
of the Hartree functional. Recall that if xg is a local minimizer of a smooth function f : R — R

then near xy we have Taylor’s expansion
F() = (o) + /(@) — 20) + 3 " (o) (& — 70)? + ol — 7o)
= Fa0) + 51" (0)x — o) + ol — wof?).

Here the first derivative f’(zq) = 0 because the minimizing property of xy. Similarly, near

the minimizer ug of the Hartree functional (we think of the case # = L?(RY))

Ent(us) = (u, hus) + / / (N = D)W (z — y)[u(z) 2uly) Pdedy

under the constraint ||u| = 1 we can write for v € {ug}*

Uo + U = Eulu 1ess (o) (v,v) + o({(v v
5H<W)—5H( 0)+2H En(uo)(v,v) + (< ,(h+C) >)

The Hessian operator is
1
§HGSS En(uo)(v,v)

(0. Tov) // vy ( o (7)o (90 (y) + V()0 (@) o (y)0(9)

+@u0<x>uo<y>@+v(a:)uo(x)uo(y)v@))dxdy

SO0

Here we identify L?*(R?)* = L2(R?) and K, K, are operators on L?(R%) with kernels

Ky(z,y) = uo(@)uo(y)(N = W (z —y),  Ka(z,y) = uo(x)uo(y)(N = )W (z —y).

The second quantization form of the Hessian matrix can be obtained by formally replacing
v(x) by an operator a*(x) which creates an excited particle at x, and v(x) by an operator

a(x) which annihilates it. This gives

Hiog = //h+K1 (2, y)ata,dady + = // (ngy ()" (y) + Koz, g)a(z)a (y))dxdy.
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Here we are working on the excited Fock space F({ug}*). This is the same to write

~ 1
Hpog = Z (U, (h+ Ky)up)ar,an + B Z ((um ® up, Ko)ay ay + h.c.)

m,n>1 m,n>1

which coincides to

~ 1
Z (Prmn + NoWinoon ) @y, @ + D) Z (Nonnooa;aZ + h.c.).

m,n>1 m,n>1

up to a small adjustment Ny ~ (N — 1).

6.2 Example for the homogeneous gas

Let us consider the simplest model where we have N bosons in a unit torus T¢ (i.e. [0,1]%
with periodic boundary condition). The particles interacts via an interaction potential W =
(N —1)"tw with

w(z) =w(-z)= Y  @(k)e*".

ke2nZd

We will assume that the interaction potential is of positive type and smooth, namely
0 < e *(2rZ%).

Here we do not put any external potential, and hence the system is translation-invariant.

The corresponding N-body Hamiltonian reads

N 1

Hy =) (=A.)+ ~ @@ — )
=1

acting on L?(T4)®+N . In this case, the Hartree theory has a unique minimizer (up to a phase)

up(x) =1, Vo e T

Exercise. Consider the Hartree functional

eutw) = [ vuP+5 [[ | wle—plu@)Plut)Fsdy,
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Prove that if 0 < @ € (*(21Z%), then the Hartree energy is

inf {€(u) |u € BT, Jull oy = 1} =
Moreover, ug = 1 is the unique Hartree minimizer (uniqueness is up to a phase).

Now we apply Bogoliubov’s heursitic argument to this Hamiltonian. We take the orthonormal
basis {uy,} for 7 = L?(T?) with

ug(z) = e**, Yk € 2n7Z°.

Then we have
h=—A+ No(W # Juo|?) — p = —A

(up = 1 is the unique ground state for h and

NoWoatn % (N = DWoon = [ [ @ ua(@o(e ~ y)uala)u () decly
']l‘d><']1'd
_ efim-x @(k)ezk(xfy)emydxdy
//]I‘dx’]l‘d keZZﬂ-Zd

— // i(k—m)-x 1n k) yd.’l)dy
de’]l‘d

k‘GQﬂ'Zd

= > @(k)6m—kOns

ke2nzd

= m:n,&?(n%

NoWinoo = (N = 1)Winnoo = //Td » U (7)) (Y)W (2 — y)uo(w)ue(y)drdy

_ // p—imE g—iny Z @(k)eZk(m_y)dﬂ,’dy
TdxTd

ke2nzd

— // kmxzn—l—kydxdy
Td x T

ke2rw Zd

= " @(k)bmkbus

ke2nzd

= Om=—nwW(n).
Thus Bogoliubov theory suggests that

N
Hy ~ gw(O) + Hpog
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where

Hooe = 3 | (Io + 00))aga, + 5 00) (050", + ayay)]

(——r 2
! w * * A~ * %
T2 Z [<|p|2 * w(p)) (ayap + a”pa_p) + w(p)(aga’, + apap)]
0#£pe2nZd

As realized in Bogoliubov’s 1947 paper, for any momentum 0 # p € 27Z¢, we can “diagonal-

ize” the summand by completing the square.

Exercise. Prove that for any gien parameters A, > B, > 0, we have

Ay (ayay+apasy) + Bylaya, + apay) = \ A2 = B2 — A+ \ A2 = B2 (0, +b,b,)

where
b 241 +4a* \/1 Ap 1
p = p\/ V5 a’, Vp, Vp= —(— — )
v 2\ /-2

Moreover, prove that [by, by] = 0 and [by, b;] = 0,— for every p,q € 2177,

In particular, applying the above exercise with A, = |p|> + @(p) and B, = w(p) we obtain

1 ~ * * -~ * %
Hpog = 5 Z [(]pﬁ + w(p)) (apa, +a* ,a_p) + w(p)(aya”, + apap)]
0#£pe2nZd

=epos+ Y. ebib

0#£pe2rZd

with

=y O (JB-Bi-A) =5 3 (VI 2RE0) - b - 0()

0#£pe2nZ® 0#£pe2nZd

and

% - Lo |pP+w(p)
ep = VIpl* +20pP0(p), by = ap\ 1R+ 1+ app, v = \/§<\/Ip\4 2pPalp) 1)'
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In summary, for the homogeneous gas, Bogoliubov’s approximation reads
N

HN ~ E@(O) + €Bog + Z epb;bp-
0#£pe2nZd

Note that bjf“s form new creation/annihilation operators as they satisfy the CCR

[bp,bg] =0, [b5,b:] =0, [by,b] =0p—q, Vp,q € 2nZ".

P’ 7q

So we can treat ), Lpeanzd €pbybp as the second quantization of a one-body operators. More
precisely, we can show that there exists a unitary operator U (the Bogoliubov transfor-

mation) on the bosonic Fock space such that

Uta,U = b, = ay\/1+ 12+ a’ v, V0 #pe2nZ’.

Consequently,
Z epbyby = U*( Z epa;ap>U = U*dF( Z eplup) (up|>[U.
0#pe2nZd 0#pe2nZd 0#pe2nZd

whose eigenvalues are

Z epnp, np=20,1,2,..

0#£pe2nZd

Thus the low lying eigenvalues of Hy are of the forms

N _
Ew(O) + epog + Z ey, np=0,1,2, ..

0#£pe2nZd

This calculation goes back to Bogoliubov’s 1947 paper. However, this formula of the excita-

tion spectrum was only proved rigorously in 2010 by Seiringer (CMP 2011).

In the homogeneous gas, the diagonalization of the quadratic Hamiltonian Hpg,, can
be done explicitly in the level of 2 x 2 matrices. In order to deal with inhomogeneous trapped
cases, it is important to understand Bogoliubov transformations in a more abstract level.

This will be done in the next section.

6.3 Bogoliubov transformation


https://arxiv.org/abs/1008.5349
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4 )
Definition. A unitary operator U on the bosonic Fock space F () is called a Bo-

goliubov transformation if

e There exist bounded linear maps U :  — 4 and V : 7* — F such that for
all f € I

Ua*(flU=a"Uf)+a(VJIf), Ua(f)JU=alUf)+a (VJf),
Ua* (f)U* = a*(U* f) — a(J*V*f), Ua(f)U* = a(U*f) — a*(J*V*f).

o The states US2, U*Q) has finite particle number expectation

. (UQ,NUQ) < 0o, (UQNU*Q) < oo. )

Example (1 dimension): Consider the case dim.7# = 1, i.e. € = Span{f}, ||f|| = 1.
Then for every A € R the following mapping

Uy = exp [5 ()7 — a()?)]

is a Bogoliubov transformation on the bosonic Fock space F(.7°) and

Usa*(f)Uy = cosh(N)a*(f) + sinh(N)a(f),
Uia(f)Uy = cosh(N)a(f) + sinh(A)a™(f).

In fact, since the operator

is anti-hermitian (B* = —B), the mapping
U)\ = 6)\B

is a well-defined unitary operator. Its action on the creation and annihilation operators can

be computed using the Duhamel expansion and the CCR. For example when A > 0 using

Aa(fe —a()+ [ (e et = al) + / " la(), Bl

0 0
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and

we can write

By taking the adjoint, we also obtain

A
e Ba*(f)e*? = a*(f) +/ e Ba(f)etBat.
0

Using repeatedly these equalities, we have the series expansion

A
e’\Ba(f)eAB:a(f)jL/ e Ba*(f)etPat
0
A A e
:a(f)+/0 a*(f)dt—i—/o /0 e Ba(f)ePdtd

:a(f)+AAa*(f)dt+/OA /Oha(f)dtd/\l—k//\ /Al /AQ e Bar (f)etBdidrad,
:a(f)+/Aa*(f)dt+/0A/oAla dtd)\1+/ /Al /AQ F)dtdradA,
N / / " / N / " B ety —

M A\2n M A2t A1 >\2M+1 tB tB
= - dtd) .dX
> e S e [ / 21

Let us show that the series converges as M — oo. We have

Exercise. Let f € 7, ||f|| = 1. For every A € R, define

2@ (2 —a(f?).

Uy =exp [2
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Prove the operator inequality on the bosonic Fock space F ()
Us(a*(Ha(f) + a(F)a () < M (a*(Ha(f) +a(F)a* (1)),

Hint: You can use Gronwall’s argument.
Thus for any ¥ € Q(N) = D(a(f)) we have

1/2
e~ Za( )W) = a(f)eBW] = (¥, e Ba* (a()e W) 2 < (2] a( f)w]? +1)

A A2M+1
’ / / / e—tBa(f)ethtdAWH...dAlxpH
0 0 0
A A2v41
< / / / e Ba( £)e B0 dtdhanss1...dN
0 0 0

A A2M+1
S C\If / / / etdtd/\gMH...d)\l
0 0 0

)\2M+2

A
SC\pem—)O as M — oo.

and hence

Thus in summary,

e—ABa(f)e/\B —

S R
= cosh(A)a(f) + sinh(A)a*(f).

Thus
Usa(f)Uy = cosh(N)a(f) + sinh(N)a*(f), Uia™(f)Uy = cosh(N)a™(f) + sinh(N)a(f)

where the second identity follows from the first one by the adjointness. Since Uy = U_,, we

also have the reverse formula
Uya(f)U3 = cosh(N)a(f) —sinh(N)a*(f), Uxa™(f)Uy = cosh(A)a™(f) — sinh(N)a(f).

Example (2 dimensions): The following example goes back to the original 1947 work of
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Bogoliubov. Consider the case dim .7 = 2, i.e. J = Span{ f1, fo} with (f;, f;) = d;—;. For
every A € R define

U, = exp [A(ajas — ajaz)
where a; = a(f;) the annihilation operator. Then U, is a Bogoliubov transformation on the
bosonic Fock space F(4¢) and

U3a,U, = cosh(A)a; + sinh(M)aj, UyasUy = cosh(A)as + sinh(M)aj.

These identities can be proved using the Duhamel expansion and the CCR as above. For

example, when \ > 0 we can write

A
d
UtaiUy = a1 + / —(Ut*alUt> dt
. di

=a; + Uflay, aias — ayas|Updt

A
U; ayU,dt

A Ao
aidt + / / UrayUdtdh,
0 0

A A M PRNS VRO
a;+ [ axdt +/ / apdtd); + / / / U ayUdtdN\1dNg = ...
0 o Jo o Jo Jo

2n o )\2n+1

:a1—|—

CL1+

S— S— >—

*

(2n)!“1+§ 2nt 1)

[
NE

I
=)

n

= cosh(A)a; + sinh(\)as3.
Again, since U} = U_,, we have the reverse formula

Uya U3 = cosh(A)a; — sinh(A)a3, UyaaU = cosh(N)ag — sinh(A)a].

For future applications, we need to understand the Bogoliubov transformations on F(.7¢)
with higher dimensional cases, including the case dim . = 400. A fundamental question is
under which conditions on the linear maps U : 5 — 2 and V : #* — 5 we can find a

Bogoliubov transformation U on F(7¢) implementing them.

The necessary and sufficient conditions on U and V for the existence of a Bogoliubov

transformations are given by the following



150 CHAPTER 6. BOGOLIUBOV THEORY

N\
Theorem (Existence of Bogoliubov transformations). The bounded linear maps U :

T — F andV : I — F are implemented by a Bogoliubov transformation U on
F () if and only if the following conditions hold:

e Shale condition: Tr(VV™*) < oc.

e Symplectic condition:

L vour-vv*=1=U0U-J'V*'VJ, UVJ-UVI)*=0=VJU* - (VJU")". )

Remarks:

e In the following proof, we will deduce the Shale condition from the identity
Te(VV*) = (UQ,NUQ) < 0.

In fact, even if we define Bogoliubov transformation without requiring (UQ, NUQ) <
00, then the existence of Bogoliubov transformation always requires Tr(VV*) < oo
(and hence implies (UQ, NUQ) < oo automatically). The proof of the latter point is

more difficult (we do not need it).

e The “symplectic condition” can be written in a compact form with symplectic block
matrices on J @ J*
VSY =VSVr =S8,

v (U VY et )
JVJ JUJ* 0 -1

In particular, V is invertible. The following exercise tells us that we can deduce one
identity VJU* = (VJU*)* from the others.

where

Exercise. Let U : 7€ — 7 and 'V . 7" — 7 be bounded linear operators such that
vovr=1+Vvv* UU=1+JVVJ UVJ=UVJ).

1. Prove that V. JU* = (VJU*)*. Hint: This is equivalent to VJU*UU* = (VJU*)*UU*.
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2. Prove that VSV* = V*SV = S with

U Vv 10
V= , S:i= :
JVJ JUJ* 0 —1

3. Prove that if Tr(VV™*) < oo, then V*V —1 and VV* —1 are Hilbert-Schmidt operators
on I & .

Proof of the theorem. We prove the necessity in Steps 1,2 and the sufficiency in Steps 3,4.

Part A: Necessity. We assume that there exists a Bogoliubov transformations U associated
toU and V.

Step 1. We check the Shale condition Tr(VV*) < co. Let {f,},>1 be an orthonormal
basis for 5#. Then

(UQ, NTUQ) = <Q U*Z a*(f)a (fn)UQ>
=2 ( 1) + V) (alUf) + (V1))
= Z (2a(VIf)a (V1))
—Z< ( (VJ fn)a (Van)+]|Van|]2>Q>

=Y IVIfal? = Te(J'VVI) = Te(VV).

Thus Tr(VV*) = (UQ, NTUQ) < oo

Step 2. We check the symplectic condition. Let us introduce the generalized annihi-

lation and creation operators
A(f @ Jg) = a(f) +a*(g), A™(f® Jg) = a’(f) + alg)-
Then we can write the actions of the Bogoliubov transformation U in a compact form
U*A(F)U = A(VF), VF e e
On the other hand, the CCR can be rewritten as

[A(F), A(Q)] = (F,8G) wor-, YF,G € H & A"
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Therefore,
(F,SG) =U'A(F), A*(G)]U = [A(VF),A*(VG)] = (VF,SVG), YF,.Ge X & K"

which implies that
S=V$SV.

By expanding
1 0 (U VT 1 0 U Vv
0 —1 Ve JUurJ* 0 —1 JVJ JUJ*
(U VT U Vv
v JUu*J* —JVJ —JUJ*

UU — J*V*V T UV — JVUJT*
UV = VU VV = JUUT

we see that V*SV = § is equivalent to
uu=14+JVVJ UVJ=UVJI)".

Similarly, using
UA(F)U* = A(SV*SF), VFe X o

we find that YSV* = S which is equivalent to
vur=14Vvv* VJU = (VJU")".

Part B: Sufficiency. Now we assume that U and V satisfy the Shale condition Tr(VV™) <

oo and the symplectic condition
uu=14+JVVJ UU =1+VV* UVJ=UVJ)"

We prove that there exists a Bogoliubov transformations U associated to U and V.

Step 3. We prove that there exist orthonormal bases {u;};>1 and {f;};>1 for 5 such that
UUZ' = COSh(/\i)fi, VJUZ = Slnh()\z)fz, )‘z 2 O, Vi = ]_, 2,

From the symplectic condition we know that the anti-linear operator K = U*V J is Hermitian,
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ie. K = K*, and it commutes with U*U:

U'UK=U00UVJ=U"1+VV)VJ=UVJ+UVVVJ
=UVJ(1+JVVJ)=KUU.

Since U*U — 1 = J*V*VJ is trace class (thanks to the Shale condition), U*U has an or-
thonormal basis of eigenvectors. Moreover, since K commutes with U*U, it leaves invariant
eigenspaces of U*U. Since K = K* (anti-linear Hermitian) and K*K = J*V*UU*VJ is
linear trace class, we can diagonalize further K on each eigenspace of U*U (see an exercise
below).

Exercise. Let K be a bounded anti-linear map on a Hilbert-space 7. Assume that
K = K*, namely

(Ku,v) = (u, Kv) = (Kv,u), Yu,v € .

Moreover, assume that the operator K? has an orthonormal eigenbasis. Prove that K

has an orthonormal eigenbasis with non-negative eigenvalues.
Hint: You can write K* — \?> = (K — \)(K + ).

Thus in summary, we can find an orthonormal basis {u;};>1 for 5 of joint eigenvectors of
U*U and K, namely

Here p; > 1 because U*U > 1 and A; > 0. Define {f;} by
Uu; = pif;, Vi>1.
Then we have
(fir £5) = 157 1y (U, Ung) = g7 gy (i, U Ug) = 35
Thus {f;} is an orthonormal family for .. Moreover, if ¢_L f; for all ¢, then
0= {p,Uu;) = (Up,u;), Vi>1

which implies that U*p = 0, and hence ¢ = 0 since UU* = 1+ VV* > 1 has trivial kernel.
Thus {f;} is an orthonormal basis for 7.



154 CHAPTER 6. BOGOLIUBOV THEORY
On the other hand, since u; is also eigenfunction of K = U*V'J, we have

(f3: VJu) = i (Uuy, VJug) = p5 Nug, UV Jug) = p3 ' 6bimy, Vi, j
Since {f;} is an orthonormal basis for ., we can use Parseval’s identity

VJUZ:Z<f],VJUZ Z:u 5@ i= ]f] Vifia Vi = H;lszO

J

Thus we have found orthonormal bases {u;};>1 and {f;};>1 for € such that
Uu; = pif;, VJu=vif; Vi=12, ..
with p; > 1 and v; > 0. Moreover, u; = m because
p — v = ||Uw||* — |V Jwl]* = (ui, (UU — JVVI)u) = (ug, us) = 1.

Since p? — v? = 1, we can write u; = cosh(\;) and v; = sinh(};) for some ); > 0.

Step 4. Now we want to construct a unitary operator U on F(7#) such that
U a(u;)U = a(Uu;) + a*(V Ju;) = cosh(\;)a(fi) + sinh(\)a*(f;), Vi> 1.

This looks quite similar to the one-dimensional case that we discussed before, except that
in the left side we have a(u;) instead of a(f;). More precisely, from the previous discussion
on the one-dimensional case, we know that there exists a unitary operator Uon F () such
that

U*a(fi) = cosh(\y)a(f;) + sinh(\)a*(f;), Vi> 1.

In fact, U is given by the explicit formula

0 =TT exo (3@ (50 ~ al)?) = exp (3 2 ()2 — al£)?)).

i>1 i>1

Here in spite of the infinite product, or the infinite sum, the unitary operator U is well-

defined. To be precise, the condition Tr(VV*) < oo is equivalent to 3., sinh();)?* < oo,
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which is also equivalent to -, A\? < oo (why?). Consequently, if we define

B =Y 2w ()~ alf)?)

i>1

then by the Cauchy-Schwarz inequality we have the operator bound

+iB < - }: ﬁ«+V(ﬁ)(ﬁ»g<1+§:ﬁ)mﬁ+m,i2:—L

i>1 i>1

This ensures that B is well-defined on D(N) (a dense subset of F (7)) and it is anti-hermitian
(B* = —B). Thus U = €? is a unitary operator on F(J%).

Then we can choose the desired transformation U as
U=YU
where Y is the unitary transformation on F () such that
Y*a(u;)Y = a(f;).

The latter unitary operator Y simply corresponds to changing from the orthonormal basis

(n1!na!.)"Y2(a* (ug))™ (a* (ug))™2..Q0, n; =0,1,2, ...
to the orthonormal basis

(ni!na!. )"V (@ ()™ (a*(f2)™2..Q, n; =0,1,2, ...
Thus we conclude that

U*a(u;)U = U*Y*a(y;) YU = U*a(f;)U
= cosh(\;)a(f;) + sinh(\;)a*(f;) = a(Uw;) + a*(VJu;), Vi > 1.

By the linearity, we obtain
Uta(uw)U = a(Uu) + a*(VJu), Yue A.

The inverse of U is also easy to compute. Using the property of the inverse of U (see the
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one-dimensional case) and the definition of Y, we find that

Ua(f,)U* = YUa(f,)U*Y* = Y(cosh()\i)a( ) — smh(Ai))\y*
= cosh(\;)a(u;) — sinh(\;)a™(u;).

From the choice of orthonormal bases {u;} and {f;}, we also find that

UrUu;
U]
JV*Uu,; Ku;
SV fi = * = = sinh(\;)u;.
[Uull  [[Uusl]

Thus
Ua(f;)U" = cosh(\)a(u;) — sinh(\)a™ (u;) = a(U* f;) — a™(J*V* f;), Vi>1
and hence by the linearity
Ua()U* =a(U*f) —a*(JV*f), VfeA.
Finally, it is easy to see that
(UQ,NTUQ) = Tr(VV*) < oo

and a similar bound holds for U*(). This completes the proof of the existence of the Bogoli-

ubov transformation. q.e.d.

Let us end this section by a general remark on the one-to-one correspondence between linear
maps (U, V) and the set of Bogolliubov transformations (two unitary operators U and zU

with z € C, |z|] = 1, are considered the same).

4 N
Definition. For a given Hilbert space F, consider the subset of bounded linear opera-

tors on J€ @ F*

JVJ JUJ*

U 1% 1 0
G = V:( ), VSV =VSV' =8 = , Tr(VV*) < oo
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Remark: Equivalently

G={V|JVT =V, VSY=VSV'=S, V'V -1is Hilbert-Schmidt}

(5 7)
J = .
J 0

Note that 7 is a anti-linear map on ¢ & 7 and

where

T=T=J" JH#0) =005

Exercise. Prove that G is a subgroup of the group of isomorphisms on €& 7*, namely
o [f Vl, VY, € g, then V1V, € g,’

e IfVCEY, thenV €9,

Exercise. Let Uy, be the Bogoliubov transformation associated toV € 4.
1. Prove that

Uy, Uy, = Uypyy,.

In particular, Ut = Up1 = Ugy-s.
2. Prove that the set of Bogoliubov transformations is a subgroup of the group of unitary
operators on F ().

If U is a Bogoliubov transformation, then U*(2 can be interpreted as the new vacuum

because it is annihilated by the new annihilation operators:
(Ura(/)U)UQ =U"a(f)Q2=0, VfeA.

The explicit form of Qg = U*(2 is given as follows.

Exercise. Let {fi} be an orthonormal basis for . Let N; € R such that 3., A} < oo.
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Consider the state

Qe = [[(1 — tanh(3)) s (— 2 e y2)

i>1

Prove that Qpeg is a normalized vector in the bosonic Fock space F () and

(cosh(N;)a(f;) + sinh(X;)a*(f;))pog =0, Vi > 1.

6.4 Diagonalization of block operators

Now we discuss the diagonalization of block-operators on 7 & 7* by symplectic operators

in

U v 1 0
G =V = L VSV =VSY =S = . Tr(VV*) <
JVJ JUJ*

The main result of this section is

7
Theorem (Diagonalization of bosonic block operators). Let h : 7 — € and k :
0 — F be linear operators satisfying

e h=nh* (h can be unbounded);
o * = JkJ and Tr(kk*) < oco;

o There exists a constant €9 > 0 such that

h k
A= >e9 >0 on DI
k* JhJ*

Then we can find an operator V € ¢ and a self-adjoint operator & > 0 on J such that

V*sz<f 0 )
0 JEJ*

\ J

If dim ## < oo, the result goes back to Williamson’s Theorem (1936). The important case
of 2 x 2 real matrices was solved explicitly in Bogoliubov’s 1947 paper. This 2 x 2 case can

be generalized easily to:
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Example (Commutative case). Let h and k be multiplication operators on J¢ =
L*(Q,C), for some measure space §). Then J is simply complex conjugation and we can

identify J¢* = S for simplicity. Assume that h > 0, but k is not necessarily real-valued.

Then
h k
A= >0 onJC I,
k h

if and only if —1 < G < 1 with G := |k|h™!. In this case, if we choose

1 1 1 —G__
V = - ‘I’ - o 1+V1-G
2 2V1-G 1+v/1-G2 1

then

V*AV:<§ 2) with & :=hV1—G2=+vVh?—k2>0.

If A> ey >0, then h > gy > 0. Combining with Tr(kk*) < oo we obtain Tr(GG*) < oo,
which is equivalent to Shale’s condition for V.

Remark: As proved by N-Napiérkowski-Solovej (JFA 2016), the above theorem still holds
true if we replace the gap condition A > ¢y > 0 and the Hilbert-Schmidt condition Tr(kk*)

by the weaker/optimal conditions:
A>0, Tr(h 'kk*h™!) < o0

We will follow the proof of this paper.

Our starting point is a “fermionic analogue” of the above theorem.

Lemma (Diagonalization of fermionic block operators). Let B be a self-adjoint operator
on @& H* such that Ker(B) = {0} and

0 J
JBJ = -5, .7=< )
J 0

Then there exists a unitary operator U on € & F* such that JUT = U and a self-
adjoint operator & > 0 on J such that

u*3u2<5 0 )
0 —JEJ*


https://arxiv.org/abs/1508.07321
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Remark:

e Note that J is a anti-linear map on ¢ @ ¢* and
J=T"=J" JH#d0) =002

e Any linear operator on J¢ & ¢ of the block form

h k
A= , k*=JkJ, h=h"
E* JhJ*

commutes with 7, namely JAJ = A. This corresponds to bosonic block operators.
On the other hand, in the above lemma we require that B anti-commutes with 7,
namely JBJ = —B, and this corresponds to fermionic block operators. The
difference is that bosonic block operators are diagonalized by symplectic operators,
while fermionic block operators can be diagonalized by unitary operators which is

easier to deal with.

e The result in the above lemma also holds if dim Ker(B) is either even or infinite (and

we only know £ > 0), but we will not need this extension.

Proof of the lemma. Since B is self-adjoint Ker(B) = {0}, by the Spectral Theorem we can
decompose
% @ %* — P+ @ P,

where

P =1(B>0) (@ #%), P :=1(B<0) (DA

The condition JBJ = —B implies that P = J P,. Thus we have
PoeJP,=HeH =(Hd0)T(H ®0).

The latter equality in particular implies that s @ 0 and P, have the same dimension (finite
or +00). Therefore, there exists a unitary operator W : # & 0 — P.. Then JWJ :
J(H & 0) — J Py is also a unitary operator. Consequently,

U=woeJgwJg

is a unitary on ¢ @ . It is also clear from the definition of & that JUJ = U.
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It remains to show that U*BU is block-diagonal. Note that for every f € ., we have
W(f ®0)e Py, and hence BW(f @ 0) € Py, and then W*BW (f & 0) € s @ 0. Thus we
can define a linear operator £ : 7 — J¢ by

EfH)@0:=WBW(f®0), VfeH.
Note that £ > 0 because

(f,6f) = (f@0,(f) ®0) = (W(f®0), BW(f ©0)) >0 (6.4.1)

for all 0 £ f € . The last inequality follows from the facts that W(f @& 0) € P, and that

the restriction of B on P, is strictly positive.

u*guz(f 0 )
0 —JET*

UBU(f&0)=(§f) 80,
UBUOD Jf) =0 (—JEf), Vf e

We will now show that

which is equivalent to

Indeed, using U(f ®0) = W(f®0) € P;, we have BU(f ®0) = BW(f & 0) € P,, and hence
UBU(S @ 0) = WBW(f ®0) = (£f) & 0.

Similarly, using U(0 B Jf) = TWIT(0 D Jg) = JW(f ®0) € P_, we have BU(0 D Jg) =
BIW(f®0)e P.=JP,, and hence

UBUOS Jf) = (TWT)BIW(f&0)=ITW(IBIT)W(f&0)
= —JW*BW(f®0)=-J(({f) ®0) = —JEf.

Here we have used JBJ = —B. This completes the proof of the lemma. q.e.d.

Proof of the theorem. Since A > 0 is self-adjoint, we can define A2 > 0. Let us consider

B:= AV2SAV.
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It is clear that B is self-adjoint and Ker(B) = {0} because Ker(S) = Ker(A) = {0}. Moreover,
JBJ = —B because JAJ = A and JSJ = —S. By applying the result for “fermionic
operators”, we can find a unitary operator U on 7 @ F* such that JUJ = U and a
self-adjoint operator £ > 0 on . such that

UBU = ( ¢ 0 ) =D
0 —J&J*

V= ATV2B|Y Y.

Now we define
This choice diagonalizes A because
0
VAV = (U|BIVPATY)A(ATV|BIVAU) = U |BIU = [U*BU| = |D| = ( : ) :

0 JET*

Boundedness of V. Since

h k
A= >e0>0
k* JhJ*

A SAS — h k B h —k _, 0 k
k* JhJ* —k* JhJ* kE* 0

is bounded (because k is bounded), there exists 6 > 0 such that

and

SA<SAS <6 A
Therefore,
6A2 < B2 = AVPSASAY? < 571 A2,

and hence
SVPA< Bl <6 V2A

In the last inequality, we have used that the square root is operator monotone (namely
if X >Y >0, then X'/2 > Y'/2). This follows from the representation

2 [ X
=2 [Tt
)y t?+X
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(this formula holds for real numbers X > 0, and hence it holds for self-adjoint operators

X > 0 by the functional calculus) and the fact that X — X/(X + ¢?) is operator monotone.

Exercise. Let X,Y be two self-adjoint operators on a Hilbert space. Prove that if
X>Y >0, then X ' <Y1
Hint: You can use the fact that Z*Z < 1 implies ZZ* < 1.

Exercise. Prove that for any power s € (0,1), the function 0 < t — t° is operator

monotone, namely if X,Y are two self-adjoint operators on a Hilbert space and X >
Y >0, then X° > Y?.

Thus we have proved that |B| < §~'/2 A, which is equivalent to (A~/2|B['/2)(A~/2|B|'/?)* =
A~Y2|BJATY2 < 6712, Consequently, A~Y/2|B|/? is well defined on D(|B|*/2?) and can be
extended to be a bounded operator on J# @ ##*. Thus V = A~Y2|B|'/2U is well-defined as
a bounded operator on J @ J7*.

Symplectic condition of V. Indeed, because J commutes with A, |B| and U, it also

commutes with V. Thus V has the form

o U 1%
JVJ JuJt |

Moreover, using
1/2 ¢ 41/2 * § 0
B=A/"SA and U'BU = =D

0 —Jeg*

we find that

VISV = (U*|B|V2PATY2)S(AY2 BV U)
_ U*|B|1/2(A_1/2SA_1/2)|B|1/2U
:U*|B|1/2(B*1)|B\1/2U
_ |L{*BL{|1/2(L{*BL{)_1|L{*BL{|1/2 _ |D|1/2D_1|D|1/2

B 51/2 0 571 0 51/2 0
S\ 0 Jerg 0 —Je g 0 Jev2gr
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and

VSV = (A2BIVU)S (U BIY?AY?)
= AUl BUM S |UBU!M AU ATV
= A7V2U|DV2S| DV PUT) AT
= A7PUDU AT = ATVPUDUT) AT
= ATVPBATR = ATVHAPSAP) AT = 8.

Shale condition of V. Finally we prove the Shale condition Tr(V*V) < oo, which is

equivalent to

VYE—1 = (A_1/2|B|1/2U)(U*|B|1/2.A_1/2) 1
= ATVBIATY — 1 = ATV(B| - A) AT

is a Hilbert-Schmidt operator on 7 ¢ J¢*. Using again the representation of the square

root

2 (> X 2 [ 2
X2 = —/ dt = —/ (1 _ )dt 6.4.2
Tty t?+X T Jo 24+ X ( )

and the resolvent identity

1 | B 1

_ — A2
24+ A2 24 B2 t2+./42( )t2+l32

we can write

VY —1=A12(B| — A) A2

2 o —1/2 1 1 —-1/2 ,2
== — t°dt
n/o A (t2+A2 t2+62)A

=2 [t - A A
0

n t2 4+ A2 2 + B2
_ 2 > -1/2 1 1/2 1/2 42 1 —1/2 42
= 7?/0 A ENRD (A/"SASA A )—t2 +82A todt
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_ g - 1 o 1/2 1 -1/2 ,2
_W/O o (SAS = AV Ay

Note that

0 k
E:=8SAS —A=-2
E* 0
is a Hilbert-Schmidt operator on 7 & s#*. Moreover, using A > g9 > 0 we can bound in

the operator norm
1

op t2+€(2).

[

Combining with 1A% > B? > §.A% we also have

1 1
A2 A2l = HAl/z B|-1/2 BIY/2A-1/2
H t2—|—82 op | | t2+82| | op
1
1/21»3|-1/2 1/2 4—1/2
< WA g | | M2
5—1
< —
2+ 0ed

Therefore, by the triangle inequality for the Hilbert-Schmidt norm, we find that

VY — 1lns < %/OOO > jAQEAWtQiBQAW A
<2 [ | s e |
00 -1
< || Bl - %/O tZisg : 1iaggt2dt < 00.
This completes the proof of the theorem. g.e.d.

6.5 Characterization of quasi-free states

Recall from the previous chapter that a (mixed) state G on a bosonic Fock space F(J¢) is
a a quasi-free state if Tr(GN) < oo and G satisfies Wick’s Theorem, namely

Tr(a?..al, ,G)=0, ¥Ym>1
and

Tr(a?..al G) = Z Tr(afk1 afZ G)...Tlr(ajjﬁzm_1 ame G), Vm>1.
(1)7e(2) ( ) o (2m)

oc€Poy,
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A simple but very useful observation is that Bogoliubov transformations leaves invariant the

set of quasi-free states.

Theorem. Let G be a (mized) quasi-free state on a bosonic Fock space F(). Let U
be a Bogoliubov transformation on F (7). Then U*GU is a quasi-free state.

Proof. Recall the definition of the generalized creation/annihilation operator
A(f @ Jg) = a(f) +a*(9), Vf,ge.
Then Wick’s Theorem can be rewritten as
Tr(A(Fy)...A(Fy1)G) =0,
and

Te(A(F)- A(Fon)G) = > T [A(Fp(1) A(Fy(a)G| . Tr [ A(Fyam 1) A(Fo(an)) G|

oc€Poy,

for all m > 1, for all vectors F; € 5 & 7* (why?).

On the other hand, the Bogoliubov transformation U acts as
UA(F)U* = A(VF), VYF et @ Hx"

for some bounded linear operator V on ¢ ¢ 7%,

U v 1 0
V= . VSV =VSY =S = , Tr(VVY) < .
JVJ JUJ*

Since U is a unitary operator, we have
Tr(A(F))...A(F,)U*GU) = Tr(UA(Fy)...A(F,)U*G) = Tr(A(VF)...A(VE,)G)

for all n > 1 and for all F; € 2 & *. Thus we see immediately that U*GU also satisfies
Wick’s theorem. Finally,

Tr(NU*GU) = Tr(UNU*G) < Tr(C(N + 1)G) < 0.
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q.e.d.

Exercise. Let U be a Bogoliubov transformation on a bosonic Fock space F (). Prove
that for every k € N, there exists a constant C = C(k,U) such that we have the operator

wequality on Fock space
U*(N + 1)U < C(N + 1),

Next, let us consider the relation between quasi-free states and their generalized one-body
density matrices. From the definition, it is obvious that any quasi-free state GG is determined

completely by its generalized one-body density matrix

VG ag
FG = .
(a*a 1+ JVGJ*>

Recall also that I'¢ > 0, af, = JagJ and Tryg < oc.

Now we are able to prove the full one-to-one correspondence between quasi-free states and

its generalized one-body density matrices.

Theorem. Consider a bounded linear operator on € & FH*

vy !
I'.= >0
o 14 JyJ*

with o = JaJ and Try < co. Then there erists a unique (mixed) quasi-free state
G on the bosonic Fock space F () such that I' = T', the generalized one-body density

matrixz of G.
.

Z

Proof. Step 1. We will apply the previous theorem to

1 +1 a
A::F+§S:<7 *2 1 *>
« b} + J’}/J
We have JAJ = A. Moreover, recall that the condition I' > 0 is equivalent to

v > Ja*(1+7) et on H#
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which in particular implies that
Tr(ea”) < (1 + [[7llop) Tr(7) < oo

Also, A > 0 since

1
r—|("7 “ >0, T+s= (""" Y )Vogrg>o
a1+ JyJ* o JyJ*

By a refined analysis, we can show that A > gq > 0.

Exercise. Prove that there exists a constant g > 0 such that A > g9 > 0.
Hint: Ker(A) = Ker(I') N Ker(T' + S) = {0} and A — 3 is Hilbert-Schmadt.

Thus we can diagonalize A by a block operator V € ¢, namely

v (5 0)
0 JEJ*

with a self-adjoint operator £ > 0 on . and

U V
V= , VSY=vsyr=8, Tr(VV") <.
JVJ JUJ*

Step 2. We have
! 0
VIV =V"AY — 1V"‘SV =V"AY — lS = :
2 2 0 1+ JEJ*

with ¢ = ¢ — % Since I' > 0, we find that V*I'V > 0, and hence £ > 0.

Let us show that &' is trace class. In principle, we can compute & directly by expanding

V*I'V. However, here we represent another proof which is more useful later. We observe that

PS(I+8) = ~ « 1 0 1+ «
o 1+ JyJ* 0 —1 o JyJ*

( Yy +1) — aa’ ya — aJyJ* )

ary — JyJ*a*  afa— Jy(y+1)J*
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is a trace class operator on S @ J*. Combining with

/ 0 1+¢ 0
yry— (¢ S vresy—vrvs— | T8
0 1+ J¢J 0 JET

we find that

VTSI + S)V = V' T(VSV)(T + S)V = (VTV)S(V*(T + S)V)

(¢ 0 1 0 1+¢ 0
N0 1JeT 0 —1 0 JEJ
_[ea+e) 0

0 —J§ 1+ &) T

is a trace class operator on JZ @ J*. Consequently, {'(1 + £') is a trace class operator on

A, and hence &' is a trace class operator on 7.

Step 3. Let us show that there exists a (mixed) quasi-free state G’ on F(.#°) whose gener-

alized one-body density matrix is

fl O *
To = = VTV,
0 1+ JEJ*

Simple case. Let us consider the case £ > 0 for simplicity. Then we can define

h :=log (1 - (f’)ﬂ)
by Spectral Theorem, namely if

¢ = Z)\n|un><un|, {u,} an orthonormal basis, A\ > Xy > ... >0,

then
h=""tog (14 A, ) ) |

Note that ¢

1+¢

Tre " =Tr [(1 + ({')_1>1} =Tr [ } <Tré < .
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Thus we can simply take G’ the Gaussian state
G = Zyte T = Z-lexp [ Zlog (1 + A, ) *(un)a(u )}, Zy = Tre &M,

Recall from the computation for Gaussian states, we know that av = 0 and

S S S
Tar = eh —1  elog(1+EN"1Y) — 1 (1 + (51)—1> -1 o

Thus the generalized one-body density matrix of the Gaussian state G’ is exactly

'3 0
FG/ = .
0 1+ J¢J*

General case. It remains to consider the general case ¢ > 0. Again we write

¢ = Z)\n|un>(un|, {u,} an orthonormal basis, A; > X\ > ... > 0.

For any M > 2, define
Eh = Z(An + M) |ug) (U

n

Then &), > 0 is a trace class operator on .. The corresponding Gaussian state

= Zaf exp [— dF(log (1+ ({f\/[)_l)ﬂ
o exp [ Zlog ( (A +M7™)™ >a*(un)a(un)]

has the one-body density matrix yg, = &y Then we can check that

G = lim G,

M—oo

exists in trace class and it is a quasi-free state with

. '3 0
e = lim T'gr = .
M—oo =M 0 14+ J¢J*
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Exercise. Consider the Gaussian states Gy, as above.
1. Prove that the partition function Zy; converges to a limit Zy € (0,00) as M — oo.
2. Prove that G\, — G’ strongly in trace class.

3. Prove that G' is a quasi-free state and

G' =27y exp[ Zlog<1+)\ ) *(un)a(u )}HQ

nel

where I = {n : A\, > 0} and1ly is the orthogonal projection onto Ker (anﬂ a* (un)a(un)>

Hint: You can use Monotone Convergence.

Step 4. We have constructed a quasi-free state G’ such that I'¢ = V*I'V. Now we construct
a quasi-free state G such that I'g =T

Since V € ¢, there exists a Bogoliubov transformation U such that
U*A(F)U = A(VF), VF et e
Here recall that

A(f @ Jg) = a(f) +a’(g), Vfge.

We choose
G :=U*G'U.

Since G’ is a quasi-free state and Bogoliubov transformations leave invariant the set of quasi-
free states, GG is also a quasi-free state. It remains to show that I'g =T'.

We have the following general fact.

Exercise. Let G' be an arbitrary mized state on the bosonic Fock space F () with
Tr(NG') < oco. Let U be a Bogoliubov transformation and V the corresponding block
operator on J€ & F*, namely

U*A(F)U = A(VF), VF € ¥ & 2.

Prove that V*T'¢V = I'qr with G = U*G'U.
Hint: You can use Tr A*(Fl)A(Fg)G] = ([, TgF), VF\,F, e ®H".
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Thus we deduce that, with G = U*G'U

’ 0
VTV =T = ¢ — VTV,
0 1+ J¢J*

This implies that I' = I" since V is invertible. g.e.d.

Finally, we turn to

é Y
Theorem (Pure quasi-free states). Any pure state G = |V)(V| on the bosonic Fock space

F(H) is a quasi-free state if and only if U = UQ with a Bogolliubov transformation
U. Moreover, any bounded linear operator on € & F*

r.= (" “ >0, o =JaJ, Try<oo
o 14 JyJ*

1s the generalized one-body density matriz of a pure quasi-free state if and only if

st =-T.

. The latter condition is equivalent to y(y + 1) = aa™ and yaJ = aJy.

Proof. Step 1. Since |2)(Q] is a (trivial) quasi-free state and any Bogoliubov transformation
U leaves invariant the set of quasi-free states, we know that |UQ) (US| is also a quasi-free

state (and it is a pure state).

The reverse direction is less trivial. Recall from the proof of the previous theorem, for any

(mixed) quasi-free state G we can find a Bogoliubov transformation U such that

U*GU = Z; ' exp [ - Z (1 + )\;1>a*(un)a(un)] 11,
nel
where {u,}, is an orthonormal basis for s, I = {n : A\, > 0}, and I, the orthogonal
projection onto Ker(3_, o a*(un)a(un)). In particular, if G = |¥)(V] is a pure state, then

U*GU is also a pure state. In this case

U*GU = (U*GU)? = Z;* exp [ - Z 2(1 + )\;1>a*(un)a(un)] IT,.

nel
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If I # (), then clearly

Zytexp [ - Z <1 + )\;1>a*(un)a(un)} . Zytexp [ - Z 2(1 + )\;1>a*(un)a(un)]

nel nel

are two different Gaussian states on the sub-Fock space
F(Span(u, :n € 1))

and hence we get a contradiction. Thus if G = |¥) (V] is a pure quasi-free state, then we must
have I = (). Thus U*GU = Il with I, the orthogonal projection onto (1,4, Ker(a*(un)a(un)) =
Ker(N), namely

U*| W) (¥] = UGU =TI, = |2)(Q)].

Equivalently,
() (Y| = UIQ){QU" = [UQ)(UQ

which means that ¥ is equal to U2, up to a phase factor.

Step 2. Next, let us consider the generalized one-body density matrix. Recall from the proof

of the previous theorem, any bounded linear operator on ¢ @ J7*

R “ >0, o' =JaJ, Try<oo
af 14 JyJ*

is the generalized one-body density matrix of (mixed) quasi-free state G; more precisely,

there exists a Bogoliubov transformation U and a corresponding block operator V € ¢ i.e.
U*A(F)U = A(VF), VYF e o,

such that G = U*G'U and

. ¢ 0
F(;/ = V FV ==
0 1+ .J¢J*

where £ > 0 is a trace class operator on 7. Recall that as we argued before, the latter
formula of V*I'V implies that

VTS +8)V = ( € +8) ’ )

0 —Jg(1+&)J*
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In particular, the fact that G is a pure quasi-free state is equivalent to G’ = |2)(Q2|, which
is equivalent to ¢ = 0, and also equivalent to I'S(I" + §) = 0, namely I'ST" = —I'. From the

explicit computation

vy +1) — aa* ya —aJyJ*
afy — JyJ*a*  afa— Jy(y+1)J*

TSI+ S) = (

we see that ['S(I" + &) = 0 means two equalities

Yy +1) =aa®, yaJ=aly.

6.6 Diagonalization of quadratic Hamiltonians

é R
Definition. A quadratic Hamiltonian on the bosonic Fock space F () is a linear

operator which is quadratic in terms of creation and annihilation operators

H =dl'(h) + % Z ((um, kJug)ya* (um)a™ (w,) + (tm, kJun>a(um)a(un)>

m,n>1

with a self-adjoint operator h : 7€ — F and a linear operator k : 7€ — € satisfying

. k* = JkJ. Here {u,} is an orthonormal basis for 7. )

1
Theorem (Diagonalization of quadratic Hamiltonians). Let h be self-adjoint on 2,

k. 7" — A be linear such that k* = JkJ and Tr(kk*) < co. Moreover,

h k

A= >e9>0 on @I
k* JhJ*

Then the followings hold true for the quadratic Hamiltonian H associated to h and k:

o H is well-defined on the core domain

M

g (@D(h)®s”) C F(#).

M>0  n=0
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Moreover, H is bounded from below
1 x7 —1
H > 5 Tr(k*h™ k)

and can be extended to be a self-adjoint operator on F () by Friedrichs’ method.

e There exists a Bogoliubov transformation U on F () and a self-adjoint operator

& >0 on J such that
U'HU = dI'(§) + inf o (H).

e The unique ground state of H (up to a phase factor) is the pure quasi-free state

U2 and

inf o (H) = Tr(hyya) + R Tr(k*avq). )

Proof. Step 1. First we prove that the quadratic form of H can be represented in terms of

the generalized one-body density matrices. In fact, for any “reasonable” state ¥ € F ()

we have
(U, H¥) = Tr(hyy) + RTr(k"ag).

Recall the definition of one-body density matrices
(976 ) e = (¥, a"(a()¥), (g,au]f) = (¥, a(f)a(g)¥).
We have, at least formally,

(U, AT (R)T) = >~ (i, hun) (¥, a* (u)a(u,) )

m,n>1

= Z (U, Pt) (U YO Upn) = Z <'Lbn,’}/\p Z(um, hun>um>
m,n>1 n>1 m

= >~ (wnuhun ) = Tr(yoh) = Tr(hra) (= Trlry*hy/®))
n>1

and

<\If, (1 Z ((um, kJup)a™ (um)a* (uy) + (U, k:Jun>a(um)a(un)> \If>

2
=R Y (o, kTun) (¥, a(ug)alun)U) =R Y (g, kT tn) (U, g Ju,)

m,n>1 m,n>1
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= 5)?2 < Z(um, kJ )y, ozq,Jun> = %; <I<:Jun, ozq,Jun>

n>1 m>1

= §RZ <Jun, k*aq,Jun> =Tr(k"ay).

n>1

The above calculation can be made rigorous for example if ¥ belongs to the core domain

Q:= | (éD(h)&") C F(#).

M>0 n=0

Indeed, if Tr(NG) < oo, then Tr(vy) < 0o and Tr(ayad,) < oo, and hence Tr(k*avwy) is finite,
while Tr(hvyy) is well-defined (can be +oo, but always > —o0).

Step 2. Now we prove that H is bounded from below. Recall that from I'y > 0 we have
Yo > agJ(147e) " Tray
By the same reasoning, from 4 > 0 we find that
h > kJh '\ Tk = Jk*h ™k J.
Using the cyclicity of the trace and the Cauchy-Schwarz inequality we can estimate

| Tr(k*ag)| = | Tr((1 4 v9) V2T kR~ Y2 B 2ag J(1 + 4e)~Y?)
< |1+ 40) 2Tk R s - | Py T (1 + ) ™2 s

Since

(1 + ye) 2T kB~ ||us = \/Tr <(1 ) V2T ke J (1 4 w)l/2>

= \/Tr(k*hlk) +Tr <J*k*h*1kJ’y\p> < \/Tr(k*hlk) + Tr (h’m)

and

1A 2ag J(1 + 7o) Y2 ||lus = \/Tr (hl/Qaq,J(l + fyq,)*lJ*aji,hl/2> <4 /Tr (hw,)
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we find that

| Tr(k )| < \/Tr(ht/2yh1/2) - \[Te(kh=te) + Te(h1/29g h1/2)

< Tr(h?ygh'/?) + % Tr(kh™'k*).

Here in the last estimate we have used the elementary inequality

Vaz+y) = (z+y/2)2 —y2/4<z+y/2, Vr,y€cl0,00).
Combining with Step 1, we conclude that for any ¥ € O,
1
(U, H¥) = Tr(hvyy) + R Tr(k*ay) > -5 Tr(kh ™K.

Thus H is bounded from below and it can be extended to be a self-adjoint operator by

Friedrichs’ method. The extension, still denoted by H, satisfies

1
H >~ Tr(kh k).

Step 3. Finally we prove that H can be diagonalized by a Bogoliubov transformation.

Finite dimensional case. To make the argument transparent, let us first consider the case
when 7 is finite dimensional. Using the calculation in Step 1, we can connect the quadratic
Hamiltonian H on F(5#) and the block operator A on 5 @ J* as follows:

h k v gy
k* JhJ* oy JyeJ”

1 1

(0, HT) = Tr(hyg) + R Tr(k ag) = %Tr

By the assumptions on A, we know that there exists a block operator V € ¢ which diago-

v (§0)
0 JEJ*

for some self-adjoint operator £ > 0 on . Now let U be the corresponding Bogoliubov

nalizes A, namely

transformation, namely

U*A(F)U = A(VF), YF € @ A"
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Then recall from a previous exercise that
Fyy = VT V.
Thus for any pure state ¥ € F () we have

1 1
(0, UHUY) = (U¥, HUY) = o Tr(ATpe) — 5 Trh

2
1 1 1 1
=5 Tr(AV' V) — 5T h = 3 Tr(VAVTy) — 5 Trh
0
= ! Tr : i v 1 Trh
2 0 JEJ* o, 14 JygJ* 2

= Tx(éyw) + 5 TH(E) — 5 Tr(h)

1
= (U, dI'(§) V) + 3 Tr(§ — h).
This means that U diagonalizes H, namely
1
U'HU = dI'(¢) + 3 Tr(€ — h).

Note that dI'(¢) > 0, with 0 is the lowest eigenvalue with € the unique eigenvector. Therefore,

H has the unique ground state U2, with the ground state energy inf o(H) = %Tr(f —h).

General case. The proof in the general case follows a similar strategy, except that we
cannot write Tr(£) — Tr(h) since £ and h can be not trace class separately.

As in above, let V € ¢4 be the block operator diagonalizing .A:

(5 0)
0 JEJ*

for some self-adjoint operator £ > 0 on 7. To proceed in the infinite dimensional case, we

need

Lemma. If V € ¢4 and VAV* is block diagonal, then

0 0 X Y
V* V=
01 Y* 1+JXJ*
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where X > 0 with XY/2h X2 a trace class operator on H# and Tr(YY™) < oo.

Let U be the corresponding Bogoliubov transformation, namely
U*A(F)U = A(VF), VFe X o x.

Then for any state ¥ € F (%) we can write

X %
Ty = VTV =V | ¥ av y=y " Y Yy .
o 14 JyeJ* o Ty d? Y* 14 JXJ*

Consequently,

: X Y
Tuw Qyuy _ Yo Ay Vi .
Oé?[}\l, J’Y[UQIJ* (0%} J’)/\IJJ* Y* JXJ*
Therefore, combining with the computation in Step 1, we have

1
(U, UHUV) = (UV, HUW¥) = Tr(hyyy) + R Tr(k*ayy) = = Tr

2
1| 1
=_Tr | AV* v v V| +=Tr
2 I oy JyeJ” 2

1. [(¢ o Yoo Qg
=-Tr
2 [\ 0 J&J* oy JyeJ”

= Tr(&yg) + Tr(hX) + RTr(k"Y)
= (U, dI'(&)V) 4+ Tr(hX) + R Tr(k"Y).

A Yuw aygy
Oéffm, J'Y[U\II J*
X Y
A
Y* JXJ*

h k X Y
k* JhJ* Y+ JXJ*

1
- T
+2 r

Thus
U'HU = dI'(§) + Tr(hX) + R Tr(E"Y).

Here note that yyo = X and ayq = Y. Thus we obtain the desired conclusion. g.e.d.

It remains to prove the above technical lemma.

Proof of the lemma. Let U : 57 — 5 and V : % — J be the block components of V.

Then we can write

v 0 0 v us JveJ* 00 U Vv (X Y
01 v JurJr 01 JVJ JUJ* Y* 1+ JXJ*
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where

X=JVVJ>0, Y=JVUJ.

Thanks to Shale’s condition Tr(VV*) < co we obtain immediately

Tr(X) < oo, Tr(YY") < oo.

Now we prove that Tr(X'/2h.X1/2) < oo, using the additional information that V.AV* is block

diagonal. By a straightforward computation of the off-diagonal term of
U 1% h k us JV*J*
VAV* =
JVJ JUJ* k* JhJ* v JurJr

UnhJV*+UkJU* +VE*J'V*+VJRU" = 0.

we find that

Recall from the proof of the existence of Bogoliubov transformations, we can find orthonormal
bases {u;}i>1, {fi}i>1 for 2 and \; > 0 such that

U*u; = cosh(\) fi,  J*V*u; =sinh(\,)fi, Vi> 1.
(If we change V — V*, then (U,VJ) — (U*, J*V*)). Consequently,

0 = (u;, (UhJ*V* + UkJU* + VE*J*V* + VJhU*)u;)
= 2cosh(\;) sinh(\;) (fi, hfi) + cosh(\)2(f;, kJ fi) + sinh(\)2(fs, J°K* f;)

and hence
2 cosh(\;) sinh(A\) (s, hfi) = —(cosh();)? + sinh(\)H) (fi, kJ fi), Vi > 1.
On the other hand, since {u;} are eigenfunctions of UU*, {f;} are eigenfunctions of U*U:
UUUf; _ Urw]| U

UUf; = = = £il|U*w;]|* = cosh(\)?f;, Vi > 1.
f Ui U Sill Ui | cosh(A;)™f, [

Combining with U*U =1+ J*V*VJ =14 X we find that

sz = (COSh()\i)Q - ].)fZ = sinh()\i)in, Vi Z 1.
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Consequently, from the above computations and the Cauchy-Schwarz inequality we have

Te(X'2hXY?) = (fi, XYPRX 2 i) = " sinh(A)?(fi, hfi)

i>1 1>1

_Z%(COSMA) +sinh(X)*)(fi, kJ fi)

< :;(%(cosh@\) + sinh(A )} [Z| fiskJf)] ]

i>1

< -Zsmh sup (1 + 2sinh(A ] [ZHWM ]

T i>1 i>1

< :Tr(VV*)(l + 2Tr(vv*))2] v [Tr(k;k;*)} 7 ¢ .

Thus X'/2h X2 is trace class. This completes the proof of the lemma. g.e.d.



Chapter 7
Validity of Bogoliubov approximation

In this chapter we will rigorously justify Bogoliubov’s approximation for weakly interacting
Bose gases. We focus on the mean-field regime where the system contains N identical

bosons in R?, described by the Hamilttonian

N

Hy =Y (~da + V) + g O wlei— )

P 1<i<j<N
acting on L?(R%)®sN_ Let us think of the simple situation with
e Trapping potential: V € L° (R% R), limy, e V(2) = +o0;

e Positive-type bounded interaction: 0 < @ € L*(RY).

(More general conditions will be discussed later.) Then we know that there exists a unique

Hartree minimizer ug > 0 and there is the complete Bose-Einstein condensation, namely

e The ground state energy of Hy is given by the Hartree energy to the leading order
EN = NeH + O(l)

where

eni= ot ([1Vu@Pdrt [ Vi [ [ o) Put)ee-gid).

II“”LQ(Rd)Zl
e The approximate ground states (VUy, HyVy < Ney + O(1) safisfies

(w0, 75 10) = N + O(1).

182
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In this chapter, we will prove that
EN = NGH + €Bog + 0(1)

where epog is the ground state energy of a quadratic Hamiltonian Hg,, on Fock space
which is predicted by Bogoliubov’s approximation. More generally, we will show that the

n-th eigenvalue of Hy is
pn(Hn) = Nep + i (Hpog) +0(1), Vn=1,2,...

We also obtain the convergence of the eigenstates for Hy in terms of the Hartree minimizer

up (the condensate) and the eigenstates of Hp,, (excited particles).

These results were first proved by Seiringer (2010) for the homogeneous gas and by Grech-
Seiringer (2013) for trapped gases (the setting we consider here). We will follow the approach
by Lewin-N-Serfaty-Solovej (CPAM 2015), with some simplifications.

7.1 Bogoliubov Hamiltonian

Bogoliubov’s theory suggests that the excited particles (particles outside of the condensation)

are described by the quadratic Hamiltonian

1
Hioy = 3 (tm, (h+ K)ua)afyan + 5 > (s KJun)as,a;, + hc.)

m,n>1 m,n>1
where

o {u,}>, is an orthonormal basis for 5# = L*(R?); given uy > 0 we can take all u,’s of

real-valued functions;

e ) is the mean-field operator associated to the Hartree equation
h:—A+V—|—|u0|2*w—,u, hUQZO,

Recall that h > 0 and ug is the unique ground state for h on 7. Moreover, the condition
V(z) — 400 as |x| — oo ensures that h has compact resolvent. In particular, we have
the spectral gap

h>eo>0 on = {u}t.
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o K . —  is a linear operator with kernel
K(z,y) = uo(x)uo(y)w(z — y).

The condition w > 0 implies that K is a positive operator on . (why?).

Note that we will think of Hpg,, as an operator on the excited Fock space

F(A)=Cast, oA’ 6 .., A ={uw} =QA, Q=1-u){ul.

4 N
Theorem. The Bogoliubov Hamiltonian Hp,e on the excited Fock space F(F.) is a
self-adjoint operator with the same quadratic form domain of dI'(h)|r(w.). Moreover,

e There exist a Bogoliubov transformation U on F(7#,) and a self-adjoint operator

&> 0 on . with compact resolvent such that

U'HpogU = dI'(€) + epog-

e The ground state energy is finite
eBog := inf o (Hp,g) € (—00, 0].

Moreover, Hpog has a unique ground state UQ (up to a complex phase). This

ground state is a pure quasi-free state on F(,).

e Hp,, has compact resolvent and its spectrum is

U(HBOg) = {eBog + Zniei | €; € a(ﬁ),ni =0,1,2, }
=1

\ J

Remark: The ground state energy epog is always negative (< 0) except the non-interacting

case (w = 0).

Proof. First, let us rewrite the Bogoliubov Hamiltonian in a form compatible to the previous
chapter. It is convenient to restrict the relevant operators h, K to the subspace 7, . Since
hug = 0, h leaves invariant 7, and we will still denote by h the restriction to JZ,. Recall
that

inf o(hy.) > 0,
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Moreover, using @ = 1 — |ug)(uo| we define K : 5, — H#, and K, : 0 — . by

K, = QKQ, Ky=QKJQJ".

Hpoy = Z (U, (h 4+ K7)up)ar a, + % Z <<um, KyJuy)a ar + h.c.)

m,n>1 m,n>1

Then K} = Ky, K; = JKyJ* and both K, Ky are Hilbert-Schmidt operators. Using the
positivity of w, we can deduce that K; > 0, and hence h + K; > 0. Moreover, we have the
positivity of the block operator on J#, & J7.

Exercise. Prove the operator inequality on €, ©

h+ K K.
A= i 2 > info(h) > 0.
Ky Jh+ Ky)J*

Thus by the results in the previous chapter, we can find a block operator V € ¢ and a
self-adjoint operator £ on %, such that

mv*:(g 0 )
0 JeJ

Moreover, the corresponding Bogoliubov transformation U diagonalizes Hp,, on F (52 ):
U'HU = dI'(§) + epog-

In particular, Hp., can be defined as a self-adjoint operator on F(7# ) and it is bounded

from below:
1
€Bog — infa(]HIBog) Z —5 Trf+(K;(h + K1)_1K2) > —0Q.

Since h has compact resolvent, ¢ also has compact resolvent. So it has eigenvalues 0 < e; <

ez < ... and lim, o e, = +00. The spectrum of Hg,g is

7 (Hlnog) = erog + 7(dAL(€)) = {epog + 3 miei|ni = 0,1,2,..}.
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7.2 Unitary implementing c-number substitution

Heuristically, the Bogoliubov approximation can be interpreted as
HN — NBH ~ HBog'

However, this formulation is a bit formal since the operators Hy — En and Hg,e live in
different Hilbert space. This incompatibility comes from the c-number substitution which
replace ao, af (which does not preserve the particle number) by /Ny (which preserves the

particle number).

To resolve this problem, we an operator Uy from the N-body Hilbert space s#®=" to the
excited Fock space F (7). We start with a useful observation

F(H)=F(PH & QH)=F(PH)RF(QIA).

with P = |ug){ug|, @ = 1 — P. Consequently, for any wave function ¥ € %N we can

write uniquely as

®(N—

U= g u%@N + uy 2 Rs 1 + ug@(Nfz)

Rs P2+ -+ eN

k
where @, € f%ﬂ&. To be precise, we have

é R
Definition. Let ug be a normalized vector in a Hilbert space 7. Let #, = {ug}*+ C A
and ag = a(ug). We define the operator Uy = Un(up),

Uy : N - FN(AH) =Co H @ HE>D - @ HEN

b
y . \II_GJVBQQQj( a(])\/—j \II)
| o j=0 (N_j)' . )
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Theorem. The operator Uy : %N — F<N(J#,) is a unitary operator with

N N (a*>N—j
Ui : FN () » 5N, U3 (@) =2 —(XI —%
=0 §=0 ;

Moreover, we have the operator identities on F<N(,) for all m,n # 0

* * * * *
UnagaoUy = N — N, Unal,a, Uy = a,ay,

UNGS(I”UX] = \/ N —N_|_ Ay UNCL;CL()U;{[ = a;: N —N+

where a, = a(u,) and uy,,u, € . when m,n # 0.

Remarks:

e The number operator N} on F(J%.) = F(QIH,) is equal to Nz, the restriction
of the number operator N’ = dI'(1) on F(5) to the subspace F (7. ) C F (). We
have the operator identities on F(7¢):

N, =dI(Q) = N — a*(up)a(uo).
For any wave function ¥y € 7%V we have
(o, Yoy o) = (W, a* (ug)a(ug) Un) = N — (U, Ny W),
Therefore, the Bose-Einstein condensation (uq, 7\(1,1 ])V o) = N + o(N) is equivalent to

(U, N, WUy) < N.

e Roughly speaking, the transformation Uy (-)U} replaces a(ug),a*(ug) by VN — N
Thanks to the Bose-Einstein condensation, we can think of the operator /N — N
as the scalar number v N. Thus the unitary operator Uy provides a rigorous way to

formulate the c-number substitution in Bogoliubov’s argument.

e Recall that the Weyl operator

W .= W(\/Nuo) = exp (\/N(aé — Cbo))
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satisfies
W*agW = ag + V'N, W*agW = ag + VN, W*a,W =a,, n # 0.

Thus Uy looks similar to the Weyl operator. However, while the Weyl operator is de-
fined on the full Fock space F (7€), the operator Uy is more appropriate to work on the
N-particle space #®+. Unlike the Weyl operator, we can only write Uya*(f)a(g)U%

but it suffices for applications (Uya(f)Uy makes no sense).

e By definition U} : F=N(#,) — %N, However, we can extend Uy to the full excited
Fock space F<N(#,) by setting 0 outside F<V(#,). This extension makes Uy a
partial isometry from 7%V to F=N (7).

Proof of the theorem. Part I. We will prove that
N N (a*
Ut : FN ) —» 5N, Uy (D) = > =
J=0 Jj=
is a unitary operator with the inverse equal to Uy.
Step 1. We prove that U} is a surjection, namely Uy F=N () = #®N. Let {u,}>2, be

an orthonormal basis for 7 and denote a,, = a(u,). Recall that F () has an orthonormal

basis
(no!ny!..) V2 (a)™ (a)™..Q, n; =0,1,2,...

In particular, 7#%:" has an orthonormal basis

(nolna!) 72 (ag)™ (@)™, ni=0,1,2,...,> ni=N
i=0
By the definition, U F=N(J#,) contains all these basis vectors, so Uy F=N () = A9V,

Step 2. We prove that ||[Ux®|| = ||®| for any ® = (p,,)>2, € F=N (5%, ). By the definition,

V= Uy

Z \/7%03

Since @; € JZ7 C AP the vector (af)NT; belongs to #%N. Thus U € %N,
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Moreover, note that agyp; = 0, and hence
ag'(ag)"; =0, ifm>n.

Thus the vectors {(a§)N7p;}/L, are orthogonal. Moreover,

1(ag)"@4l1* = {(ag)" "5, (a0ag)(ag)" ;)
= ((ag)" "5, (1 + agao)(ag)" ' ;)
= ((ag)"” 9017 n(ag)" ;)
= nl(a))" sll* = ... = nllle;]I*
Consequently,
RS ¢(<N)—7 Z oI

Thus |Ux®|| = ||®| for any ® € F=N(s#,). Thus U} is a unitary operator from F=V(32,)
to %N

Step 3. We prove that the inverse of U}, is exactly equal to Uy, namely if

then | N
Q®Z<O—‘I’> =, Vi=0,1,2,...,N.
(N —q)!
We have

CLN % ®i

() - Sy

If i < j, then N —¢ > N — j, then aév_i(ag)N_jgoj = 0 because app; = 0. If i > j, then
N—i < N—j, then a) " (aj)N =7 p; is proportional to (a}) 7 p; € % but Q¥ (af) 7p; =0
because Quy = 0. Thus

. N—i ®1i . .
Q®z( (?S/, — Z)' \II) - (NQ_ Z)' aéV—l<a(>§)N—chi = Pi-

Thus Uy : S9N — FSN(#) defined before is the inverse of Uj.
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Part II. Now we consider the action of Uy(-)Uy. Let ® = (¢;)32, € F=" (). Note that
for any f,g € 5, a*(f)a(g) does not change the total particle number, and more precisely
it does not change the particle number in 4y mode as well as the particle number in J7, .

Therefore,

(.Una"(£alg)U3®) = (Us®,a"(Halg)Ux®)

I
T
] =
2=
|
5
2
=
5
S
=
=S
N
5
\/

po (N =)
=" {esa(Nalg)es) = (' (Nal9))

By a similar computation, we also get
(@, Una* ()alg)Ux@) = (.0 (Na(g)®), V0,0 € FN ().
Thus we have the operator identity in F=N(7,)
Una*(f)a(g)Uy = a*(f)alg), Vf.g € A

Consequently, if we take an orthonormal basis {u,}>°, for 5 and denote a, = a(u,), then

UxNLU% = Uy ( i a;;an) Ui =N,

n>1

which is equivalent to
UnajaoUx = Un(N — N )Ux = N — N

The remaining identity is left as an exercise. q.e.d.
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Exercise. Prove that for any f € . we have the operator identity on F=N ()

Unaga(f)Uxn = /N — Nya(f).

7.3 Transformed operator

Given the operator Uy, we can replace the heuristic approximation
HN — N@H ~ HBog-

by a better one
UN(HN — N@H)UXI ~ IHIBog

with two operators living in the same Hilbert space F(.72).

Let {u,}22, be an orthonormal basis for .7 and denote a,, = a(u,). We have the second

quantization form

Hy = Z TmnafnanvL Z Winnpq @, @ Gp Qg

m,n>0 m,n,p,q>0

where

Ty = (i (— A+ V), Wonnpe // i@ ()l — y)uy @)y (y)dady.

Then from the above action of Uy, it is straightforward to compute Uy(Hy — Ney)UR,

Lemma (Transformed Hamiltonian). We have the operator identity on the truncated
Fock space F=N ()

where
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N-N, -1
A=) (TOn + WOOOn—+> N — Nia, + h.c.,

N -1
n>1
Ay = Z (U, (b + K)uy,) ay,a, + Z (tm, (Juo|* * w + K) u, ) aja it
= w9 n/ “mHn R ms n/ Ymin N —1
4o Z ( oy K Tt \/(N_N*]‘\;(ivl_ Ne =) | h.c.),
mn>1
1
A= > Wt asapy/N — Ny + hec.,
m,n,p>1
Ay = Z Wonnpg Qo Gy G Qg
mnpq>1

This looks complicated, but if we formally take N — oo, then we see immediately that all
Ay, Ay, A3, Ay are small (o(1)), while Ay converges to the Bogoliubov transformation Hp,.

This will be justified rigorously later.

Proof of the theorem. The computation is tedious but straightforward, using the second

quantization form and the action of Uy in the previous theorem.

For the kinetic terms:

e TooUnajaoUs = Too(N — N). The constant TyoN is part of the Hartree energy Ney.
Recall that

1
en = (ug, (—A + V)ug) / |uo(z y)]uo(y)|2dxdy = Too + §W0000.

The other part —Tyo N, contributes to —uNy in the first term the first term dI'(h) of
Ay. Recall that
h=-A+V+ |yl *w—p

with
= (ug, (—A + V)ug) + / ]uo(:v)]Qw(x — y)]uo(y)|2dxdy = Too + Woooo-

e To,.Unata,Uxr = Ton/N — Nya, with n > 1. This term and its adjoint are part of A;.

e T, Uya’ a, Uy = T,ak a, with m,n > 1. This contributes to dT'(h) of As.
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For the interaction terms we have to use the CCR to rearrange creation/annihilation operators
before applying the action of Uy (as we can only make sense for Uya*(f)a(g)U. Note that
we always have the factor (2(N — 1)) " Wpnpq-

e UyajasaoaoUy = Unagao(agag — D)UX = (N — NL)(N — 1 — Ny). The constant
1 N
mWooooN(N —1)= EWOOOO

is part of the Hartree energy Ney. The term

1

mwoooo(—QN — )N = —WooooV4

contributes to —uN in the first term dI'(h) of Ay. The rest is A,.

o Uyabasapa, Uy = Unal(apay — Da,Ufy = (N — Ny)vN —Nia, — VN —Nia, =
(N = Ny —1)y/N —N,a, with n > 1. Combining with the same contribution from

UnajasanaoUy;, we obtain

1
2 X m ZWOOOTL(N —N+ — 1)\/ N —N+an.

n>1
This term and its adjoints are part of A;.

e Uyajar,apa, Uk = Unagapal,a, Uy = (N — Ny)ak,a, with m,n > 1. Combining with

the same contribution from Uya” aja,aoUx we obtain
m~0 N

! * 2 N_N-l- *
2 X 2(]\7 — 1) Z WOmOn<N —N+>6Lm0m = Z <um, (|U0| *w)un>ﬁaman

m,n>1 m,n>1
which is part of As.
e Uyajar a,aoUs and Uynal,abaga, Uk are also equal to (N — N )ak a, with m,n > 1,
but they give

1 NN,
2X —— E W N — *a, = § Ku ) — 2 F g
X 2(N _ 1) OmnO( NJr)aman <um7 un> N 1 am@n

m,n>1 m,n>1

which is another part of As.

o Unal,a’apaoUx = Un(ak,ao)(atao)Uy = af,v/N —Niai /N — N,
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=ara’\/N — NN — N, —1 with m,n > 1. This gives

1
=) 2 Wt/ N = N/ N = A =1

m,n>1

= Z §<um,KJun)aman N1 .

m,n>1

This term and its adjoint give us the last part of A,.

* * * * * * * * * * *
o Una),aray,aoUy = Unal (ayal, — 6n—p)aoUs = Unaj,apatacUy — 6—pUnal aoUy =

at apai/N — Ny —0,_pat /N = N, = a’ ata,/N — N withm,n,p > 1. Combining

with the same contribution from Uya’, a)apa,Ux we obtain

1 * % /
2 X m Z Wmnpoamanap N _N+.

m7n’p2]‘

This term and its adjoint give us As.

* * * * * * * * * * *
o Uyalaiapa,Uy = Unal(apal — dp—p)a,UN = Unal,a,ata,Uy — 6n=pUnala,UxN =
* * * ok ok : :
Ay, Aply Gy — Op=pln Gq = @y, ar apa, With m,n,p,q > 1. We obtain

1 * *
AN =T) Y Winnpgaapaq
m,n,p,q>1
which gives us Ay.
This completes the computation of Uy (Hy — New)UR,. q.e.d.

7.4 Operator bounds on truncated Fock space

Now we compare the transformed operator Uy(Hy — Ney)U} and the Bogoliubov Hamilto-

nian Hpeg.
Lemma. Let 15V := 1(N, < N). Then

1SV (UN(HN — New)Uj — HBOg)néN < O(N"V2N2 4 N7Y).

Note that Hpes acts on F(J4;), so the particle number cut-off 1=V = 1(N, < N). is
necessary to project it to the truncated Fock space F=V (5, ). Putting differently, the bound
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in the lemma is equivalent to

(@, <UN(HN ~ Nem)U3 — HBOg>q>> < C(@,(N"V2N2 + NHD), Vo e FN(A4).

Proof. For simplicity of notation we will often not write the projection 1=V and think of

quadratic form estimates on F=V (7, ) instead. From the previous computation, we have

We will estimate term by term.

Estimate A,. We have

Estimate A;. Using Hartree equation hug = 0 we have
0 = (huo, un) = (uo, (A +V + |Uo|2 *w — p)tn) = Ton + Wooon-

Therefore,

N-N; -1
Al = Z (TOn + WOOOnN—jl) AV N —N+Cl,n + h.c.

n>1
N
= _ZWOOO”N _Jrl\/N — Nia, + h.c.
n>1
By the Cauchy-Schwarz inequality,
_ N N .
+ Al S ; (E 1’W000n’2(N _ 1)(N —N+) <N——+1> + ECLnCLn)
_1N-42—(N - N—‘r) NZ

< Ce

< N 1) + eN, §C’5_1W++5N+, Ve > 0.

Here we have used

S Wooonl? = 37 1o, K| < |[KJs < oc.

n>1 n>1
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1/2

Choosing ¢ = N7/ we obtain

+A4;, < CN2N2

Estimate A,. We have

1—
A= > (g, (h+ K)ug) apyan + > (i, (ol < w + K) u, ) al,a, N_Nf
m,n>1 m,n>1
‘g VIN =NV =N, - 1)
T2 mzn; ( tmy K Tuin )i N -1 + h‘c'>

1
= Hpog + Z <um, (|u0|2*w+K) un> ay Ny

1
—(B*X + XB
N—1+2( * )

m,n>1

where

VIV NN N, — 1)
N -1

B* = Z (U, K Jup)ar ar, X =

m,n>1

— 1.

We have

£ > (U, (Juo]® x w + K) un) afyan = +dT(Q(Juo|* + w + K)Q) < dT(QCQ) = CN,.

m,n>1

Moreover, the relevant operator commutes with N. Therefore,

1= Ny <C'/\ﬁ

+ Z (tm, (Juo* * w + K) u, ) aj,an o1 S0w

m,n>1

On the other hand, by the Cauchy-Schwarz inequality

1
i§(B*X +XB) < -(eB*B+¢7'X?), Ve>0.

DO | —

It is straightforward to see that

2

VAN N D)
N-—1

'\/ 1_N+_1 <1_NN—+1)_1

s\(v%_‘f)(l—%)—l) <t
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Exercise. Let K be a Hilbert-Schmidt operator on a Hilbert space 7. Let {uy}n>1 be

an orthonormal family of 7€ . Consider

B* = > (u, K Juy)a),aj,.

m,n>1
Prove that
B*B < | K||fsN?.
Thus N )
1 1 1
iQ(B X+XB) < 5( B*B+¢e'X?) < CeN? + Csl%.
By choosing e = N~ we conclude that
1 (N; +1)?
+—(B*X+XB)<(C~———
2< - )< N
Thus in summary,
N, +1)2
(A — Hpyy) < oD
N
Estimate A,. Consider
Ay = Z WnnpgQ, @ Gy
m,n,p,q>1
1 * *
“oN_1) D>t @ 1, (Q ® QuQ ® Q)uy, @ ug)ay,anaya
m,n,p,q>0

Thus Ay is the second quantization of the two-body operator (N —1)71Q ® QuwQ @ Q (here

w = w(z — y) is the multiplication operator). Since w is bounded, we have

+Q ® QuQ ® Q < ||w||~Q ® Q.

Therefore, in the second quantization form we have

H’wHLoo CN2

+A4, < 2N — )N+(N 1) <
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Estimate A;. Finally, we consider

1 * k
A3 = m Z Wmnpoamanap\/ N — N+ -+ h.c.

m7n’p2]‘

1 * * *
=N 1UN< Z W ninpo Qo Gy Qo + h.c.)UN

m,n,p>1

1

=N 1UN< Z (U ® Up, (Q @ QUQ @ P)u, @ ug)ar araya, + h.c.) Ux

m,n,p,q=>0

Thus up to a transformation by Uy, Az is the second quantization of the two-body operator
(N — 1)’1<Q®QwQ®P+Q®QwP®Q+h.c.>.
By the Cauchy-Schwarz inequality, we have the two-body inequalities

:I:(Q@Qw@@PJrQ@QwP@QJrh.c.)
<27'QRQW|Q®Q +eQ ® PlwlQ® P+ :cP®Qw/P®Q,
<l (27QeQ+ePOQ+eQ@ P), Ve>0.

In the second quantization form, we obtain

+ Z (U, @ U, (Q ® QuQ @ P)u, ® ug)akasaya, + h.c. < Ce”'N7 +e(N — NpNL).

m,n,p,q=>0

Thus 9
Uy (5_1./\@ + €NN+> Ux < 0(5_1% - 8./\/+>.

+A, <
=N _1

-1/2

Choosing ¢ = N we get

+A43 < CNANZ,

Thus in summary, we have prove that
i(UN(HN ~ New)U% — HBOg> < ON“V2N2 4 ON7!

as a quadratic form estimate on F=V(2#,). This completes the proof of the lemma. g.e.d.
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7.5 Improved condensation

Recall that under the condition 0 < @ € L'(R?) for any wave function ¥ € 2%V satisfying
(U, HyV) < Ney + O(1) we have the complete BEC on the Hartree minimizer ug:

(U, N, 1) < O(1)

where N, = dI'(Q) with @ = 1 — |ug){ug|. Since UyN, U = N, the same bound holds if
U replaced by Uy V.

From the previous section, to control the error of Uy (Hy — New)Uj —Hpog, it is desirable to

have an upper bound on (¥, N?Wy). This improved condensation is proved in this section.

Lemma. Assume that 0 < @ € LY(RY). Let ¥ € %N be an eigenfunction of Hy
with an eigenvalue p,(Hy) = Neg + O(1). Then

(U, N2T) < O(1).

Actually, the proof below can be extended to show that (U, N¥¥) < Oy(1) for all k& > 1.

However, the case k = 2 is sufficient for our application.

Proof. Step 1. From the Schrodinger equation HyV = 1, U we have

0= (W, [NZ(Hy — ) + (Hy — ) NZ | 9)
= 2V, N (Hy — ) NoT) + (0, [Hy N N]D).

Here we used the formula of “double commutator” (for any operators A, X)
[[A, X],X] = (AX — XA)X — X(AX — XA) = AX? + X?A - 2X AX.
From the proof of the complete BEC, we have
Hy —pn > Hy — Ney — C > cgN, — C
for some constants ¢y > 0. Therefore,

2N (Hy — Ex)N{ > 2coN? — CNZ > eoN? — C.
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Thus
200, N, (Hy — Ex)NLY) > (¥, N3T) — C.

It remains to bound the double commutator (U, [[Hy, N ], N\ |¥).

Step 2. We compute [Hy, N,]. We use

N, = Z atan,

n>1

and the second quantization form

Hy = Z Tt @y + Z Wannpg Qo @ G Gg

m,n>0 m,n,p,q>0
where
T = (s (=B V)n), W = [ [ ol = )y (o))l
Since
lar. aja] = aylar,, ag] = —0m=rar,, [an,a;as] = dp=ray,.
we can compute
[ar an, ayar) = [ar,, ayadan + al[an, ayar) = (dpep — Smee) G

Therefore,

Z Trnlal,an, Ny | = Z ZTmn[afnan,aZag]

m,n>0 m,n>0 £>1
*
- § § (5n:Z - 5m:€)Tmnaman
m,n>0 £>1
= Tonaga, — h.c.).
Onto
n>1

Here we have used the simplification

Z((Sn:g - (Sm:g) = Z5n:g — de:g = ]l(n 2 1) — ]l(m 2 1)

>1 >1 >1
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0 iftm=n=0o0orm,n>1
=41 ifn#m=20
-1 ifm#n=0.

Similarly,
ar,anapaq, agac = lag,, apadayapaq + aylay, ayadayaq + ag,aplay, azadag + ag,a,a,(aq, aga
= <(5p:g + 0g=p — Om=t — 5n:g> ay, @y Gy,
Thus
1 * *
2(N _ ) Z Wm7n7P7Q[amanapaqv N—f—]
m,n,p,q>0
Z Winnp.a Z[afna:%aqa aya]
m,n,p,q>0 >1
Z Z (6,, Y4 + 5q = — 5m 0 — 5n g) Wmnpqa apaq
m,n,p,q>0 £>1
1 * ok
— m Z (]l(p >1)+1(¢g>1)—1(m>1)—1(n> 1))Wmnpqamanapaq
m,n,p,q>0
1 * ok
=51 Z(WOOOnaanaoan — h.c.)
n>1
e S (Wormn@3ajanan — hic)
N -1 m,n>1
+ ! (W, oar h.c.)
e 0mnpo Uy, Anay — h.c.).
N -1 m,n,p>1

In summary,

* 1 * ok
[HN,N+] = Z(Tgnaoan — h.C ) + m Z(WOOOnaanaoan — hC)

n>1 n>1

1
+ — (Woomn@yayaman — h.c.) + N1 (Wommpaoan,ana, — h.c.).

m,n>1 m,n,p>1

Recall that by Hartree equation

Ton + Wooon = (uo, (A +V + |u0|2 *w)uy) = (ug, (h + p)u,) =0, Vn > 1.
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Therefore,
* 1 k ok
Z TOnaoan + m Z Wooonaoaoaoan
n>1 n>1
1
“ N1 Z Wooon(—(N — 1)aga, + aja,(N — Ny))
n>1
1 . 1 )
Thus
1 *
n>1
- (Wogmnti he) 4 — (Wommpaia: he)
N —1 00mmn Qg Qg Am, G, .C. N —1 0mnpQgQy, AnQp .C.).
m,n>1 m,n,p>1

Step 3. We compute [[Hy,N,],N.]. Note that

[A— A N.] = [A,NL] — [A VL] = [A N, + hee.

Therefore,
1
[Hyn, N[N = N1 (Wooon [agN5-n, No + he.c.)
>l
1 Xk
+ N1 (Woomnlagagaman, N1| + h.c.)
m,n>1
1
+ — (Womnplagan,anay, Ny] + h.c.).
N -1
m,n,p>1
Using

lan, Nv] = a, Ny — Nya, = Ny + 1a, — Nya, =a,, Yn>1,
[aman, Ni] = ama, Ny — Nyana, = 2ana,, Ym,n > 1,

[ar anay, N1| = aanapNy — Nyay,ana, = aana,, Ym,n,p>1
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we obtain
[Hy, NoJ, Ny = = (WoomagNoan + h.c.)
+ - (Woomnagayama, + h.c.)

+ (WOmnpaaarnanap + hC)

Step 4. Now we estimate (U, [[Hy, NN, |¥). From the above computation we have

<\Ij> HHN>N+]7N+]\I’]> = [1 + [2 + 13

where
= —23%— Z W()Qon L a0N+an\Il)
n>1
I = 4@}%— > Woomn (¥, a5050man ),
m,n>1
I3 = 28%— Z Womnp (¥, agar, ana, V).
m,n,p>1

We bound term by term.
Estimate [,. By the Cauchy-Schwarz inequality, we have

1 *
‘[1‘ S 2N 1 Z ’WOOOnH<\Ij,a0N+an\IJ>‘

n>1

C
<% > Wooon! [Ny a0 W[ [|an ¥ |

n>1

C
< NHN‘FG’O\DH Z ‘W000n|2\/z @, |

n>1 n>1

C
< N\/<\If,a3./\f_%ao\1/> Z(‘If ata, W)

n>1

c

C
—— (U, N2U).
S\/N< 7N+ >

203



204 CHAPTER 7. VALIDITY OF BOGOLIUBOV APPROXIMATION
Here recall that Wy, = (ug, Ku,) with K(z,y) = ug(x)w(x — y)ue(y).

Estimate I,. By the Cauchy-Schwarz inequality, we have

1
N -1

5| < 4 Z [ Woormn| [V, agagama, V)|

m,n>1

C
<~ 2 Woonnllaoao¥llllaa, ¥

m,n>1

C
< < llagaow| \/ S Woomal2, [ S lamanv?
C

m,n>1 m,n>1

< N\/<‘1’7a3a3a0a0‘1’> Z (U, a* a*am,a, V)

m,n>1

< %M(w, N2WY (U, N2T) = C(, (N, + 1)°0),

Here recall that Wogmn = (U, KJu,) with K(z,y) = ug(x)w(x — y)ue(y).
Estimate [3. Recall that from the analysis of A3 in the previous section, we have the

quadratic form estimate

1

+ m( Z (ngnpaSainan&p + hC)

m,”,PZI

1

= iﬁ( Z (U ® Up, (P ® QuQ @ Q)uy ® ug)ay,a,apaq + h.c.)

m,n,p,q=>0

< %(5‘1/\@ +5N./\/+) < <

2
M

(Here we took e = N~'/2)) Thus
C 2
j:]g < \/—N<\I/,N+‘;[/>

In summary, we have
L0, [[Hy, NG L NGD) = (1 + I + I) < OO, (N + 1))
Step 5: Conclusion. We have

O = 2<\II,N+(HN - EN)N+\I/> + <\Ij, [[HN,N+],N+]\D>
> (U, NZ0) — C — C(U, (N} + 1)*0).
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This implies that
(U, N30y < C.

Consequently,
(U,N2T) < C.

q.e.d.

We can prove (&, N7®) < oo for eigenfunctions of the Bogoliubov Hamiltonian, using either
the above strategy or the fact that Hp,, can be diagonalized by a Bogoliubov transformation.

More gerenaly, we have

Exercise. Let ® € F(7) be an eigenfunction of the Bogoliubov Hamiltonian Hpg,,.

Prove that
(P, NFP) < 00, VE>1.

7.6 Derivation of Bogoliubov excitation spectrum

Now we are able to rigorously justify Bogoliubov approximation. Recall that we are consid-
ering the Hamiltonian

N 1

Hy = (=As + V() + N1 > wlw— )

i=1 1<i<j<N

acting on %N # = L*(RY). The condensate is described by Hartree minimizer uy. The
result below says that the particles outside the condensation is effectively described by the

Bogoliubov Hamiltonian

1
Hpog = ) (um: (h+ K)un)ajan + 5 D (G, K Jun)asas + e,

m,n>1 m,n>1

on the excited Fock space F(.77) where

h=-A+V+|ul*w—p, Ky =u(r)wz—y)u(y).
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Theorem. Assume that )
e Trapping potential: V € L2 (R R), limyye0 V(2) = +00;
e Positive-type bounded interaction: 0 < @ € L'(RY).

Then the following statements hold true.
e Convergence of eigenvalues. For any i = 1,2,..., the i-th eigenvalue of Hy

satisfies
lim (Ni(HN) — Ney — Mi(HBog)) = 0.

N—o00
e Convergence of eigenstates. Let \IJ%) be an eigenfunction of Hy with the i-th

eigenvalue p;(Hy). Then up to a subsequence as N — 0o, we have

lim Uy¥Y = o@

N—o0

strongly in F (), where ®%) is an eigenfunction of Hpog with the i-th eigenvalue
1% (HBog) .

Remark: When n = 1, the ground state &™) of Hp,g is unique (up to a phase), and hence,
up to a correct choice of the phase, we have the convergence for the whole sequence N — oc.

More precisely, we can find a sequence of complex numbers {zy} , |zy| = 1 such that
lim zyUy¥ = oM.
N—oo

Proof. To make the idea transparent, let us consider the ground state first, and then explain

the extension for higher eigenvalues.

Step 1: Ground state energy - lower bound. Let \1153 € %N be a ground state for
Hy. By the validity of Hartree theory we know that

(O, Hxy W) = ju(Hy) = Ex = New + O(1).
Therefore, we have the (improved) condensation

(U N2UR)) = (O N2UNEY) = 00).
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On the other hand, we have the operator bound on F=N(J7,)
+1<N (UN(HN — New)Us — HBOg)nﬁN < ONVXN2 4 1),

Here recall that 1= = 1(N, < N) is the projection on the truncated Fock space F=N ().
Taking the expectation against U, N\Ifg\l,) we find that

(W Hy W) = New + (Un O, Hiog Uy U Y) + O(N72),
By the variational principle,
(UNUY, HpogUn W) > 11 (Hpog)
we conclude the lower bound
Hl(HN) > Ney + ,U1(HBog) + O(Nflﬂ).

Step 2: Ground state energy - upper bound. Let ®) € F(#,) be the ground state

for Hpog. We know that dM is a quasi-free state, and in particular
@D A260) < C < oo,

We can restrict ® to the truncated Fock space F=V(J#,) without changing the energy too

much.

Exercise. Let & € F(J.) be an eigenfunction for Hpes. Define

Dy = e FN().
S TE T
Prove that |[1SN®|| — 1 and

(Pn, Hpog®n) = (P, Hpog®).

lim
N—oo

By applying the above operator bound on Uy (Hy — Ney)Up — Hpog for

~ 1SNpM)
(I)g\l]) .

_ <N
= =] € F=" (%)
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and using the variational principle for Hy we obtain the upper bound

i (Hy) < (Un®, HyUR®Y) = New + (B, Hpog ) + O(NY/2)
= NeH + MI(HBog) + 0(]->N—>oo‘

Combining with the lower bound in Step 1, we conclcude the convergence of the ground state

energy

p(Hy) = Nen + 1 (Hpog) 4 0(1) Nooo-

Step 3: Convergence of ground state. Let \IJ%) be a ground state of Hy. From Step 1
and Step 2 we know that

p(Hy) = (09, HyU) = New + (Un Y, Hog U TR) + 0(1)

and
p(Hy) = Nen + 111 (Hpog) + 0(1) Nooo-
Therefore,

lim (Uy UV Hpo, Uy U') = i1 (Hpoy).

N—oo

On the other hand, we know that Hpg,, has a unique ground state ®) € F(#,) (up to a
phase) and there is the spectral gap

2 (HBog) > 1 (HBog)'

The convergence U N\Ilg\l,) — ®W (up to a correct choice of the phase) thus follows from a

standard variational technique.

Exercise. Let A be a self-adjoint operator on a Hilbert space with the min-max values
satisfying p(A) < po(A). In particular, A has a unique ground state ug (up to a phase).
Prove that for any sequence {x,},>1 C Q(A) satisfying

[anll =1, (2n, Azn) = p1(A)
we can find a sequence of complex numbers {z,}, |z,| = 1 such that z,x, — ug strongly.

Step 4: Higher eigenvalues - lower bound. Now we consider the lower bound for the
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eigenvalue uy(Hy). By the min-max principle, we have

ML(HN) = max <\I/,HN\I/>

VeX,|| =1

where X C D(Hy) C 5%V is a subspace spanned by the first L eigenfunctions \115\1,), -
\IJ%) of Hy. Denote

o) .= Uy, v =Span{ol) :i=1,2, .. L} = UyX c FN(2,).

Then we have
dimY =dimX =L

because Uy is a unitary operator from %" to F*<N(3#,). Moreover, for any i = 1,2, ..., L

we have

(@Y, N2y = () A2uR) = 0(1).

Therefore,
max (P, N7®) = O(1).

PeY||P||=1

Using the operator bound
=N (UN(HN ~ New)U% — HBOg)nﬁN < ONVXN2 4 1),

we obtain

®, UnHyUy) = N —<I>HO‘I’(<ON*1/2.
ée%ﬁlf)ﬁ:1‘<’N ~UN) err — (@, Hpog®)| < O )

Consequently, by the min-max principle we conclude that

Hpeop) < P, Hpoy @) < O, UyHNULD) — N N~Y2
pi(Hpog) < | max (@, Hpos®) < max (@, UyHyUy®) — New + O(N7)

< max (¥, HyV)— Ney+ O(Nil/z)

T veX,||v|=1

= NL(HN) — NGH + O(N71/2).
Thus we obtain the desired lower bound

pr(Hy) > New + iz (Hpeg) + O(N7Y2),

Step 5: Higher eigenvalues - upper bound. We use the min-max principle again. Let
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M . ®@) be the first L eigenfunctions of Hpog. Define
: <N$G)
O -
oY = Tl 3=1,2,...,L.

Then by an extension of a previous exercise we know that for all 4, j € {1,2,..., L},
lim (04, d{)) = (@, o)) = §,_;
N—o00

and

lim <6%)7H30g(5%)> - <¢)(i)aHBogq}(j)> = i:jﬂi(HBog>‘

N—oo

Consequently, the space
Y :=Span{®V,i=1,2,... L} ¢ FN(A,)
satisfies
dimY =L, lim max (@, Hpe®) = 111 (Hpog).
N—=00 ey ||®||=1
Since for any ¢ = 1,2, ..., L
(@0 N26W) < (WO A2TDY = 0(1), Vi=1,2,..,L

we have

max (P, N7®) = O(1).

deY || ®||=1

Thus from the operator bound
1<V (UN(HN — New)Uj — HBOg>]1SN < ONVXN2 4 1),

we obtain

(@, UvHNUyN) — Nen — <<I>,HBqu>>‘ < O(N?).

max
PeY || v|=1

By the min-max principle we conclude that
pr(Apog) = max (@, Hp,®) > max (O, UyHyUn®) — Ney + O(N?)
ey || ¥|=1 Y || ¥|=1

> jup(Hy) — Ney + O(N~Y2)
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which is equivalent to the upper bound

pr(Hy) < New + pur (Hpog)O(N V2.

Combining with the lower bound in Step 4, we obtain the convergence of eigenvalues

pr(Hy) = Nen + pr(Hpog) + OL(N712).

Step 6: Convergence of eigenfunctions. In Step 4 we have proved that if \Ilg\l,), . \IJ%)

are the first L eigenfunctions of Hy, then the vectors
o) .= Uyul) € FN (2,
satisfies

(@, OF) = 6ieyy  lim () Hpog®Y) = wi(Hpog), Vi, j € {1,2,..., L}.

N—o0

This implies that up to a subsequence as N — oo, the sequence {CD%J)} N converges strongly
to an eigenfunction of Hp,, with eigenvalue pir,(Hpog), thanks to the following abstract result

(recall that Hpos has compact resolvent). This completes the proof of the theorem.  g.e.d.

Exercise. Let A be a self-adjoint operator on a Hilbert space. Assume that A is bounded

from below and that the first L min-mazx values satisfy
p1 < po < o < g < inf o (A).
Consider the vectors {:U%}EFL satisfying

] ,L ] == y—1 ] ] J == y ) ] cee .
7}1_>r20<xn7xn> 61—]’ nh_>r20<wn7Axn> u]’ VZ,j € {1727 7L}

Prove that up to a subsequence as n — oo, the sequence {xL}, converges strongly to an

eigenfunction of A with eigenvalue pr,.
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7.7 Extension to singular interaction potentials

In this section, let us quickly explain how to adapt the previous strategy to justify Bogoli-

ubov’s approximation for singular interaction potentials. We consider the Hamiltonian

acting on S9N # = [*(R?).
Assumptions. In this section we make the following assumptions.

o w,V_ e LP(RY) 4+ L*(RY), V, € L}

loc

(RY) for some p > max(d/2,2).
e The Hartree minimizer ug > 0 is unique (up to a phase) and non-degenerate:

<h+K1 K,

>ecog>0 on %_@%:
Ky J(h+ K)J*

Recall that h = —A +V + |up|? xw — p, K1 := QKQ : 3, — ., Ko = QKJQJ* :
HF — A, with K the operator on J# with kernel K (z,y) = uo(x)w(x — y)uo(y).

e Any minimizing sequence of the Hartree functional has a subsequence converging to ug

(up to a phase) strongly in L*(R?).
Remarks:

e The first condition on the potentials ensures that Hy is a self-adjoint operator in
the same domain of the non-interacting Hamiltonian, by Kato-Rellich theorem. In

particular, Coulomb potential w(z) = 1/|z| with z € R? is allowed.

e The second condition means that the Hessian of the Hartree functional at the minimizer

ug is non-degenerate. This ensures that the Bogoliubov Hamiltonian is well defined (see
below).

e The third condition ensures that we have the complete BEC: for (U, HyVy) = Neg+

o(N),

1
lim (up, 7‘(1/12,U0>

N—oo N =L
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Recall the Bogoliubov Hamiltonian

Hpog = Z (U, (h 4+ K)up)a;,a, + % Z <<um, KJuy)a! a’ + h.c.)

m,n>1 m,n>1

on the excited Fock space F (5, ), where a,, = a(u,) with {u,}>°, an orthonormal basis for

H = LX(RY).

1
Theorem. Under the above assumptions, the Bogoliubov Hamiltonian Hgee on the ex-

cited Fock space F () is a self-adjoint operator with the same quadratic form domain

of AT'(h) 7). Moreover,

e There exist a Bogoliubov transformation U on F () and a self-adjoint operator

&> 0 on J, such that
[U*]HIBogIU - dF(ﬁ) + M1 (HBog)-

Moreover, inf 0(£) > 0 and Oess(§) = Tess(hz.)-

o Hp,, has a unique ground state UQ (up to a complex phase). Moreover, it has the

spectral gap between the second and the first min-max values

pi2(Hpog) — p1 (Hpog) = inf o(£) > 0.

e We have the operator lower bound

Hoog > dT(Q(-A + Vi +1)Q) — C.
y

Proof. Step 1. From the condition w € LP(R?) + L*>°(R%) and uy € H'(R?) we find that K
is a Hilbert-Schmidt operator

1K 2 = // K (2, y)Pdedy = // fuo(@) 2oz — ) Plug(y) Pdedy < oo,
R4 x R4 R4 xRd

To see the the latter bound we can use Sobolev embedding H*(R?) C L4(R?) for 2 < ¢ < 2
(recall 2* = +o0 if d < 2 and 2* = 2d/(d — 2) if d > 3) and Young’s inequality. More
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precisely, by linearity we can assume w € L"(R?) with max(d/2,2) < r < co and estimate

S @)l = )P lua(o) Pz < ol 1 e oo
X

with
1 1 1
qgr>2, —-—+-+-=1
g T g
The condition r > max(d/2,2) allows us to take ¢ < 2* .

Step 2. Since K is Hilbert-Schmidt, K; and K, are also Hilbert-Schmidt operators. Thanks

to the non-degeneracy of the Hessian

h+ K K.
A= ! 2 >e0>0 on I @I,
K3 J(h+ Ky)J*

we can apply the diagonalization procedure discussed in the previous chapter to

HBog = Z <uma (h + Kl)un>a:nan + % Z <<Um, KQJU,JGJ;LCL;: + hC)

m,n>1 m,n>1

Thus there exist a Bogoliubov transformation U on F (7%, ) and a self-adjoint operator £ > 0
on 7, such that
U'HpogU = dI'(§) + 111 (Hpog)

Here the ground state energy p; (Hpog) is finite. Let us prove that

O-ess(é) = Uess(h)u E =h+ K.

In fact, from the diagonalization procedure we also know that there exists a block operator

U Vv
Y = cY
JVJ JUJ*

(which is associated to U) such that

$ 0 \_p UV oKy Ut Ve
0 JEJ* Jvi JguJs )\ K3 Jhys )\ v: JUrT
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A direct computation shows that
€ = UhU* + UK,V* + VKU + VJhJV*,

Since U is bounded and V, Ky are Hilbert-Schmidt, UK,V* and VK U* are trace class.
Moreover, by a lemma from the proof of the diagonalization of quadratic Hamiltonians, we
know that

Tr(XY?hX'?) < 00, X := JV*VJ.

The latter implies that
[R2 TV |26 = Te(R2 VYV IRY?) = Te(R2 X hY?) < oo

and similarly HVJ?LU 2||lgs < oo. Thus V JhJ*V* is trace class. In summary, we have proved

that & — UhU* is a trace class operator, therefore
Oes(£) = 0uss(URU").
Since UU* — 1 and U*U — 1 are trace class (thanks to Shale’s condition), we deduce that
Oess(€) = 0ess(URU") = s ().

Exercise. Let B be a self-adjoint operator on a Hilbert space. Let U be a bounded

operator such that U~' is bounded and UU* — 1 is a compact operator. Prove that
Oess(UBU™) = 0os5(B).

Hint: You can write UBU* — X\ =U(B — \)U* + A\(UU* — 1) for all X\ € R.

Step 3. We have proved that
O-ess(f) - O-ess(%) - Uess(h + Kl)
Since K, is a Hilbert-Schmidt operator, we also obtain

O-ess(f) - Jess(h + Kl) - Uess<h)-
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Moreover, from the non-degeneracy condition on the Hessian A > ¢y, we have
h+ K 1> 69 >0.
Consequently,
inf 055 (§) = inf oegs(h + K1) > g9 > 0.

Since ¢ > 0, we deduce that
inf o (&) > 0.

In fact, if inf o(§) = inf oeg(€), then obviously info(€) > g9 > 0. On the other hand, if
inf 0(§) < inf oes(§), then by the min-max principle, info(§) is an eigenvalue of £, which

must be strictly positive since £ > 0 as an operator.

Step 4. Using
U*HpogU = dT(€) + p1 (Hzog)

and inf o(§) > 0, we find that Hp,, has a unique ground state U2 (up to a phase). Moreover,
it satisfies the spectral gap

pi2(Hpog) — i (Hpog) = p2(dl(§)) — pa (dI'(E)) = inf o(§) > 0.

Step 5. Now we prove the operator lower bound for Hp,, — pt1(Hpog). Since info(€) > 0,

we have

1
U*HBOgU - ,ul(HBog) = dF(f) 2 1nf0(f)./\/+ Z EU*(NJF)U - C.

In the second inequality, we have used
U'N,U < C(N; +1).

Thus we have proved that
1
HBog 2 5N+ - C.

Next, let us consider the Bogoliubov Hamiltonian in more detail.

1
Hpog = Z (U, (h + K)up)a;, a, + 3 Z <<um, KJuy)a! a’ + h.c.)

m,n>1 m,n>1
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Since K is a Hilbert-Schmidt operator, we have

:I: Z (um,KJuna ar ~|—hc>§0(/\/++1).

m'rL>1

Moreover, the condition V_,w € LP(R?) + L>(R?) with p > max(d/2,2) ensures that
9 1
Vo 4 ol # ] < 5(~) + .

Thus .
ht+ K=—-A+V+|ul*xw—p+ K> S(CA+V+1) = C

In the second quantization, we find that
1
dI'(h + K) > édF(—A +V,i+1)—CN,.

Thus we conclude that

1 1
Hpog > 5dl(=A + Vi +1) = O +1) 2 5d0(=A+ Vi + 1) = C(Hpog + C)

which is equivalent to

1
6dF(—A +Vi+1)-C.

This completes the analysis of the Bogoliubov Hamiltonian. q.e.d.

HBog 2

Theorem. Under the assumptions in the beginning of this section, the following state-

ments hold true.

e Convergence of min-max values. For any i = 1,2, ..., the i-th min-maz value
of Hy satisfies
lim (Mi(HN) — Neg — ,ui(HBog)) = (.

N—oo

e Convergence of eigenstates. Assume that ji(Hpeg) < inf oess(Hpog) for some
L > 1. Then pur(Hpog) is an eigenvalue for Hpoe and for N large, pp(Hy) is an

eigenvalue of Hy. Moreover, if \Ilg\%) 18 an eigenfunction of Hy with eigenvalue
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pr(Hy), then up to a subsequence as N — oo, we have

lim Uy = o®

N—o0

strongly in F (), where L) is an eigenfunction of Hp.g with eigenvalue iy, (]HIBOg)J.

The proof of this theorem follows the general strategy we discuss before, namely we will

compare Uy(Hy — Ney)Uy with Hpee. However, since the interaction potential w may be

unbounded, the analysis is more complicated in several places. Here is a quick explanation

of necessary modifications:

e We need to modify the operator bound on truncated Fock space. For example, we

cannot use |w| < |Jw| L~ anymore, and hence we cannot simply bound
A = UN(HN — N@H)U;] — HBog

in terms of N,. We have to use some kinetic part to control the error, resulting the
following bound on F<M () with 1 < M < N

[M
+15MA1M < ¢ N(HBOg +O).

In order to put the previous bound to good use, we need a new tool to localize the

particle number on Fock space. More precisely, we will write

A= fuAfu + guAgur,

where fiy = 1(Ny < M) and gy ~ L(N; > M). This is an analogue of the IMS
localization formula, but now the local functions ¢;(z) with z € R? are replaced by
functions of number operator N,. The part fy;Afy can be controlled by the above
operator bound, provided that M < N. The part gy;Agys is bounded by the variational

principle

i
7
Thanks to the condensation (&, N, ®) < N, if we choose

g Agn = i (A)ga > i (A)

(DN, P) < M < N,

then the contribution from g,;Agys can be controlled.
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Now let us come to the details.

-
Lemma (Operator bound on truncated Fock space). Take 1 < M < N and denote
1=M .= 1(Ny < M). Then we have the operator bound on F<M(,):

M
L S (UN(HN — Nen)Uy — HBog)]lSM < C\/ W]ISM(HBog +0)1=M
s )

Proof. Recall that
4
Un(Hy — New)Uy =Y A

§=0
where
1 NN 1)
A -
0 2W0000 N_1
N-N,—-1
A= Z (T(m + WOOOnN—j1> VN = Nya, + h.c,
n>1
Ay = Z (U, (b + K)uy) ar,an + Z (tm, (Juo|* * w+ K) uy,) ala 1= Ny
9 n m m> n mYn N— 1
m,n>1 m,n>1
N—-NH)N-N, -1
+ = Z ( U, K Jup)a \/( }_\;t 7 + ) + h.c.),
mn>1
1
Ay = V1 Z Winnpo@@apy/ N — Ny + h.c.,
m,n,p>1
Ay = Z Wnpg Qo Gy Qg
mnpq>1
We will estimate term by term.
Estimate A,. We have
N2
0< Ay < C—=E.
0 N

When restricting to the subspace F<M(7,), we can use N < M to get

0 < 1=MA =Y < C%]FMM]FM < cw/%ﬁM(HBOg +C)1=Y

Estimate A;. We have proved that

2

:l:Al S O&T_l% +€N+, Ve > 0.
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Restricting to the subspace F=M (7, ) and taking ¢ = /M /N and , we have
<M g <M <m( M My <M
£V A L < 1 (e N+ Ny < L= (Bl + C) 1=,

Estimate A;. We have proved that

(Ny +1)2

+(A; —Hpoy) < C I

as a quadratic form estimate on F=V(#,). When restricting to the subspace F=M (), we

have
<M <M My My <M
+15"(Ay — Hpeg) 15 < CF]I— N, +1)<C W]l— (Hpog + C)1=".
Estimate A;. We can interpret

1
A - - Wmn * %
4 2(N — 1) m,%>l pq Qi by ApQg

1

T Z (U @ Un, (Q ® QuUQ @ Q)u, ® ug)ay,ay,aya,

m,n,p,q=>0

as the second quantization of the two-body operator (N — 1)7'Q ® QuQ ® Q (here w =
w(z — y) is the multiplication operator). From the assumption w € LP(R?) + L>®(RY) with
p > max(d/2,2) and Sobolev’s embedding theorem we obtain the two-body inequality

lw(r —y)| < C(=A; — Ay +1).
Therefore,
TR RQuRRQ < C(Q(-A+1)Q)®Q +Q® (Q(-A+1)Q)).
Taking the second quantization we obtain
£4, < SLAPQ-A + DN

Projecting on the subspace F=M(#,), we get

1M A 1M < C%]ﬁMdF(Q(—A +1)Q) < C4/ %ﬁM(HBOg + O)1=M,
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Estimate A;. Finally, we consider

1 * k
A3 = m Z Wmnpoamanap\/ N — N+ -+ h.c.

m7n’p2]‘

1

= V1 UN< Z (U ® Up, (Q @ QUQ @ P)u, @ ug)ar, araya, + h.c.) Un

m,n,p,q>0

Thus up to a transformation by Uy, Az is the second quantization of the two-body operator
(N — 1)_1(Q®QwQ®P+Q®QwP®Q+h.c.).

From the assumption w € LP(R?) + L>*(R?) with p > max(d/2,2) and Sobolev’s embedding

theorem we obtain the two-body inequality

+ <Q®QMQ®P+Q®QwP®Q+h.c.>
<2:7'Q@QIQ®Q +2(Q® PlulQ® P+ Po QulP©Q),
< ((Q-A+1)Q @ Q+Q® (Q(-A +1)Q))

+ Cs((Q(—A +1)Q)® P+ P (Q(—A + 1)@)), Ve > 0,

In the second quantization form, we obtain
C(o
A, < N(e N, + 5N> AN (Q(-A +1)Q).

Restricting to F=<M(2#,) and choosing ¢ = \/M /N we get

L1SM4,15M < %(5_1M + eN)]lfMdr(Q(—A +1)Q) < Cy/ %HSM(HB% +O)1EM,

Thus in summary, we have prove that

M
1M (UN(HN — New)Up — HBOg>1SM < Oy 1= (Hiog + C)1=.

This completes the proof of the lemma. g.e.d.

Lemma (IMS formula on Fock space). Let A be a non-negative operator on a bosonic
Fock space F () such that P,D(A) C D(A) and PAP; = 0 if |i — j| > ¢, where
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LN =14). Let f,g : R — [0,1] be smooth functions such that f* + g* = 1,
f( ) 1 for x <1/2 and f(x) =0 for x > 1. For any M > 1 define

fu = fN/M) . gu = gN/M).

Then
3

14
(A= fuAfur — garAgu) < (1F e + 11913 775 Al
with the “diagonal part”

Aldiag : Z P,AP,.

Proof. We start from the "IMS-identity”

DN | —

A— fMAfM - QMAQM =
which follows from the “double commutator identities”

(A, farl, far] = fai A+ Afir = 2fuAfu,
(A, gar, gne] = 93, A+ Agiy — 290 Agur.

By decomposing further

n=>_P
=0

we find that
1A, farl, fa] ZP (1A, farl, fadl)P Z (£30) + £20) = 2Fu () fae () ) PAP,
-3 (fM<z'>—fM<j>)zaAa-: S>> (s - 1) PAP;
i,j=0 1<i—jl<t

In the last equality we have used the assumption that P,AP; = 0 if | — j| > ¢. Combining

with a similar formula for g,;, we arrive at

o0

A= fuAf—guAgu =5 S0 [(FG/M) ~ FG/MY + (9(i/M) — 9(i/M))| AP,

1<|i—j|<¢
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Since f, g are smooth, we have the uniform bound for all |i — j| < ¢

2

(f(/M) = f(G/M))* + (g(i/M) = g(3/M))* < (1 f]|7 + ||g’||ioo)%-
On the other hand, since A > 0 we have the Cauchy-Schwarz inequality
+(PAP; + h.c.) < BAP, + P;AP;.
Thus we conclude that

+ (A — fuAfu — gMAgM>
e > [(f(i/M) — (/M) + (g(i/M) — g(j/M))Q] (P,AP; + P,AP)
1<i—j|<t

4
(71 +1g1B) 15 > (RAP+ PAR)

1<i—j|<t

<

AN

/S R—
< (117 + HgIH%OO)WZPiAPZ‘.
=0

This completes the proof of the lemma. q.e.d.

Exercise. Prove that
[HBog}diag S C((H—]IBog + C)

and
[UNHNU]{,]diag < C(UvHNUN + CN).

Hint: For the second bound you can use Hy > (1 —¢) N (=A+V); — C.N.

Now we are ready to provide

Proof of the theorem. Step 1. Ground state energy - lower bound. Denote
ﬁN = UN(HN - NeH)UX,

Let us prove that
Ml(j—-le) Z NI(HBog) + 0(1)N—>oo-
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By applying the localization formula for A = Hy — ,ul(fIN), with ¢/ =2 and 1 < M < N

we have the operator inequality
- - - C ~ -
Hy > fuHy fu + 9 Hygu — W[HN — 1 (HN))diag-

The main part fMﬁ ~ far satisfies the operator bound on truncated Fock space

ifM(j:IN — HBog)fM < C\/%fM(HBog +CO)fu

which implies that

fMj’VINfM Z (1 — O\/%)fMHBngM - O\/%f]%/l

Using the variational principle Hp,g > 11 (Hpog) > —o0 we find that

SaHy far > (1 - O\/%)MI(HBOg)fJ%/[ — C\/%f]%/]
M
> [Hl(HBog) - C\/;} f]%4

The part gMﬁ ~Ngu can be bounded from below by the variational principle

gM]:INgM > /~L1(ﬁN)912\4 = Nl(]:’N)<1 — fir)-

The localization error is controlled by the rough estimate
[UnHNUy]ding < C(UvHNUpy + CN)

which implies
[Hylaing < C(Hy + CN), |u(Hy)| < CN.

In summary, we have the operator inequality on F=N(7,)

_ - _ C - ~
Hy > fuHNfvu + 9guHNgn — W[HN — 111 (HN)]diag

> [1(Blo) — Oy o] 4 ()1 = Fi) = () + C)
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which is equivalent to

~ M ~ CN
(1+CM ) Hy > |p1(Hpog) — C\/;} fir+m(Hy)(1 = fiy) — ek

By the assumption on the condensation, we can take a wave function ¥y € 7N such that

Uy, N,
(Un, HyWy) < py(Hy) + N71ooey = w = 0(1) Noo-

Equivalently, the vector Uy WUy € F=N () satisfies
(@n, Hy®n) < pm(Hy) + N8 (On, N @y) = exN = 0(N) nosoo
In particular, if we choose
max{eyNV, N1/2} < M<«N

then
0 < (P, g3, Pn) <Py, NL/M)Py) = 0(1)Nosoo

and hence
(On, [ Pn) =1 —(Pn,93,Pn) = 14 0(1) Nosoo.

The choice N'/2 < M ensures that N/M? < 1. Thus from the above operator inequality for

H ~ and the choice of & we obtain

(1+CM ™) (i (Hy) + N71) > (14 CM ) (Dy, Hy®y)

> [Nl(HBog) - C\/%] <(I)N; f]%/[q)N> + Ml(ﬁN)(l — <¢)Na f]%/[CI)N» - %

Using the rough information

|t (Hpog)| = O(1), | (Hy)| = O(N)
we conclude that
Ml(ﬁN) > p1(Hpog) + 0(1) Nosoo-

This is equivalent to

p1(Hy) > New + p1(Hpog) + 0(1) Noyoo-



226 CHAPTER 7. VALIDITY OF BOGOLIUBOV APPROXIMATION

Step 2. Ground state energy - upper bound. We use the localization formula for the
Bogoliubov Hamiltonian
C
HBog > fMHBong + gMHBoggM - W ([HBog]diag + Ml(HBog))

C
> fuHBog far + gviHBoggnr — e (HBog + C)-

Using again
~ M
+fu (HN — HBog> fu < C4f NfM(HBog +C) fu

we have

favrHBog far > (1 + C\/¥>_lfMﬁNfM - C %

Combining with the variational principle

fMHNfM > f@#l(ﬁN)y I HBoggnr > garit (Hpog)

we have the operator bound on Fock space F (74, )

C
Hpog > falHBog far + grvHBoggnr — A <HBog + C)
M\ -1 ~ C M
> <1 +Cy/ W) Sara(Hy) + gipn (Hpog) — 22 Bes — O\ 57
>

which can be rewritten as

M~ -1 ~ M
(1+OM2)Hpo = (14C\/ ) Fom(Hy) + gl (Haog) — O\ -

Now take @) be the ground state for Hpog. Then
(@M N dW) < C < 0.

By choosing
l<K M KN

we obtain

(@), g3, @My < (@MW (N /MDY = o(1), (@D, f3,0M)) =1+ o(1).
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Thus

( u (Hpog) = (1 L OM- ><<I><1>,HBogq><l>>

M

M) (Hy) + (20, g3,0M) 1 (Hiog) — C/ =

Z 1+C N

E

= (140 1) Hy) + (1)1 (Hgog) + 0(1).

Using the rough estimate

we conclude that
p(Hpog) > i (Hy) + o(1).

This is equivalent to
p1(Hy) < New + p1(Hpog) + 0(1) Noyoo-

Combining with the lower bound in Step 1, we conclude the convergence of the ground state
energy
p(Hy) = Nen + 11 (Hpog) + 0(1) Nooo-

Step 3: Convergence of ground state. Take any wave function ¥y € J#®" such that

Uy, N, T
Uy, HyUyn) < n(Hy) + N7V, ey = w = 0(1)N-so0-

From Step 1 and Step 2, we obtain that the vector &y = Uy VU satisfies

(fru®n, Hpog frr®n)
| fr®n]?

— 251 (HBog) .

Thanks to the spectral gap p(Hpog) < po(Hpog) we conclude that up to correct choice of

the phase factor,
Ju®Pn

[/ @

strongly in Fock space F (2, ), where ®1) is the unique ground state for Hp.g. Since

— oW

192 @[l =0, [[far®n] =1

we find that fy,®y — 1), and hence &y — ®M) strongly in Fock space F (4, ).
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Step 4: Convergence of min-max values and higher eigenstates. By the same
analysis in Step 1 and Step 2, plus the min-max principle, we also obtain the convergence of

all min-max values
pi(Hy) = Nen + pi(Hpog) + 0(1)Nooo, Vi=1,2, ...
In particular, this implies that for N large, Hy also have the spectral gap
po(Hn) — pi(Hy) = po(Hpog) — 11 (Hpog) + 0(1) Nyoo > 0.

Consequently, Hy has a unique ground state (up to a phase).

More generally, if 11 (Hpog) < ... < pp(Hpog) < inf oess(Hpog), then for N large, we have
Ml(HN) <...< [LL(HN) < infaess(HN).

Consequently, Hy has at eigenvalues ui(Hy), ..., pr(Hy). If \Ilg\if) are the corresponding

eigenfunctions, then the vectors

30 . fu
N T 0
(g

satisfy
i (B9, 89) = 6, Tim (0, i) = (i),

N—oo
By a previous exercise, this implies that up to a subsequence as N — oo, the vector \TJE\Z,)
converges strongly to an eigenvector ®) of Hpoe with eigenvalue ji;(Hpog). Thanks to the
condensation, we have

lgar W1 = 0, [1far ¥R = 1.
Thus up to a subsequence as N — oo, the vector \IJ%) converges strongly to an eigenvector
O of Hpoe with eigenvalue pi;(Hpog), for all 1 < ¢ < N. This completes the proof of the

theorem. g.e.d.
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