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Chapter 1
Introduction

In classical mechanics, a particle can be described by a pair of position-momentum
(z,p) € R x R%,

In quantum mechanics, we cannot determine both position and momentum at the same time
(by uncertainty principle). Therefore, a quantum particle has to be described by a normalized
function ¢ € L?(RY) with

l4(z)|* = probability density of position, ]@(k;)|2 = probability density of momentum.

The semiclassical approximation suggests to relate quantum quantities by classical ones,

using the idea that
a quantum state ~ a unit volum in the phase space R? x R

For example, for the sum of negative eigenvalues of a Schrodinger operator with a real-valued

potential V : R = R we can expect
ﬁ}A+w@]z/ufwﬂf+wm]%mz—m@/{w@|Mmm
R4 JRd RA

where a_ = min(a,0) and
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1.1. WEYL’S LAW AND SEMICLASSICAL ESTIMATES 5
1.1 Weyl’s law and semiclassical estimates

A cornerstone of the semiclassical analysis for Schrodinger operators is Weyl’s law: for all
d>1,if V. € LY¥%(R%), then

-+ V@) =Ly [ V(@) 4 o)
Rd
By introducing h := A~'/2, Weyl’s law is equivalent to
T[-P°A + V(x)]- = —h L, / V(@) e+ o(h a0,
R

This is consistent to Bohr’s correspondence principle that the behavior of a system described

by quantum mechanics reproduces classical mechanics in the limit A — 0.

In our applications, it is important to have quantitative estimates for finite parameters. In
1975, Lieb and Thirring proved that for all d > 1, if V_ € L'*#2(R%), then

Tr[-A+V(2)]- > —Liq | |[V(z)_|""¥%dz.
Rd

Here L, 4 is independent of V.

Note that if we just look at the first eigenvalue, then using Sobolev’s inequality it is not hard

to prove that
M(—A + V(@) > —I, / V() [ 2ds.
]Rd

The Lieb-Thirring inequality is deeper! It is related to Pauli’s exclusion principle, while

Sobolev’s inequality is a version of the uncertainty principle.

Obviously, the optimal constant in the Lieb-Thirring inequality satisfies Ly 4 > max(L{';, L7%).
Lieb and Thirring conjectured that
Ly, ifd>3,

Ll,d = maX(Lil,w L?if) =
Lff)d ifd=1,2.

This is an important open problem in spectral theory and mathematical physics.

More generally, the semiclassical approximation also applies to the sum of moments of

eigenvalues of Schrodinger operators. In particular, the number of negative eigenvalues of
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—A + V(z) can be approximated by

| B1|
(2m)4

Weyl’s law also extends to this case, namely the approximation holds to the leading order
with V' +— AV, A — +4o0. For finite parameters, the Cwikel-Lieb-Rozenblum (CLR)
inequality states that if d > 3, then the number of negative eigenvalues of —A + V(z) is
bounded by

//]l(|27rk;|2+V(x)<0)dkdx:Lgld/ \V(z)_|Y?dz, LY, =
Rd JRd " SR ’

Lo / V(2)_|V2de.
Rd

This bound fails in 1 and 2 dimensions. Moreover, in general Lo 4 > Lgld for all dimensions.

1.2 Laplacian on bounded domains

Note that in the above discussion, we do not put conditions on V. In particular, we may

consider the hard sphere potential of a bounded domain Q C R%:

0 if v € (),
+o0 if v ¢ Q

Vi) =

The corresponding Dirichlet Laplacian —A has eigenvalues 0 < Ay < Ay < ... with
lim,, .o, A\, = +00. These eigenvalues can be computed using the min-max principle and

the quadratic form domain H}(f2). They also satisfy the equations
—Auy, = AUy,  Uplag = 0.

Obviously, the number of eigenvalues below A of the Dirichlet Laplacian is the same to the

number of negative eigenvalues of —A — \. Therefore, Weyl’s law tells us

c c ’Bl‘
N()\) = Lo{d)\d/2|Q| + O(Ad/2)/\—>ooa L()l,d = (271_)617
which is equivalent to
(27T)2 2/d 2/d
A\, = ———t ey o(n?Y, ..
(Biiapea” o e

The asymptotic formula in this form was first proved by Hermann Weyl in 1911, solving a

conjecture of Sommerfeld-Lorentz in 1910. There are also many works for the next order



1.3. APPLICATIONS TO MANY-BODY FERMIONIC SYSTEMS 7

correction (involving |0f2|), including notable papers of Victor Ivrii in 1980.

The eigenvalue problem for the Laplacian on bounded domains was strongly motivated by
music, going back to Rayleigh in 1877 with “The Theory of Sound”. This has become
more popular since Kac’s 1966 paper “Can one hear the shape of a drum?”. This
is an interesting inverse problem: assuming that we know all eigenvalues of the Dirichlet
Laplacian on €2, can be determine the shape of Q27 Clearly, we can “hear” at least the
volume of Q (or even |0€2|). But can we hear more, e.g. can we determine €2 uniquely (up to

translations and rotations)?

An important open problem is Pdélya’s conjecture for the sharp eigenvalue bound

(27)2 2/d
Ay > / > 1.
Z (Buepe” - 2

It is straightforward to see that this bound holds when €2 is a cube. Pélya proved this bound

for tiling domains; however, the problem is still open even when Q is a ball!

The best known result in this direction is the Berezin-Li-Yau inequality

N
Z)‘n > KCI|Q|72/dN1+2/d7 Kcl _ .

n=1

This is a consequence of Pélya’s conjecture, and also a particular confirmation of the Lieb-
Thirring conjecture for the hard sphere potential (up to a constant shift). It turns out
that the Berezin-Li-Yau inequality can be used to prove a Lieb-Thirring inequality with the

semiclassical constant plus some error which is small in applications.

1.3 Applications to many-body fermionic systems

From first principles of quantum mechanics, a system of N identical fermions in R? is

described by a (normalized) wave function in L?(R*Y) satisfying the anti-symmetry
(L1, oy Ty ooy Ty ooy TN) = =W (21, ooy Ty oy Ty oy T), Vi# G, Va; € RY

A typical many-body Schrodinger operator has the form

N

Hy =Y (8 + V(@) + > Wni—1)

i=1 1<i<j<N
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acting on the anti-symmetric space L2(R*). The ground state energy is

EN = inf <\I/,HN\II>

W]l 2=1

If a ground state exists, it satisfies the Schrodinger equation

HyV = EnV.

When N becomes large, this beautiful linear theory is very difficult to compute (even numeri-
cally) because there are so many variables. In practice, people often rely on effective theories,
which are nonlinear but dependent on less variables. A popular method in computational
physics and chemistry is density functional theory, where the complicated wave function

U : R — C is replaced by its one-body density py : R? — [0, 00)

puw(x) =N |V (z, 1, ..., v5) |Pd2s...dzy, /d py = N.
R

RA(N—-1)

The oldest density functional theory is Thomas-Fermi theory (1927), where the ground state
energy is computed by

1
BN = inf {KC‘/ pl”/d+/ Vp+—// p(x)p(y)W(w—y)dxdy}-
Jp=N R4 R4 2 J Jraxra

In particular, the Thomas-Fermi approximation for the kinetic energy

N

<\D7Z(_A$i)\p> ~ Kcl/ p};z/d

i=1 R

can be interpreted as a dual version of Weyl’s law for the eigenvalue sum of (one-body)
Schrodinger operators. A key concept here is Pauli’s exclusion principle which states
that we cannot put two fermions in a common quantum state. Mathematically, if we define

the one-body density matrix 7\(1,1 ) as a trace class operator on L*(RY) with kernel

”Y\(pl)(x,y) =N - )\If(x,wQ, e NV (Y, Ty ooy oy )dTs...dT Trfy\(pl) — N,
RA(N—1

then Pauli’s exclusion principle states that

0<qy) <1
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Consequently, for any one-body potential R : R — R we have

(v, i(-A%)@ + / Rpy = (W, i(-A% + R(w)¥) = Tr((—A + R)y)

i=1 Rd i=1

>

i

Ai(—A 4+ R(x)) > Tr[-A 4+ R(x)]- =~ —Lil’d 9 |R_|1+d/2,

By optimizing over R, we obtain an appropriate justification for the Thomas-Fermi approx-
imation for the kinetic energy. More generally, under suitable conditions on the interaction

potential W, we will show that

TF
lim =& =1
N—oo EN

Normally, the Thomas-Fermi theory tells us the leading order behavior of weakly interacting
Fermi gas. A better approximation is the Hartree-Fock theory, in which we restrict the

wave functions to Slater determinants

(w1 A g A oo Ay ) (@1, o n) = —=— det [(ui(xj))lg,m]

1
VvV N!
where {u;}¥, are orthonormal vectors in L?*(R?). The corresponding Hartree-Fock energy is

BN =inf {(\I/, HyV) : U a Slater determinant}.

Obviously Ey < ERF by the variational principle, but the lower bound of Ey — ERF is
nontrivial. We will discuss rigorous estimates allowing to justify the Hartree-Fock energy for

a class of Fermi gas.

At the end of the course, we will turn to the correlation energy Fy — EXY. This difficult
question is an important topic of recent research. We will discuss the random phase
approximation, first invented by Bohm and Pines in 1952 for Coulomb systems. In the
case of weak, short range interactions, their argument can be justified rigorously. In this
case, there are some collective pairs of fermions where each pair behaves as a boson, and
the correlation energy is computed using Bogoliubov’s theory for weakly interacting Bose

gases.



Chapter 2

Basic spectral properties of

Schrodinger operators

2.1 Hilbert spaces

4 )
Definition (Hilbert Spaces). A space € is a Hilbert space if

e J7 is a complex vector space, equipped with an inner product (-,-) which is linear

in the second argument and anti-linear in the first
(2, \y) = Ma,p),  (Az,y) = Mz, y);

| © (A, - |]) is a Banach (complete normed) space with norm ||z|| = \/{x, x).
y

\
Theorem (Riesz’s representation theorem). For any Hilbert space F, there exists an

anti-linear unitary operator J : 7€ — F* such that

J(@)(y) = (z,y), Vo,ye .

In particular, ||J(x « = ||z|| .
I 1T @)le- = e )

Recall that the dual space .77”* contains all linear bounded operators from .77 — C. Some-

times, it is convenient to use the bra-ket notation where

lz) € A, (x| =J(x) € .

10
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Then (z|y) = (z,y) (the usual inner product) and |y)(z| is a rank-one operator.

é Y
Definition (Weak convergence). Let {z,}5°, C . and v € . We write z, — x,

namely x, converges to x weakly in 7€, if

mny ) b v %
. (Tn,y) = (T,y), Vye )

Remark: In general, if .77 is a normed space, people usually say that x, — x weakly in 57 if
F(z,) = F(x), VYF e

When 7 is a Hilbert space, the latter definition is equivalent to the former, thanks to Riesz’s
representation theorem. In this case, the weak convergence x,, — x in 7 is also equivalent

to the weak-* convergence J(z,) —=* J(z) in J*.

The concept of weak convergence is very helpful to gain the compactness.

é Y
Theorem. Let 5 be a Hilbert space and let {x,}5°, C H.

e (Banach-Steinhaus) If {x,} converges weakly in F, then {x,} is bounded.

e (Banach-Alaoglu) If {x,} is bounded, then there exists a subsequence {x,, }3,

which converges weakly in 7.

Definition. The Hilbert space F is separable if there exists an orthonormal basis

{un}n>1 (finite or countable). )

We will always work on separable Hilbert spaces.

\
Theorem. If the Hilbert space F is separable and {u,}n>1 is an orthonormal basis,

then we have Parsevel’s identity

x = Z(un,x>un, Vo € .

n>1
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Consequently,
2] =) [un, 2)[*, V€ 2.

n>1

In particular, we have Bessel’s inequality: for any orthonormal family {u,},

] > [(un, 2)[*, Vo € 2.

Exercise. Let {u,}2, be an orthonormal family in a Hilbert space 5. Prove that

U, — 0 weakly in €.

2.2 Self-adjoint operators and Spectral theorem

’

Definition (Unbounded operators). An operator A on F is a linear map A : D(A) —
S with a dense, subspace D(A) C A (domain of A). The adjoint operator A* :
D(A*) — S is defined by

D(A*) = {x e H|IAw e H: (x, Ay) = (A'z,y), Vye D(A)}.

. The operator A is self-adjoint if A = A*. )

4 )
Definition (Spectrum). Let A : D(A) — 5 be an operator on a Hilbert space . Its

spectrum s
o(A)=C\{\ € C: (A~ \)" is a bounded operator}.

We can decompose

U(A) - 0diS<A> U Uess(A)7 Udis(A) N Uess(A) - @,

where the discrete spectrum ogis(A) is the set of isolated eigenvalues with finite mul-

tiplicities and the essential spectrum o.(A) is the complement.

.

Note that the spectrum and the essential spectrum are always closed sets.
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Exercise. Let Q C R be a Borel set, i a locally finite Borel measure on Q, and

a € Lg.(Q,p) a real-valued function. Consider the multiplication operator M, on
L*(Q, u) defined by

(Mof)(2) = a(z)f(x), D(Ma)={f € L*(Q,p),af € L*(Q,u)}.
Prove that
(i) M, is a self-adjoint operator and o(M,) = ess-range(a) C R, namely
Neo(M,) iffulatN—e,X+¢)) >0, Ve>0.

(i) A is an eigenvalue of M, iff u(a=t(N\)) > 0.

(iii) A € oqis(M,) iff X is an isolated point of o(M,) and 0 < p(a™' (X)) < oco.

13

A cornerstone of spectral theory is the Spectral theorem which says that any self-adjoint

operator is unitarily equivalent to a multiplication operator.

7
Theorem (Spectral theorem). Assume that A is a self-adjoint operator on a Hilbert

space 3. Then there exists a Borel set Q C R? for some d > 1, a locally finite Borel

measure f on ), a real-valued function a € L2 (Q, 1) and a unitary transformation
U: A — L*(Q,u) such that
UAU* = M,.

Here M, is the multiplication operator on L*(Q, i), defined by

(Maf)(l‘) = CL(I)f(I), D(Ma) = {f € L2(Quu)aaf € L2(Qnu)}'

We can choose Q = 0(A) x N, a(\,n) = X and p being a locally finite measure. In this
case, \ is an eigenvalue of A if and only if there exists n € N such that u({(A\,n)}) > 0;

moreover, the number of such n’s is equal to the multiplicity of X.

Remark: As a consequence of the spectral theorem, if A is self-adjoint, then o(A) C R.

Given a self-adjoint operator A on a Hilbert space .7 and a smooth function f : R — R, we



14 CHAPTER 2. BASIC SPECTRAL PROPERTIES OF SCHRODINGER OPERATORS

can define the self-adjoint operator f(A) on by
Uf(AU" = fUAU™) = f(M,)

where U : 2 — L*(Q) is a unitary transformation making UAU* = M,. This is called the
functional calculus. Moreover, the spectral theorem can be used to prove several abstract

results for self-adjoint operators.

Exercise. Let A : D(A) — J be a self-adjoint operator on a Hilbert space 7. Prove
that A is a bounded operator if and only if D(A) = .

Exercise. Let A : D(A) — 2 be a self-adjoint operator on a Hilbert space 7. Prove

that the following statements are equivalent:
(i) A >0, namely (u, Au) > 0 for allu € D(A);

(i) o(A) C [0,00).

Exercise (Weyl’s Criterion). For any self-adjoint operator A on a Hilbert space F,

prove that the following statements hold true:

(i) A € o(A) iff there exists a Weyl sequence {u,} C D(A) such that

|lunl| =1, |[(A=Nu,| =0 as n— occ.

(i) A € oess(A) iff there exists a Weyl sequence {u,} C D(A) such that

{u,} an orthonormal family, ||(A— Nu,|| —0 as n — oo.

Definition. Let A be a bounded operator on a Hilbert space 7. We say that A is a

compact operator if A maps any bounded set to a pre-compact set.

Exercise. Let A be a bounded operator on a Hilbert space 7. Prove that A is a compact
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operator iff A maps weak convergence to strong convergence, namely

(X, = x weakly in ) = (Azx, — Ax strongly in ).

4 N
Theorem (Spectral theorem for compact operators). Let A be a self-adjoint compact

operator on a separable Hilbert space €. Then A has an orthonormal eigenbasis {u,} C

S with eigenvalues {\,} C R and \, — 0. In short, we have the spectral decomposition

A= Anfun) (.

n>1

Exercise. Let {u,}>°, be an orthonormal family in a Hilbert space . Let {\,}52, C

R be a bounded sequence. Consider the operator

A= Anfun) (.

n>1
(i) Prove that A is a bounded, self-adjoint operator.

(ii) Prove that A is a compact operator if and only if lim, . A, = 0.

In practice, the self-adjointness is not always easy to verify. A weaker concept is

1
Definition. An operator A on a Hilbert space € is symmetric if
(z,Ay) = (Az,y), Vz,y € D(A).
This 1s also equivalent to
,Ax) € R, e D(A).
L (¢, A7) €R, © € D(4) J

Obviously, if A is self-adjoint, then A is symmetric. But the reverse is not true. Two
useful methods to find self-adjoint extensions for symmetric operators are Kato-Rellich

theorem and Friedrichs’ extension.

(Theorem (Kato-Rellich theorem). Let A be a self-adjoint operator on a Hilbert space]
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JC. Let B be a symmetric operator on € satisfying
|Bz|| < (1 —¢)||Az|| + Ccllzll,  Vz € D(A) C D(B),

for some constant € > 0 independent of x (we say that B is A-relatively bounded with
the relative bound 1 —¢). Then A+ B is a self-adjoint operator on F with domain
. D(A+ B) = D(A).

Z

Exercise. Let A be a self-adjoint operator on a Hilbert space. Let B be a symmetric
operator which is A-relatively compact, namely D(A) C D(B) and B(A + i)™ is a
compact operator. Then A+ B is self-adjoint on D(A) and

Uess(A + B) = Uess<A)-

Hint: You can write B = B(A+1)"Y(A +1) and use Weyl’s Criterion.

4 Y
Theorem (Friedrichs’ extension). Assume that A is bounded from below, namely

(z, Az) > —Cljz||*, Vz € D(A)

with a finite constant C' independent of x. Then A has a self-adjoint extension Ap which

has the same quadratic form domain Q(Ar) = Q(A). Recall that we define Q(A) as
the closure of D(A) under the quadratic form norm ||z|lgu) = /{z, (A + C + 1)z).

§

Note that in general the domain D(Ap) is often not known explicitly (unlike the extension
given by Kato-Rellich theorem). Nevertheless, all eigenvalues below the essential spectrum
of Ap can be computed without knowing the domain D(Af), thanks to the min-max prin-

ciple. In particular, the Friedrichs extension preserves the ground state energy

inf  (z,Az) = inf (x, Apz).

z€D(A)|z[=1 z€D(Ag),||==1

In fact, the Friedrichs extension is the largest possible extension of an operator (in the sense

Krein’s characterization).
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2.3 Min-max principle

é N
Theorem (Min-Max Principle). Let A be a self-adjoint operator on a Hilbert space € .

Assume that A is bounded from below and define the min-max values

n(A) = inf s ,Au).
A=y o A
dim M=n |ul|l=1

Then p,(A) is an increasing sequence and its the limit fioo(A) := lim,, o pn(A) < 400

satisfies

oo (A) = Inf gegs(A).

. Moreover, if p,(A) < poo(A), then py, ..., p, are the lowest eigenvalues of A.

Remarks:

e Here we use the convention that if ges(A) = 0, then inf oes(A) = +o00.

e In the above definition, the condition M C D(A) can be replaced by M C © for
any subspace © which is dense in the quadratic form domain Q(A). Thus if A is the
Friedrichs” extension of a (densely defined) operator Ap, then the min-max values can

be computed using the domain D(Ay).

e The min-max values is monotone increasing in operator, namely if A < B, then

pn(A) < pp(B), VYn=1,2,..

Proof. Step 1. We prove that pi(A) < inf oes(A). We take A € 0e(A) and prove that
n(A) <A, ¥Vn> 1.

By Weyl’s criterion, since A € ges(A), there exists an orthonormal family {w,,}5°_; C D(A)
such that ||(A — A)u,|| — 0. Consider the space

Mo = Span (U1, ooy Umyn ),  dim My, , = n.
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By the definition of the min-max values,

fin(A) < sup (u, Au).
UeMm,n
flull=1

On the other hand, since lim,, o0 [|[(A — N umk| = 0 for all £ =1,2,...;n , we have

lim sup (u, Au) = \.

m—0o0 ueM,

m,n

[[ull=1

Therefore, p1,,(A) < A. This holds for all n > 1, implying that 11o(A) < inf oes(A).

Step 2. We prove that if pu1(A) < peo(A), then py(A) is the lowest eigenvalue. Using
foo(A) < inf oes(A) from Step 1, we find that p1(A) ¢ 0ess(A). On the other hand,

pui(A) = Hiﬂlfl(u, Au) = info(A) € o(A).
Thus u1(A) € 04is(A), namely it is an eigenvalue with finite multiplicity. Clearly it is the

lowest eigenvalue.

Step 3. We prove that if p5(A) < peo(A), then us(A) is the second lowest eigenvalue. By
Step 2, we know that p;(A) is an eigenvalue with an eigenvector u;. Then A leaves invariant
the space 74 = {ul}L and we can define A; = A, as as an operator on 7. Note that

thanks to the decomposition
A = py(A)fur)(ur| ® Ay

we find that o(A) = {u1(A)} Uo(A;) and

p1(Ar) = pa(A)

(why?). Consequently, ps(A) € o(A;) C 0(A). Thus the condition ps(A) < peo(A) and
the inequality pioo(A) < inf oegs(A) from Step 1 imply that ps(A) € oais(A), namely it is an
eigenvalue of A. Moreover, ps(A) = u1(A;) the lowest eigenvalue of A, and hence po(A) is

the second lowest eigenvalue of A.

Step 4. By the same argument, we can prove that if i, (A) < peo(A), then p,(A) is the n-th
lowest eigenvalue of A. Moreover, if p,(A) < pni1(A) = peo(A), then po(A) € 0(A). Thus
in all cases, all min-max values p,(A) belong to o(A). Therefore, pio(A) = lim, o0 pin(A)
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belongs to 0ess(A). Combining with the information gy (A) < inf oess(A) in Step 1, we find
that fieo(A) = inf oess(A). O

Exercise. Let A be a self-adjoint operator on a Hilbert space. Assume that A is bounded

from below and its min-max values satisfies

lim p,(A) = +o0.

n—o0

(i) Prove that A has eigenvalues {p,(A)}2, and an orthonormal eigenbasis.
(ii) Prove that (A+ C)~' is a compact operator for any constant C' > —p1(A).

In this case we say that A has compact resolvent. As a consequence, the eigenfunc-

tions of A form an orthonormal basis.

Exercise. Let A be a self-adjoint operator on a Hilbert space 7. Assume that A is
bounded from below and let p,(A) be its min-maz values. Prove that for all N € N,

iv:,un(A) = inf{

hE

(U, Aup) : {un}ody an orthonormal family in %}
1

n

2.4 Sobolev inequalities

Next, we turn to the fact that the Schrodinger operators are defined on the real space RV,

Therefore, we recall some standard results from real analysis.

\
Definition (Sobolev Spaces). For any dimension d € N and s > 0 (not necessarily an

integer), define
H'(R?) := { f € L*®?) | [k|"F(k) € L*@®R?) }

with f the Fourier transform of f. This is a Hilbert space with the inner product

ummz/ﬁ%muﬂ%W%k

\, y

Remarks:
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e We use the following convention of the Fourier transform
fil) = [ e pada,
R4
In this “engineering convention” we have the inverse formula
f<$) _ / p2mik-x A(k)dk
Rd
and the the Plancherel theorem

”f||L2(Rd) = ”f||L2(Rd)-

e On the Sobolev space H*(R?), the weak derivative is defined via the Fourier transform

— ~

Def(k) = (2mik)* f(k) € L*(R?)
for any multiple index oo = (v, ..., ) With |a| = a3 + ... + ag < s.

e In the course we will mostly think of s as an integer for simplicity. The non-integer case
(the so-called fractional Sobolev spaces) is useful for studying relativistic quantum

mechanics.

é Y
Theorem (Sobolev Inequalities/Continuous embedding). Let d > 1 and s > 0. Then

1fllreey < Cll flsmey, Vf € H*(RY)
where
2<p< 24 if s <dj2,
2 < p< oo, if s=d/2
2 < p < oo, if s> dJ2.

We say that H*(RY) C LP(R?) with continuous embedding. When s > d/2 we also have
the continuous embedding H*(R?) C € (R?) (the space of continuous functions with

sup-norm ).
| swp )

Remarks:
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e In the case s < d/2, the power p* := 2d/(d — 2s) is called the Sobolev critical
exponent. In fact, this is the only power works for the following standard Sobolev
inequality

£l ety < Cl(=2)"2 f|| 2(za)

(on the right side we do not put the full norm of H*, but only the seminorm of H *).

e In principle, for any given power s > 0, the Sobolev inequality becomes weaker in

higher dimensions. For example,

H'(R)Cc L’ (R)N¥(R), H'®R)cC ()| L/®), H'R®R)cC () LR,

2<p<oo 2<p<6

Similarly,
H*(R*) ¢ LA(R*)NE(R?*)  but H*(R*) ¢ €(RY).

Proof. Let us prove the standard Sobolev inequality in the case s < d/2:

£l Lo may < Cl|(—=A)7 f| 2 ma)-

We use Rumin’s method, which will be useful later. By Plancherel and Fubini theorems we

can write

K= (=) gy = [ kb [a)

/ dk/ AE 1(|27k)* > E)|a(k)?
R3 0

o0

dE/ A 1(|20k2 > B)[a(k)P
0 R3

:/ dr dx|uE+(x)|2:/ dx/ dE|ut (2)?
0 R3 RS 0

where the function u®7* is defined via the Fourier transform
u"t (k) = 1(127k|* > E)u(k).
When d > 2s, we have the uniform bound

ju(z) — uP* ()] = | /R ke R (k< )
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1/2 1/2
< (/ \27rk|23]a(k)\2> (/ di1(|2mk|> gE)|27rk]*25>
Rd R4

— O,K:E%

with a constant C)y depending only on d and s. By the triangle inequality,

[0 (@) = Ju@)| = () = @) 2 [Ju(@)| - fu(e) =™ @)|] | = [Ju(x)| ~CokF B

+

Of course this bound is nontrivial only when

B < (Ig( )!)fszg

Integrating over F € (0, 00) we get

+

oo 00 9

/ dE|uE+(x)|2 > / dE[|u( )| _ COKQE——l]
0 0

_ o |u(@)] ﬁ_ V.

= C1|u(z)] < il > = Ch|u(x)|T2 K~ a2,

In conclusion,
K>CK 75 | |u()|™=

R4

which is equivalent to
K75 >0 [ |u(z)|7,

R4

Inserting the definition K = ||[(—=A)*2f|2, (a) We arrive at the desired inequality. O

é N
Theorem (Sobolev compact embedding). Let d > 1 and s > 0. Then for any bounded

set Q C R4, the operator 1q : H*(R?) — LP(R?) is a compact operator, where

237 Zf‘SSd/Qa

2 <7
2 < 00, if s >dJ/2.

NN

p
p

. When s > d/2, we also have the compact embedding 1q : H*(R?) — € (R?).

Remark: The Sobolev compact embedding means that if u, — u weakly in H*(R?) with
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s > 0, then for any bounded set  C R,
lqu, — lqu strongly in Lp(Rd).

They key point is the strong convergence in L?; and the convergence in LP follows by a

standard interpolation (for which we have to avoid the end-point). This kind of result can

—s/2

be interpreted as the operator 1o(1 — A)~%/2 is compact on L*(R?).

We have the following more general result.

Theorem. Let f,g € L*(R?) and f(x) — 0 and g(z) — 0 as || — oo. Then
f(x)g(=iV) is a compact operator on L*(R?).

Here f(x) is the usual multiplication operator and g(—iV) is defined by the spectral theorem,

or equivalently via the Fourier transform:

—

(9(=iV)u)(k) = g(2mk)u(k).

This theorem can be interpreted in the same spirit of the uncertainty principle: localizing
both position and momentum gives us a compact operator. Further estimates for the operator
f(x)g(—i1V) will be discussed in the next chapter.

Proof. We prove that if u,, — 0 weakly in L*(R?), then
v (1) = f(2)(g(=iV)u,)(z) = 0 strongly in L*(R%).
Step 1. Let us consider the case when f and g are compactly supported. We write

(g(—=iV)u,)(z) = / R g (21 k) Ty, (k) dk.

Rd

Since u,, — 0 weakly in L*(R%), @, — 0 weakly in L*(R?). Since g is bounded and compactly
supported, e2™**g(2rk) € L*(R?, dk). Thus

(g(—=iV)u,)(z) =0, for a.e. x € R%

Moreover, by Holder inequality we also know that g(—iV)u,, is bounded in L*>°(R%). Since f
is bounded and compactly supported, we find that

V(1) = f(2)(g(—=iV)u,)(z) = 0, for a.e. x € R?
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and
|vn|| oo ray < C,  supp(v,) C supp f.

Thus v, — 0 strongly in L?(R?) by Lebesgue Dominated Convergence Theorem.

Step 2. Now we consider the case when g is compactly supported and f(z) — 0 as |z| — oo.

Then for any € > 0, we split

f:fe_}_f;

with f. being compactly supported and ||f;|| 1~ < e. By the triangle inequality

1f @)g(=iV a2 < | fo(@)g(=iV)unll 12 + || feg(—iV Juun] |2
< N fe(@)g(=iV)unlliz + || foll e g oo llun 2
< [Ife(2)g(=iV)unl| 12 + Ce

for a constant C' independent of ¢ and n. Here we used the fact that u, is bounded in L?

since it converges weakly in L?. By Step 1,
i [1(2)g(~i9)alz2 = 0.
Thus

limsup || f(2)g(=iV)unl|z2 < limsup || f(2)g(=iV)un||r2 + Ce = Ce

n—00 n—oo

Since this holds for any € > 0, we conclude that || f(z)g(—iV)uy,||z2 — 0.

Step 3. Now we consider the case when f(z), g(x) — 0 as |x| — oo. Then for any € > 0, we
split
9=9c+9:

with g. being compactly supported and ||g.||z~ < €. By triangle inequality

1 (2)g(=iV)un|| 2 < ||f (2)ge (=1 Junl| 22 + [ (2)ge(=iV Jun]| 2
< 1f (@) ge(=iV)unll 2 + [l 2o 19l oo [[tm | 22
< [If(@)ge(=iV)un[r2 + Ce.

Taking n — oo, and then ¢ — 0, we find that || f(x)g(—iV)u,|/2 — 0.
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Exercise. Let f € L>®(R?) such that f(z) — 0 as |x| — oo. Prove that if u, — 0
weakly in the Sobolev space H*(R?) for some constant s > 0, then fu, — 0 strongly in
L*(RY).

Exercise. Let F,G : RY — R be locally bounded functions satisfying F(x), G(x) — oo
as |z| — 0o. Prove that the operator F(z) + G(—iV) on L*(RY) has compact resolvent.

2.5 Schrodinger operators

Now we are ready to discuss some basic spectral properties of the Schrodinger operator

—A +V(z) on L*(R%). We will always assume that V is a real-valued potential.

First, consider the case when V' is bounded or vanishing at infinity.

é Y
Theorem. Assume that V € LP(RY) + LY(R?) with oo > p,q > max(2,d/2), then

—A +V is a self adjoint operator on L*(R®) with domain H*(R?) and
Oess(—A + V) = [0, 00).

More generally, the self-adjointness still holds if oo > p,q > max(2,d/2) when d # 4 and
00 > p,q > 2 when d = 4; and the essential spectrum property still holds if oo > p > 2
Lwhend§3 and oo > p > d/2 when d > 4.

Remark: L*(RY) C L*(R?) + L*2(R?) if 51 < 5 < s5.

Proof. Step 1. First we prove the self-adjointness. We use the Kato-Rellich theorem and

show that V' is A-relatively bounded, more precisely
Vullze < ellAullzz + Collullzz, Ve >0, Yue L*(R?).

We can always write
V=Vi+Vo, [Villr <& Vallre < C:

with p = max(2,d/2) if d # 4 and p € (2, 00) arbitrarily if d = 4.
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Case d < 3: Using the Sobolev embedding H?(R?) C L>*(R¢) we can bound
Viullzz < IVillzeflull e < Cellullm> < Ce(||Aul|zz + [ul|z2).

Moreover,
Vaullz < [[Valle [lull2 < Ceflullz2.

Therefore, by the triangle inequality
V|2 < [[Viullge + ||Vaullr2 < Cel|Aul|z2 + Coljullgz, Ve >0, Yue€ L*(R?).
This is equivalent to the desired estimate (we can change Ce — €).

Case d > 4: Using the Sobolev embedding H?(RY) C L%(Rd) and Holder’s inequality we

can bound
! 3
Wil = [Pt < ([ warr) ([ 1) < clvilEa ol
where p
1 1 2
=1 ="
e

We find that ' = d/(d — 4) and r = d/4. Thus
[Viul|rz < ClVil[pasallullmz < Ce([|Aulpz + [lul|r2)-
The rest is similar to the case d < 3.

Case d = 4: Using the Sobolev embedding H?*(RY) C L*(R?) for any s € (2, 00), we have

||v1u||Lz=(/ |v1|2|u|2) <(/ WT) (/ W) < CVillor

with 2r = p and 1/r + 1/r" = 1. The rest is similar to the case d < 3.

Step 2. Now we turn to the essential spectrum. By Weyl’s criterion, we need to show that V'

1

is A-relatively compact, namely V(z)(1 — A)~! is a compact operator on L*(R%). If suffices

to consider the case V € LP(R?) with oo >p >2if d <3 and co > p > d/2 if d > 4.

Take u,, — 0 weakly in L?, then we have to prove that V(1 — A)~'u,, — 0 strongly in L.
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Note that u, — 0 weakly in L? implies that (why?)
foi=(0—=A) " u, =0 weakly in H*(R?).
By Sobolev compact embedding, we know that for any bounded set 2 C R?, then
1of, — 0 strongly in L*(R?)

for any s < oo if d < 3 and s < 2d/(d — 4) if d > 4. In particular, given the condition
oo >p>2ifd<3and co>p>d/2if d >4, we can choose s such that

2 2
4o
P S

Moreover, we know that f, is bounded in L*(R%) due to Sobolev continuous embedding.

Let us split
V=Vi+Va, Vi=Vigu<ry, V2=Visr-

Then
Wirde= ([ vese) < (Jwr) ([ 1ar) 50 wnow
N jal<R
lz|<R
and
IVafull2 < / i) /|fn|s ‘<c / V)" =0 as R oo,
< |z|>R ) ( > < |z|>R )
Thus V f,, — 0 strongly in L?(R?) when n — oo. O

The condition on V' can be relaxed slightly if we use Friedrich’s extension.

Exercise. Assume that V. € LL _(R?) and V_ € LP(R?) + LY(R?) with co > p,q >

loc

max(1,d/2) when d # 2 and oo > p,q > 1 when d = 2. Prove that:

e Forallu e HY(R?) and e > 0,

/ V| [uf? Se/ ]Vu|2—i—C'5/ .
Rd R4 Rd
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e The operator —A+V with core domain C>°(R?) is bounded from below on L*(R?).

Hence, it can be extended to be a self-adjoint operator by Friedrichs” method.

o [f we assume further that V € LP(R?)+ LY(R?) with oo > p,q > max(1,d/2) when
d+# 2, and oo > p,q > 1 when d = 2, then the quadratic form domain of —A+V
is H*(RY) and

Oess(—A + V) = [0, 00).

Hint: For the essential spectrum, you can use Weyl’s criterion.

In particular for d = 3, the Friedrich extension covers the case V() = —|z|* with 0 < s < 2,
while the Kato-Rellich theorem requires 0 < s < 3/2. In the critical case s = 2, we have

Hardy’s inequality

- 4: R3 |I‘|2

dr, Yue€ H'(R?).

Next, we show that if the potential V(z) is negative and decays slowly, then —A + V has
infinitely many negative eigenvalues. The opposite regime, when —A + V' has finitely many

eigenvalues, will be studied in the next chapter.

é Y
Theorem. Assume that V € LP(R?) + LY(R?) with oo > p,q > max(1,d/2) and

V(z) < —|z|™%, 0<s<2, for|z| large.

Then —A+V has infinitely many negative eigenvalues. Here —A+V is the self-adjoint

. operator obtained by Friedrichs’ extension. )

Proof. By the min-max principle, it suffices to show that all the min-max values are negative:

n = inf J(=A+V)u) <0.
i g BEE ATV
Ul 2=

To choose M, we take normalized functions u; € €°(i +1 > |z| > i), i = 1,2,...,n. Then
take R > 0 and define

M = Span(ugR),@' =1,2,...,n), U,(R)(ZL‘) = R_%ui(x/R).

(2
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Clearly dim M = n since {uZ(R) ? . is an orthonormal family. Indeed, they have disjoint

supports and in their supports
(n+1)R>|z| > R.

Using V(z) < —|z|® with 0 < s < 2 for |z| large, we find that for R large,
W 8+ V)l®) = (196 4 [VIF < [ 96 = [ ol @) Pao

=R / |V [* — R_S/ || ™% Jus () |2dz < 0.
Next, since {uER) ™, have disjoint support, we find that

B (A +V)ul?) <.

(2

max (u, (—A + V)u) = max (u

ueM i=1,...,n
lJull 2=1
This completes the proof. O

Next, we consider the case when the potential V() grows to oo at infinity.

é Y
Theorem. Assume that V € LP (R?) with p > max(1,d/2) when d # 2 and p > 1

loc
when d = 1; moreover V(x) — oo as |x| — oo. Then the operator —A + V with core

domain C2(R) is bounded from below and can be extended to be a self-adjoint operator

by Friedrich’s extension. This self-adjoint operator has compact resolvent. )

Proof. The condition V' € L (R%) and V(z) — oo implies that for the negative part,
V_ € LP(RY). Therefore,
1
—A+V2§(—A)+V+—C.

Thus —A + V is bounded from below and hence it can be extended to be a self-adjoint

operator by Friedrich’s extension.

It remains to prove that —A 4V has compact resolvent. By the min-max principle, it suffices
to show that —A + V, has compact resolvent. We prove by contradiction: assume that a
finite element A € oess(—A + V). Then by Weyl’s criterion, there exists an orthonormal
family {u,}>°, in L*(R%) such that |[(=A + Vy — XNuy||zz — 0. Consequently,

/|Vun|2 +/V+|un|2 Y



30 CHAPTER 2. BASIC SPECTRAL PROPERTIES OF SCHRODINGER OPERATORS

Since wu,, is bounded in H*(RY) and u,, — 0 in L?(R%), we have u,, — 0 in H*(RY) (why?).
Hence, by Sobolev’s embedding theorem, for any R > 0 we have

I ([T <myunl[z2 = 0.

Consequently,

T [0 oo gyt 2 = 1.

Therefore,

A> lim [ Vijun? > lim [ inf V(yﬂ/ lup(2)Pdz = inf V(y).

n—oo L|y|>R ly|>R

Then sending R — oo we obtain A = oo, which is a contradiction. O]



Chapter 3

Semiclassical estimates

3.1 Cwikel-Lieb-Rozenblum inequality

By semiclassical approximation, the number of negative eigenvalues of the Schrodinger oper-

ator —A + V(x) on L?*(R?) can be related to its phase-space analogue

B
/ / 1([2mk[2 + V() < 0)dkdz — 12U / V(z)_|"2de.
Rd JRd (2m)? Jpa
Recall t_ = min(¢,0). The following bound justifies this relation as a universal upper bound.
4 N

Theorem (Cwikel-Lieb-Rozenblum (CLR) inequality). Ifd > 3 and V_ € L% (R%), then

N(=A+V)< Od/ V_|2.
R4

Here N(—A + V) is the number of negative eigenvalues of —A +V (z) on L*(R?). The

. constant Cy 1s finite and independent of V.

Z

Remarks:

e Here the condition V_ € L%(Rd) ensures that —A + V is bounded from below, and

hence it can be extended to be a self-adjoint operator on L?(R?) by Friedrichs’ method.

e It is not surprising that the positive part of V' does not appear in the upper bound

because N(—A +V) < N(—A + V_) by the min-max principle. In general, we do not

1
loc

any serious condition on V., for example V, € L{ (R?) is sufficient for the operator to

31
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be well-defined in the core domain C°(R?). In relation to the Laplacian on bounded
domains (we will discuss later), it would be also useful to think of a hard sphere
potential where V = +o0o outside 2 € R? (in this case the underlying Hilbert space
will be L?(Q)).

The following proof is due to Frank, based on Rumin method. This is an extension of the

previous proof of Sobolev’s inequality to orthogonal functions.

Proof. Assume N(—A+V) > N. Let W be the space spanned by eigenfunctions of negative
eigenvalues of —A + V. Since dim W > N and v/ —A has a trivial kernel, we get

dim(vV—-AW) > N
Thus we can choose N orthonormal functions in /—AW, says v/—Auw;. Thus
{ul} L, CW, (u, —Auj) = (V—-Au;, V—~Auj) =65

Therefore,

N N
Z Uiy (A + V) = N+/Vp >N — /|V lp, plz) = Z | ()]
i=1

i=1

For any E > 0, we introduce the function uf* via the Fourier transform

W (k) = 1(|27k2 > E)ai(k).

)

Then similarly to the proof of Sobolev’s inequality, we can write

N = Z/|Vul| dz = Z/dE/dx|uE+ / /dEZ|uE+ )|2.

By the triangle inequality for the Euclidean norm in C?, we have

N N

ZIUJ“(SC)IQZ D @)= | D i) = uf ()2

i=1 =1
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and hence 5

S @R = Vol = | Y @) = uF* @)

Jr
On the other hand, for d > 3 we have the uniform bound
N N )
Z |uz(x) - uf+(x)’2 — Z /d dkai(k>]l{|27rk\2gE}e2Mk$ _
=1 i—1 /R
2 Bessel

<

N
i=1

Lijonk2<p) a2
< | ABRESEY g o o B
/Rd orkp n =

1ion |
/ dk| 27k |, (k) —2TAESEY 2wk
R |27Tk’|

Here we have used Bessel’s inequality and the fact that {|27k|d;(k)}Y, is an orthonormal

family in L*(RY, dk) (as {v/—Au;}Y, is an orthonormal family). Thus

d

N 00 . )
N:Z/Wui\2 > // V(@) - BT | dBde > —/p(x)dffz.
j + C
=l Rd 0
Therefore we conclude that
d%ﬁ
N [ Wlo < IV lanlol, iy < IVl (CaN)
]Rd

which implies N < Cd||V_||C£/d2/2. O
The following exercise shows that the CLR bound fails if d < 2.

Exercise. Let d = 1,2. Let V € LY(R?) if d =1 and V € L'(R?) N LP(RY) for some
p>114fd=2. Prove that if
/ V<0
R4

Then —A + 'V has at least one negative eigenvalue. Hint: You may consider u.(z) =

el when d = 1, and u.(x) = e~ 2D ywhen d = 2.

Nevertheless, we have a modified result for d < 2. Recall that for any function F : [0, 00) —

[0, 00] we define the Legendre transform £ : [0,00) — [0, oo by

F*(z) = sup{zy — F(y)}, Vo >0

y=>0
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34

Note that F' > G, then F* < G*. Moreover, if F(z) = 2P/p then F*(z) = 29/q with

1/p+1/qg =1, thanks to Young’s inequality.

7
Theorem (Bound states in one and two dimensions). For d = 1,2 and any L > 0,

where N(—=A+V + L) is the number of negative eigenvalues of —A+V + L on L*(R?)

N(—A+V+L)§/

R4

and
t(e* ™ — 1), if d = 2,
p = {1 D /

ttan?(t) + ool (t > 7/2), if d = 1.
v

.

Proof. We proceed similarly to the proof of the CLR bound, except —A will be replaced
by —A + L. More precisely, assume N (—A +V + L) > N. Let W be the space spanned

by eigenfunctions of negative eigenvalues of —A + V + L. Since dimW > N, we have

dim(y/—A + LW) > N. Thus we can choose N functions {u;}Y, such that

Therefore,
N

0= Z(Uu (—A+V 4+ L) = N—l—/Vp >N — / V_lp, plx):= Z lus ().

—

For any E > 0, we introduce u. * (k) = 1(|27k|> + L > E)@G;(k). Then

N o0 N
N=> [IV=A+Luf;> = /dx/dEZ [uP (2)[?
i=1 Rd 0 i=1

2

N

> /dx]odE plx) — Zl|uz<$) —u " (z))?

+

Since {u;(k)+/|27k|2 + L}Y, is an orthonormal family,

N 2

S i) = uF (@) = 3

/d dk’ai(kf)]l{|27rk|2+L<E}€27rikx
R

=1
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]l .
/ dk’ul |27T:I€|2 {|27k|24-L<E} 627rzk$

N
Z \/|27rk;|2—|—L

When d = 2: it is straightforward to see that when £ > L,

. 12nk2+ L

1 2 1 E—-L 1
/ {2rk?+L<FY 0 L " = —log(E/L).
R

> |27k]2+ L 27 J, r2+ L 4r
Thus
2
N> / /dE o —log (E/L) _L/dxF )
R2 +
with F(t) = t(e*™ — 1). Therefore
0>2N — 2/ |V|p>N+L/ dzF(p —2/ dz|V_(2)|p(x)

v [ (Pl - 2l)
ZN—L/RQF*<¥).

NgL/ F(M>
R L

Thus

When d=1:if E > L,

Lj2nk24+L<E} 1 / | 1 E
Mt g 1 = aweran(yfE 1)
/ |27k|? + L T Jo r2+ L d W\/Zarc an L

Thus

N > /dx]odE m— \/%&r(ﬁt&n(@)

R L n

> L /d:L’p )tan?(VLp(x) \/_/dIF\/_P z))

2
Bessel 1 -
s / Lomkprr<my o
R

35
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where F(t) = ttan?(t) if t < /2 and oo if t > 7/2. Therefore

022N—2/RIV]pZNjL\/f/dxF(\/Zp(x))—Z/RdeW(m)\p(x)

:N—l—\/f/Rda:(F(\/Zp)—¥\/fp)

2N—¢?4P<ﬂ%g.

N§¢?4F(a%g.

Thus

3.2 Lieb—Thirring inequality

Instead of focusing on the number of negative eigenvalues of —A + V', we are also interested
in the sum of negative eigenvalues (which is related to the ground state energy of the ideal

Fermi gas). We have the following generalization of the CLR bound.

4 N
Theorem (Lieb-Thirring Inequality). Let d > 1 and

s>1/2, ifd=1
s> 0, if d =2,
s >0, if d > 3.

If the operator —A + V (z) on L*(R?) has negative eigenvalues py < pp < ..., then

S linl* < Loa [ VoI,

n>1 R

Here the constant L 4 is finite and independent of V. The range of s is optimal.

Remark:

e This inequality was first derived by Lieb-Thirring in 1975 for s = 1 in their proof of
the stability of matter. Then they extended the inequality to the cases s > 0 when
d>2and s > 1/2 when d = 1. The case s = 0 when d > 3 was proved independently
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by Cwikel, Lieb, Rozenblum (CLR bound) around 1977. The case s = 1/2 when
d = 1 was solved by Weidl in 1996.

e Assuming that —A + V' can be defined as a self-adjoint operator, it is convenient to

write the sum of moments of eigenvalues as

S (A + V) =Tr|[(—A+V)_|*

n>1
where the negative part (—A + V')_ is defined by the spectral projection.

e Similarly to the CLR bound, in the Lieb-Thirring inequality only the negative part
V_ is relevant. This follows from the fact that —A +V > —A + V_, leading to
Tr[(=A+V)_]* <Tr|(-=A+ V_)_|® by the min-max principle.

e This bound agrees to the semiclassical approximation

Tr|(—A+V)|Sz/ / y<|27rk\2+v<x>>\Sdkdx:Lg{d/ Vg,
Rd JR4 Rd

where
1 I'(s+1)

(4m)iD(s+1+9)

c
s,d

When s > 3/2, the best constant in the Lieb-Thirring inequality coincides to the
classical constant L, q = L¢ ;. This was proved by Lieb-Thirring (1976) for d = 1 and
extended by Laptev-Weidl (2000) to all d > 1.

e It is known that if s < 1, then L, 4 > L;. When d = 1 and s = 1/2, Hundertmark-
Lieb-Thomas (1998) proved that the sharp constant is Lo, = 2L§1/271.

e In the most interesting case s = 1, it is conjectured that L, 4 = L‘ﬂd for d > 3 (we will
come back to this case). When d < 2, the conjectured value of L, 4 is given by a one-
bound-state/Sobolev inequality. Currently, the best known result is Ly 4 < 1.456L§1,d
for all d > 1; see FHJN (2018).

Proof. We will use the bound on the number of negative eigenvalues derived in the previous

section. The proof covers all cases except the critical case d =1 and s = 1/2.

Our starting point is the layer-cake representation: for any s > 0

Tr|(-A+V)_|° = s/ N(-A+V + E)E*'dE
0
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where N (—A + V + E) is the number of negative eigenvalue of —A + V + E (which is the

same to the number of eigenvalues < —FE of —A + V). This formula is analogous to

/Q (@) dua) = s / e |f(@)] > EYETE.

Case d > 3: Inserting the CLR bound
N(=A+V +E)<Cy N (V(z)+ E)_|2dx
to the above layer-cake representation and using Fubini’s theorem we obtain for all s > 0
Tr|(—A4+V.)_|°=s /OOON(—A +V + E)E*1dE
gd%/deﬂmeV@y+ELﬂE*1
0

d

:st/ dx/ dE|(V(z) + E)_|2E* ' = Cyq | da|V(x)_|**2
R4 0

Rd

Case d < 2: Recall that

N(A+V+E)=N(-A+(V+E/2)+E/2) g/ de F* (2|(V(2972;E/2)‘|> <E>g

where F™* is the Legendre transform of the function

t(et™t — 1), if d =2,
F(t) =
ttan?(t) + ool (t > 7/2), ifd=1.

Hence,

Tr|(-A+V_)_|° = 3/ N(=A+V + E)E*'dE
0

Sslmﬂfwfﬂm<wy%gkim)U<E>E81

2|V (z)-| 2 E/2)_
:SCd/ d.r/ dEF*< (V{z) + E/2) > E‘(”f1
ke Jo E/2
g
2

! 2
=Csq dx]V(x)|S+g/ dyF* (— — 2) y*
R4 0 Yy




3.2. LIEB-THIRRING INEQUALITY 39

In the last equality we have changed the variable E = 2|V (z)_|y. It remains to show that
! 2 a
/ dyF* (— — 2) Y e < o0,
0 )
Consider the case d = 2, s > 0. Recall that if ¥ > G, then F* < G*. Using
F(t)=te™ —1) > Cpt?, V2<p<oo

we find that
F*t) < Cpt?, V1<q<2

Since s > 0, we can take 1 < ¢ < 1+ s (such that s —¢ > —1), and hence
1 9 1 9 q 1
/ dy F™* (——Q)ysgcq/ dy(——Z) ysng/ dyy*~ 7 < 0.
0 Y 0 Y 0
Consider the case d =1, s > 1/2. Using F(t) > 0 for all ¢ > 0 and
F(t) =00, Vt>2/7

we have

F(y) = Stgg(ty - F(t)) < 02312)/ (ty — F(t) <

2
_y.
s

Therefore, using s > 1/2 we have

! 2 ; L9 /79 !
/dyF* (——2>y82§/ dy— (——2>y52§
0 ) 0 ™\Y

SRS

1
/ dyy“% < 00.
0

]

In the special case s = 1 (sum of negative eigenvalues), the Lieb-Thirring inequality is
equivalent to a kinetic inequality for orthonormal functions in L?(R?) which will be useful

to study large fermionic quantum systems.

é Y
Theorem (Lieb-Thirring Kinetic Inequality). Let d > 1. Let {u,}, be an orthonormal

family in L*(RY) and define the density p(x) = > |un(z)[®. Then

; / |V, (2)Pde > Kq / pla)Fide.

Rd
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Moreover, the best constant K, > 0 in the kinetic inequality is related to the best constant

Ly 4 for the sum of negative eigenvalues of —A+V as

(D)™ ((+ ) ™ 1

\ J

Remark: The Lieb-Thirring conjecture on the optimal value L; 4 is equivalent to

Kd Kcl _ d (271')2

= = —" > when d > 3.

Here | B, | is the volume of the unit ball in R

Proof. The kinetic inequality can be proved directly using Rumin’s method (see an exercise).
It remains to prove the relation between the best constants K; and L; 4. This follows a

standard duality argument and Young’s inequality (c.f. Legendre transform)

p b 1 1
a-:sup(ab__>7 VCLZO, vp7q2]-7 -+ -=1
p b>0 q p 9

Assume that the operator —A 4V has negative eigenvalues p; < uy < ... with eigenfunctions

U1, U, ... By the LT kinetic inequality we have

2s K 142 — 2
S [ 1vul 2k [ 04 o) = 3 o)

Therefore,

St = S, (—A + V) zzn:/Rd|Vun|2+/Rd Vo

n n

ZKd/ pl+3—/ van
R4 R4

Using Young’s inequality we find that
Kap(a)' "3 = [V(2)-|p(x) 2 ~LiglV(0)-['"**?, Vo € R

where
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Thus

Zunz/

n

<de1+§ _ ]V_|p> > _ZLd/ V|12,
d Rd
Consequently,

DIl < ZLd/ V|

and hence Zl,d > Ly14 (as Ly 4 is the best constant). By the choice of Zl,d7 we get

(0+2) 7 ((5)e) o

Reversely, consider any orthonormal family {u,}, in L?(R%) and denote p(z) = > |un,(z)[*

2/d

Since Young’s inequality is sharp, we can choose V(z) = —cop(z)*/* with an appropriate

constant ¢g > 0 such that
[?dpl+% . \V,\p _ —Ll,d\V,\Hd/?

where

(+2)7) " ((+9m) " =1

On the other hand, by the LT inequality for the sum of negative eigenvalues of —A + V' and

the min-max principle,
Z/ 1Vt | +/ Vo= (tn, (~A+V)u,) > Tr(=A+V)_ > —Lyg | V[T
n R4 R4 " R4
Therefore, thanks to the choice of V,

S [ vtz [ Voo [ V=R [ g
— Jrd R4 Rd Rd

Thus [?d < K, since K, is the best constant in the LT kinetic inequality. By the choice of

(CH (S

[?d, we get

vl
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In conclusion, the best constants Ky and L; 4 satisfy

() " (e D)

Exercise. Let d > 1. Let {u,})_, C H'(RY) be an orthonormal family in L*(R?) and
define p(z) = 22721 |u, (z)|?. Use Rumin’s method to prove that

> [ Wi > Ky [ o)+ iar

R4 R4

Here the constant Kq > 0 depends only on d.

3.3 Birman-Schwinger Principle

In this section, we discuss an alternative approach to study the bound state problem for the
Schrédinger operator —A + V(z) on L*(RY). It is convenient to assume V' < 0 and denote

U = -V > 0. Our starting point is the following reformulation of the eigenvalue problem.

Theorem (Birman-Schwinger principle). Let d > 1. Let 0 < U € LP(R?) + LY(R?) with )
00 > p,q > max(1,d/2) ifd # 2 and 0o > p,q > 1 if d = 2. Recall that we can define
—A — U as a self-adjoint operator on L*(RY) with the quadratic form domain H'(R?)
and Oess(—A — U) = [0,00). Then for all E > 0:

(i) —F is an eigenvalue of —A — U if and only if 1 is an eigenvalue of Kp =

VU@)(—A+ E) "' /U(z) (with the same multiplicity).

(ii) The number of eigenvalues < —E of —A —U is equal to the number of eigenvalues

Moreover, Kg is a positive compact operator on L*(R?). )

Proof. Step 1. We prove that if —F < 0 is an eigenvalue of —A — U(z), then 1 is an
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eigenvalue of K. Consider the eigenvalue equation
(~A—U)f=—Ef, forsome 0% f e L*R?).
Then we can write
(~A+E)f=Uf = f=(-A+E)'Uf = VUf=VU-A+E)"VUNUY).

Thus
VUf = KpgVUY.

To conclude that K has eigenvalue 1, we need to show that 0 # VUf € L*(R%). Since
0 feL*RY and —A + E > E > 0, we have

Uf = (—A+ E)f #0.

Consequently, VU f # 0. Moreover, since f is an eigenfunction of —A — U, it must belong

to the quadratic form domain H'(R%). Hence,
IO = [ U1 < Cllilp < o

Thus if —F < 0 is an eigenvalue of —A — U(x), then 1 is an eigenvalue of Kpg.

Step 2. Reversely, we prove that if 1 is an eigenvalue of Kg, then —FE < 0 is an eigenvalue

of —A — U(xz). Consider the eigenvalue equation
g=Kgg=VU(-A+E)""WUyg, 0% ge L*RY.
Define
f=(-A+E)""Uy.

Then
(-A+E)f =VUg=U(-A+E)yUg=Uf

which is equivalent to
(-A-U)f =—EfY.

To conclude that —F is an eigenvalue of —A — U, it remains to prove that 0 # f € L*(R?).
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Note that

VU =VU(-A+E)""VUg=g#0,

and hence f # 0. Moreover, by Sobolev’s inequality, (—A + E)~Y/2y/U is a bounded operator

on L*(R%) (it is indeed a compact operator; see an exercise below). Therefore,
(—A+E)"VUge I)(RY) = f=(-A+E)'WUge H (RY.

From the above proof and the one-to-one correspondence between eigenfunctions f < g (i.e.
g=+VUfand f = (—A + E)~"'\/Uyg), we also obtain that the multiplicity of eigenvalue —E
of —A — U is the same with the multiplicity of the eigenvalue 1 of Kg.

Step 3. We can write Ky = BB* with B = /U(x)(—A + E)~'/2. Since B is a compact
operator on L*(R?) (see an exercise below), we conclude that Ky is a positive compact

operator on L?(R?). Therefore, by Spectral theorem, it has eigenvalues

M(E) > No(E)> ..., lim M\ (E) = 0.

n—o0
Note that for every n € N, E'+— A, (F) is decreasing and continuous. To see the monotonicity,
note that £ +— K is operator monotone: if £ > E’ > 0, then

(~A+E) ' < (-A+ E) ' = Ky = VU(-A+ E)" WU <VU(-A+ E)" VU = Kp.

Hence, \,(E) < A\, (E') by the min-max principle (in fact, —\,(£) is the n-th min-max value
of —Kg). On the other hand, if E > E’ > 0, then we also have

E(-A+E)'>F(-A+FE)'= EKp > FE'Kp.

Thus EX,(E) > E'\,(E’) by the min-max principle again. Combining with A\, (E’) > A\, (E),

we conclude that £ +— \,(E) is also continuous.

By a standard counting argument combining the one-two-one correspondence in Steps 1&2
and the monotonicity/continuity of A, (E), we find that the number of eigenvalues < E of
—A — U(z) is the same with the number of eigenvalues > 1 of K. It is easiest to see via a

Figure. O
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Exercise. Let d > 1. Let 0 < U € LP(RY) + LY(R?) with oo > p,q > max(1,d/2) if
d#2 and oo > p,q > 1 if d = 2. Prove that \/U(z)(—A+ E)~Y/% is a compact operator
on L*(RY).

Historically, the Birman-Schwinger principle was used by Lieb and Thirring to prove their
inequality
Tr|(-A+ V) | < Ls,d/ V_|*s,
R4

first for s = 1, d = 3, and then for s > 0 when d > 2 and s > 1/2 when d = 1 (it does not
work for the critical cases s =0, d >3 and s = 1/2, d = 1). In the following, to illustration

of the usefulness of this approach, we will represent
e The original proof of Lieb and Thirring in the physically interesting case s = 1, d = 3;
e A proof of the existence of bound states with any negative potential in d < 2.

The original proof of the Lieb-Thirring inequality for s =1 and d = 3:
Tr|(—A+V)_| < Lys /R V|3,
It suffices to consider the case U = —V > 0. By the layer-cake representation:
Tr|(-A-U)_| = /OO/\/'(—A - U+ E)dE
0

where N (—A — U + E) is the number of negative eigenvalue of —A — U + E (which is the
same to the number of eigenvalues < —FE of —A + V). By the Birman-Schwinger principle,

N(—A+V + E) is equal to the number of eigenvalues > 1 of
Kg = U(x)(-A+ E)"'WU(y).

Consequently, this number is bounded by the Hilbert-Schmidt norm of Kg. Note that Kg
has the kernel

Ke(z,y) = VI@Crle — y)v/T@), Culk) = m

Thus
NA=U+B) <Kl = ([ U@)Geta ~ p)PU)dndy.
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Using the Cauchy-Schwarz inequality and Plancherel’s theorem we have

2 2

N(-A—-U+E)< //RR Calz — )

= (L) ([ eeR) = (Loe)( L, mprmp®)
= (/R IUIQ) (/R mdk)E‘m < CE™Y? . U|*.

This bound is not good enough for inserting to the layer cake representation. But we can
adjust it by shifting U — (U — E/2),

N(-A-U+E)=N(-A—(U-E/2)+ E/2)

<N(-A—(U-E/2); +E/)2) < OE—W/ dz(U(z) — E/2)%.

RS

Thus we conclude
Tr|(—A —U) | = / AEN(~A — U + E)
0
< C/ dE [ dzx(U(x) — E/2)2 E7/?
0 R3

o @ / AEU () — E/22E " =C | U(x)da.
R3 0

R3

An alternative proof of the existence of bound states for 0 #V <0 and d < 2. (We

assume that V' is regular enough).

Denote U = —V > 0. By the Birman-Schwinger principle, —F < 0 is an eigenvalue of

—A — U if and only if 1 is an eigenvalue of
Kg=U@)(—=A + E)"'\U ().
Since K is a non-negative compact operator on L?*(R?), the norm operator
M(E) = || Kg|

is its largest eigenvalue. Let us prove that there exists £ > 0 such that A\ (E) = 1.
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Recall that £ — A\{(F) is decreasing and continuous. Moreover, clearly

E—oco

(We can show that limg_, || Kg|las = 0). On the other hand, let us show that if d < 2 and
0 <U#0, then

lim A\ (F) = co.
E—0

Indeed, when E — 07 we have, for any normalized function ¢ € L?(R?),

[P,
|27k |2

M(E) > (¢, Kpp) = <90\/5, (-A+ E)*lgo\/ﬁ> :;07;; |2dk /Rd

Here we have used Lebesgue Monotone Convergence theorem. Note that when d < 2, the

function |k|~2 is not integrable at 0 € R%. On the other hand, since 0 < U # 0, we have.
gm/_ U(0) / z)\/U(z)dz #0

for an appropriate choice of ¢. Moreover, note that k — o\U (k) is continuous (we have
oVU € L'(R?) when ¢ € L? and U € L'). Thus in summary, E ~ A\, (E) is continuous and

lim \(E)=0, lim \(E)=oc0

E—oco E—0

Thus there exists F > 0 such that A;(F) = 1. Then —F is an eigenvalue of —A — U. [

Remark: As said, the Birman-Schwinger principle alone is not enough to derive the CLR
bound. When d = 3, the Yukawa potential is given explicitly:

e—\/ﬁ|m|

Gr(k) = —  Ggpr) =

27k + E drla]

Hence, from the above analysis we find that

N(—A-U+E) < ||Kg|ls = //R V@G U d.rdy<//RS ¥ %dxd

for all £ > 0. Thus we have the Birman-Schwinger inequality for the number of all negative
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eigenvalues:

AL 1 U(z)U(y)
Mea-0 < [ G e

Recall the Hardy—Littlewood—Sobolev inequality: for p,q > 1, 0 < r < d saatisfying

we have

x
[ I ] < Col sl
Ré xRE |$ - y|

Thus we can estimate further
N(=A = U) < CIU 232 0.

In contrast, the CLR bound says that N(—A — U) < CHUH3/2

L3/2(R3) .

3.4 Kato—Seiler-Simon and Cwikel’s inequalities

In this section, we take a closer look to the operator f(z)g(—iV) and its connection to

spectral estimates for Schrodinger operators.

We have proved that if f, g : R — C are uniformly bounded and vanishing at infinity, then
f(x)g(—iV) is a compact operator on L*(R?). This property can be extended to Schatten

spaces.

4 N
Definition (Schatten spaces). Let 1 < p < oo and let S be a Hilbert space. The

Schatten space &,() contains all bounded operators A : A — F€ such that
lAlls, = (Tr(1AP))7 < o0, |A] = VA*A.

We denote by G (H) the space of compact operators, with the operator norm ||All.
. Thus &,() C &,() if p < q.

y

Remarks:

e G,(s2) is the space of trace class operators. For any A € &,(7) and any orthonor-
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mal basic {u,}n,>1 of 5, we have

Tr(A) =) (un, Auy) < oo

n>1

The value of Tr(A) is independent of the choice of the basis {u,}. Moreover, we have
the cyclicality of the trace: if AB and BA are trace class, then

Tr(AB) = Tr(BA).

G, (H) is the space of Hilbert-Schmidt operators. This is a Hilbert space with the
inner product
(A, B)s, = Tr(A*B).

When 57 = L*(Q, ), any operator A € Gy(H) has a kernel Ky € L*(Q x Q, pu X p)
such that

(Af)(x) = / Kale, ) f(u)duly), Vf € IX(Q).

The mapping A — K4 is a unitary operator from L?(Q) to L*(Q?), in particular:

A, = [[Kall2-

In general, when A is a compact operator on 7 = L*(Q,u), we have the spectral

decomposition

A= Aafun) (v,

n>1
with {u,}, {v,} orthonormal families in 57 and A\, € R, A\, — 0 as n — oco. The kernel
of Ais

Ka(x,y) = Z Anun(x)m.

n>1

With this convention, the trace of A can be computed by the diagonal part of its kernel

Tr(A) = /QKA(:C,x)d,u(x) = Z A (Upy U ) 2

n>1

(which is well-defined if A is trace class). From the spectral decomposition, we also

obtain the polar decomposition A = U|A| with U a unitary operator on .

The Schatten space &, satisfies properties similar to L” spaces. They are Banach
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spaces. Moreover, if p,g > 1 and 1/p + 1/q = 1, then we have Holder inequality
|AB|ls, < || Alle, | Blls,-
More precisely,

[Alls, = sup |Tr(AB)| = sup [(A, B)s,|-

[Blle,=1 [ Blleg=1

Exercise. Prove Holder inequality: if p,q > 1 and 1/p+1/q =1 then
|ABlls, < [[Alls, | Blls,-

Hint: You can use the spectral decomposition.

Now let us come back to the operator f(z)g(—iV). A basic and very useful property is

Theorem (Kato-Seiler-Simon inequality). Let f,g € LP(RY) with 2 < p < oco. Then

1 (2)g(=iV)lls, < IIfllzellgllze-

Proof. Tt suffices to consider the case when 0 < f, g € L>(R?) with compact supports. When

p = 00, it is obvious that

1 (2)g9(=iV)llew < fl[Loellgllze-

When p = 2, we have the exact equality

1 (2)g(=iV)lle, = I F 12 Mgl 2

In fact, the integral kernel of f(x)g(—iV) is

K(z,y) = f(z)§(z —y)

where ¢ is the inverse Fourier transform of g. Therefore

1f(@)g(=iV)lls, =/ / [f(@)[*lg(z — y)ldzdy = || flIZ2llalZ2 = 17117 llgll7--
Rd JRd
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Here we have used the identity between the Hilbert-Schmidt norm of an operator with its

kernel and Plancherel theorem.

The case 2 < p < oo can be handled by complex interpolation. We skip the details and
refer to Simon’s book “Trace Ideals and Their Applications” (Theorem 4.1). O

A deeper result concerning f(x)g(—iV) is Cwikel’s inequality. This is related to the weak

L? norm and weak Schatten norm.

Definition. For 1 < p < oo, the space LP (R?) contains functions f : R? — C such that

HfHLg1=:$H)(7Hx:\fo)\>frH%> < o0o.
>0

Remarks:

e Clearly the weak-L? is smaller than the usual LP norm:

1z = g |fP > sup /{f|> } P> Pz (@) > 7 =[£I,

>0
e We know that |z|7! ¢ LP(R?) for all p, but |z|~* € L% (R?) since
ozt > re =7{a |z < 7' }E = |By|a.

e The expression || f||;» define a quasi-norm because instead of the triangle inequality

we only have
If +9lleg, < CU Ny, + llgllzg)-

Alternatively we can also define
1 1 1
frosup|Q e [ [f(x)|de, -4+ — =1
Q Q p p
which is indeed a norm (the supremum is taken over all set 2 with 0 < || < 00).

e The Hardy-Littlewood-Sobolev inequality is equivalent to a weak Young inequality

r 1 1
[ t@te - h)asdy] < Cllololigler, 4+ 7+ =2
Ré xRd p q T
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By optimizing over h we can also write equivalently,

1 1 1
1f =gl <Clfllellgllze, —+-=14-.
P q T
This is stronger than the usual Young inequality
1 1 1
1f =gl < Cllfleellgllza, Ste= L+
[ N

Definition. Let 5 be a Hilbert space. For 1 < p < oo, the space &,.,(R?) contains

compact operators A on € such that

3 =

[4fl,... := sup (v (N(r ~14]))") < co.

. Here N (1 — |A|) is the number of eigenvalues > T of |A| = vV A*A. )

Obviously, we have ||Alle, . < [|A|le,. The following deep result is interesting in its own and
will imply the CLR bound.

Theorem (Cwikel’s theorem). If f € LP(R?) and g € LP (RY) with 2 < p < oo, then

1 (@)g(=iV)ls,.. < Cpllfllzellgllze,

Proof of the CLR bound using Cwikel’s theorem.
Let d > 3 and 0 < U € LY%(R%). By the Birman-Schwinger principle, for any E > 0, the

number of eigenvalues < —E of —A — U(z) is equivalent to the number of eigenvalues > 1 of

Kp = /U(z)(-A+ E)"/U(2) = VU (2)g5(=iV)/U(x)
with gu(p) = (|p|* + E)~Y/2. Consequently,

N(-A-U+E) < |Kgllg?, = VU (2)gu(—iV)[$, -

6d/2,w

Using Cwikel’s theorem and the uniform bound gg(p) < |p|~! we find that

VU (@)g5(=iV)lles. < CIVT1ellgellzg < CIUIIL.
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Thus
N(-A-U+E) < C|U||77..

Since it holds for all E > 0, we conclude that N'(—A —U) < C’||UH%2/2. O

Proof of Cwikel’s theorem. Assume that f,g > 0 and || f|z» = ||g||z, = 1.

Step 1. We decompose

= far falw) = f@)12"" < fz) <27),

nez
9= gn gnlx) = g(x)1(2"" < g(z) < 27).
nez
Then
X = f(2)g(—=iV) = Y ful@)gm(—iV) = Ax + By
mne”
where

Z fn gm Zv Bk Z fn gm ZV) Vk € Z.

m+n<k m+n>k

By the Cauchy-Schwarz inequality,
| X|* = (A} + By) (A + By) < 2(A[ A, + BpBy) = 2(|Al* + [Bi[?).

Step 2. We prove that
[AL] < 2" Vk e Z.

For any normalized functions u,v € L?*(R%), by the Cauchy-Schwarz inequality we have

o, A < 57 L fwtlllgn®l = S5 L fwtelllge ]

m+n<k I<k n€Z

=> 2 127 faullll2" ge-nl

1<k ne’

< 2 (Sl gal?) (Xl tgeml?)

<k neL neL

< 222 _ ok+1

<k
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Here we have used

Z(zinfn)Q <1, Z(Qimgm)2 <1

nel meZ
which follow from the facts that the functions {27" f,,}, are < 1 and have disjoint supports,
and the same for {27"¢,, } .

Step 3. We prove that
Tr(|B?) < C2@%P* vk e Z.

Indeed, it is straightforward to see that

T(BP) =T (BB = 3 3 T (0ul—i9)fulo) o (2) g (i)

m4n>k m/+n/ >k

=Y Y T (@ @)g(=iV)gn (V)

m4n>k m/+n’ >k

= > W (IL@Plan=iVIP) = X Ifal@)gn (=)

m4n>k m+n>k
= > WfallZzlgmllze =D l1Aall7e D lgmlize.
m4n>k ne’l m>k—n

Here we have used the cyclicity of the trace and the fact that {f,}, have disjoint supports,
and that {g,, }.» have disjoint supports. The L*norm of g,, can be controlled by the weak

L? norm ||g||z» =1 as follows:

ol = [ la@P1C" < g(o) < 27)ds
< 22m{2mt < g(x) < 2™}
< 2D (D)2 < g}
< 2 sup (717 < g(@)})
T>

— 22mfp(mfl)Hg”Pp — 2(27p)m2p_

Combining with f,, > 2"~! on its support and || f||z» = 1 we have

Te(|Bel?) = S fall2e S gallie < ST IfullZe S 27mor

neZ m>k—n nez m>k—n

<G Y A2 = ek [ a3 )2

nez neL
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< 207k / A | fal@) = 2t / ol f (@) = G2

neL

Step 4. In summary, we have proved that for every k € Z, we can split
[X[P <2 AR? + [Bef?) < 202200 + [Byf?),  Tr(|Byf?) < G277,

Note that ¢, := 2 x 22*+1) varies from 0 to co when k runs from —oco to co. Therefore, for

every € > (0, we can choose k£ € Z such that
er L e < g = 4deg.
Since € ~ 2%¢ the above splitting argument tells us
X[ <e+Y. withan operator Y. >0, Tr(Y.) < C,e'?/2

By an exercise below (with |X|? = A) we find that |X| is a compact operator and its

eigenvalues \; > Ay > ... satisfies
Ay < Cpn_l/p, Vn > 1.
This implies the desired inequality

IXIZ, = sg;gﬂ{n eN:\, >7} < sup ?{neN:Cn~ V7 > 7} < C,.
T T

Exercise. Let A > 0 be a self-adjoint operator on a Hilbert space. Let oo > q > 1.

Assume that for every € > 0, we have the operator inequality
A<e+ B. with an operator B, >0, Tr(B.) <&
Prove that A is a compact operator and its eigenvalues A\y > Ao > ... satisfy

Ay < C’n’l/q, Vn > 1.



Chapter 4
Weyl’s law

Weyl’s law states that the semiclassical approximation (recall ¢ = min(¢,0))

T8+ V)~ [ [ 12k 4 V@) Pdids = ~2ly [ V(@)
R4 JRA ’ R

becomes correct in the strong coupling regime V — AV with A > 1. In principle this
result holds for all d > 1 and all s > 0. Moreover, the result for one s implies the result for

all others s > 0 via the layer cake representation (we will come to that).

4.1 Coherent States

In this section we discuss a very general method to connect the Schrodinger operator —A +

V() and its phase-space representation. The idea goes back to Schrodinger (1926).

4 )
Definition (Coherent States). Take G € C*(RY), G(z) = G(—=), |G|z = 1. For

every (k,y) € R? x R, we defined the function Fy, € L*(RY) by

Fry(z) =Gz —y), VreR%

Note that ||Fry|l ey = 1 for all (k,y) € R* x R%.
A y

The key feature of the coherent states is that they provide a partition of the identity on
L?*(R%) in terms of the phase space R? x R,

o6
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o7

’
Theorem (Resolution of identity). We have

L 1P Pl iy = e

namely for all u € L*(R?) we have

L, L 1wk =l

Moreover,

/ (Fy )2k = (G2  Jul?) (w),

/ (Fig ) Py = (1G] * [@)(R).

\

Proof. For any u € L*(R?), by Plancherel theorem and G(z — y) = G(y — z) we have

/ | (Fy, w)|*dk = / / e2mike Gy — x)u(z)dr 2dk: = / ‘a(y/—-\)u(-)(k) * k=

Rd R4

B / |Gy — @) Pllu(@)dr = (|G * |[ul*)(y).

Consequently, integrating over k € R? and using ||G||;2e) = 1 we obtain

/ / [(Foys ) Py = / / 1Gly — ) Plu(e) Pdedy = G2 llulZa = [JulZ.

Rd R4 Rd R4

The other identity is left as an exercise.

Exercise. Prove that for all u € L*(RY) and k € R?,

/ (i u) Py = (IG % [af*) (k).

Now we turn to the analysis of Schrodinger operators. We have the following exact phase-

space representation for the kinetic and potential operators.
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1
Theorem. We have the quadratic form identities
—ARd = / / |27T]€|2|Fk,y><Fk,y| dk:dy — ||VG||%2
Rd JRd
and
(V % |G)?) /d/ Y)| Frey) (Fr,y| didy.
\ - J

Proof. Kinetic term: we prove that if u € H*(R?), then

Jrvut = [ [ kP Py = 96l
Rd

Using

/ (B ) 2y = (G # @) / Gk — ) Pla()Pdg

R4

we have

[ [ emkiFry sy = [ [ ekIGee - o) Pato)Paad
Rd JRR4 Rd JRd
= [ [+ aPIGw)PIa) Py -
]Rd ]Rd

— (2n)? / / (Il + o> + 20 - 0) |G )P [a(q) *dadp
R4 JRA
The first term is

(2m) /Rd/ [af|G(p)*[1(q) Pdadp = |!G|\L2/|27T<J!2|ﬂ(q)l2dq= IV7ul[72

Rd

Similarly, the second term is

e [ [ WPIGwPIa sy = VG el
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The cross term vanishes because of the symmetry \@(p)| = |G(-p)|:

/ / p - q|G(p)*[a(q)|*dgdk = / p|G(p|di (m/ gli(q)?dg | =o.
Rd Rd
(. ;’0

Potential term: we prove that if u € L?(RY), then

/(V*|G| JJuf? = / / V(Fiy, ) [2dkdy.

Recall
/\Fky, k= (G [u)0) = [ |16 =) Pluta) e

Here we have used G(z — y) = G(y — z). Hence,

/Rd /Rd )(Fry, w)*dkdy = /Rd/ |Gz — y)|u(x)|*dedy = /(v |G |ul®.

Rd

4.2 Weyl’s law for sum of eigenvalues
In this section we focus on the case s = 1, which is relevant to the ground state energy of

Fermi gases.
1

’
(RY) with p > max(1,d/2) and V_ €

Theorem (Weyl's law). Let d > 1, V € L

LY 5(RY). Then in the limit A — oo

Tr|(—A+AV)_| = L;{d/ IAV_|™E 40 (AH%
R

N—

Z

\

Proof. General strategy: Take a radial function 0 < G € C®°(R%) such that |G| = 1
Denote V = |G[? % V. For any normalized function u € L2(R?) we have the phase-space

representation

(u, (A + AV )u / / (127k[> + AV (1)) [{Fry ) Pdkdy — |V G2
R4 JRd
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Therefore, for any orthonormal family {u, }_;,

N N
> Aty (A + AV )u,) = / / (127K + AV () D [(Fhg un) Pdkdy — N VG|[3..
n=1 R4 JR4 n=1

The key observation is that for all (k,y) € R? x R, by Bessel’s inequality

N
Z| Fkyaun ||Fk7y||%2 =1
n=1

Therefore, by the bathtub principle

N
/ / (127k” + AV (1)) D [(Fry, ui)[Pdiedy > / / [127k[* + AV (y)] _ dkdy
Rd JRd =1 Rd JRd

- _Lgld/ AV |13,
k) Rd

Consequently, if N'(—A + )\‘N/) < 00, then we obtain the lower bound
Tr(~A+\V)_ > —L9, /R IAV_['*2 — N (=A + V)| VG2
This will lead to the desired lower bound
Tr(—A+AV)_ > —Li{d /Rd |/\V,|1+% + O(A”%)Hm

provided that we can

e Replace V = |G|?«V by V, namely take |G|2 — &. The difference is controlled by the
Lieb-Thirring inequality.

e Show that N'(—A + )\1~/)||VG||%2 < A2 Ifd >3 and V_ € LY2 then it follows from
the CLR bound

N(=A+2V) < Cd/ IAV_ |4/ %Cd/ IAV_ |72,
R4 Rd

In the case d < 2 and/or V_ ¢ L%? we need to refine the analysis slightly.

To achieve the matching upper bound, we use the min-max principle

Tr(—A4+ V). <Tr((-A+V)y), 0<~v<1
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with the choice
Y= / / |F ) (Foy | L(127k[2 + AV (y) < 0)dkdy.
R R

Now let us go to the full proof.

Step 1: Lower bound in the simplest case d > 3 and V_ € L'"2(R%) N L2 (RY).
By the min-max principle, we can assume V = V_ < 0. Assume that —A + AV has N

eigenvalues with orthonormal eigenfunctions {ul} . By the CLR bound,
d
<Oy / |)\V_|5
Rd

We need to prove that

N

Tr((—A+AV)_) = Z(uz, (A 4+ AV )u,) > —L‘ﬂd/ |)\V_|1+% + 0()\1+%)A_>OO.

=1 Rd

Let us decompose

N N N

> i, (A AV )iy = S (i, (1= 2)(=2) + ATV Y ) + 3 (i (£(=2) + AV = V) s )

i=1 i=1 i=1

with a parameter ¢ € (0,1) and V = G2 % V with a radial function 0 < G € C>®(RY),
|G|lz2 = 1. Recall that Fy () := e*™**G(z — y).

For the first term, we have the coherent state identity

N

3 <u ((1 — ) (—A) + V)u> = /R /R (1 = &) |27k + AV (1) ZN: (Fhy i)y

i=1 =1

— N(1 - ¢)||[VG|3-.

Using the uniform bound
N
<Y By ud P < Pyl =1, ¥(k,y) € R? x R
=1

we obtain

N

/Rd /Rd ((1 —¢)|2nk|? + )\V(y)) Z |(Fy, wi)|dkdy

=1
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Lcl 4
> 1—¢&)]2nk|?> + \V dkd :—i/ AV |2,
> [ [ T olm - avi)]_dkdy =~ [ vy

For the second term, we use the Lieb-Thirring inequality to get the lower bound

ﬁ:<u<( A)+ AV — V) > ed/z/ AV — ) |1+4

Combining with the above upper bound on N, we conclude that

cl

L 4
TH(-AAV)) >~ [ WG [ =) cavalis [

R4
Therefore,
i inf ACH Tr(—A 4 V) ) > — [y et [V =)
A—00 —8)d/2 Rd - d/2 .

This holds for every € € (0,1) and V = G? x V. Replacing G by
Go(z) = n??Gi(nz), n>1

for a fixed function G; we find that |G, |> * V — V strongly in L*%2(R%) as n — oo (recall
that we are assuming V = V_ € L'*%2). Thus

Lcl
S (14d/2) 1,d 1+¢
ll)r\r_1>£f)\ Tr((-A+AV)_) > A= /Rd\V\ 2

for all € € (0,1). Finally, sending ¢ — 0 we obtain the desired lower bound

lim inf A~H2) Tr((=A + AV)_) > —Lgld/ V_|'+e
A—00 ’ Rd

Step 2: Lower bound in the general case d > 1 and V_ € L2 (R%).
Let us explain how to remove the restriction d > 3 and V_ € L%(Rd).

Removal of the restriction on regularity. First, the additional regularity condition on
V' can be removed easily using the Lieb-Thirring inequality. To be precise, let us assume

that we have proved the desired lower bound

lim inf A\=OF2D Te((—A + AV)_ Lgld/ V_|'+e

A—00
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for all V. € LY(R?Y) N L>®(R%). Now consider a general V satisfying only V_ € L'*%(R9).
Then for the lower bound, we can focus on the case V' = V_ < 0. Take a sequence {V,,}5°,

such that V,, — V strongly in L7 (R?). Taking ¢ € (0, 1), we can split
SAHAV = [(1=2)(=A) + AV, | + [(=4) + AV = V2)].
By the min-max principle (see an exercise below), we have the lower bound

Te((—A+AV) ) 2 T ([(1=)(=2) + AV | )+ 7Tr ([e(=2) + AV = V)] ),

By the assumed lower bound for functions in L' N L>, we have

Lcl
liminf X0+ T ([(1 - )(-2) + AV, ) 2= [ e,
] —7 |,

A—o00

By the Lieb-Thirring inequality

lim inf A~(4/2) Ty ([a(—A) SV — Vn)] ) > _ﬁ/ Vv
) g

A—00 cd/2

Thus

de d d
lim inf A=H2 Tr((=A +AV)_) > —W/Rdmﬁﬂ d/z/ IV — V,|'te.

A—00

Sending n — oo, and then £ — 0 we obtain the desired lower bound for Tr((—A + AV)_).

Exercise. Let A be a self-adjoint operator on a Hilbert space such that A- = A1(A < 0)

18 a trace class operator. Prove that

Tr(A_) = inf Tr(Ay).

0<~<1

Here we use the convention Tr(Avy) = Tr(\/YA/7Y) = Tr(\/7A-7) + Te(VVAL/7)-

Removal of the restriction on the dimension. Let us consider d < 2 and prove

lim inf A\=OF2 Tr((—A + A\V)_ Lgld/ V_|'+e

A—00
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for V.=V_ e L}R%) N L*(R?). Introducing the energy cut-off £ > 0, we can write
Tr((—A+AV)_) = Tr((—A+AV)I (= ANV < —E)+Tr((—=A4AV)LO > —A+AV > —E)).

Note that in low dimensions, the number of eigenvalues < —FE of —A + AV is bounded (see

an exercise below). Therefore, we can prove
Tr((—A + AV)I(—A £ AV < —B)) > —Lg{d/ AV [+ 4 o(A1+E)
Rd
by repeating the proof in Step 1 and replacing the CLR bound by

N(E=A+AV +E) < CET | VA
R4

This contributes to the error O(AH%) it we choose E' such that
ET' N <« A2 e E> 2T
On the other hand, using the obvious operator inequality
AL(0>A>—E) > -E'"%|A_|*, Vs (0,1)
with A = —A 4+ AV and the Lieb-Thirring inequality we have

Tr((—A+AV)L(0 > —A+ AV > —F)) > —CdEl‘s/ ]AV|5+%, V1/2 <s< 1.
R4

This contributes to the error O(AH%) if we choose E' such that

BNt M = B
Thus eventually we choose A > E > Aii and s € (1/2,1) arbitrary. This conclude the
proof of the lower bound for d < 2.

Exercise. Let 3 >d > 1 and V € L*(R?%). Prove that for every E >0

N(=A+V+E)<CES | |V
R4
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Here N(—A +V + E) is the number of negative eigenvalue of —A +V + E.

Step 3: Upper bound in the case V € L'*2(R?) and V_ € L% (R%).

We use the variational principle (see an exercise above)
Tr((—A+AV)_) < Tr((—A+ AV)7y)
with the choice

- // Fug)(Figldkdy, M = {(k,y) € R? x R [2nk? + AV () < 0}.
M

Recall the coherent states
Fiy(x) = e%ik'xG(x — )

with a radial function 0 < G € C®(R?), ||G||z2 = 1. Clearly 0 < v < 1 (by the resolution of
identity) and
Try = |M| = Lg{d/ |V_|g < 00.
Rd

Thus
Tr[—A + AV] < Tr[(—A + AV)y] = / / (Fiys (A + AV Fi ) didy
M
Now we calculate
(Frys (FA+AV)Fyy) = / (IVaFiy (@) + AV ()| Fry(2)]?) da.
Rd

The potential part is easy as |Fj,(z)[* = |G(x — y)|*>. For the kinetic part we use the fact
that G is real-valued:

Vo Fry(2)]? = |2mike®™ ™ Gz — y) + 5 V,G(z — y)|”

= [27k|* |Gz — y)|* + |V.G(z — y)|*
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Hence,

(Fry, (A +AV)Fyy) = / (120k[* |G (z — y)” + V.G (z — )] + AV (2)|G(z — y)|*) d =

= 27k]* + |[VG|32 + (AV * G?)(y).
Therefore we conclude that

Tr[-A+AV]_ // Fryr (= + AV)F,)dkdy

= // (|27rk:|2 +[IVG32: + (\V * GQ)(y)) dkdy
= / (|27rk:|2 + AV (y)) dkdy + )\// ((V = G*H(y) — V(y)) dkdy + VG322 M|

st [V LN [ V(G- V) g+ [VOIRLE [ V
R4 R4

Thus

lim sup A~CH/2 Tr [—A + AV]_ < —Lf;{d/|v_|1+3+Lg{d/ V|2 (V+G?—V)dy.
A—00 Rd
]Rd

We can replace G by G,(z) = n2G1(nz) for a fixed function 0 < Gy € C° with [|G1|| L2 (gay =
1. Since V € L'*%, we have V % G2 — V strongly in L'*%(R%) when n — oo, and hence by
Holder inequality

d d
[V (V@2 =V o] < Vg IV * G2 = Vg
R4

d
= ||V_Hzl+% |V % G2 — V||L1+% —0 asn— oo.
Thus we obtain the desired upper bound

lim sup A\~ Tr [—A 4 AV]_ < Lild/ﬂf |1+2.

A—00

Step 4: Upper bound for V, € L (R%) with some p > max(1,d/2), V_ € L'*2(R%).
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Let us explain how to remove the restrictions V, € L2 (R?) and V_ € L2 (R?).

Removal the restriction V, € L'*2(R%). Take V, € LV

loc

(RY) with p > max(1,d/2). For
a technical reason, we assume also that V. € L*(R?) and V_ has compact support. Then

the proof in Step 3 gives us

d
limsup A" Tr [—A + A\V]_ < —Lil,d/V_1+2 + Lg{d/ V|2 (V+G? = V) dy.
Rd

A—00
Rd
We can decompose
VIE(VsG@=V)= [ [VI2(VoxG=V)dy+ | [V |2 (Vy G dy
R4 R4 R4
— ]V_\% (VoxG*=V.) dy+/ (|V_|3*G2)V+dy
R4 R

Again, we replace G by G,(z) = n¥%G,(nz) for a fixed function 0 < G; € C¥ with
|G1l|z2(rey = 1. Then similarly to Step 3, using V_ € L**% we have

lim [ V|5 (V_xG2—V.)dy=0.

n—oo Rd
Since V_ and (G; have compact supports, the supports of V_ and \V,|% * G2 are contained in
a ball By independent of n. Moreover, since V_ € L we have [V_|2 x G2 — |V_|%/2 strongly
in any LY(Bg) with 1 < ¢ < oo. Since V, € L} , we have V, € LP(Bpg), and hence by

Holder’s inequality

lim [ (V_|2 G2V, = lim/ (\V\Z*Gi)m:/ IV_|2V, = 0.
n—o00 Br B

n—00
Rd R

Thus we get the desired upper bound

d
limsup A" Tr [—A + \V]_ < —Lﬂd/V_HQ.
A—00
Rd

Removal the restriction in V_. Now we assume only V_ € L”%(Rd). For every R > 0,

we consider

Ve =Vy+V_1(lz| < R)L(|V-| < R).



68 CHAPTER 4. WEYL’S LAW

Since V' < Vg, by the min-max principle and the
Tr((=A+AV)_) < Tr((—A+ AVg)-).
Moreover,
(Vr)- = V_1(|z] < R)I(]V_| < R)

is compactly supported and uniform bounded. Therefore, by using the above upper bound

for Vi we have

A—00 A—00

lim sup A~0H9/2) Tr [—A 4 AV]_ < limsup A-CF92) Tr [— A + AVg] < LS, / (Vi) |72
Rd
Then by Monotone Convergence Theorem,

A—00

lim sup A~ T [~ A+ AV]L <~ L Jim / |(Va)-"5 = ~Li, / V|,
7 R—o00 ’
R4 RA

This completes the proof of Weyl’s law for the sum of negative eigenvalues. [

In the above proof of the upper bound, we have used the standard choice of the trial operator

y = /d/d|Fk7y><Fk7y|]1(|27rk]2+)\V(y) < 0)dkdy.
R R

We can also use a modified trial operator which simplifies the computation a bit.

Exercise. Let d > 1. Assume that V. € L'T2(RY) and V. € LY (RY) with p >
max(1,d/2) if d # 2 and p > 1 if d = 2. Let Fy,(x) = e*™**G(x — y) with a radial
function 0 < G € C2(R?) satisfying ||G||p2re) = 1 and define the operator on L*(R?)

Fim [ Bl 2k 4 NG < V)(w) + [ VG < 0)dhdy,
R R

(i) Prove that

d

T2
Tr((—A +A\V)7) = —Lf{{d/

Rd

(G2 V + V) _|
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(ii) Using an appropriate choice of G to deduce that

A—00

lim sup A~CFYD Te((—A +AV)-) < - L, / V|1,
Rd

69



Chapter 5

Dirichlet Laplacian

4 Y
Definition (Dirichlet Laplacian). Let Q be an open set in R?. Consider —A on L*(Q2)

with the core domain C°(Q). Since —A > 0, namely

(1, —Au) = / Va2 >0, VueC®(Q),
Q

it defines the Dirichlet Laplacian —Ap by Friedrich’s extension. The quadratic form
. domain of —Ap is denoted by H} ().

y

Remarks:

e If we consider —A on L?(Q2) with the core domain C*°(€2), then we also have —A >0
and it defines the Neumann Laplacian —Ay by Friedrich’s extension. The corre-

sponding quadratic form is H'(Q) which is the Hilbert space with the natural norm

HUH?W(Q) = HVUH%?(Q) + ||UH%2(Q)'

Here the derivatives Vu = (0,,u, ..., 0;,u) should be interpreted in the distributional

sense, namely

/(axdu)gadx = —/u@xdgadx, Vo e CF(Q).

Q Q

e In general, Hj(Q2) # H'(Q) and —Ap # —Ax. The boundary matters here! In
fact, by the definition of the quadratic forms:

——H(Q) —H' ()

Hy(Q) =Ce(Q) 7, HY(Q) =C=(Q)

70
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In practice, any function in H}(€2) can be approximated by a function in C°(Q), and
the latter can be think of as a function R? — C (extended by 0 outside Q). This
density argument makes the computations on the Dirichlet Laplacian rather similar to
the usual Laplacian on L?(R?).

e Obviously for any u € H'(R), the restriction | always belong to H*(2). The reserve

direction requires the smoothness of the boundary 99: if the boundary is C!, then
HY(Q) = {ugq : u € H'(RY)}.
In this case, we also have
Hj(Q) = {u e H'(Q) : ul,, = 0}.

Here the trace operator u u} a0 Hrst defined for smooth functions u, can be

extended to be a continuous linear operator H*(Q2) — L?(992).

We will need only the following simple fact on H}(€2).

Lemma. For any open set Q C R, if u € HY(Q) and suppu CC 2, then u € HI(Q).
Consequently, if u € H'(R?) and suppu CC Q, then uq € H}(Q).

Proof. Because suppu CC €2 there exists a € > 0 such that
suppu + B.(0) C Q.

Choose
g € CX(RY), suppg C Bi(0), / 9=

Define g,(z) = ng(nx). Then
gn € C(RY), supp g,, C B,-1(0), / gn = 1.

Denote the function @ : R* — C by
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Then ¢, = i * g, € CZ(R?),
supp ¢, C supp(@) + supp(g,) C supp(a) + B,-1(0) CC Q

and ¢, — u strongly in H'(Q2). Thus u € H}(Q). O

5.1 Berezin-Li-Yau inequality

Recall the Lieb-Thirring kinetic inequality: for any orthonormal family {u,}»_, in L*(R?),

N N
S [Pz K [ 0 pta) = 3 (o)l
n=1 Rd R? n=1

The Lieb-Thirring conjecture states that we actually have

d (2m)?

_— > when d > 3.
d+2 |B|a o

K= Kj =

Here |B,| is the volume of the unit ball in R?. If we assume that all functions {u,} are

supported on a bounded set €2, then the LT conjecture implies that

N cl 1+2 cl

Z 25 ol +2 K e K 1+2
/leu"| - d/ vz €2 IQ/Cl(/np> - |Q|2/dN B

n=1

This weaker inequality has been proved rigorously by Berezin (1972) and Li-Yau (1983),

and it holds in all dimensions d > 1.

4 N
Theorem (Berezin-Li-Yau inequality). Let d > 1 and let Q C R be an open bounded

set. For N > 1 and any orthonormal family {u,}Y_, in L*(Q) with u, € H} (),

> d_ (2m)°
\V4 . 2 N1+ Kcl - . )
Z/' 2 \Q|2/d 1T d+2 B3
\ y

Proof. By a density argument, we can take u, € C*(Q) for all n and think of {u,} as

functions RY — C (extended by 0 outside 2). Using Fourier transform, we can write

N N N
Z/|Vun|2 :Z/|Vun|2 :Z/|27rk|2|ﬂn|2 :/|27rk;|2F(k;)dk
n=1 0 nled "Zle R4
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where

N
0< Fh) =Y [P =Y /un(x)e2”k"”dx < / ek 2 4 = ().
' Q

Q

Here we have used the fact that {u,} is an orthonormal family in L?(2) and Bessel’s inequal-

ity. By the bathtub principle, it is easy to see that the minimum

inf /|27rk:|2F(k;)dk 0<KF<KI|Q, | F=N
Ra
Rd

is attained by
Fo(k) = Q1 (k)

where ball B = Bg(0) is determined by

=

N
N = F:QB:QBRM:»R:<—>
/ 19[Bxl = |21|B1] i

Thus

_d 42 1
~d+2|By|i |0
N——

=K

1+3

N
3 |Vun|22/]27rk\2]Q|dk:|Q]Rd+2 / 2k [2dk
n=1 Br k|<1

O

As a direct consequence of the Berezin-Li-Yau inequality, we have the lower bound for the

sum of eigenvalues of the Dirichlet Laplacian on 2.

Exercise. Let d > 1 and let Q C R? be an open bounded set. Let pn < ps < ... be the

min-maz values of the Dirichlet Laplacian —Ap on L*(2).

(i) Prove that

cl
S N N 2 1.
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(ii) Deduce that —Ap has compact resolvent (hence all {u,} are eigenvalues).

(iii) Prove that 0 < py < ps.

The Berezin-Li-Yau inequality can be rewritten in the following dual form.

é Y

Theorem (Berezin-Li-Yau inequality). Let d > 1 and let Q C R? be an open bounded
set. Let py < po < ... be the eigenvalues of the Dirichlet Laplacian —Ap on L?*(£2).

Then for all X > 0, we have

o0

D lhn = A = —LG QN
n=1 y

Proof. For every N > 1, we have

N N Kol ,
2
S (=N =3 = NA> iV N> Lo
n=1 n=1
Here we have used Young’s inequality
G 1 1
a_+_2ab7 (I,,bZO, p,qu -+-=1
p q P q

and the relation

(0 2)) " (e D) "

Thus we can take N = N () the largest index such that py() < A and obtain

o N(N)
-~ S -
n=1 n=1

Remark: Heuristically, the above inequality justifies the Lieb-Thirring conjecture

TI‘LQ(Rd)(—A + V)_ 2 _Lil,d/ |V_|1+%
Rd
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for the hard core potential
—-A if z € Q)
+00 if x ¢ Q.
5.2 Sum of eigenvalues

The lower bound in the Berezin-Li-Yau inequality is sharp in the limit N — oo, namely the

semiclassical constant K¢ is optimal.

f N
Theorem (Weyl’s law for the sum of eigenvalues). Let d > 1 and let 2 C R¢ be an

open bounded set. Then the eigenvalues py < ps < ... of the Dirichlet Laplacian —Ap
on L*(Q) satisfy

N
K¢ 2 2 d (2m)?
i = —LNYa L o(NY )y oo, K= —. .
Z“ B WO T d+2 |By3
G Yy

Proof. The Berezin-Li-Yau inequality gives the lower bound (even without error). It remains

to prove the upper bound

Recall that by the min-max principle,

N N
Z i = inf {Z(ul, —Apu;) {uz}f\il C Hj(Q) orthonormal family in LQ(Q)}
i=1 i=1
= inf {Z Aifus, —Apu;) | {ui},s; € Hy(Q) an ONF in L*(Q2),0 <\ <1, Ay = N} .
i>1 (

We choose the trial operator v = - Aiu;) (us] using the coherent states:
vim [ [ 1m015)IF) (P | didy
Ré RA

with a ball Bg = Br(0) and a set Q@ cC Q. Recall that Fy,(z) = e>™ G (z — y) with a

radial function 0 < G € C°(R?) is a radial function. Then v is a trace class operator on
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L*(RY) satisfying 0 < v < 1. Moreover, we can choose R > 0 such that

S

~ ~ N
Try=|Q||Br| =N < [Q||Bi|R*=N <= R= <~ )
€| B

In particular, we have the spectral decomposition

i>1 i>1

We can also require
: L. =
suppG C Bs(0) with 0 := §dlst(Q, Q°) > 0.

Then all supp u; C Q4+ supp G CC ) because for any test function ¢ > 0 supported outside
Q-+ supp G we have

Z)\ Pu; —Tl"(p’)/ //]]'BR <Fky7 >|2dkdy:()
i>1 Rd W—/
R4 Rd =0
(as Fy, = ™' G(z — y) and ¢(x) have disjoint supports). Next, we compute
> A / V] = Tr 2 (gay (— A7)
i>1
— [ ] Lo OV Fu iy
Rd JRd

/Rd /Rd Lpp(0) )(|27rk|2 + |]VG||L2>dI<:dy
= |Q|Rd+2 / |27Tk‘| dk + |Q||BR|||VG||%2

|k|<1

Kgl 1+2 2
= WN 1+ N[|VG][L-.

This calculation also shows that u; € H'(R?), and hence (u;)jo € H}(€2). Thus in summary,

by the min-max principle we conclude that

K
Zuz —Ap) < WN% + N||VG2.

=1
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Consequently,

N Kcl
lim sup N~ 9 N "y (—App) < ﬁ_dg'

N—oo i1 | |d

The latter inequality holds true for any set Q cc Q. We can optimize over Q and use the

inner regularity of Lebesgue measure to conclude that

N

Kcl
lim sup N~ 1+ Zp@(—A‘D) < —d

N—oo i=1 B |Q|%

This completes the proof of Weyl’s law for the sum of eigenvalues of —Ap. n

The above formula for the sum of eigenvalues can be rewritten in the following dual form.

Exercise. Let d > 1 and let Q C R be an open bounded set. Prove that the eigenvalues
w1 < po < ... of the Dirichlet Laplacian —Ap on L*(Q) satisfy

M

o _ _gd 1+4 1+4
= A = Lot o (X4F)

=1

Remark: Heuristically, the formula in the above exercise is consistent with the semiclassical

formula
Trrems) (—A + AV)_ = / / (127K > + AV (z))_dkdz = —Lgld/ AV |2
R4 JR4 ’ Rd

in the case V.= —1 on 2 and > 0 (even +00) elsewhere.

5.3 Distribution of eigenvalues

Now we come to the asymptotic behavior of a single eigenvalue, which goes back to the

original result of Weyl in 1911.

f N
Theorem (Weyl’s law for distribution of eigenvalues). Let d > 1 and let Q) C R? be an

open bounded set. Then the eigenvalues py < ps < ... of the Dirichlet Laplacian —Ap

on L*(Q) satisfy
(2m)?

ERE

[SUIN

UN N + 0(N ) Nsoo-
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Equivalently, if we denote by N(X) the number of eigenvalues < \, then

N(\) = %AS +o(X

d
E)/\—>c>o-

Remark: The above formula of N(\) is consistent with the semiclassical formula

Tr]l(—A+)\V<O)%/ / ]l(|27rk|2+/\V(a;)<0)dkdx:L81d/ IAV_|?2 LY, =
R JRd " JRae ’ (2m)

with V' = —1 on Q and > 0 (even +00) elsewhere.

We will derive the above theorem using Weyl’s law for the sum of eigenvalues and a simple

Tauberian lemma.

Lemma (Tauberian). Given any increasing sequence 0 < py < ps < ... and two con-

stants A >0, a > 0. Then

N
lim N_I_GZ/L” =A < lim N %y =A(1+a).
n=1

N—o0 N—o0

\_ - y

Proof. Assume that

N
Sy = Z,un = AN 4 o(N7) v e

n=1

Then for every constant ¢ € (0, 1), with N sufficiently large and m € [eN,eN + 1) we have
Sy — ANY| < NY |Syim — AN +m)e| < 2(N +m)'te

Therefore,

< Bver F N o AN SN+m — SN
HN = m m

A(N+m)1+a—AN1+a+€2(N+m)1+a—|—82N1+a
m
<AUV+dV+DHﬂ—AN”W+%%N+fN+Jﬂ“
- eN

—1\14a __
< N® A(l-l-e-l—N )
€

<

+%ﬂ+s+N*ﬂ“]

Thus

1 14+a _ 1
limsup N %uny < AL + 2e(1 + )t

N—oo €
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Sending € — 0" we obtain
limsup N%un < A(1 + a).

N—oo

Similarly, using
UN + pN—1+ oo+ UN -1 SN — SN-m

IN =
m m

we find that

liminf N"%uy > A(1 + a).

N—o0
Thus

lim N %uy = A(1+ a).

N—oco

The reverse direction is left as an exercise. O

Exercise. Given an increasing sequence 0 < py < po < ... satisfying

lim N™%un = A(l+a)

N—oo

for two constants A > 0, a > 0. Prove that

N
lim N~17@ Z fy = A.
n=1

N—oo

Proof of Weyl’s law for the distribution of eigenvalues. In the previous section we

have proved that

N
K¢ d (2m)?
lim N8y =t K§ = S
vot M T g B T a2 gy

Therefore, the Tauberian lemma implies that

K¢ <1+2> _ (2n)p

2
lim N duy = -7
. VAVAHE

N—oo Q4
Now consider N(A) the number of eigenvalues < A. By definition of N(\), we have
UNO) < A< N 41

Of course, when A — oo then N(A) — oo. Hence by the asymptotic formula of py for N
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large,
(2m)? 2 2
=——F"——NA\)d+0(N(N)a)xrs00
|Bl|%|Q|% ( ) ( ( ) )A—)
which is equivalent to
| B[€2] | 4 4
N\ = NS A2).
(A) = on) +0o(A?)

5.4 Podblya conjecture

Let d > 1 and let © C R be an open bounded set. Recall Weyl’s law for the eigenvalues
p1 < pa < ... of the Dirichlet Laplacian —Ap on L?(Q):

(2m)? 2 2
pn = ——5—5Ni +0o(N1) N0
| By 2|2
An important open problem is Pdélya’s conjecture:
2 2
iy > —_Ni v 1
| By 2] €[>/
which is equivalent to (why?)
B2 | 4
N(\) < Az, VA > 0.

The Berezin-Li-Yau inequality follows from Pélya’s conjecture. Clearly

2 al 2 N 2 cl
Z,Un = nd > ﬂ\/ t%dt = (22;)<1+2)N1+3 — I('d2 N1+%.
o |Q|2/d EIGEL BEopa\ o

However, obtaining the sharp lower bound for every eigenvalue is much more difficult.

Nevertheless, using the Berezin-Li-Yau inequality we get the non-optimal bound

o (2m)? d
MN—NZMH—‘Q‘d _‘31’%’9’2/(1(1—}_2

EL\N

Ni, VN> 1.

]

Proof of Pélya’s conjecture for cubes. Pdlya’s conjecture can be verified easily for cubes.
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By a simple scaling argument, it suffices to consider the case = [0, 7]? where the eigenvalues

are given explicitly by
{2 = (22 + ...+ 23) |z = (21, ...,24) € N},

A key observation is that the number of integer points inside a ball can be controlled by the
volume of the ball. More precisely, any point x = (z1,...,74) € N} can be associated with

the unit cube

ro = (331,£E1 — 1) X (.2?2,.172 — 1) X ...(l’d,.lfd — 1)

Since Q, N Q, =0 if x #y and Q, C Br(0) NRE if z € NN Br(0), we find that

|NdﬁBR(O)|:‘ U Q.| <27Bal = 27RYB,|.
x€NINBR(0)
E—
/ L ] L] L ] Y &

Figure: Positive integer points inside a circle

On the other hand, since {u,} is an increasing sequence, there must be at least N points
inside |N? N Bg(0)| with R = \/un. Thus
22 (2m)? 2

_Ni=—"""__Ni VYN>1
| B4 | B | 2]

[SYIN)

d
N <272 |B)| <= py >
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In 1961, Polya proved

é Yy
Theorem (Pdlya). Let d > 1 and let Q C R be an open bounded set. Assume that

Q is a tiling domain, namely we can cover R? (up to a set of 0 measure) by a union
of disjoint copies of Q (each copy is obtained from by Q up to translation, rotation and
reflection). Then the eigenvalues py < po < ... of the Dirichlet Laplacian —Ap on

L2(Q) satisfy

2
iz —C N ouN s
| By ||/

. v

Remark: A cube is a tiling domain, but a ball is not (this case remains open).

Figure: Tiling by hexagonal

Proof. Let us denote by p,(€) the k-th eigenvalue of the Dirichlet Laplacian —Ap on L%(€).
Step 1. Assuming that we can put N disjoint copies {Q,})_, of Q inside a large cube
Q c R?. We will prove

Mk(Q) > ﬁka(Q)a Vk=12,..

Take k£ > 1. By the min-max principle, for every ¢ > 0 we can find a subspace M(Q2) C
C°(Q2) such that dim M (Q2) = k and

() > sup [[Vull7. —e.
Jull2=1
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Since each €2, is a copy of Q, we find that u(2,) = ur(€2) and we can also find a subspace
M (£2,) C C(Q) such that dim M (2,) = k and

pe() = () > sup [ Vullz, —e.
u€ My (Qn)
llull 2=1

Note that the functions in My (£2,) have disjoint supports to the functions in M (€,,) if

n # m. Therefore, the space

M = @Mk(Qn) = Span{u € U Mk<Qn>} C CX(Q)

has dim M = kN. Then by the min-max principle,

pen(Q) < sup [[Vul[fe < sup  sup  ||[VullZs < () +e.
ueM 1<n<N weMi ()
llull2=1 llul| 2 =1

To see the second inequality, we can write any vector ¢ € M as

n=1

Since {u, }_, has disjoint supports, we find that

N
Lwer =30 [ vant <32 [ lenl) s i9ul:

=

l[ull2=1

N

< s s [Vul Y ([ Je) = s s [Vl [P
R R

1<n<N ue My (Q) 1 L1<n<N u€Mg(Qn)
lull L2=1 llull L2=1

Thus we have proved that
N (§2) < pe(€2) +e.

Sending € — 0 we find the desired inequality pun(Q) < ().

Step 2. Since Pdlya’s conjecture holds for cube, we have

(27)?

22 (kN)a, Wk > 1.
| B [a]Q*/4

1 (2) > N (Q) >
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This inequality holds for all N > 1 such that we can put at least N disjoint copies of 2 inside
the cube Q@ C R?. Since € is a tilling domain, we can choose a very big cube Qn C R? such

that we can put N disjoint copies of €2 inside (Qy and at the same time

i 101 _

=1.
N N9

Thus for every k > 1, we have

(2m)°

T kd, Vk>1
| Buf |2/

pu(€2) = (2m)

2
Z Bafigupe )T T

This completes the proof. O

Remark: For a general domain €2, by using the above proof, we find that

(2m)*

kG VE> 1
| By || Q24

() = R(Q)™*
where R(Q2) € (0, 1] is the packing density of {2, namely the largest fraction of the space
R? that we can cover by disjoint copies of €. Determination the packing density of a ball is

the standard packing problem.
2D Packing problem. For a disc 2 = {z € R?: |z| < 1}, the packing density is

T
R(Q) = — ~ 0.9069...
) =7
and it is achieved by the “hexagonal packing arrangement”. This optimality was proved by
Lagrange in 1773 for “lattice packings”, by Gauss in 1831 for “periodic packings”, and
finally by Téth in 1940 for the general case.

3D Packing problem. For a ball Q = {z € R3: |z| < 1}, the “sphere packing problem”
is more difficult. In 1611, Kepler conjectured that the optimal parking arrangement is

obtained by a family of “close-packed structures”, leading to

R(Q) = 3i\/§ ~ 0.74048...

This optimality was proved by Gauss in 1831 for “lattice packings” and by Hales in 1998

for the general case but his proof is involving a heavy computer checking of many individual
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cases. Finally, a formal proof was published in 2017 by Hales and collaborators (Forum of

Mathematics, Pi).

8D & 24D Packing problems. In 2016, Viazovska published a surprisingly short solution
for the parking problem in 8 dimensions. Shortly later, she and collaborators solved the

problem in 24 dimensions.

Figure: Circle packing and “Sphere packing”

5.5 Weyl’s conjecture

Recall that Weyl’s law states that the number of eigenvalues < A of the Dirichlet Laplacian
—Ap on L*(Q) satifies

_ |B]Rd<07 1)|

d c
rsoer Lia = Tl

N(A) = LIQIAZ + o(A
Weyl’s conjecture (1911) states that the second order term is involving |0€2|
1 - -
N(A) = LiglQANe = TL50 1[02AF +0(AF )asee.

(The second order term is negative, so it is consistent with Pélya’s conjecture). This is a hard
problem. A proof of Weyl’s conjecture for a class of smooth domains was given by Ivrii in

1980 (if you really love semiclassical approximation, check Ivrii’'s Monsterbook (2007-2019)).

Proof of Weyl’s conjecture for squares.


https://www.cambridge.org/core/journals/forum-of-mathematics-pi/article/formal-proof-of-the-kepler-conjecture/78FBD5E1A3D1BCCB8E0D5B0C463C9FBC 
https://www.cambridge.org/core/journals/forum-of-mathematics-pi/article/formal-proof-of-the-kepler-conjecture/78FBD5E1A3D1BCCB8E0D5B0C463C9FBC 
http://weyl.math.toronto.edu/victor_ivrii/research/monsterbook/monograph-2019-pdf/
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Recall that for Q = [0,7]?, the eigenvalues of the Dirichlet Laplacian —Ap on L?*(Q) are
given explicitly by
{laf* = (21 +23) |2 = (21, 22) € N*}.

Thus

N = $(S(VA) —4[VA] - 1)

where the floor function |¢] is the integer part of ¢ (i.e. [t| <t < [t] +1 € N) and
S(R) := number of integer points inside B(0, R).

The Weyl’s conjecture tells us that for Q = [0, 7|2

a 1. d—1 a1
N(A) = LEglQINe = TL50 102N +0(AF )aoac

1 )
=T - M2 4 0(A2) e

which is equivalent to
S(R) = 7R* 4+ 0(R)r_s00-

The asymptotic estimate for |S(R)—mR?| when R — oo is called the Gauss circle problem
(1801). Hardy conjectured that

|S(R) — nR?| < O(RY***)p0e, Ve > 0.

The lower bound is sharp since Hardy and Landau independently showed that the error
cannot be better than O(RY2?In(R)). On the other hand, the upper bound remains open.

Gauss himself managed to prove that
|S(R) — TR?| < 227 R.
Sierpinski (1905) proved that
S(R) — 7R < O(R") ooy VO > g ~ 0.66666....
Huxley (2003) proved the currently best bound
131

IS(R) — mR* < O(R%) gy, 0= 505~ 0-62981...
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Now let us prove |S(R) — mR?*| < o(R) which is necessary to justify Weyl’s conjecture for

squares. This means we need to improve Gauss’ bound, which is a nontrivial task.

We start with

é Y
Theorem (Poisson summation formula). If f € C®(R?), then

Yo f@) =) fk).

x€Z4 kezd

In general, this formula holds if f is sufficiently smooth and decays sufficiently fast (e.g.
f € C* and it decays faster than any polynomial).

Proof. Consider the function

Fla)= 3 flz+y).

yezZ?

Then F : RY — C is a periodic function (of period 1) and it can be written by the Fourier

series
F(l’) _ Z ake%rik:-x
kezd
where
ap = / F(x)ef%rik-xdx _ Z f(ilf + y)efQWik-xdx
[Ovl]d yGZd [Ovl}d
=S [ @ [ getan = ),

yGZd y+[0vl]d Rd

Thus

yeZ? kezd

In particular, taking x = 0 we obtain

S fw) = flk).

yezd kezd
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Remark: Strictly speaking, the formula

LpaF(x) =Y f(k)e* e

kezd
follows from Parseval’s identity on L?([0, 1]), so in principle it holds pointwise almost every-
where. However, it holds pointwise everywhere because of the continuity of the functions in
both sides, and extends globally because of the periodicity. Thus all we need is that F' and
Y kezd ]?(k)ezmk'x are continuous. The condition f € C®(R?) implies that ]?(k:) decays faster

than any polynomial when |k| — oo (which can be seen by integration by part).

Now we prove

Theorem. Let S(R) be the number of integer points inside B(0, R) C R%. Then

IS(R) — mR?| < O(R*?)posse-

Proof. The proof is due to Hugh Montgomery.

Step 1. Note that
S(R) = > lp)(2).

T€Z?
We want to use the Poisson summation formula, and hence we will replace 1z, by smooth

functions. Fix a radial function
0 < @1 € C(B1(0)), /Rd pr=1
and define for some parameter 1> h > 0
pnle) = W 2pi(a/h), 0 < oy € C2(R?), /R on=1.
For every r > 0 we denote

fr(@) = on * 1p (o) (x) = / on(r —y)dy.

B(0)
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Since f, € C2°, we have Poisson summation formula

=3 fl@) = 3 Tk)

reZ? keZ?

Moreover, clearly

Jr-n < 1pgo) < frRen = §(R—h)§S(R)

Step 2. It remains to estimate |S(r) — 7r2|. In the sum S(r)

contribution comes from k = 0, namely

R2 R2 R2

Thus it remains to bound _, ﬁ(k) For k # 0, we have

~ —

Fr(k) = Br(k) T, 0 (k) = Bi(hk)r*Tp, ) (rk) = Gi(hk)r®

with the Bessel function

(" .
Ji(t) = —/ "% cos 0df.
0

s

Here we used the fact that

on(k) :/ e*%ik-w(ph(x)dm _ o~ 2mi(kh)-(z/h) ],
R2 R2

= [ e )y = Bk
R2

(with the variable y = x/h) and similarly

—

r1p,0) (k) = @1(rk).

39

< S(R+h)

= D ez ﬁ(k) the main

J1(27mr|k])

r|k|

pr(w/h)de

Moreover, since 15, (o) is radial, its Fourier transform is also radial and can be computed as

G- Tk =[] e = [ e

[z1|2+]z2]2<1

_ / 627ri|k|00502(sin Q)Qdﬂ
0
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1 " d ok cost)
— el mi|k| cos 0do
myky/o d9<6 )Sm

1 L 2|k
- / e27rz|k|cos€ cos 0d = Jl( 7T| )
milk] Jo 14
Here we have changed the variable 1 = — cos @ and used the integration by part. We need

the following bound.

Exercise. Prove that J,(t) < Ct='/% for all t > 0.

Moreover, since p; € C°, o1 € L™ and it decays faster than any polynomial. Thus

~ - r Cyrt/?
k)| = hk)|— k)< ———— ¢ > 0.

Take a cut-off K > 0. We have

RIEGIEEY |C7‘AS/2<01/2K1/2

0<|k|I<K 0<|k|I<K
and Crl/2 1/2
r r
Z |f” | - Z h]k|5/2 = hKl/Q'
|k|>K |k|>K
Thus 2
1/2 1-1/2
kzﬂm )| S CriPEY2 4 O,
Optimizing over K > 0 we find that
P1/2
2
| ) —mr |—§|fr h1/2'
Step 3. We have
(R—0)'? _ & . (R+ )"
(R — h)? _CT <S(R—h)<S(R)<S(R+h) < W(R—l—h)z—l—CT
and hence

R1/2

[S(R) R’ < CRh+ Oy
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Optimizing over h (i.e. taking h ~ R~/3) we obtain

IS(R) — nR?| < CR*3.

5.6 Can one hear the shape of a drum?

So far, we have seen that from the eigenvalues of the Dirichlet Laplacian on L?*(Q), we can
reconstruct some geometric properties of 2, e.g. || or [0€2|. Thus it is a natural question
that: can one completely determine 2 (up to usual symmetries) from all of its Dirichlet
eigenvalues? This was made popular by Kac (1966) in his paper “Can one hear the shape

of a drum?”

A negative answer was found immediately by Milnor who proved the existence of two
tori in 16-dimensions which have the same eigenvalues but with different shapes. However,
counter examples in 2 dimensions was found only in 1992 by Gordon-Webb—Wolpert, using
a sufficient condition for isospectrality by Sunada. In the following, we will represent a 2D
example by Buser-Conway-Doyle-Semmler (1994) via their transplantation method
(see Okada-Shudo (2001) for the relation between two methods).

2D example by transplantation method. Clearly the two domains {2; and €2y in the
figure below have different shapes. Let us prove that they have the same Dirichlet eigenvalues.

Let u be an eigenfunction on €2y with eigenvalue u, namely
—Au=pu onQy, upo, =0.
Let us construct an eigenfunction v on €2y with the same eigenvalue p as follows.

e We divide each domain into 7 congruent triangles.

e We decompose u = 21‘7:1 u; where u; is the restriction on the i-th triangle of 2.

- 7
Similarly, we decompose v =) ;_; v; on ().

e Each v; is the linear combination of three u;’s, for example v; = us — uy — u4.

The full information of the definition of v;’s can be found in the figure below. The rules are:


https://www.math.ucdavis.edu/~hunter/m207b/kac.pdf
https://www.math.ucdavis.edu/~hunter/m207b/kac.pdf
https://arxiv.org/abs/nlin/0105068
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e On €y, the triangles with red numbers (1, 3, 5) are oriented clockwise, and the triangles

with blue numbers (2, 4, 6, 7) are oriented counter-clockwise.

e On (), if a number comes with + sign, then it keeps its orientation as in 2;; and if a
number comes with — sign, then it changes its orientation from €2;. For example, +1

and —2 are clockwise, —1 and +2 are counter-clockwise.

e We transform the functions u; from triangles of €); to put in triangles in 5. In each
triangle in €y, if the number ¢ comes with + (i.e. it has the same orientation as in ),
we simply transform w; by translation and rotation; however if the number ¢+ comes

with — (i.e. it changes the orientation), then we also transform w; by reflection.

For example, in the first triangle of (s, we see 5 — 7 — 4. This means in that triangle
we set

V1 = U5 — U7 — Uy

where us is transform directly from 2, while u; and uy4 are also reflected.

Figure: Two isospectral domains with different shapes
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Why v constructed this way is an eigenfunction on 2y with eigenvalue p?

e First, we have Au = pu in the interior part of each triangle in §2;, so obviously Av = uw

on the interior part of each triangle of ).
e Second, we have to check that v vanishes on the boundary of €.

e Third, we have to check that v is smooth inside €2, namely it is smoothly connected

on the joint boundary of the triangles of €25.

Finally, we have to check that the multiplicity of eigenvalues are the same in §2; and €25. This

means that the transplantation is invertible. Fortunately, this is true for this example.

On the other direction, Zelditch proved a positive answer for 2D sets which are convex

with analytic boundary. An open question is that whether the convexity can be relaxed?



Chapter 6

Neumann Laplacian

7

Definition (Neumann Laplacian). Let © be an open set in R?. The Neumann Lapla-

cian —Ay on L*(Q) is defined by Friedrich’s extension via the quadratic form formula

(u, —Anu) = / |Vul> >0, Yue C®(RY).
Q

. The quadratic form domain of —Ax is H* ().

N\

e Recall that H'(Q) is a Hilbert space with the norm
HuH%ﬂ(Q) = HVUH%Q(Q) + HUH%Q(Q)'
Here the derivatives are interpreted in the distributional sense, namely
/Q((‘)xdu)gpdx = —/Qué?xdgodx, Vo € C°().
More generally, we can define
H™Q) ={u € L*(), D€ L*(R) for all |a| < m}
where the weak derivatives are defined by

/(Dau)gp _(—1)e / uD%, Vg € C=(Q).
Q Q

94
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e If 11 is an eigenvalue of the Neumann Laplacian with eigenfunction u
—ANu = pu
then by the definition of the quadratic form,

/Qv]ﬁwzu/qu, Vf e HY(Q).

On the other hand, by simply integrating the equation —Anu = pu and using Green?s

formula we have

M/qu:/ﬂf(—ANu):/QVf-Vu— aﬂfg—zdcr

where do is the surface measure on the boundary 9€) and

ou
— =Vu-n
on

is called the outward normal derivative. Here n = (ny,...,ng) is the unit normal

vector to 9€2. Thus we obtain

ou
f=—do =0, VfeC*RY
a0 an
which implies that
% _ o on o0
— = on 0f).
on
The latter is called the Neumann boundary condition. In comparison, the Dirich-

let boundary conditon is u = 0 on 0.

e It is easy to see that the eigenvalues (or min-max values) of the Neumann Laplacian
—Ay are smaller than that of the Dirichlet Laplacian —Ap. We always have p; (—Ay) =
0 < p1(—Ap). More generally, by the min-max principle, for all N > 1 we have

—Ap) = inf max / Vul? > inf max / Vul? = —Ax
fin(—Ap) wrand o) e Vul* = inf o [Vl fin(—AN)
dimM=n llullp2=1¢ dimM=n llullp2=1¢

If —Ay has compact resolvent, then all p,(—Ay) are eigenvalues, and the stronger

inequality g, (—Ap) > pnr1(—An) holds (called Friedlander’s inequality).
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6.1 Essential spectrum vs. Compact resolvent

Unlike the Dirichlet Laplacian on any bounded set always has compact resolvent, the bound-
edness of the domain is not enough to ensure that the Neumann Laplacian has compact
resolvent. Putting differently, when € is bounded, the embedding H{(2) C L?() is always
compact, but the embedding H'(2) C L?*(€2) is not necessarily compact.

Trivial example: We can take (2 = U!'_, B,, be a union of disjoint balls. The functions

15,

Up = |Bn|1/2

are orthonormal in L*(Q2) and all have [, [Vu,|*> = 0. Thus p,(—Ax) =0 for all n > 1. In
this example, however, {2 is not connected.

Example “Rooms and Passages” (Courant and Hilbert). Let 2 C R? be a union of a

sequence of “rooms” and “passages” where
e the n-th room is a rectangle of size a,, x b,.

e the n-th passage is a rectangle of size €, X b,.

h S e e
¢ ]
—bh,— by W
2. b, <w
| bu.y
«—b —>

Figure: Rooms and Passages

Now the set € is simply connected and it is bounded if ) b, < co. On the n-th room, we

can take the function u, ~ (a,b,)”"/? and interpolate it to 0 linearly up to the middle points
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of the connected passages. Thus {u, },>1 are orthonormal in L*(Q) and

—-1/2 2
/ |Vun|2 S (M) X 5nbn = S
Q

b,, anb?

This can be made small uniformly in n by taking &, < a,b?.

By modifying this example, Hempel-Seco-Simon (1990) proved

Theorem. For any d > 1 and any close set S C [0,00), there exists an open, connected,
bounded subset Q C R? such that the spectrum of the Neumann Laplacian on L?*(S)) is
equal to S.

Thus to ensure that —Ay has compact resolvent, i.e. the embedding H'(Q2) C L*() is
compact, we need something more than the usual requirement of the boundedness of 2. A
sufficient condition is that 9 is sufficiently smooth (e.g. C'), or more generally that Q is

an extension domain.

6.2 Extension domains

Clearly, if u € H'(R?), then ug € H'(Q). More generally, if Q C Q, then we have the

obvious restriction H'(Q2) C H'(Q). Reversely, the extension is less trivial and requires

some conditions on the boundary 0f2.

é R
Definition (Extension domains). Let  C R? be an open set. We call 0 an extension

domain if there exists an extension operator E : HY(Q) — H*(RY) such that

. (Bu)ie =u, |Bullrre) < Cllullzae), [Eullm@ey < Cllullmig)- )

To illustrate the idea, we have

Lemma (Extension by reflection). Consider the half-space Q@ = R x R, = {z =

(z1,...,1q) : x4 > 0}. For any function u : Q — C we define the extension Eu : RY — C
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Bu(z) = {u(x), if tg >0,

w1y oy g1, —q), if xq <O0.

Ifu € HY(Q), then Eu € H'(R?).

Proof. Clearly Fu € L*(R?) and HEuH%mRz) = 2ul|z2(q)

For the derivatives, let us denote another extension E by

~ u(x), if x4 >0,
Fu(x) = (=) !
—u(T1, .y Tg_1, —Tq), if 24 <O.
Then we have
Ed,,u, ifj=1,2,....d—1,
Op; Bu =< _
E0, u,, if 7 =d.

In fact, for every test function ¢ € C>°(R?) we can write: for any j =1,2,...,d — 1

/Rd( u) ()0, p(7)dr = / dx+/c u(wy, ... g1, —2q) 0y, 0(x)dx
L@wM)()m [ (oo, a2

— /Q(Eﬁmju)(x)gp(x)dx — (EOyu) (1, ...0q-1, Tq)p(x)dr

Qc
—- [ (B, )@y
Rd
and for j = d,

/(Eu)( Oy, p(x)de = / By 0l dx—i—/Cu(xl,...,xd,—xd)ﬁwdcp(x)dx
[ @s@it - [ (-0 ~r)ela)da

—[}E@ﬂx@¢@Mx— (B0, u)(y, za)(a)de

=— /Rd(Eﬁij)(DU)QD(@dx-
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Hence
V(Eu) Ed,ul* + / Ed,,ul?
[ e 2/\ P+ [ 1B,
—2% [10,u+2 [0l =2 [ [ul
= Je Q Rd
Thus Bu € H'(R?) since || Eull7 gy = 2l[ullfp o) < 00 O

Similarly, if O € R%! x R, we can extend functions in H(Q) to functions in H'(€) with
Q=QU{(z1, ... Ta_1,—2a) : (T1,...,34) € Q}
by setting for any u : 2 — C the extension  : Q—C by

_ u(z), if v € Qy,
w(y,y .oy g1, —xq), ifxeQ_<O.
By repeating this procedure a few times. Moreover, note that gu € H'(RY) if ¢ € C®(RY)

and u € H'(suppp). Thus we can get H'(R?)-extension for several simple domains, e.g.

cubes.

Figure: Extension by reflection

This technique can be made general by

Definition. Let Q = Bra-1(0,1) x (=1,1) = Q4 UQ_ U Qg with

Q+ = B]Rdfl(o, 1) X (O, 1), Q_ = B]Rdfl(o, 1) X (—1, O), QO = BRdfl(O, 1) X {O}
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Let Q C R? be an open set. We say that 9 € C* if for every x € 0N, there exists an
open set x € U C R? and a bijective map © : R — R such that

0,0teC, OU)=0Q, OUNY)=Q_, O(UNIN) = Q.

R

ol _)&//Q+
o

Figure: C! boundary

[Theorem. Let Q C R? be an open bounded set with 02 € C*. Then Q is an extension}

domain.

Proof. Since 02 is compact and C' smooth, it can be covered by finitely many open sets

Ui, ...,U, C R? such that in each set U; we can find a bijective map ©; : R? — R? such that
0,0;'eC', 6,U)=0Q, 6,U:nNQ)=0Q_, 6,U; NN =Q,.

Moreover, we can find smooths function {p;}%_, C C>(R%) such that
e 0 <y; <1 for all i, Zfzo% =1.
e supp; CC U; for all i # 0, supp gy CC RHNOQ.

Then for every u € H'(2), we can decompose

Let us extend each functions ¢;u to RY.

Extension of p,u with i # 0. Define

v, =u(0;(y)), VyeqQ_.
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Then v; € H'(Q_) (we can compute the derivative by the chain rule since ©;* € C'). By
reflection, we can extend v; to ¥; € H'(Q). Then we can transfer back the variable using ©

and define the extension E(pu): R? — C

0i(2)0;(0;(x)), if x € U,

0, if v € RAU;.
Clearly E(p;u) € H(R?) since v;(0;(z)) € H(U;) and ¢; € C=(U;).
Extension of pyu. We simply define the extension E(pgu) : R — C by

wo(z)u(z), if v € €,

E(pou) =
0, if z € RA\Q.

Clearly E(pou) € H*(R?) since u € H*(Q) and supp ¢y CC R4\,

Conclusion: The function

k
Eu=Y_E(pu) € H'(RY)

1=0

is an extension of u. It is easy to check that
[Eullr2@ey < Cllullz),  [Bullimgey < llullm @

for a constant C' independent of w. n

The concept of extension domains is important because it gives a sufficient condition for the
compact embedding H'(Q) C H(RY).

Theorem. Let Q C RY be an open bounded set. If Q is an extension domain, then the
embedding H* () C L*(Q) is compact. Consequently, the Neumann Laplacian on L*(Q)

has compact resolvent.

Proof. We assume that u,, — 0 weakly in H'(Q2) and prove that u,, — 0 strongly in L*(Q).
The condition u,, — 0 weakly in H'(Q2) implies that

e u, — 0 weakly in L*(Q), since H'-norm is stronger than L*-norm;

e u, is bounded in H'(2), by Banach-Steinhaus theorem.
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Let E: HY(Q) — H'(RY) be an extension operator. Then Eu,, is bounded in H'(R¢). Thus

up to a subsequence, we can assume that
Eu, — g weakly in H'(R?)

by Banach-Alaoglu theorem. By Sobolev embedding theorem, we obtain 1gFu, — lag
strongly in L?(R?), namely

U, — g strongly in L*().

Since u, — 0 weakly in L*(Q2), we conclude that g = 0, and hence u, — 0 strongly in
L?*(Q). Since the limit is unique, this convergence holds for the whole sequence. Thus the
embedding H'(Q2) C L*(Q) is compact.

This implies that (—Ayx + 1)7! is a compact operator. Indeed, if u, — 0 weakly in L?(2),
then
vy = (—Ax + 1) tu, — 0

strongly in L?(Q) as follows. Since u,, — 0 weakly in L*(Q) and (—Ayx + 1)~! is bounded,

v, — 0 weakly in L?(Q). Moreover,

[0nll7r1 ) = (Uns (AN + Dva) 12(9) = (U tn) 12() < |tinl 2@ l[0nl|2(0)

is bounded. Since H'(Q2) C L?*(f2) is compact, up to a subsequence, v, — v strongly in
L*(Q). Since v, — 0 weakly in L*(Q), we must have v = 0. This completes the proof. [

Remark: For any open bounded set Q2 C R? the embedding H}(Q) C L*(Q) is always
compact since HZ () can be always extended to H'(R?) “by 0 from outside”.

Exercise. Let d > 1 and let Q C R? be an open bounded set. Define the extension
u:RY— C by

u(x), ifxreq,

0, if x ¢ Q.
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Prove that if u € H}(Y), then uw € H'(R?) and

Vi) Vu(z), ifx €,
u(zx) =
0, if © ¢ Q.

6.3 Kroger’s inequality

Many semiclassical estimates for Dirichlet eigenvalues change the direction for Neumann

eigenvalues. For example, we have the following reverse Berezin-Li-Yau inequality.

4 Y

Theorem (Kroger’s inequality). Let d > 1 and let Q C R be an open bounded set such
that the embedding H'(Q) C L?(Q) is compact. Then the eigenvalues puy; < ps < ... of
the Neumann Laplacian —Ax on L*(Q) satisfy

N
K& d (2n)
. < d NH_E, KC]Z . ‘
2 = T T2 |5

.

Proof. Let {u,},>1 be an orthonormal basis of eigenfunctions of —Ay. Then
_ANun = HnUn

and hence

<Vf, Vun>L2(Q) - Mn<f, un>L2(Q), Vf e HY(Q).

By the min-max principle, we know that

is orthogonal to all uy,...,uy_; in L?(2). Hence

/ Vol > / Jof?.
Q [9]
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By the definition of v, we can compute

L= |f|2—§\<un,f>m)

‘ 2
and

N—-1
[1wel = [ 95 =3 twn. ooy T
Q Q n=1
N-1 N-1

— /Q V]2 - 2%(Z<Un,f>L2(Q)<Vf, Vun>L2(Q)> + Z |(un,f>L2(Q)|2/Q|Vun|2
= [ o5 =2

N—1
- /Q VI =3 pal(t £zl
n=1

2

T
L

N-1
(s Pzt L)y )+ D e )P

i
—
3
I
—

Here we have used the fact that u, are eigenfunctions of —Ay. Thus in summary,

N-1 N-1 9
| iwre- > ol Do = v J e - > (s 2| )s VF € HY(Q).

In particular, we can choose f(x) = e?™*2 for k € R? and obtain

N-1 N-1
27210 = 3 il Teun (k)2 = MN<|Q| -y |nQun(k)|2), Vk € R%
n=1 n=1

Integrating over k € Br(0) C RY we get

Bgr

N-1 N-1
/ deQWkIQ\Q\—Z,un/ k| T ()2 zuN(\BRHQ]—/ ak Y [Tau (K)?).
Br n=1 Br n=1

Now we choose R such that

=

N
N =1|Q||B :QBRdc»Rz(—)
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This gives

d 4r® 1 NI+E = K NS

/|27rk;|2\(2|dk: QR / (2k|2dk

d+2|B i |Q Rk
Br k<1 ~——
In conclusion, we have proved that
N-1
Ki Bd i+ Z Mn/ k[T, (k)2 > MN<N Z/ dk|]lgun(k)|2>
|Q|d n=1 " Br

which is equivalent to

el N N-1 N-1

SN =Yz Y (1= [ A ®P) - Y (- [ ammP).
|Q| n=1 n=1 Br n=1 Br

The right side is > 0 because for every n =1,2,..., N — 1 we have uy > pu, and

/ k| Tom (k) < / T (B = | del(Law)( / Al ()2 = 1.
Br R4 Rd
Thus

Kd 1
Bd_p4i N,
ol Zu >

6.4 Lieb—Thirring inequality for Neumann Laplacian

Recall the standard Lieb—Thirring kinetic inequality: For every d > 1, there exists a constant

K, > 0 such that for all N > 1 and for all orthonormal functions {u,}?_; in L?(R?), then

N
3 / Vual? > Koy / At () = 3 @)
n:le Rd n

The following generalization will be useful
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Exercise. Let d > 1. Let N > 1 and let {u,}Y_, ¢ H'(R?) satisfy

N
D lun)(un| <1 on L*(RY).
n=1

Then

N
Z/WunP > Ky
:le

The constant Kq > 0 s the same as in the case of orthonormal functions.

[oh pla) = 3 uala)

Rd

This inequality can be also written in the compact form: for any trace class operator 0 <
v <1 on L*R?), then

Tr(—Ay) > K, /Rd p}y+2/d.
Here Tr(—A7) :== Tr(vV=Ayv/=A) and p,(z) = 3, Jua(2) 2 if v =, |un) ().

Now we want to extend the above inequality for functions in L?(Q2) with an open bounded
set ) C R4

e This inequality extended immediately to the Dirichlet Laplacian, namely if {u,}, C
HY(Q) and SN fu,) (u,| < 1 on L*(Q), then

N N
2
Z/MW>m/wapm=meﬁ
n=1 O Q n=1

The reason is that the extension Hg(Q) — H'(R?) is trivial (we simply set ujqe = 0).

e The analogue for Neumann Laplacian is less obvious since the extension H'(Q) —

H'(R?) is more complicated.

é Y
Theorem (Lieb—Thirring kinetic inequality for Neumann Laplacian). Let d > 1 and
let Q C R be an open bounded set with 9Q € C*. Let N > 1 and let {u,}_, C H(Q)
such that S0 [un) (un| <1 on L2(R). Then

N
Z/qunl2 > Kn/p1+3 —/de, p(a) =) lua(z)?
2=l g Q n
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Lfor a constant Kq > 0 independent of N and {u,}_,. J

Our idea is to use the extension operator £ : H*(Q) — H'(R?) (which requires 992 € C1)
and then apply the standard Lieb-Thirring inequality for L?(R?). The key observation is

that the extension operator does not destroy the orthogonality too much.

~
Lemma. Let d > 1 and let Q@ C R? be an open bounded set with 0Q € C*. Let
E: HY(Q) — HY(RY) be the extension operator constructed in a previous section. Then
for every N > 1, if

N
Z [un)(ua| <1 on L2(Q)7
n=1

then N
> |Bun)(Bun| < Co  on L*(R?)

n=1

¢ Here the constant Cq is independent of N and {u,}_;.

Proof. First let us quickly recall the definition of E. We cover 0f2 by J open sets {Uj}jzl

such that in each set U; we can find a bijective map ©; : R — R? such that
0,0, e, 0,U)=Q, 6,U;NQ)=Q_, 6;(U;NdN) = Qu.
Then we use a partition of unity 1 = ijo @; on R? with {¢;}7_y € C°(R?) such that

0<p; <1, suppyp; CCU; Vj#0, supppy CC RNIQ.

We decompose

and extend ¢;u as follows:
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Figure: The mapping h; = ©; 'RO; : U; N Q — U;\Q

e For j =0, pou € HY(Q) C HY(R?) (by setting (pou)(y) = 0 with y ¢ Q);

e For j # 0, we set Tyju : U; — C by Tju = v on U; N and Tju(y) = u(h;'(y)) with
y € U;\Q where
hj = @J_IR@] : Uj N — Uj\ﬁ
(here R: Q_ — Q4 is the usual reflection). Then p;T;u € HY(U;) C H'(R?).

Thus in summary

J
Bu =g+ > ¢Tu, Yue L Q)
j=1

Now let us show that if S |u,)(u,| < 1 on L*(R), then

N
> |Bu,)(Bu,| <C on L*(RY)

n=1
namely

i ) Ad(E“n)($)g(x)M‘2 < C/Rd gl*, Vg e L*(RY).

By the Cauchy-Schwarz inequality for complex numbers
N J )
> | [ e =Zb/ (X o)
R —

7=1
2
‘ / (¢otin)g
Rd

R (onirjun)g
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For j = 0, we use Zivzl [t ) (| < 1 on L2(Q) to bound

N 2 N 2

2 2
E ‘/ (Potn)g| = E ‘/un(%g)‘ S/Icpog| S/ gl
n=1 R? n=1 Q Q R4

For j # 0, we decompose further

L= [ oo [ temmg
= et [ o5 6

U\

=/ wj(x)un(w)g(w)dflf+/ (i (@))un()g(h;(2))|Detd by ()| de
U;nQ

U;nQ
- /U - Un () [%(w)g(m) + goj(hj(x))g(hj(x))yDetth(x)\]dg;

= [l @) (gt + sy ) Det T )]

Here we have changed the variable y = h;(z) and DetJh; is the Jacobian determinant of h;.
Thus using again Zivzl [t ) (un| < 1 on L2(Q) we have

= i | [ o)1 @) [ @)ata) + o3(hta))gthy o) Detdhy ) |

S /
UjﬂQ

= / [es@)Plg@)P + 2/ i (hy ()Pl () P21 Detdh, () P

N
S| [ (s
n=1 R

03()a() + 03 (h, () (hy () (DetTh) ()]

<2 fp@Pla@) +2ADedhllin [ ey @)Plaly @) RIDetIhy(a) ds

j Q jﬁQ

<2 [ @) Plgta)f + 20Detdhy~ |
U]‘QQ

Uj

esw)Platy)Pdy < © [ g
Q R4
Thus in summary,

N 2
S| [ @] <c [ gk vge .
n=1 Re R4
This completes the proof. O

Now we are ready to give
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Proof of the Lieb—Thirring kinetic inequality for Neumann Laplacian. Let {u,}\_, C
H(Q) satisfy

> Jun)(ua| <1 on L*(Q).

n=1

Let E: HY(Q) — H'(R?) be the extension operator we discussed above. Then

[Eun|r2@ay < Clluallzz), | Eunllmwey < Cllunllme), Yn=1,2,..N

and
N
> |Bun)(Bu,| < Cq  on L*(RY).
n=1

Therefore,

Z ||unH%11(Q) > Ez ||EunH?—[1(Rd) > EZ/Rd |V(Eun>|2
n=1 n=1 n=1

On the other hand, applying the Lieb-Thrring inequality for functions Fu,,/v/Cq in L*(R?)

we have
s N , 1+2/d 1+2/d K, L2/
2/ vl i [ (1) M/(Zln\) =2 [
n=1 Q

Thus we conclude that

N N
/Qp+2/g|vun|2:2|yun\|§p(m zKQ/me/d.
n=1 n=1

6.5 Weyl’s law

Theorem (Weyl’s law for distribution of Neumann eigenvalues). Let d > 1 and let

Q C R? be an open bounded set with 9Q € C'. Then the eigenvalues i1 < iy < ... of

the Neumann Laplacian —Ax on L*(Q) satisfy
(2m)?

= 2 _NijolN
SR TERE

[SUIN

)N%oo-
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Equivalently, if we denote by N(X) the number of eigenvalues < \, then

|B|1€2] @
(2m)4

N(A) = 22005 4 o(a2

))\%oo-

Proof. Thanks the Tauberian lemma, it suffices to prove Weyl’s law for sum of Neumann

eigenvalues

Z”" - |Q|§/dN”’ + 0Ny

Thanks to Kroger’s inequality, it remains to prove the lower bound of the sum. The idea is

to compare with the Dirichlet Laplacian on a smaller set.

Step 1. For every € > 0 small, by the inner regularity of Lebesgue measure, we can find an
open set ). CC €2 such that
|O\Q| < e.

Since dist(€,2¢) > 0, we can find a smooth function ¢, € C° such that

0 S 805 S 1; 908 = 1 on Q&‘) Supp(@é‘) cC Q

Now let {u, },>1 be an orthonormal basis of eigenfunctions of —Ax on L*(2). By the Cauchy—

Schwarz inequality we can bound

[ ¥ = [ 1(Veun + ¢ (Tu)?
Q Q
= [Vl + [ o PIVan + 2R [ FoTu.(Tu)
Q Q Q
<57 [ Ve Plunf + (1+0) [ o PIVa P
Q Q

< Ces+ (L4 0)un

forallmn > 1 and 6 > 0. Thus
(1+9) Zun- 1+6)> /|Vun12>2/\wun O,

Step 2. Now we estimate S~ [ |V(peu,)[? from below. Since supp(p.) CC Q, we know
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that p.u, € H} () C HY(R?). Define
N N
= Z [un)(unl, p=py= Z ||
n=1 n=1
Since {u,} are orthonormal in L?(2), we have 0 < v <1 on L*(Q2). Consequently,
N
0 < peype = Z ‘¢€un><§0€un| <1 on LQ(Q)

n=1

Hence, we can use the Berezin-Li-Yau inequality to bound Tr(—Apg.vp.) from below.

Exercise. Let Q C R? be an open bounded set. Let {v,} C H}(SY) such that

Prove that
N SIS
Tr(_AD’)/) = ’Q|2/d<TI"7> )
namely
K¢ N 1+2
2 2) 4
Z/ Va2 2 m|2/d<;/9’”"’ )

Thus in summary, we obtain

N N
Ky i K§ 143
Vo 2 it (3 [ etul?) " = (V- [a-ehe)
>, GRAOSYA Y

Combining with the bound from Step 1, we find that

cl

S K 2y \
(14+0) 3 hn 2 ot (V- Q(l—soe)p) — C.4N.
n=1

/(1—90§)p§/ p.
Q Q\Qe

Using Kroger’s inequality and the Lieb—Thirring inequality for orthonormal functions {u,} C

Step 3. Now we bound
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H'(Q), we have

K¢
|Q|;l/dN1+2/d ZNN _Z/ |Vun|2 > Koq / 1+2/d

Hence,
1ol L4270y < CaN.

By Holder’s inequality and the choice |Q2\Q.| < ¢,

o

Step 4. In conclusion, for every ¢ > 0 and § > 0 we have

d+2)N

cl 2

K /(d+2) +a
(1+0) an_|Q|2/d(N Coe? N) — C.5N.

Consequently,

N—oo

1-2/d - K§1 2/(d+2 1+%
(14 6)liminf N~1=% ZMHZM—Q/Cl(]'_CQg /(+)) ‘
n=1

Taking € — 0, and then 6 — 0, we conclude that

1-2/d = K
it N 2 g
This completes the desired lower bound for the sum of Neumann eigenvalues, and completes

the proof of Weyl’s law for the distribution of eigenvalues. O

6.6 Podlya conjecture

As we have seen, many inequalities change their directions when we turn Dirichlet to Neu-

mann eigenvalues. Pdlya’s conjecture states that

(2)?

2
2 nd 2 n —-A 5 V?’LZl
—131\3\9\2/61 2 +1( N)

:un(_AD) >
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Proof of Pélya’s conjecture for Neumann eigenvalues of cubes. Let 2 C R be a
cube. By scaling, it suffices to consider the case Q = [0, 7]¢ where the Neumann eigenvalues

are given explicitly by
{lzP= @2 + ...+ 22) |z = (21, ...,7q) € NI}, No=1{0,1,2,..}.
If we denote for any point x = (z1, ..., z4) the cube

Q: = (z1,21+ 1) X (zg, 29 + 1) X ...(xg, 24 + 1),

then
N BrO)| =] U Q=27 Bal =27 By R
zeNINBR(0)
L ® /Q/x/
/ [ ] L] [ ) ° Y

Figure: Nonnegative integer points inside a circle

Thus for every A > 0, the number of Neumann eigenvalues < A, which is equal to the number

of non-negative integer points inside B(0,v/)), satisfies

N(A) = IN¢ A B z(0)] > 274 By A2 =
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Since there are at most n eigenvalues < 11, we have

|B1][2] ¢
n 2 N(:un—H) 2 (2’/T>d 73—1—1
which is equivalent to
(2m)* 2
1 < —5—~——nd, Vn >1.
SRERTAFIEE

Poélya (1961) extended this result for a sub-class of tiling domains. A proof for all tilling

domains was just found recently by Filonov (June 2020).

4 N
Theorem. Let d > 1 and let Q C R? be an open bounded set such that the embedding

HY(Q) C L*(Q) is compact. Assume that Q is a tiling domain, namely we can cover
R? (up to a set of 0 measure) by a union of disjoint copies of Q (each copy is obtained
from by Q up to translation, rotation and reflection). Then the eigenvalues py < pg <
of the Neumann Laplacian —Ax on L?(Q) satisfy

(271')2 2

1 < —2 pE yp > 1.
Mnt1 > |Bl|%|Q|2/d &

Y

Equivalently, the number of Neumann eigenvalues < A\ satisfies

N(\) > %i'?'m YA > 0.

\ J

We will need the sub-additivity of Q — N (X, Q).

Lemma. Let {Q;}7_, be disjoint open sets in R?. Then

J
NLQ) < Z — interior of (| ).

\. S

Proof. First, we assume N (), Q) = k, namely

P < A< gy

By the min-max principle,

Vul|?
i = inf  sup fQ Vel

MCH! (@) ueh, AR
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Note that
J J
H'(Q)C X = @Hl(Qj) ={uec L*(Q)|u= Zlgjuj such that u; € H'(Q;) for all j}.
j=1 Jj=1
Hence,

J

ijl fQj |VU|2
J .

di]\n/i[’ﬁ%jikUEM’“ ijl fQj |ul?

On the other hand, for every subspace M, C X with dim M} = k, we can decompose

J J
My =@ My, My € H(S), dimMy; = 0(k,j), > 0(k,j) = k.

j=1 j=1

Hence, by the min-max principle for the Neumann Laplacian on each €2,

Z}I=1 fQj |Vul? S ( fQj |VU‘2)

sup > sup | sup —F——5 ) = sup fu) ().
ueM;, Z‘jjzl fQj |ul? 1<5<J N ueMy; fQj |u|? 1<j<J (A
Thus
A > g > g > inf Sup fo(r,j) ()

S ikg)=k 1<j<J

The infimum is taken over a finite set, so it must be attained for some {£(k, j)}7_,. Thus for
all j
A > ey (8Y) <= Uk, j) < N(A, Q).

Therefore ;
NOQ) =k=> £(kj) <Y NKXQ).
j=1 j=1

]

The above lemma allows to prove Pdlya’s conjecture for unions of cubes. Next, we have the

“almost monotonicity” of Q — N (A, Q).

( _ )
Lemma. Consider open bounded sets 2 C Q C RY. Assume that there exists an exten-

sion operator E : HY(Q) — HY(Q). Then

N\, Q) < N(IE[P(A + 1), ).
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Proof. We use the min-max principle again

Vul|?
pe(Q) = inf  sup fQ|—2|
M CHY Q) uehr,  Jg U]
dim M=k

Actually we know that the infimum is attained at
M, = Span{uy, ..., u}

where {u, }, C H*() is an orthonormal basis of eigenfunctions of —Ax(€2).

Then we define
M, = EM, C H(Q), dim M, = k.

By the min-max principle on Q

~ 5 [Vol? s |V(Eu))?
(@ < sup 28y S VPR
vEM), fﬁ |v] ue My, ffz | Eul

For every u € My, we can bound

L@+ [ 1Bk = Bl
< VPl = I (FuP + [ fuP)

Q Q
<IEP@ + 1 [ luP < |ERGa(@) + 1) [ [uf

Hence,
3 JaIV(Ew)?
Q) < sup R ———
(6 u€ My, fQ|EU|2

In particular, if N(\, Q) = k, then ux(2) < A, and hence

< B (ue(€2) + 1).

k() S EIP(u(2) + 1) < | EIP(A + 1).

Thus N(\, Q) = k < N(|E|2(A + 1), ). O

In order to put the previous lemma in a good use, we need to control the norm of the extension

operator in some simple cases.
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( R
Lemma. Consider three cubes Q= C Q C QF where Q* = [-L*, L1]?, Q = [-L, L]¢,

Q_=[-L",L7) with LY — L=L— L. Take a closed set U C Q~. Then there exists

an extension operator
E: H'(Q\U) - H(Q"\U)

with || E||* < 2.
-

@f

N

l

S
N

Figure: Reflection = +— 7.
Proof. For every x € QT\Q, we define the “reflection point” T € Q\Q~ by
Zj, if T; € [—L, L],

(T); = 2L —x;, ifx;e[l,LT], , Yi=12..4d
—2L —x;, ifz;e[-LT,—L].

Note that each Z has at most 2¢ — 1 preimages. Then for every f € H'(Q\U) we define the
extension Ef € H'(QT\U) by

flz), ifxe@\U,
f[(@), ifze@\Q.

(Ef)(z) =

Then it is straightforward to check that Ef € H*(QT\U) and

||Ef||§11(Q+\U) < 2d||f||%-11(Q\U)
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Finally we can give
Filonov’s proof of Pélya’s conjecture for tiling domains. We know that R? can be

covered by disjoint sets {£2,}52, where each Q, is a copy of . Let R = diam(2). Take a
big number L > 2R and denote

Q=[-L L' Q =[-(L-R),L-R" Q"=[-(L+R),L+R]"
Let {€2;};es be all copies inside ()~. Denote

U=Jocq

jeJ

Figure: {Q;}jes C Q™ CQ

By the sub-additivity of N(A,-) we have

N Q) <Y N Q)+ N, Q\U).

jeJ
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On the other hand, by the extension lemma, we can find an extension operator
B: H\Q\U) — H(Q\U), |[E|? < 2"

Let {Q}rer be all copies inside Q1\U, namely

QU CV=|]u%cnU

keK

Then E also defines an extension operator
By HY(Q\U) — H'(mt(V)) € H(Q™\U), |E|* < [1B|* < 2%
Thus by the “almost monotonicity” and the sub-additivity of N(J,-), we have

N Q\U) < N@2YA+1),V) < DT NE@UA+1), Q).

keK

In conclusion, we already proved

N(AQ) <Y N Q)+ N, Q\U)

<Y N+ Y N@IA+1),2) = [JIN(A Q) + | KIN(@27(A + 1),Q).

Since Pdlya’s conjecture holds for cubes, we have

d d d
N(AQ) > %ﬂﬁ'm = —’B(lz‘f)g) A2
while
| < Q| < (2L—2R)d’ K| < |QT\U| < (2L +2R)* — (2L — 4R)? < CL R
2] jo! € € €]
thee |Bi|(2L)* ¢ _ (2L —2R)* CL™'R .,
Wm < TN(A,Q) + 9l N(2¢(\ +1),Q).

Dividing both sides for (2L)? and sending L — oo we obtain

|B1| | a 1
2 < —N(\Q
ami ™ = T




6.6. POLYA CONJECTURE 121

which is equivalent to
| B[]

(2m)
This completes the proof of Pdlya’s conjecture for Neumann eigenvalues in tilling domains.
O

Nl

N\ Q) > Az,




Chapter 7
Many—body quantum systems

We consider a system of N identical fermions in R?. From first principles of quantum
mechanics, the total energy of the system is described by a self-adjoint operator Hy on the
anti-symmetric space L2(R%), which is a subspace of L?(R%) containing wave functions

satisfying
UN (L1 ooy Ty ooy Ty oy TN) = =N (T, oy Ty oy Ty oy Ty), Vi # j, Vo, € RY
or equivalently
VN (To(1); - To(ny) = sign(o)¥n(zy,...,xn), Vo € Sy

where Sy is the permutation group of {1,2,..., N}. A typical many-body Schrédinger

operator has the form

N
Hy=2 hit D, Wy
i=1

1<i<j<N

where h; is the copy of the operator h on L?*(R¢) acting on the i-th variable z; € R¢, namely

hi=1®---®1® h R1IR---1,

i-th variable

and similarly for the two-body interaction W;;. The ground state energy is

EN = inf <\I/7HN\I/>
¥l L2=1

122
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If a ground state exists, then it solves the Schrodinger equation

HyVU = EnV.

7.1 Slater determinants

4 )
Definition (Slater determinants). For any functions {u;}Y., in L*(R?), define

1 .
(ug Aug A ... ANuy)(xq, ..., Tn) = W Z sign(o)u1 (To(1))-- N (To(n))

gESN

1 :
. /N Z Slgn(a)ua(l)(xl)m“a(N)($N)
‘T o€SN

— \/% det [(Ui(l'j))lgi,jgN]'

Clearly it is an anti-symmetric function in L2(RY).

y
4 Y
Theorem. Let {u;}32, be an orthonormal basis for L>(R%). Then the Slater determi-
nants
{ui1 /\UZ‘Q/\"'/\’UiN |’i1,...,iN GN,il < g < - <7:N}
form an orthonormal basis for L2(RYN). )

Proof. Step 1. First, we check that
{Ui1/\UigA"'/\uiN“hw-,iN EN G <ig < - <’iN}

are orthonormal functions in L2(R). For i; < iy < ... < iy and j; < jp < ... < jny We can

write

<ui1/\ui2/\---/\um,u]~1/\ujz/\---/\ujN>

= <(N!)*1/2 Z sign(a)uigm(:zl)...uio(N) (xn), (N!)*l/Qsign(T) Z ujT(l)(xl)...ujT<N)(xN)>

O'ESN TGSN

= (N!)_l Z Sigﬂ(O’)SigIl(T) <uia(1)7uj‘r(l)>”'<ui0(N)7ujT(N)>

o, TESN

= (N!)_l Z Sign(U)Sign(T)(Sia(l)7.7‘7'(1)"'5iU(N)7jT(N)

o,TESN
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17 if (7'17"'7 ) (]17' 7jN)>

0, otherwise.

It remains to prove that

Li(RdN):Span{uil/\uiQ/\---/\uiN Ty evn ) IN GN,il < lg < v e <ZN}

Step 2. We prove that if Q, )y are two measure spaces, then

L? (4 x Q) = L*() ® L*(Qs) := Span {u ® v |u € L2(Q),v € L*() }
where we used the usual notation of tensor product

(u@v)(z,y) = u(z)v(y).

More precisely, we prove that if {u;},.y is an orthonormal basis for L? (Q;) and {v;}, for
L* (), then {u; ® v}, jen 18 an orthonormal basis for L2 (91 x ).

o {u; ®v;}, .y are orthonormal functions in L?($y x Q) as

1,5€

(wi @ vj,u @ vg) = (us, we) (v, Vi) = 6iebj.

o {u; ®v;}, .oy is complete: Assume that f € L*(Q x Qp) and f L u; ® v; for all 4, j,
then by Fubini’s theorem

0= f uz®v] //lem 7, y)ui(2)v;(y)dp (z)dps(y)
- / wi() | T v () dua(y) o ().
91 \QQ

S

~~

9;(x)
Because {u;};.y is an orthonormal basis for L*(;), we must have g; = 0 in L*(y),

[ @ =o

Since this holds for j € N and {v;},.y is an orthonormal basis for L?(2), we find that
for a.e. x € O, for a.e. y € Qy, f(z,y) =0. Thus f =0 in L*(Q x Q).

namely for a.e. x €
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Using the above result and by induction, we find that
12 (RdN) — ]2 (Rd> RL*RY®- - ® L? (Rd) _ 72 (Rd) ®N
and if {u;}, y is an orthonormal basis for L? (R?), then
{uil®---®uiN|z'1,...,iN€N}

is an orthonormal basis for L2(RY).

Step 3. We define the operator Py on L? (RdN ) by

1
(PnUN) (21, .. 2N) = —— sign(o)Un (251)s -+, To(vy) s VN € L (R).
NI

’ g€SN

Then Py is a projection as (Py)? = Py:

1 .
(Pn)*Uy (21,...,2N8) = PNW Z sign(o)Wy (%—(1), o ,.IU(N)) =

’ ocESN
1 . 1 .
= ﬁ Z Slgn(o’)ﬁ Z Slgn(T)\IjN (:CToa(l)y cee ’xTOO'(N)) -
" oSy ‘€SN
1 1 .
= ﬁ Z ﬁ Z Slgn(T o O'>\IJN (xToo(l)a cee 7xTOG(N)) =
ToeSy IGSN .

TV
independent of o

1 :
= ﬁ Z Slgn<7>\IjN (x’r(l),. .. ,ZL’T(N)) = PN\I/N<SL'1,. .. ,ZL'N),

) TESN

Moreover, Py Uy € LE(R™) for all Uy € L2A(RIN) and PyUy = Uy if Uy € L2(RW):

PyUn(zq,... 2N Z sign(o \I/N xa(l),...,xa(]\;))
'UGSN
~7 Z (sign(c))? Wy (z1,...,2N)
N geSN
= \I’N(xl,...,xN).

Therefore,
L2(R™) = Py L*(R™)

125
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Step 4. From Step 2 and Step 3, we obtain

L2(R™) = Span { Py (u;, @ -+ ® u;y) ’ i1,...,in € N}
It remains to compute

Pn(ujy, @ -+ @ uiy ) (21, .., xn) = Py (ug, (1)..cuiy (2n))

1 .
=¥ Z sign (o), (To1)). Uiy (To(n))

gESN

1
= N1 det [(ulk (@¢))1<ke<n |-

Thus
1
PN(uil ®®U1N) = —uil /\Ui2 /\/\Uw

VNI

Consequently, if i, = i, for some k # ¢, then Py (u;; @ -+ ® u;,,) = 0. Also,
Py (i) @ -+ @ iy, ) = sign(o) Py (u, @ -+ @ wgy).
Hence, L2(R4) is equal to

Span {PN(uil ®~~~®uiN)‘i1,...,iN € N}

:Span{uil/\uiQ/\---/\uiN‘il,...,z‘NeN,il<z'2<---<2'N}.

Thus the Slater determinants form an orthonormal basis for L2(RY). O

7.2 Reduced density matrices

For many applications, the wave functions in L2(R%) have too many variables for practical
computations. Therefore, it is often useful to consider its reduced density matrices which

are simpler to analyze.

4 )
Definition. Let Wy be a normalized wave function in L2(R*®). The one—body den-

sity matrix 'y\(;])v of Uy is a trace class operator on L?(R%) with kernel

’Y\(I,l]zr(l’,y) = N - \IJN<ZC,£L'2, ...,.ZN)\IJN(y,.CL'Q, ...,.TN)dLL’Q...dﬁEN.
RA(N—1
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Thus 7\1, >0 and Tr 7\1,) N. The “diagonal part” of 7\(1,1]2[ 1s the one—body density

puy () :7\(1,1127(37,:6) =N |U N (2, 29, ..., z)|*dey...d2y

RA(N—1)

which satisfies py, > 0, fRd puy = N.
A y

In application, the one-body density matrix ’7‘(1/112; is sufficient to encode the expectation

against every one-body observable:

<\11N,Zh qu> Tr(h§)).

Here as usual Tr(hy\(l,l])v) = Tr((ml,N)l/Qh( ) )1/2) makes sense when h is bounded from below

on L?(R%). In particular, if V is a multiplication operator on L?(IR?), then
N

(03 V)0 ) =V = [ Vo (o

i=1 R4

Historically, the formalism of density matrices was introduced by John von Neumann in
1927. In his development of quantum statistical mechanics, the name “density matrix” is
related to its analogue in classical statistical mechanics, namely a probability measure on the
phase-space R? x R?. In this general setting, a mixed quantum state of N fermions is a

trace class operator I'y on L2(R4) with
'ny>0, Trl'y=1.

Its one-body density matrix is obtained by taking the partial trace of all but 1 particle
'Y = NTro oy .

Thus I'Y{ is a trace class operator on L*(R%) with

—~

r¥Y >0 Tl =n.
In terms of kernels, we can write

Fg\lf)(x, y) =N - Uy (z, 22, .y TN Y, T, ooy Ty )dTo... ATy
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which is conceptually related to the the marginal distribution in probability theory. In
particular, if I'y is a pure state, namely I'y = |Ux)(¥y| with a normalized function
Uy € L?I(RdN), then

PN(‘fl‘ﬁb o TN Y1, 7yN) = ‘IJN(‘TD "'7xN)\IIN(y17 JxN)

and Fs\l,) boils down to the operator 7\(1,111 we defined before.

A key consequence of the anti-symmetry assumption is

Theorem (Pauli’s exclusion principle). For every normalized wave function Wy €
L2(R™), we have

0<y) <1 on LA(RY).

Remarks:
e Without the anti-symmetry assumption, 7‘(1,1]2’ may have an eigenvalue as large as N. In

fact, if

Un (21, .y xny) = uN (2, o 2n) = ulzy)..u(zy)

with a normalized function u € L*(R?), then 7\(1,1; = Nlu)(ul.

e The physical interpretation of Pauli’s exclusion principle is that
“two quantum particles cannot occupy the same quantum state”.

A less precise version of this principle can be seen easily from the anti-symmetry as-

sumption: if x; = x; for ¢ # j, then
Un(z1, s iy ooy Ty ooy ) = =Y (21, oy Ty ooy Ty ooy Ty) = 0.

However, the operator inequality 0 < 7\(1,111 < 1 is much deeper than the fact that the

wave functions vanish on the diagonal set.

It is easy to verify Pauli’s exclusion principle for Slater determinants

Exercise. Let {u;}Y., be orthonormal functions in L*(R?) and consider the Slater de-

terminant Wy = uy A ug A ... ANuy. Prove that the one—body density matriz of Wy
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18
N
= Z |ui) (il
=1

Proof of Pauli’s exclusion principle in the general case. We want to prove that for

every normalized function u € L? (R?), then

(u, v ) < 1.

By the definition of the one-body density matrix fy\(I,l])v, we can write

(u, vy u) = <\PN, > (P, w> . Pu=lu)ul.

j=1
Thus we need to prove that

N

_ 2 (mdN
A=>"(P), <1 onL(R™).

j=1

Take an orthonormal basis {u;}%°, for L?(R?) such that u; = u. We claim that
A: Z |'LL“/\/\'LLZN><UZI/\/\UZN‘
1=i1<i2<...<iN

and the desired result follows as the Slater determinants form an orthonormal basis for

LZ(R). Indeed, for every 1 <i; < iy < ... < iy we have

N
Augy N+ Ny = Z w)z; Z \/_81gn )i, (T1) Wi (TN) =
j=1

geSN

1

[
WE

Slgn Wiy ) (3:‘1) (P ulg(])( )) C Uiy (xN)

1 0€eSs

.
Il
z

H%

I
WE
%

Slgn ula(l) (171) T (517%@)”%@) (‘%)) T Wi (xN)

1 0€S

=1(1 € {i1,...,in}) Z \/%sign(a)uig(l)(q;l) g () g (T)

cESN

<.
Il
z

U’Zl/\/\ulN 1:i1,

0, otherwise.
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This completes the proof of Pauli’s exclusion principle. ]

The following result of Coleman (1963) tells us that the condition 0 < « < 1 in Pauli’s

exclusion principle is optimal.

N\
Theorem (Admissible one-body density matrices). Let v be a trace class operator on

L*(RY) such that
0<~y<1 onlIL*R%, Try=NEecN

Then there exists a mived state I'y on L2(R¥Y), namely a non-negative operator on

L L2(R4N) with Tr Ty = 1, such that its one-body density matriz is T'Y = .

Z

Remarks:

e If v is a projection, namely v = 72, then I'y can be chosen to be a pure state I'y =

|Wn)(¥y| and Wy is simply a Slater determinant.

e In general, it might be not possible to choose I'y to be a pure state (see an exercise

below).

Exercise. Let v be a trace class operator on L*(R?) such that
0<~y<1 onlL*RY), Try=NEeN.

Assume further that v has N — 1 eigenvalues equal to 1, but v is not a projection. Prove

that there exists no normalized function ¥y € L2(R™) such that 7\(1,111 =.

Proof of Coleman’s theorem. We claim that ~ can be written as a convex combination of

rank-/N projections, namely

v = Z ke, cx >0, Z ¢, =1, -~ is a rank-N projection for all k.
k=1 k=1
Then any 7 is the one-body density matrix of a Slater determinant Wy, € L2(R*), and

we can simply take

I'y = Z VN i) (PN gl

k=1
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We construct the sequences {cx} and {v} by induction.

For k = 1, by Spectral Theorem we can write

Y= () ) (]

where {u, }%° is an orthonormal family in L?(R%) and

M) = X(r) = =20, D () =N.
n=1
If Ayy1(7y) =0, then v is a rank-N projection and we can stop. Otherwise, we take

er = min{Ay(7),1 = Av41(7)} € (0, 1)

and write

N
y=eam+ (l—e)F, n=) |u)(ul, 0<H <1, Ty =N.

n=1

More precisely,

N oo
~ _ An(Y) — &1 An(7)
g, $ M

The choice of €; ensures that 0 < 7; < 1. Of course, we take ¢; = &5.

131

For k = 2, we can repeat the above argument with ~ replaced by 7;. More precisely, if 77 is

a rank-/N projection, then we can stop. Otherwise, we can write
Y1 =¢eoy2 + (1 —e2)7y2, 72 rank-N projection, 0<7, <1, Try, =N
and g2 = min{An(%1),1 — Ay:1(51)} € (0,1). Thus
Ty=emt+l-—e)n=eamn+(1-e)e+ 1 —c)l—e)p.
Hence, we take co = (1 — &1)en.
For every k > 3, by induction we have

Y= + C27Y2 + ...+ Ck—1Vk—1 + (1 — 51)(1 — 6]€_1)A’}//k_1.



132 CHAPTER 7. MANY-BODY QUANTUM SYSTEMS

If %1 is a rank-IV projection, then we can stop. Otherwise, we can write
Vi—1 =€k + (1 — €x)Yk, 7% rank-N projection, 0<7, <1, Tryp =N
and g = min{ Ay (Yx-1), 1 — Anv11(F%-1)} € (0,1). Thus

y=camn+ .+ 11+ (1 —e1) (I —epr)ewye + (1 — 1) (1 — e1—1)(1 — €1) Ve
k
=M+t C—1Ye—1 FCeYe Tt H(l — 87;)%
i=1
with

k—1

cr=(1—e1).(1 —ep_1)er = &g H(l — &)

=1

Conclusion: In order to conclude -
Y= Z CkVke
k=1

it remains to show that .

ickzl = [Ja-e)=0
k=1 k=1

Assume by contradiction that
da=1-0<1 = [Ja-e)=d>0
k=1 k=1
Then we can write
Y= Y+ 0T 0< G <1, Tris = N.
k=1

From the induction formula

M M
y=Y aw+ ][0 -, 0<Au <1, Triy =N
k=1 i

we find that 7y, — 74 strongly in trace class as M — oco. Consequently,

epg1 = min{An(Yar), 1 = Ave1(Gm) } = min{An (o), 1 = Anvg1(Fe0) } > 0.
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Here in the latter inequality, we have used that

1 = N
AN(Yoo) >0, A Vo) < —— Ai(Voo) < Trye = ——.
N (Yoo) N+1(V)_N+1i1 (7)_]\7—1—1 rqy N1
But the fact that limy; . €3 > 0 just contradicts the assumption
H 1 — 5k
k=1
This completes the proof. O

Remark: In general, we can also define higher reduced density matrices. For example, if Uy

is a normalized wave function in L2(R%), then the two—body density matrix 751/2131 is a

trace class operator on L2(R?*?) with kernel

N(N - 1)
2

(2)

fY\I/N(Ilvx%ylqu) / ( )\PN<$1,I2,23,...,ZN)‘I[N<y1,y2,Z3,...,ZN)ng...dZN.
RA(N—2

Then for every two-body operator W on L2(R?*®), we can write

(wy, >0 Wiyly) = Tr(WA).

1<i<j<N

However, this formulation is hard to use in practice because there is no complete character-
ization for the two—body density matrices. This so-called N-representability problem is

one reason making the interacting systems much harder than the non-interacting ones.

7.3 Ideal Fermi gas

We consider a non-interacting system of N fermions in R?. In principle, the idea gas is

“solvable”.

é N
Theorem. Let h be a self-adjoint operator on L*(RY). Assume that h is bounded from

below. Then for every N > 1, the Hamiltonian

Hy = Zhi on L2(R™)
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is bounded from below with the core domain D(h)®---QD(h), and hence it can be defined

as a self-adjoint operator by Friedrichs’ method. Moreover, its ground state enerqy is

En = Zﬂi(h)

. where pi(h) < po(h) < ... are the min-max values of h.

Proof. Using h > py1(h), we have the obvious lower bound

N

=1

Thus Hy is bounded from below and hence it can be defined as a self-adjoint operator by

Friedrichs’ method. It remains to compute the ground state energy Ey of Hy.

Lower bound. For every normalized wave function ¥y € L2(R¥) we can write

<\IIN,Zh Uy ) = Tr(hry))

Since 0 < fy\(l,lj)v < 1 (by Pauli’s exclusion principle) and Tr fy\(l,lj)v = N, we obtain

(h,y(l) > inf { iyn<un, huy) | {un}ory ONF, 0 <y, <1, io:un = N}
1

n= n=1

=

N

= inf { Z(un, huy) | {un }o, ONF} Zui(h)

i=1

3
—

thanks to the min-max principle.
Upper bound. Consider the Slater determinant
\IJN:ul/\---/\uN.

with orthonormal functions {u;}¥, in L*(R?) (we can take {u;}Y, C D(h)). Then using
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we have N
(Un, HyUp) = Te(hyg)) = (un, huy).
n=1
Thus
N N
Ex < inf { S s b | {un} ONF} =3 wi(h).
n=1 i=1
O
Let us consider an example of the hydrogen-like atom.
~

Theorem. For every N € N, consider the Hamiltonian

N N
Hy — (—Ax.——> L2(R3M).
N ; i ‘l'z’ on a( )

Then Hy is a self-adjoint operator with the quadratic form domain HX(R3N) and its

ground state energy satisfies

3 1/3
En = —N7/3(% 4 0(1>N—>oo)-
\, y

By the general theory of the ideal gas, we know that

N
En = Zﬂi(_A — N|z|™)
i=1
where y;(—A — N|z|™!) is the i-th min-max value of the Schrodinger operator —A — N|z|™
on L?(R3). Actually, the spectrum of —A — N|z|™! is known completely: it has negative

eigenvalues
2

N
1z with multiplicity &%, with k = 1,2, ...

Hence, if we can write
N=14+22+_ +M+M, 0<M < (M+1)?

then

N M
N2 M'N? MN2  M'N?
Exv =S p(—A— Nja| ™) =S -2 k2 S .
=l ) =2~ 4(M + 1) 4 AM 1)

i=1 k=1
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Using
M(M+1)2M +1
124224+ .+ M= (M + é( +1 =N+ o(N)nooo
we find that
M = (3N)? + o(N'*)y o0
Thus
31/3

On the other hand, we can also prove the above asymptotic formula for £y using the semiclas-
sical estimates developed previously, without having to compute all the negative eigenvalues

explicitly.

Proof of the asymptotic formula for £y by semiclassical estimates. First, by rescal-

ing z — N'/32 we can write
N N N
By =3 (=0 = NJal ™) = 37 (= N*PA = NJaf 1) = NS (= A = N¥oJa| ),
i=1 i=1 i=1
Thus we need to show that
B N 31/3
Ey = ;M—A — N2z~ = —.7\/5/3(T + o(1>N%o).
Lower bound. For every constant a > 0, we can write
B N N

Ey = Z“i(_A — N*B)z|71) = Zm(—A + N*3(a — |2|7Y)) — aN®/?

i=1 i=1
> Tr(—A + N*3(a — |z|™")_ — aN®/2.
By Weyl’s law,
Te(=A+ N (a— |2|™))- = —Lil,:a/ [N?(a — [ 72z + o (N*#)°) n o
R3

=N (1l [ lfa =l ) P+ oDy

where

) | B1| 2 (47/3) 1
Cl — 2 J— = —_ = - =
L3 = /RS |(|2mk|” = 1)-[dk <d 12 (27r)d>|d—3 5 (2m)* 167
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and

47 bw

. 1 5/239,. _ —1)%/2p23p = == . 20
/|a |z| )| *de = \/_ ( ) Ersdr i 16

Thus in summary,

Ey = N5/3<1517r2 ' 4771 ' ?_g tat O(l)N*“’) - _N5/3<12i/‘ at O<1)N*°°>
We can optimize over a > 0, namely choose a > 0 such that
1/3
241\/5 - 241\/5 4T <24i/5 ' 241\/5 ' a) IR
Hence,
3 313
En > —N5/3<(24)2/3 + o(1)N%o) = —N5/3<— + 0(1)%00).

Upper bound. We need to show that with V(z) = a — 2|7, a = (24)7%/% and A\ = N?/3

N
> (=B AV (@) < N2 (Ly [ VPR 4 ol
i=1 R3

By the min—max principle,

S (A + AV (1)) < TH((~A + AV(2))n)

i=1

for any trace class operator v on L?*(R?) satisfying
0<~y<1, Try=N.

We will construct a trial operator v using the coherent state method. Take a radial function
0 < G € CX(R?) satisfying |G|z = 1 and denote
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As in the proof of Weyl’s law, we choose
vim [ 1B By 20k + AV () < 0)ddy
r3 JR

Then 0 < v < 1 on L*(R?) by the resolution of identity and

ﬁyz/m/]M%mF+MKM<OMMy:Q%/|MLW2
R3 JR3 3

|Bl / h 3/2 (47/3) |5 —3/2 T
dr = LN 24ma 2 — = N.
@ =lel)- (27)3 16

In the last equality we have used A\ = N?/3 and a = (24)7?/3. Thus proceeding as in the
Weyl’s law upper bound, we find that

Tr((—A + AV (2))y) = —L{3\*? / V_|?/% + Lg{gx”/?/ V|2 (VG2 —V)dy
R3
+IVGIELEN2 [ Vo
R3
Note that V_ = (a — |z|7')_ € L' N L3~ (R3) and supp V_ = {|z| < a~'}. Hence

limsup A~/ Te((—A + AV (2))7) < —LS / V52 4 L, / VLR (VG2 = V) dy.
]R3
3

A—00

Moreover,
VG =V =(a—|z| ) *G*—(a—|z|™") = |o| " — |z| "+ G*
Hence,
VPRV G2 = V) = [VoPP(Ja] ™ = 2| ™ % G?) < [VIPPP(f = f % G?)
where

f(@) = || 1(|2] < a™).

Since f € L3~ (R®), by choosing G, (z) = n*?G,(nz) for a fixed function ||Gy| > = 1, we
obtain
f—f+xG* =0
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strongly in L*~(R?). Combining with |V_|?/2 € L' N L?~, we get

VPRV Gh = V) = [VoPP(f = f+Gh) = 0
strongly in L'(R?). Thus we conclude that

limsup A2 Tr((—A + AV (2))y) < —L%g/ V_|/2.
R3

A—00

This completes the proof of the upper bound. n



Chapter 8

Thomas—Fermi theory

8.1 Density functional theory

In density functional theory, instead of considering a complicated wave function Uy €

LZ(R) one simply looks at its one-body density

,O\IJN<$) =N |\I/N(SL’,.I‘2,...,{I?N)|2d$2...d$N,

(RA)N -1

which satisfies the simple constraints

puy (@) >0, / puy(a)dz =N,
R

é Y
Theorem (Representability). Let d > 1 and 0 < p € L'(RY), [oup =N € N. Then

there erists a normalized wave function ¥y € L2(R¥) such that py, = p. We can
choose Wy € L2(R¥) to be a Slater determinant. Moreover, we can choose ¥y €
HYR™) if and only if \/p € H(RY).

\

Proof. Step 1. For every 0 < p € L'(R?), [..p= N €N, we can take

p(x) e27rikf(a?)

VN

Uy =u Aug A ... Nuy, uUp =

140
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with a function f:R? — R. Then all of u;, are normalized in L?(R¢) and

> lu(@)P = p(a).

It remains to choose f such that {u}Y_, are orthogonal. We use an idea of Harriman and
Lieb (1981). Using the notation z = (2!, y) € R x R?"! we define

fla)=f N/ /Rdl ty)dy)d

f@h) =< p(z',y)dy.

Rd—1

Then

Thus f € L'(R), hence f is at least continuous. Moreover, f is increasing (as p > 0)and

lim f(z) =0, lim f(z =

rl——00 zl—o0

Moreover, for every k # £, we have

/ Uk($)Ug<$)d$ pi\f) 2mi(0—k)-f(x d.’If / / ) 27rz(€ k) f(z dy)dT
Rd Rd—1

/f 27rz(€ k)f )dl‘ :/ 2mi(£— k)st_O
0

Thus {uy}i_, are orthonormal, and hence ¥y is a Slater determinant with

N

puy =D lun(@)]* = p.
k=1
Step 2. If \/p € H'(R?), then

2mik f(z1)

VN

Vo (z ( (Vp(@)) + /(@) 2rikf (x )) e L2(RY).

Here V(+/p(z)) € L*(R?) by the assumption \/p € H*(R?). For the second term, f'(z')/p(z) €

L*(R?) because /p € H'(R?) € LP(R?) for some p > 2 by Sobolev inequality and f'(z') €
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LA(R) for all 1 < ¢ < oo. The latter fact can be seen from

1 1

meody 1 _ 1 2
Py =5 [, Onr@ )y =5 | - Oulvelely)dy
)
=¥ Vo', y)0s\/ p(at,y)dy € L'(R)
Rd—l

and Sobolev inequality W'(R) C LY(R) for all 1 < ¢ < co. Thus we conclude that if \/p €
H*(R?), then all u;, belong to H'(R?), and hence the Slater determinant Wy constructed
above belongs to H!(RY).

Step 3. If Uy € HI(RY) (not necessarily a Slater determinant), then /py, € H(R?)

because we have the Hoffmann-Ostenhof? inequality

(10 8w = [ 9yt

i=1 R

Using the one-body density matrix vf;])v, this inequality can be written as

T-Ao) 2 [ 9y
R4

Using the spectral decomposition

Y9l =D ) fal

n>1

(here f,,’s not necessarily normalized), the above inequality can be written as

1/2
;AdIan|2zéd\V(§\fn\2)

2

For the sum of two functions, this follows directly from the diamagnetic inequality |V|p(x)|| <

|Vo(z)| for every ¢ € H(R?). For the general sum, we can do induction. O

The idea of describing a quantum state using only its one-body density goes back to Thomas
and Fermi in 1927. It was conceptually pushed forward by a variational principle of Ho-
henberg and Kohn in 1964. Here we will follow the approach by Levy (1979) and Lieb

(1983). In general, given any Hamiltonian Hy on L2(R®), the ground state energy can be
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rewritten as

EN = inf <\IJN7HN\IJN> = inf inf <\IJN7HN\IIN>-
TNl 2 gany=1 p20 I UN 2 pany=1
al ) al )
rd P=N Pw N =P

This motivates the definition of the Levy—Lieb density functional

,CN(,O) = inf <\I/N7HN\I/N>, VpZ(),/ ,OZN
”\I’N”Lg(RdN):l R4
P N =P

Thus the ground state problem of Hy becomes

EN = inf ,CN(p)

p=0
Jra p=N
This looks simple, but of course the complication of the many-body problem is now hidden
in the determination of Ly. In principle, computing Ly is very hard. However, we may try

to develop approximations which capture some properties of Ly when N — oo.

Consider a typical Hamiltonian Hy on L?(R) of the form

N

Hy = Z (— R*A,, + V(:v,)) + A Z w(z; — xj).

i1 1<i<j<N
Here V : R? — R is an external potential and w : R? — R, w(x) = w(—=x), is an interaction

potential. The parameter A > 0 plays the role of Planck’s constant and A > 0 corresponds

to the strength of the interaction.

For the external potential, we have the exact formula

N
(0w Y Vwy) = [ Vo, (@)
i=1 R
For the kinetic and interaction terms, there are no exact expression in terms of py,. However,

the semiclassical approximation suggests that

st i -
N NS R P d+2 |B

=1
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while the mean—field approximation tell us
al 1
<\I/N, Z w(x; — xj)\I/N> ~ 3 // p(x)p(y)w(z — y)dedy.
Rd xR

1<i<j<N

Putting all this together, we arrive at the Thomas-Fermi approximation
clp2 142/d A
(W, Hy Oy ) = K02 | 2+ | Vpay + 3 pu () Py (9 — y)dady,
R R4 RIxR4
In particular, this suggests that

Lvlo) ~ K3 [

A
et [ vor s [ et - pas.
R Rd R4 xR4

2

We will justify this approximation in the next section (following my joint work with Nina
Gottschling (2018)). As we will see, the Thomas—Fermi theory is correct to the leading

order in the semiclassical mean-field regime
h~NY X~ N7 N oo

This is the choice making all three terms on the Thomas—Fermi density functional comparable
(all are of order N).

Historically, the Thomas-Fermi approximation was proposed for the atomic Hamiltonian,
when V and w are Coulomb potentials in R3. We will consider it in a more general context,

and then pay a special attention to the Coulomb case at the end.

8.2 Convergence of the kinetic density functional

Recall the semiclassical approximation

U al AN ~ K€ L42/d  pecl _ d (2m)?
NaZ(_ 961) N/~ g Puy d_d_i_Q.‘Bl’Q/d'

d
=1 R

It is convenient to introduce

f\PN - K)\PTN :/ ’\IJN(:CVT%"'7xN)’2dx2"'de’ f Z 0’ f =1
(Rd)N—1 R4
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Thus the above approximation becomes

1 cl 1+2/d
W@MZ( ATy NKd/ .

=1

We can justify this approximation as follows.

,
Theorem. For all d > 1, the followings hold true when N — oo.

(i) (Lower bound) If the normalized wave functions ¥y € L2(R¥) satisfy that fy, —
f weakly in L'**4(R%), then

N

hmlnf;<\IJN,Z(—Ax.)\I/N> > Kfjl f1+2/d.

Nosoo N1+2/d o i Rd
(ii) (Upper bound) For every
0 < fe LYRY N L*4RY, 5 f=1,
there exist Slater determinants Wy € L2(R¥) such that fy, — f strongly in

LY(RY) N LY*2/4(RY) and

i=1
\ .

N
1 C
hmsup NiT2/d <‘I’N,Z—Amquv> < K¢ L fL+2/d,

Remark: For upper bound, we do not assume /f € H'(R?), and hence it is not always

possible to choose fy, = f (due to the Hoffmann-Ostenhof? inequality).

Proof. Lower bound. For every function 0 < U € C*(R%), we can write

N
1 1 2/d
W<WN7Z—A%‘I’N> =~z I | (-A = N¥U)y / Ufay-
=1

By the Pauli’s exclusion principle 0 < fyl(l,ljzr < 1 and Weyl’s law on the sum of negative

eigenvalues, we can estimate

Tr (<8 = NPHUR] 2 Trl-A = NYU) = L5, [ [NPHUJ o (Ve
Rd
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_ N1+2/d< _ Lil,d/d [i+d/2 +0(1)N_m>‘
R
Moreover, using fy, — f weakly in L'*?/4(R?) we find that

Rd Rd

Thus
1 N
. _ , > _ 74 1+d/2 ]
liminf 7 <\IIN, ;le A%\DN>_ LLd/RdU +/Rde

Optimizing over U (i.e. choosing U = const. f*¢) we conclude that

N
.. 1 o 1+2/d
lim inf =57 <‘I’N7 ;:1: —Azi‘I’N> 2 K| S

Upper bound. We can follow the coherent state approach in the proof of Weyl’s law to
deduce the upper bound, but in this way it is not easy to keep the important constraint that
Py are Slater determinants. In the following, we will follow a more direct approach, which

is close to Weyl’s original method and Thomas—Fermi heuristic argument.

Step 1 (Slater determinants of Dirichlet Laplacian on a cube). Consider the Dirichlet
Laplacian —A on @ = [0, L]?. Recall that that it has eigenvalues |7k/L|?, k € N¢ with

\/z sin ke’
L L

The ground state of the M-body kinetic operator Zj]\il(—ij) is the Slater determinant U%,
made of the first M eigenfunctions {uy}. It is straightforward to see that when M — oo,

eigenfunctions

d

up(x) = H

i=1

, k= (ki)?:h T = (Ii)?:l € RY.

M

B <‘1’M’Z(—Am)‘1’M> = 3 2

i=1 keSnm

2 Kgl
QP

mk
L

and

1 1g
fos = — up|* = —=  strongly in LP(Q), Vp € [1,00).
v 2 o @, el o)

eigenfunctions

Step 2 (Slater determinants of step-function densities). Let
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0 < fe LYRY N LF4RY), f=1
R4

Let {@} be a finite family of disjoint cubes, whose construction will be specified in the next

step. In the following we only consider cubes () such that

/Qf>0.

We can find an integer number

My € (N/Qf> +[-1,1]

such that
 Mg=N|[ f=N.
Q R?

Now for every @, consider the first M eigenfunctions {ug’?}j\i‘ﬁ of the Dirichlet Laplacian
—A on @. These functions can be trivially extended to zero outside () to become a function
in H}(RY). Since the cubes {Q} are disjoint, the N functions UQ{U?};\Q C H}(R?) are
orthonormal in L?(R%). Let U3, € L2(R*) be the Slater determinant made of this orthogonal
family. Then in the limit N — oo, using the fact that

Mg
W%/Qf>0

and the calculation in Step 1 for each cube, we get

N Mq
1 1
Nit2/d <\D%’Z_Axilpi> ~ Nit2/d ZZHVM?HQ

i=1 Q i=1

M 1+2/d KC]
Q2 Q
- Z 1+2/d Z”V“ I ’ Z Q4 ‘/Qf

= K Z |Q|‘ Z @ /Q f’ < K¢ Z /Q fir2/d (by Jensen’s inequality)
Q Q Q

1+2/d

Rd
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and
1 2 [u@P?
R SN ITIES DL S (O S Y
Q i=1 Q i=1
strongly in LP(R?) for all 1 < p < oo.

Step 3 (Conclusion). Since 0 < f € L'(R%) N L'*%4(R%), for every k > 1 we can find a
finite family of disjoint cubes {Q} such that
— 1
<k 7 ::—/f.
@l Jo

L1+2/d(Rd)

||f - Z]IQTQ
Q

f— Z]lcz?@
Q

L' (RY)

Using this collection of cubes, for every N > 1 we can construct a Slater determinant W% €
L2(R) as in Step 2. Thus there exists Ny > 0 such that for every N > Ny,

N
1 k k o 142/d | 7.-1
W<WN,Z;—A@\I/N> S A

and
IS w4 IR IS wh L
N N
Q I3 Q 1+2/d
By the triangle inequality, for every N > N,
-1
o = 7y 5= e <27

Now we conclude using a standard diagonal argument. By induction in k, we can choose the
above sequence Nj such that Ny > Ni. Since limy_, o Ny = 00, we can find limy_, ky = 00
slowly such that

N > Ng,.

Thus the Slater determinant Wy = \11va € Sy constructed as above satisfies, as N — oo,

1

N
N1+2/d <‘I’N7 > —Awﬂ’zv> < K§ g FUEe gt 5 K[ e
=1

Rd

and
| fon = Fllpay + 1oy = Fllpiseagmey < 2k5" = 0.

This completes the proof of the theorem. O
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Note that the above theorem is conceptually equivalent to Weyl’s law for the sum of eigen-
values. For example, we can use this theorem to give another analysis for the hydrogen-like

atom

H :i(—A.—ﬁ) on L2(R*N),
5 Tl ’

We want to show that the ground state energy of Hy is

(OOl

Ey = -N""( y

+ 0(1)Nﬁoo).

By rescaling z — N3z, it is equivalent to prove that the Hamiltonian

7 1 1 2 (3N
iy =3 (= e - Nix,-\> on Ly(R™)

has the ground state energy Ex = —(3)/3/4 4 0(1) ys00.

Another look at H ~. Lower bound. Take an arbitrary normalized wave function ¥y €
LZ(R¥) such that

<\1/N, HN\IJN> — Ey+O(N™).
By the Lieb—Thirring inequality
1 Juy 5/3 Jux
Uy, Hy Uy \IIN,Z( 2) \I!N LN qp > K f IEN gy

N5/3 R3 |$| R3 |x]

i=1

with a constant K > 0 independent of N. Moreover, using fR3 fuy = 1 and Holder’s
inequality we find that

quN / f\dex+ f\p—Ndx
|

R3 m z|>1 || lz|<1 |z

<1+ foullosm@s el L2 < Dl psegsy < 1+ Cllfayllsrs@s)-

K/ 5/3 / f\dex / 5/3
R3 s |z -2

Thus Ey > —C and fy + is bounded in L*/3(R?). Up to a subsequence, we can assume that

Therefore,
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fuy — f weakly in L3(R?). Then

/ f< liminf/ foy =1
R3 N—oo R3

Moreover, by the above theorem, we have

liminf<\IfN,HN\IfN> > Ko [ ) 4
N—o0 R3 rs |7

where

o _ < d_ (2m)? )|d:3 3 (@2m)? 3(67r2)2/3.

37 \d+ 2B T 5(4r/3)%3 T 5

Exercise. Consider the Thomas—Fermi functional

5TF(f) — Kgl/ f5/3 o Mdﬂf, K§1 — %(671’2)2/3.

R3 R3 ’95|

Prove that the variational problem

E= mf{gTF(f) 10< fe LNRYNLPRY), [ f< 1}

RS

has a unique minimizer fo. Moreover, [ps fo =1 and E = —(3)"/3/4.

This leads to the lower bound
lim inf By = lim inf <q/N, HN\I/N> > —(3)/3/4
N—oo N—oo

for a subsequence as N — oo. We then obtain the convergence for the whole sequence by a

standard contradiction argument.

Upper bound. Let fy be the Thomas—Fermi minimizer from the above exercise, fR3 fo=1.
By the above theorem, we can find Slater determinants ¥y € L2(R4) such that fg, — fo
strongly in L'(R?) N L%/3(R?) and

lim sup Ey < lim sup <\I/N,HN\IJN> = K¢ fg/3 _ de = _(3)1/3/4.
R3

N—oo N—oo R3 ‘ZE|
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It is conjectured that

N

c d c d
i [ A< (e YA e < k5[ [yl

=1

N

c ]. 2 d c ]_ 2/d _
= K [ A (e Ay < 5 [ RN [ eyl

where the lower bound holds for all d > 3 (Lieb—Thirring conjecture) and the upper bound
holds for all d > 1. The upper bound was proved by March and Young in 1958 for d =1,

but their proof cannot be extended to higher dimensions.

8.3 Convergence of the Levy—Lieb functional

Counsider the Hamiltonian

Hy = g: (— R*A,, + V(a:z)> + A Z w(x; — xj).

i=1 1<i<j<N

in the semiclassical mean—field regime
h=NY X=N1
We will prove that the rescaled Levy—Lieb density functional

& == inf —
w(f) N sl =t N

YN

converges to the Thomas—Fermi density functional

— KC / 1 —
(=t [ e [ viag [ r@sete - iy

Conditions on potentials. The potentials V,w : R¢ — R belong to LP(R?) + L4(R?) with
p,q € [1+d/2,00). Moreover, w admits the decomposition

w(z) = / "o x0) (@),
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for a positive measure ji on (0,00) and for a family of even functions 0 < x, € LP(R?)+L4(R%)
with p,q € [2+ d, 00).

The decomposition on w is equivalent to

o) - [ 10 () Pau(r).

0

So this essentially requires that w(k) > 0, plus some regularity. This holds for a large class
of potentials, including Coulomb potentials. For example, in R we have the Fefferman-de

la Llave formula
1 1 [ dr 3
= (s x1p)(2)5, Vo e RN\{0}
0

jz[ 7

where 1p, is the characteristic function of the ball B(0,r) in R?.
Exercise. Let d > 1 and let 1, be the characteristic function of the ball B(0,7) in R?.
Prove that for every 0 < X\ < d, there exists a constant C 4 > 0 such that

o dr d
_ = C)\’d/o (]IBT * ]IBT)(Z')m, Vr e R \{O}

1
Theorem (Gamma convergence from Levy-Lieb to Thomas-Fermi functional). For all
d > 1, when N — oo, the Levy—Lieb functional Ex converges to the Thomas-Fermi

functional ETF in the following sense:

(i) (Lower bound) For every sequence 0 < fy € LY(RY) N LY*24R%) such that
Jea Inv =1 and fy — f weakly in L'**%(R?), then

thginng(fN) > ET(F).

(ii) (Upper bound) For every 0 < f € L*(R?) N L'**4(R?) such that [, f =1, there
exists a sequence of Slater determinants Uy € L2(R™) such that fy, = fn — f
strongly in L*(R?) N L**2/4(RY), and

limsup Ex(fn) < ETF(f).
N—o0
G Yy

Proof. Lower bound. Consider a normalized wave function Uy € L2(R¥) with fg, =
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fx — f weakly in L'*?/4(R%). We have

<‘PN,HN\1’N> 1

N
1

1<i<j<N

By the convergence of the kinetic functional, we have
1 N
S . cl 1+2/d
hNHLIOI(l)f N2/ <\I/N, 2_1 Axi\I/N> > K /Rdf .

Moreover, since fy — f weakly in L'*2/4(R9) and | fy|/z: = 1, by interpolation we have
fn — f weakly in L"(R?) for all r € (1,1 + 2/d]. Under the condition V € LP(R?) + LI(R?)
with p,q € [1 4+ d/2,00), we deduce that

N
. —1 ) _ T _
Jim N <\IJN, 2—1 V(xz)\I’N> Jim » Vin /Rd Vf.

It remains to consider the interaction terms. Using

wle=9) = [ dut e o) =) = [ [ dnlo =2ty -2

we find that
<\yN, 3 w<xi—xj)\1/,v> :/ dp(r)/ dz<\IIN, 3 Xr(xi—z)xr(xj—z)\l’]v>.
1<i<j<N 0 R4 1<i<j<N

For every r > 0 and z € R?, by the Cauchy-Schwarz inequality we get

<\I’N, > Xr(xi_z)Xr(xj_Z)\IjN>

1<i<j<N

% _<\I’N7 (in(dii - Z)>2‘I’N> - <‘I’N,§X?ﬂ<$i - Z>\IJN>
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Since fy — f weakly in L"(R?) for all 1 <r <1+ 2/d, and x,, x? € LP(R?) + LY(R?) with
p,q € [1+d/2,00), we find that

J\P—{noo(fN *Xr)(2) = (f * x0)(2),
lim (fn*x7)(2) = (f * x7)(2).

N—o0

Hence, for every r > 0 and z € R,

.. —9
llNIILIOI})fN <\IIN, Z X (2 )X (5 z)\I'N>

1<i<j<N

> limian_Q% [NQ(fN %X )2 (2) — N(fy * Xf)(z)Lr = %(f * xr)(2).

N—o0

Therefore, by Fatou’s lemma,

liNnLioI;fN’2 <\IIN, Z w(mi—xj)\IlN>

1<i<j<N

:hjvnigf/ d7“/RddzN_2 <\IJN, Z Xr(mi_z>xr($j_Z)\IjN>

1<i<j<N

/dr/Rddz (f * x»)? //Rdx]Rd Jw(z — y)dzdy.

Here we have repeatedly use the decomposition of w. Thus in summary,

<\IJN7HN\DN> > 5TF(f)

lim inf
N—oo

Since U € L2(R¥) can be chosen arbitrarily under the sole condition fy, = fy, this leads

the desired lower bond

lim inf Ex (fx) > E(f).

Upper bound. Let 0 < f € LY(R?) N L'*2/4(R?) with [,, f = 1. Then by the convergence
of the kinetic functional, there exist Slater determinants ¥y € L2(R%) such that fy, =
fx — f strongly in L'(R%) N L'+%/4(R9) and
1 N
hmsup N <\IIN,Z(—A%.)\I/N> < K¢ /Rd Fl+2/d,

=1

Since fy — f in L"(R?) for all r € [1,1 4 2/d] and V € LP(RY) + LY(R?) with p,q €
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[1+4d/2,00), we have

N
. -1 ‘ 1 _
Jim N <\PN, §._1:V<xz)\IJN> Jm [ Vi /R v

Finally, for the interaction terms, since Wy is a Slater determinants and w is non-negative,

an explicit computation shows that

<WN, > ) \DN> 3 [ [psa@panto) = 8w 0) Pl ute = sy
Re xR

1<i<j<N

<5 //Rded puy (T)pwy (y)w(z — y)dzdy

N2
// N(y)w(z — y)dzdy.
R xR4

The convergence fy — f in L'(R?) N L'*%/4(R9) and the assumption w € LP(R?) + LI(RY)
imply that
fv*xw— f+w in L®(RY)

by Young’s inequality. Hence,

N2<\PN, > w<xi—xj>\1fN>s§ [ @it = sy

1<i<j<N
1
=5 [ @) e ey

Putting all together we obtain the desired upper bound

’ (Un, Hy W y)
im sup ~—————~
N—oo

< ™).
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8.4 Convergence of ground state energy and ground

states

The notion of Gamma convergence is useful for many applications. In particular, we can

come back to the ground state problem of the Hamiltonian

N
HN - Z ( — hQAm + V(l'z)) + A Z w(xl — %‘), h = N_l/d, \ = N_l.

i=1 1<i<j<N

As above, we assume that V,w € LP(R?) + L9(R?) with p,q € [1 + d/2,00) and
w@) = [ Ou o) @)l
0

for a positive measure p on (0, 00) and for a family of even functions 0 < x,. € LP(R%)+ L4(R?)

with p,q € [2+4 d, 00). Recall the Thomas—Fermi functional

— KC / 1 —
(= ws [ e [ vies [ r et - i

and the TF energy

ETF .= inf{STF(f) :0< fe LYRY) ﬂL1+2/d(Rd),/ f< 1}.
R4

Exercise. Given real-valued functions V,w € LP(R?) + L4(R?) with p,q € [1+d/2,00).

Prove that E™* has a minimizer f™ with [p. f™ <1 and
E™ = inf {ETF(f) 0< fe LNRY N L1+2/d(Rd),/ f= 1} :
R4
Prove that if we assume further @ > 0, then f*Y is unique.

We have

(Theorem (Convergence of ground state energy and ground states). Let d > 1. T he]
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ground state enerqy En of Hy converges to the Thomas-Fermi energy:

Moreover, if Uy € L2(R¥) is a ground state for Hy, or more generally an approzimate
ground state in the sense that

i A HvEN) _ e
N—oo ’

then
foy = ™ weakly in L'?/4(RY)

where fTF is the unique Thomas-Fermi minimizer satisfying [p. 5 < 1.
N v

e It may happen that Ey has no minimizer, and/or E™F has no minimizer satisfying
fRd fT¥ = 1. Nevertheless, the convergence of the ground state energy is always valid.
In fact, the convergence of the ground state energy is valid under a very general condi-
tion on w (including negative potentials, e.g. w(z) = —|z|™!), as proved by Fournais,
Lewin and Solovej (FLS-2018).

e This result justifies the validity of Thomas-Fermi in the atomic case, which was first
proved by Lieb and Simon (1973). In this case we have Coulomb potentials in R3
1

, w(w) :m

In the litterature, the atomic Hamiltonian is often written in the form

N

atom N 1
Hym =% (=An—)+ Y ——— onLi®&™),
] |w; — ]

i=1 v 1<i<j<N '"*

which corresponds to a neutral atom of N quantum electrons moving around a heavy
nucleus fixed at 0 € R? of the nuclear charge Z = N, interacting via Coulomb forces.

By changing the variable z +— N~'/3z H3°™ is unitarily equivalent to

N
~ N 1
Agem =3 (= NP, - —|) + on L3 (R*Y)

i=1 N~z 1<i<j<N N=13z; — ]

N
1 |
_AT4/3 ON=2/3 A -1
_N [Z( N723A,, ‘>+N 3 |

i=1 | Z| 1<i<j<N
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Thus the above theorem tells us that

inf o (HY™) inf o (Hatom)

TF
N7/3 o N7/3 - B
where
1
gTF(f) _ Kgl/ f5/3 . f(x)dx 4= // f(x)f(y)dxdy, Kgl _ §<67T2)2/3.
R3 rs |7] 2 ) Jrsxms |7 =y 5

In this case, H&°™ has a ground state and the unique minimizer of E™" satisfies

Jga fTF =1 (we will come to that later).

Proof. Energy upper bound. Recall the variational principle

EN = inf <\I/N,HN\IIN> = inf inf <\I/N,HN\I/N>,
”‘IIN”Lg(]RdN)Zl f=0 HlIlN”L%(RdN):l
rd [=1 wy=f

which can be rewritten as 5
WN — inf En(f)

f>0
fRd /=1

thanks to the definition of the (rescaled) Levy-Lieb functional

. (U, Hy V)
Ex(f):=  inf ~ INTN)
w(f) 1Onlpgav,=t N
foy=f

Recall also the following equivalent definition of the Thomas—Fermi energy (see an exercise

above)

E™ = inf {5TF(f) 0< fe LMRYN L1+2/d(Rd),/ f= 1} :
Rd

For every 0 < f € L'(R?) n L****%(R?) satisfying [,. f = 1, by the Gamma convergence
(upper bound), we can find Slater determinants Wy € L2(R™) such that fy, = fxv — f
strongly in L*(R?) N L**2/4(R%), and

limsup% < limsup Ex(fn) < E(F).

N—oo N—oo
Then optimizing over f we obtain

E
lim sup =N < g

N—oo
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Energy lower bound. For any normalized wave function ¥y € L2(R3Y), using w > 0 and

the Lieb—Thirring kinetic inequality we have

NN, 4+ V().

vV
i1~
0

Hence,

(Un, HyOn) _ (T, S0 (—A,,)Ty) 1+2/d
N > Nir2/d + Vf\IfN > Kq f + y Vfwy

for a constant Ky > 0. Since V € LP(R?) + L9(R?) with p,q € [1 + d/2,00) we have

(W, HN‘I’N> Kd 1+2/d
N f

Thus En/N is bounded from below. Moreover, if the wave function satisfies
(U, HyU ) = En + 0o(N) N oo,

then fy := fy, is bounded in L'*¥4(R?). Up to a subsequence, we can assume that fy — f
in L'+%4(R%). Hence, by the Gamma-convergence (lower bound) we have
(U, Hv W)

... Exn ...
lim inf —— = lim inf
N—oo N—oo

> liminf Ex(fx) > ET(f) > ETF.
—00

In the last inequality, we have used the variational definition of E™". Note that the weak
convergence fy — f implies that 0 < f € L*(R?) N L**?/4(R?) and

/Rdf<hm1nf fn=1.

N—oo R4
Since the limit £ is unique, we can obtain the lower bound estimate for the whole sequence
N — oo. Thus in conclusion we obtain the convergence of the ground state energy

N
lim — = ETF,
N—oo

Convergence of ground states. Let WUy be an approximate ground state for Hy and let

fn = fuy. Let fTF be a minimizer for E™ with [,, f'F = 1. Then from the above proof of
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the lower bound, we have fy — f weakly in L'*?/¢(R?%) and

lim @ = lim w — ]\}im 5N<fN) — STF(f) — ETF — gTF(fTF).
—00

N—ooo N N—oo

Since the TF functional is strictly convex, it has a unique minimizer. Thus fy — f1F weakly

in L'T2/4(R%). O

8.5 Atomic Thomas—Fermi minimizer

We take a closer look at the Thomas—Fermi functional for Coulomb potentials

TF( £y . 3 5/3 M 1 f(z)f(y)
EX(f)==K | f dx+2//R3><R3—|x_y| dzdy.

5 R3 R3 |x‘

with a constant K > 0 (the physical constant will be 2K = K, namely K = (672)%/%).

From an exercise of the previous section, we know that the minimization problem
B =it {£7() 0 fe D) nIE, [ 1)
R3

has a unique minimizer f™F since w(k) = const.|k|™2 > 0.

7
Theorem (Atomic Thomas—Fermi minimizer). The unique atomic TF minimizer fT¥

is radially symmetric, [gs fTF =1, and it solves the TF equation
KEf™ (@) =zt = [« J2| !, vo e R\{0}
Moreover, f*¥ is the unconstrained minimizer, namely

E(f™) < ETF(f), V0 < fe LYR3) N L73(R?).

Proof. Step 1. Since f +— ETY(f) is rotational invariant, the unique minimizer ¥ must be
radially symmetric. Let us prove that [p, f™" = 1. Assume by contradiction that [p, f™" < 1.
Then for every 0 < p € C°(R?) and ¢ > 0 small we have

T 4t >0, / (f™ +tp) < 1.
R3
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Thus by the minimality of f™F we have
gTF(fTF) S gTF(fTF + ts&)

for all t > 0 sufficiently small. Consequently,

0< %(gTF(fTF +t¢)>|t:0+ _ /R3 <KfTF($)2/3 1 4 fTF i)gp(aj)dx

|z] |

Since this holds for all 0 < ¢ € C2°, we find that

C

1 1
K(fTF)2/3 — | _| + Ty ﬂ >0, forae z€R%
x Xz

On the other hand, by Newton’s theorem

fTF*L _ [ Ty, _/ [ (y) dy < fTF(y)dy: s fTF.
R

2| Jws lz =yl Jrs max{|a], [y[} e |7l ||

Thus

1 1 1
KfTF(x)2/3 > — — fTFy m > (1 — /R3 fTF)m for a.e. v € R?,

which implies that

Co
™ (x) > FEE for a.e. v € R?

with a constant ¢y > 0. However, the last inequality contradicts to the fact that ng fIF < oo,

Thus we must have [pq fTF = 1.

Step 2. Now we derive the TF equation. We can proceed similarly as above, but now we

have to choose the test functions

o e MR NLBRY), ¢(x) > —f(z) for ae. z € R?, / v <0.
.

3

Then as above, we have

E(fM) <™ (fF +tp), Vteo1],

and hence
0< G(ETUT v = [ (KT - e
T dt =0+  JR3 || ||
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By taking ¢ = —fTF, we find that

i i [ (KA ) ) 20
R3

1
] |z]

We can also take

o) =gla) = ([ )™ @)

with
0<geCrRY, / g<1.
]R3

Then the above variational inequality reads

0< /RS (KfTF(x)WS _ % LT ﬁ) [g(x) _ </R3 g>fTF<x>}dx
_ /RS (KfTF(x)Q/?) B é L TE %‘)g(x)dijuTF/R?)g
= /., W@)gle)de
where
W(w) = K1 (@) — % + 1 % + '

Thus we have proved that
W (z)g(z)dr >0, V0 <ge O2(R?), / g <1
R3 R3
which implies that W (z) > 0 for a.e. z € R3. On the other hand, thanks to the definition of
prr and the fact that [, f*F = 0, we obtain

1

TF _ TF(,\2/3 _ 1+ | (TF
[y /RS<Kf (@ = ]

1

Since W (z) > 0 and f™(x) > 0 for a.e. z € R3, we conclude that when f(z) > 0, we have

W (x) = 0 namely
KfTF(.CE)2/3 _ i .

FIF o = TP,
|z |

1
|z
On the other hand, if fT¥(x) = 1, then using W (z) > 0 we get
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These two formulas can be written in the compact form
KfTF(x)2/3 [ _ TR 1 W]
|z] |z +

We will prove later that ;™ = 0, but that requires a preparation.

Step 3. Now we prove that fI¥ is an unconstrained minimizer. For any m > 1 (not
necessarily an integer) we can consider the variational problem

E™ (m) := inf {ETF(f) 0< fe IMRYNLARY, [ f< m} :

R3
Then proceeding exactly as before, we know that E™(m) has a unique minimizer f,, with
Jgs fm < m, which is radially symmetric. Our goal is to show that f,, = fF. It suffices to

prove

fm < 1.
R3

We will need a TF equation for f,,. We can proceed similarly as in Step 2. More precisely,

for all
Y E Ll(R3) N L5/3(]R3), o(x) > —fu(x) for ae. z € R3, /3 <0
R

we also have

d B 2/ 1 1
o< demen), ., = [, (e e L)t
and that implies
Jos (B @ = 4 fnt ) o)

fom 2= Jos fn =

Now we take

o) = 9(0) ~ (725 ) o). 0<ge @) [ g2

R3

Jos fn

which gives

05 [ (RGP = ot o ) o) = (2 k]
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- /R (Kl - % + fon %)g(m)dx + Hn /R 9= [ Wnle)glx)de

where . .
WM(Q;) = Kfm(x)2/3 — 7+ fm * — + -
2] |z

This implies that W,,(z) > 0 for a.e. x € R®. Moreover, by the choice of j,, we have

/R3wmfm:/RS <Kfm(x)2/3_|?1|+fm*‘%|>fm+um RSfm:O

Thus W,,(z) = 0 if f,,(z) > 0. All this gives the TF equation

1
— ok o
+

Kfu@* = [ = fue o

]

It remains to deduce the bound ng fm <1 from the TF equation. Recall that p,, > 0 and
fm is radial (hence, we can use Newton’s theorem to simplify the convolution). Multiplying

the TF equation with f,,(z) we have the pointwise inequality

0< Kfm<x>5/3 = |xi| — fin * % - Nm] fm(x)

IN

_[L_ /R fm—(y)dy] fm(z), forae xR

Lzl Jre max{|z], [yl}

Integrating against 1(|z| < R)|z|*dx with k = 2,3, ... we obtain

() i dzd
Jucalet 052 [ | (a0t

2 + Jyl*
/|35<R/y|<R max{|x] |y|}f ( )fm(y)dxdy

Note that any a > b > 0 and k£ = 2,3, ... we have the elementary inequality

Fror Vo k-1
ot - — >

— k—1 bk—l
max{a, b} a ~ k e )

which is equivalent to
k

b
"t k— > (k- 16
a
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The latter follows from the AM-GM inequality

bk
a7t (k—1)— > kb
a

Coming back to the TF problem, we have

o " + Jyl* dzd
/90|§R|x| fm L<R/?J|<R max{\x] |y’}f ( )fm(y) Y
—/ / ("= + [y ") fon (@) frn () dedly
|lz|<R J|y|<R

ey
Bl /| ) /| o)),

Thus for R > 0 large we find that [, |z|*1 fon(z)dz > 0, and hence

1> .

ly|<R

The taking £k — co and R — oo we conclude that
Jm-
R3

Thus f, = f'Y, for all m > 1. This means that fT¥ is an unconstrained minimizer for the

TF functional.

Step 4. Since fF is an unconstrained minimizer for the TF functional, we have
E(fTT) <ERS™), vt>0.

Consequently,

d 1

= €)= = /R 3 (K FTF(2)2/3 — ot FTF &

1

)@ = =

Thus the TF equation becomes

1 1 1 1
KFIF ()2/3 — [_ _ TF _] _ - TR
(@) 2 o« =il *
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Here in the second identity we have used Newton’s theorem

w, L _ [ W), ) g o), - 1
P = Je =yl A3max{\x,,\y,}y§ s Tl 2]’

From the TF equation, we find that fT¥(x) is continuous away from 0, since both |z|~! and

the convolution fTF x ‘71| are continuous away from 0. Hence, the TF equation holds true for

all z # 0. This completes the proof of the theorem. O
Remark: The function
CI)TF({L‘):L—fTF*iZO
|z |z

is called the Thomass—Fermi potential. Note that
AP (2) = 4r f1¥ (), Vo € R¥\{0}.
Hence, the TF equation can be written in the equivalent form
AD™ () = 4n K32 0TF ()32,

This nonlinear PDE is well-studied. We have the Sommerfeld asymptotic formula

3K
lim |2['@TF (z) = ATF, qrF — BE)
|z| =00 32

In fact, the following pointwise bound was proved by Solovej (2000).

Vi3 —17
£=—7>

0.
2

ATF|ZL‘|_4 2 (I)TF(:E) Z ATF|ZB|_4 . C|SB|_4_E,

Consequently, the TF minimizer fTF(z) decays as const.|x|~% when |z| — oc.


https://arxiv.org/abs/math-ph/0012026

Chapter 9
Hartree—Fock theory

Recall that the ground state energy of a Hamiltonian Hy on L2(R%Y) is defined by

EN = inf <\I’,HN\I/>
quHLa(RdN)Zl
In the Hartree—Fock theory, one restricts the consideration to Slater determinants and

consider

B = inf (U, HyW).

¥ a Slater determinant

Thus by the variational principle, we have the obvious upper bound
Ey < E"F.

For a comparison, the Thomas—Fermi energy is neither an upper bound nor a lower bound
to the full quantum energy. As we will see, in many situations, it is possible to obtain a good
lower bound for Ey — EMY| making the Hartree-Fock theory significantly more precise than

the Thomas—Fermi theory.

In the same spirit of the density functional theory, an important advantage of the Hartree—
Fock theory is that the energy expectation can be expressed purely in terms of the one-body
density matrix of the Slater determinants. For a typical Hamiltonian Hy on L2(R™) of the

form
N

Hy=Y_ ( — P, + V(:z:i)) +A Y wla — )

i=1 1<i<j<N

167
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and for a Slater determinant

Uy = (ug Aug Ao Auy) (21, .. TN) \/_ Z sign(o)u1 (To(1))-- uUnN (To(n)),

gE€SN

where {u;}Y | are orthonormal functions in L?(R?), we have

(Un, HyUy) = SHF(’Y\IJN ’Y\pN ZW@ uil
where

EM(y) == Te((=h*A+V)y /Rd/Rd p ()05 (y) — |v(=, y)|] (x —y)dzdy.

The two terms in the interaction are called direct and exchange energy. Note that we

always have
p7<x)p7(y> - ’7('1:7 y)|2 Z 07 vxvy € ]Rd-

Thus the Hartree—Fock energy can be rewritten as

E = inf  &EM(y)
0<y=7%<1
Try=N
Here the condition v = 2 is to ensure that v is a projection. For some computation, it
is more convenient to ignore this condition since the set {0 < v < 1,Try = N} is convex.

Actually, it is possible to do that without losing anything, provided that the interaction

potential is non-negative.

4 N
Theorem (Lieb’s variational principle). If w > 0, then

HF _ . HF
E —0%355 (7).
Try=N

Here V is assumed to be “reqular enough” such that —h*A 4V is bounded from below.

This result was first proved by Lieb (1981). In the following we represent a simplified proof
of Bach (1994).

Proof. By a density argument, it suffices to take the infimum on the right side only on finite-
rank operators. We will prove that if 0 < v < 1, Try = N and £%F(y) < oo, then there
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exists a projection 0 <5 =72 < 1, Try = N such that
() = ).

To construct 7, let us write
M M
= Z Ailui)(ug|, 0< X <1, Z i =N, {u;}}, orthonormal functions in L*(R%).
=1 =1

Then we have

EMF (y ZAA+ Z)\/\Bw

zyl

where

A= s (084, By =R [ [ (o) Plas)P st o)) (o) = o
Note that B;; = Bj; and B;; = 0. Define
n(y) = {0 <A\ < 1}.

We assume that n(y) > 2; otherwise « is already a projection. Then there are at least two

eigenvalues A, A; in (0,1) and we can assume that
M M
Ap + Z AiBix =2 Ag + Z AiBig.
i=1 i=1
Let 6 = min{\g, 1 — A} > 0, then either A, —§ =0 or Ay + ¢ = 1. Define
7= < > >\z‘|uz‘><ui|) + (A — ) |uge) {ur| + (A + 6)|ue) (uel.
.

We have
n(7) <n(y) -1

and

M M
EMF(7) = EMF) = MeAr + MAr+ D NidBin + > MideBig + AAi B
ikl ikl
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M M
- (()\k — ) A+ e+ ) A+ 3 N — 6)Ba+ > Alhe + 0By + (A — )M + (5)BM)
ik, ik,

M M
_ 5(Ak A+ ABa =Y AZBM) + 628y, > 0.

i=1 i=1
Thus we can replace v by 7 without increasing the energy. Here ¥ may be not yet a projection,
but since n(7y) < n(y) — 1, we can iterate the procedure and eventually obtain a projection

after finitely many steps. O

In some situation, people are also interested in the reduced Hartree—Fock energy

rHF _ rHF
EET = %{}21 E ()
Try=N

where

e ) = (AT VI +5 [ [ e, wue - )y

Thus here we keep only the direct interaction energy and ignore the exchange energy. Math-
ematically, the reduced Hartree-Fock theory is easier to analyze since, for example, if w > 0

then v — E™MF () is convex. If w > 0, then the exchange energy is non-negative, and hence

In this chapter, we will see how good the Hartree-Fock and reduced Hartree-Fock approxi-
mations are. The main question is the lower bound for Ey. We will focus on the atomic case

where

N

Hy = (= N2PA,, -

i=1 il 1<i<j<N
= <i<j<

1)+N‘1 > I; on L2(R*M).

i — ;)

A big achievement in mathematical physics during 1970-1990 is the following rigorous formula

for the full quantum ground state energy
Exy = —ciN + caN*3 — esNV3 4 o(NY3) v o0

Here the first term is determined by the Thomas—Fermi theory, as we discussed in the previous
chapter. This was first proved by Lieb and Simon in 1970s. The second term is called Scott’s

correction, corresponding for the electrons moving very close to the nucleus (at a distance
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N~2/3 which is much shorter than the semiclassical distance O(1)). This was proved partially
by Hughes (lower bound), and fully by Siedentop and Weikard in 1987. The third term
is called the Dirac-Schwinger correction, corresponding to further and subtle correction in
semiclassical approximation. This was proved by Fefferman and Seco in 1990s.

In this chapter, we will prove rigorously that

EN — ErHF + O(Nl/B)Nﬁoo; EN _ EHF +0(N1/3)N—)oo~

9.1 Lieb—Oxford inequality

In the previous chapter, we have proved that if fg, = N !py, — f, then

1iNn££fN—2<xpN, > ﬁ%> > %/ dedy.

1<i<j<N r Jrs T — Y

A quantitative version of this mean—field approximation is

7
Theorem (Lieb-Oxford inequality). For every normalized wave function ¥ € L? (R3N )
we have

<‘Il’ Z > = 2/ / pul dxdy CLO/ pu(z)*3dz.
1<i<j<N | Li — $]| R3 JR3 |x - ?J| R3

We can choose Cr,o = 1.68.
A V.

This result was first proved by Lieb (1979) with Cro = 8.52. The constant Cpo = 1.68 was
obtained later by Lieb and Oxford (1981). Currently, the best known result is

1.64 > Cro > 1.44.

In the following we will prove the Lieb—Oxford inequality with a worse constant, using the

strategy of Lieb, Solovej and Yngvason based on the Fefferman-de la Llave formula

o1 ] e e)@% v eR\0)

x|

and the Hardy—Littlewood maximal function.
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4 )
Definition (Maximal function). For every f € Li (R?), the mazimal function M; :

R? — [0, 00] is defined by

M(x) = su )|d
@) =sp e [
A\ y

Note that

1
flx lim —— y)|dy < My(z), ae. xzeRL
) =t ey Wl < M)

On the other hand, the following result is very helpful.

~
Theorem (Strong-type estimate). For every 1 < p < oo, we have
| M| o ey < Cpll fll o way
. with a constant C,, € (0,00) independent of f. )

The original Hardy-Littlewood maximal inequality gives a constant Cgy,. The fact that C,
can be chosen independently of the dimension is due to Stein. Note that the condition p > 1
is crucial. For p =1, we only have a weak-type estimate (see the proof below).

Let us postpone the proof of the strong-type estimate and provide

Proof of the Lieb—Ozford inequality. Let ¥ be a normalized wave function in L2(R3*") and
denote p = py. Recall that by the Fefferman-de la Llave representation

r

we can write

<qf, Z w(a;i—xj)\p>=%/o /dez<

1<i<j<N

1g, (2 — 2)1p, (; —z)\Il>

1<i<j<N
For every r > 0 and z € R3, by the Cauchy-Schwarz inequality we get

<qz, > g (x—2)lp, (1 —z)\If>

1<i<j<N

< (Z]lg -2)) \If> - <\11,2N:]12BT($1. —z)\y>

i=1

1
T2

+
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> % <\If, ; I, (z; — z)‘1’> - <‘I’7;13T(9Ei - Z)‘I’>
= 2 [+ 15.)(2) ~ (p*15)(2)],
= %(p x1p,)%(2) — %min {(p * 1p,)(2), (p* ﬂBT)Q(Z)}'

Integrating over z and dr/r® we obtain

<‘1”1<;<N |x,~ixj|\lf> > %/R /R %dmdy
_C’/dez/ooo%min{(p*]lBr)(z),(p*]lBT)z(z)}.

It remains to bound the error term. By the definition of the maximal function, we have
p*18)C) = [ o)y < B IM() = Orag ()
B(z,r

Hence, for every R > 0 we can bound

/OOO%min{(p*]IBT)(z),(p*]lBT)Q(Z)} < /OR%(;)* 15,)%(2) —i—/m%(P*ﬂBr)(z)

< C(R*M,(2)* + RT'M,(2)).

We can optimize the right side over R > 0. It is easy to see that the optimizer R satisfies

1/3

REM,(2)* ~ R My(2) ~ (REM(2)2(RT M (2))2) = M=),

Thus we obtain

[ i {0+ )00 G P01} < O,

Finally, by the strong-type estimate we conclude that

/Rs “ /ooo%mm{(p* 15,)(2), (0% 15,)°(2) | < C/RB d=M,(2)'F* < C/ dep(2)?,

R3
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This completes the proof of the Lieb-Oxford inequality (with a worse constant). O

We end this section by quickly recalling the proof of the strong-type estimate, which is one of

the most useful results from harmonic analysis. We will need the following geometric result.

4 N
Lemma (Vitali covering lemma). Let {B;}; be a family of balls in R? such that

sup diam(B;) < oo.
jeJ

Then there ezists a subfamily of disjoint balls {B;}; such that

. Here if B; = B(xj,7;) , then 5B; = B(x;, 5r;). )

Remarks:

e The set J can be finite, countable or uncountable. The subset J' is always at most

countable since the balls {B;}; are disjoint.

e The condition sup,c;diam(B;) < oo is crucial. Without it, a counter example is

B; = B(0, ) with j = 1,2, ...

e The constant 5 is not optimal. It can be replaced by 3 + ¢ (and 3 if J is finite).

Figure from Wikipedia: The balls {B;};c; (left) and {3B,};c (right)

Proof. Here let us consider the simple version when J is finite (the infinite case is harder and

left as an exercise). We choose J' by induction.
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e First, we take a ball Bj, of largest radius and put j; € J'.

e Second, we ignore all balls with intersecting with B; . If there is nothing left, then we

stop. Otherwise, among all balls disjoint with B; , we take a ball Bj, of largest radius

and put jo € J'.

e Assume that we have chosen ji, ..., ji € J'. If every ball intersect with B, U ... U B;

Jk>

then we stop. Otherwise, among all balls disjoint with B; U ... U B;,, we take a ball

B.

Jk+1

ko

of largest radius and put jip.1 € J'.

This procedure must stop after finitely many times. Then the resulting balls {B;}, =
{Bj,, ..., Bj,, } are clearly disjoint. Moreover, any ball B; with ¢ € J, must intersect with a
ball B; with j € J" such that the radius of B; is < the radius of B;. Then by the triangle

inequality,
B;c3B;c | 3B,
jeg
Consequently,
B c3B;
ieJ jes

Now we are ready to provide

Proof of the Hardy—Littlewood mazimal inequality. Step 1. We prove the weak-type esti-
mate
S/\ulg)‘HMf > A < Cd||f||L1(Rd)> Vf e Ll(Rd)-
>

Assume My(z) > A for some x € R%. Then by the definition of M;(z), we can find a ball
B(z,r;) such that

/ y)|ldy > A <~ / fy)|dy > |B(z, )|
l’ y T | B(z,rz) (z,rz)

By the Vitali covering lemma, from the collection {B(x,r,) : x € J} with J = {z : M;(x) >
A} we can find a sub-collection of disjoint balls {B(z,7,) : * € J'} such that

U B(z,r,) C U 5B(z,1y).

zeJ zeJ’
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Consequently,
My > N} < ‘ U Ba,r.)| < ‘ U 5B(z,r.)| < S 5B(x, )|
zeJ xzeJ’
—5dZ|er<—Z/ |dy<—/ F(y)Idy.
zeJ’ zeg ’ Bl@rz)

This completes the proof of the weak-type estimate.

Step 2. Now we prove the strong-type estimate. For every f € LP(RY) we use the layer-cake
representation

M;(z)Pdx :/ pAP T {M > A}|d).
R4 0

If we simply insert the weak-type estimate
Ca
[{My > A < e

in the layer-cake representation, then we get oo since AP~2 is not integrable. However, we

can split

[fI =AU > A2) + AT < A/2) < g+ 272, g = [fIU(f] > A/2)
which implies that
My < Mg+ X/2.

Therefore,

(M) > M) < 1M, > A2} < 28 gl = 222 / PO )] > A2)dy

A/2

where we have applied the weak-type estimate for g. Inserting the latter bound in the layer-

cake representation and using Fubini’s theorem, we conclude that

My(ads < Cay [~ 000 [ aylf @170 > A2

R4 0

—Cay [ Wl [ W50 > A2) < G [ P,

This completes the proof of the strong-type estimate. O
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9.2 Error bound for atomic reduced Hartree—Fock en-

ergy

Now we come back to the ground state energy En of the atomic Hamiltonian

N
1 1
Hy =3 (-N20a, - —)+N7' Y —— on IZ®R™M)

i=1 ] 1<i<j<N |2 — ;|

We will compare with the reduced Hartree-Fock energy
rHE _ . rHF
B = ogvn;l &0
Try=N
where
EMF(y) := Tr((=N"23A — |z| ™) / / £2(@)0r ) dxdy
R3 JR3 ’35 - y!

Recall that
(Theorem. We have E™F = Ex + O(NY3) N s 00. )

Proof. We know that Ey < E™MF and it suffices to consider the lower bound of Ey — E™HF.

Let a normalized wave function Wy € L3 (R3V) satisfy
Exn > (Un, HyUy) +O(NY).
By the Lieb—Oxford inequality
(Un, HyUy) = Te((~N"2PA+ V)yg)) / / Pun(@punW) g4, — oN- / 2
2N R3 JR3 |z —yl
_ ngF(%(pl]z, CN1/3/ 4/3
As in the proof of the validity of Thomas—Fermi theory, we know that

(U, HyWy) > N< [ fu 2 — [ el dx) > N( [ fane )53 — c)

R: |7
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for a constant K > 0. Since (¥y, HyWUy) < Ex + O(N™') < CN, we find that
foy(x)?dx < C.
R3
We also have ng fwy = 1. Hence by Hélder’s inequality,

/ fa < c.
R3 N

In conclusion, we have
r 1 4/3 r
(Uy, HyWy) > EMF () — CN3 /R fol > BT ONVR.
This completes the proof of the desired lower bound for Ey. Thus in summary,

ErHF > FEy > ErHF . CN1/3.

Next, we compare the reduced Hartree-Fock energy E™Y with the Thomas—Fermi energy

TF ._ in cl 5/3 M 1 f(z)f(y)
b f <K3 R3f dx_l—z//RSxR:“ |z =y dxdy).

0<fEL!(R3)NLS/3(R3) R |7]

Recall that £ has a unique minimizer f'F which satisfies [, f'¥ = 1 and the TF equation
R

9 e _ _
g 31(fTF)2/3 _ (I)TF, CI)TF(I‘) — |:L‘| 1 fTF % |.I‘| 1 > (.
(Theorem. We have E'HY = NETF + o(N)n L 00- )

This result is not new as we already proved Ey = NETF 4 0(N)N—oo and Ey = ErHE

O(N 1/ 3). Nevertheless, the proof below gives another approach to the validity of the Thomas—
Fermi theory Ex = NE™ 4+ o(N)n_o0-

Proof. Lower bound. Take

0<y<1lonL*R*, Try=N
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and consider

. _ 1
EM(y) = Tr((=N"*A = [2[7)7) + 5 D(py. p3)

/ dxd
R3 JR3 |:v—y|

Since the Coulomb potential is positive-type, namely D(f, f) > 0, we have

where

D(py,p,) = Dipy — NS, p, = NFT) = N2D(fTF, f) + 2N D(p,, f™)
QD(fTF, fTF> + QND(pW, fTF)
= =N D(f*", ) + NTe((f1 [ ~)7).

v

Hence,

EMF(y) 2 Tr((=NT2PA = [2[™)y) = ND(F™, 1) + Te((F7 |2 7))
= Tr((=N"*PA = @T)y) = ND(fT, 1)
> Tr(-NT#PA = @) — ND(fF, f1F).

Optimizing over v we obtain the lower bound
ErHF Z Tr(_N—Q/?)A o (PTF)_ . ND(fTF, fTF)

Note that

F i F
E™ + D(f', f1F) =K§143(fTF)5/3 /R I d:z:+//Rs . IZ@I W) g,

lz —yl
fTFq)TF Li:lg /3(@TF)5/2
R

s |l

— K§1 /R:a(fTF)S/ZS .

RB

where we have used the pointwise equality
Kgl(fTF)E)/d fTF(I)TF +LC1 ((I)TF)5/2 0
Recall that by the definition of K§' and L{'y we have

K$'a®® + LY6°? > ab, Va,b >0

179
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and the equality occurs when

5
b= Kja?

which is exactly verified by the TF equation when a = f*¥ and b = ®TF.

Thus we have proved that

ErHF _ NETF Z TI'(—N_2/3A _ @TF)_ + NL(13173/ (@TF)5/2'
R3

Since 0 < ®™F € L/2(R?), by Weyl’s law we have

lim N 'Tr(=N"22A - ™) = lim <22 Tr(A — k0™ = —LL, [ (9TF)%2
N—roo k=N2/3 00 "~ Jrs
Thus

E™Y _ NE™ > 0(N)ySoo.

Upper bound. As in the proof of Weyl’s law, we choose the trial state, with kK = N?/3,

v = / / | Fro) (Froy|L(|127K[* — k@™ (y) < 0)dkdy.
R3 JR

Then 0 < v < 1 on L*(R?) by the resolution of identity and

Tw:/ / 1(27k]? — kO™ (y) <0)dkdy=L813/ KD (y)2/?
R3 JR3 " JRe

c 5 . 3/2
w1y [ (GRS @) T
R3

Here we have used fR3 f¥ =1 and

5 a\32 |Bi| /5 3 32 ig
I <_Kcl> _ <—-—6 22/3) _ 3" gn2—1.
03\ 3" omi\3 50 e

Thus proceeding as in the Weyl’s law upper bound, we find that

Tr((—A — k®™)y) = —L‘{fg /(/<<I>TF)5/2 + 0(/@5/2)

R:’)
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which is equivalent to

Tr((=N"22A — ®TF)y) = ~NL{, / (®TF)5/2 4 o(N).

R3

It remains to bound the direct term D(p, — N f*F, p, — N fTF). From the definition

Y= / / | Fo ) (Fry | didy.
|27k|2— kB TF () <0

and F,(z) = e*™**G(z — y), |G| 12s)=1, we can compute explicitly

prla) =r(wa) = [ Fiy () Py
[27k|2— kP TF (y)<0
-/ Gl — )iy = L) | (0" (0)IG o — )Py
|27k |2~k ®TF () <0 " JR3
=N [ WG - )Py = N 6 o).
R
Here we are going to choose G* = G3, — 0 slowly as N — oo. Therefore,
% G3 — f™F strongly in L*(R?) N L>3(R?).
Consequently,
N2D(p, = Nf™, p, = Nf™) = D(f™ Gy — ™, /™ # Gy — fT7) = 0.

Thus we conclude that for the above choice of 7,

B B 1
EF < &1 () = Tr((—N"23A — |2[)y) + ND(,OA,,,OW)

181

= TH((~N2PA — BT (@))) — - DIVS NI + Do, — NI, p, — NfT)

N
— NI, / (@TFY2 — ND(f™F, fT) + o N)
]R?’

= NE'™ +o(N).

This completes the proof of the upper bound.

Actually we have the following deeper result
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(Theorem (Scott correction). We have ¥ = NETF 4+ IN2/3 + o(N?/3) N, )

Since Ey = E™F + O(N'/3), the Scott correction holds for the full energy Ey as well. The
proof of the Scott correction is significantly more complicated than the derivation of the

Thomas—Fermi energy; below we will give an outline of the main ideas.

Sketch of the proof. Lower bound. From the above analysis we already showed that

ErHF Z TI'(—N_2/3A _ q)TF)_ _ ND(fTF,fTF)

= NE™ + Te(—N"*PA — &™) _ + NL{, / (@TF)>7.

R3
Thus we need to prove the following correction to the semiclassical approximation

1
Tr(-N*PA - ™) = —NL§{3/ (@)% + SN/ 4 o(N?F9).
R3
Actually the contribution %N 2/3 comes from the particles moving very close to the nucleus
(of a distance O(N~%?) which is much smaller than the semiclassical distance O(1)). The
contribution of these particles is comparable to the non-interacting case, namely the hydrogen

atom. Thus the key ingredient of the proof is the following

[ Theorem (Hydrogen comparison). We have b
| Tr(-v-2A - @)+ N, / (@TF)?/2
R3
—(Tr(—N‘2/3A — |z + 1)_) + NLZ, /Rg(|gc|—1 ~ 1)1/2(11;‘ < o(N?3).
§ Y

Here we replace the potential |z|™! by |z|™' — 1 to ensure that [p,(|z|™" — 1)Y%dz < oo.

The proof of this result is rather complicated as we need some advanced tools beyond the
coherent states discussed in the course. See e.g. Solovej and Spitzer |(2002).
To get the desired conclusion, we use the exact calculation for hydrogen. Recall that the

operator —h?A — |z|™! on L*(R?) has eigenvalues —1/(4h*n?) with multiplicity n?. Hence,

1 1 1
DAt = Y (- end) = Lo
r(—h lz| 7 +1) T 12h3+8h2+0(h )
1<n<(2h) 1


https://arxiv.org/abs/math-ph/0208044

9.3. BACH’S CORRELATION INEQUALITY 183

On the other hand, )
£y [ (el - 0¥ =
JR3 12

Thus

Tr(—N"2BA — || + 1)_) + NLg{?,/ (lz|* = 1% da
R3
N N2/3

N3,
- s oW

R

Hence, we obtain the desired lower bound

ErHF o NETF > Tr(_N72/3A . q)TF)i + NL(1:173/ ((I)TF)E)/Q
R3

N2/3

>

+ o(N¥?).

Upper bound. We can show that there exists an operator 0 < < 1 on L?*(R?) such that
Trvy = N and

Tr((=N"28A — ®TF)y) = Tr(—N"2BA — ™) _ 4 o(N?3),
N7'D(py = Nf™, py = NfTF) < o(N*P).
The choice of 7 is more complicated than just

/ 3 / 3 | Fry) (Fry|1(127K]* — k@™ (y) < 0)dkdy
R R

since we have to do something more precise in the domain {|z| < O(N?3)}. Actually the

construction of v follows from the proof of the hydrogen comparison we mentioned above. [

9.3 Bach’s correlation inequality

In this section we discuss an improvement of the Lieb-Oxford inequality where the exchange

term is taken into account.

(Theorem (Bach’s correlation inequality). Take an arbitrary normalized wave functz'on]
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U e L2(R3N) and denote v = 7\(1,1) and yr = v — 2. Then

al VY 2
vy ) 1/ / pr(@)ps(®) = WO )Py
i<j "IZ - x]| 2 R3 JR3 ‘:C -

Y|

3/4 1/4
4/3 4/3
=o( [ (L)

\ J

This inequality was proved by Bach (1992) in his proof of the accuracy of the Hartree—Fock
energy (we will come to this later). Note that by Pauli’s exclusion principle, the truncated

one-body density matrix yr = v — 72 satisfies
0<ym <y<L

Consequently, 0 < p,,. < p,. Moreover, if ¥ is a Slater determinant, then v is a projection

and hence vy = 0; in this case we have the equality

N
) Pp—— :l/ / pr(@)pr () = V@)l
4 ‘|x; — x| 2 Jrs Jrs [z —y .

In applications, when ~ is close to a projection, then 1 is close to 0 and the error term in

Bach’s inequality is much smaller than that in the Lieb—Oxford inequality (with the price
that we have included the exchange energy on the right side).

Recall that the Lieb—Oxford inequality was proved using the Fefferman-de la Llave decom-
position and Hardy-Littlewood maximal function together with the following bound for
X = ]lB(z,r)a

<\IJ, ZXinxp> > %(Tr[X’y])Q - %Tr(X’y)

i<J

Actually, this inequality easily follows from the identity

N 1 N 9 1 N
> XX =5(XX) -3 X
1< 1= 1=

and the Cauchy—Schwarz inequality. For Bach’s inequality, we will need the following im-

provement:
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Lemma. Take an arbitrary normalized wave function ¥ € L2(R3N) and denote y = 'yfl} )

and yp = v — 2. Then we have

<\p, 3 Xin\I/> > %((Tﬂ)@])? — Tr(X7X7)) — C Tr(Xy) min{1, (Tr[Xx])/%}.

i<j

Proof. We follow the representation of Graf and Solovej (1994). Let P, be operators on

L?(R3) such that
1=P+Q, 1>PQ>0.

Then we can decompose

N N
ZXin = Z(Pz' + Qi) (P + Q) Xi X (P + Q) (P + Q) = Ay + Ay + A3

i<j i<j
where

N
A = Z(PZQJ' + Qi+ QiQ)) XiX;(PiQ; + QiP; + QiQ;),
i<j
1
Ay = 5 Y (PPXXPP; + 2PPXiX; PiQ; + 2Qi P XX, P.F),
i#]
N
Ay = (PPX;X;QiQ; + QiQ;X: X;P.P;).

i<j

Note that A; > 0 since X > 0. For A,, we take an arbitrary constant a > 0 and complete

the square

L %‘a_ > (PX(1+Q)) "> 0

%‘a ~ Y (PXP +2PXQ),

2 K3

which is equivalent to

1

Ay = Y ((PXP),(PXP); +2(PXP),(PXQ); + 2(QXP);(PXP)))
i#]
> o’ + o > (200X - QXQ) ~ 1+ QXPX(1+Q)) —2 ;@XP)i(PX@)j
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For Az, we take an arbitrary constant 5 > 0 and complete the square

2
%

Iy,
5|87 (@QX P - 8Y2(PXQ)
which is equivalent to

Az = Z((PXQ)i(PXQ)j + (RQXP)(QXP)))
> 05 ((PXQY +(QX P + 5QXPXQ + 5~ PXQ?XP)

i

— 5B+ 57 Y QX PU(PXQ);
i#]

i

Thus in summary, for every o > 0 and 8 > 0

N

SOXX, > s’ L(4+ 5+ 57) Y (QXP)(PXQ),

i<j i#]j

v % Z <2a(X —QXQ) - (1+Q)XP2X(1 + Q)

~ (PXQ)* ~ (QXP)? ~ BQXP*XQ — 5~ PXQ*XP))

%

The one-body part can be estimated further as follows. We write

(1+QXP’X(1+Q)=QXP*X +XP’XQ+QXP*XQ+ XPX — XPQX
<1+ B)QRXP’XQ+ B 'XPX + XPX — XPQX.

For the last term we have

XPQX — (PXQ)* — (QXP)? = (P+Q)XPQX(P+ Q) — PXPQXQ — QXPQXP
= PXPQXP+QXPQXQ >0

Thus

20(X —QXQ) - 1+ Q)XP’X(1+Q) — (PXQ)? — (QXP)* - BQXP*XQ — B 'PXQ*XP
>20(X —QXQ) - XPX — (1+28)QXP’XQ — B H(XP?X + PXQ*XP)
>20(X —QXQ) -~ XPX — (1+28)|XP*X(|QXQ — 57 (| P|*X + [|Q*PX P)
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> 20(X — QXQ) — XPX — (1+28) Te(XP)QXQ — B~ (X + PXP)
= 20X — XPX — (2a+ (14 28) Tr(XP)QXQ — B~ (X + PXP).

For the two—body part we have

S (@XPHPXQ); = YPXPLQXQ); - 5(PQ; — QP XX, (PQ; - QiF)
i#j i#j

< 3 (PxPLQXQ); < (D (PXP)) (D(QXQ)) < T (PXP) (Y- (QXQ);).

i#] i J J
Here in the last estimate we have used the Pauli’s exclusion principle.

Exercise. Let A be a nonnegative trace class operator on L*(R%). Prove that

N
> A <Tr(A)  on L(R™M).
=1

Thus in summary, we have the operator inequality

N

Z XzX] Z —%Oé2

3 (QaX — XPX — (204 (5+38+ 8 ) Te(XP)QXQ — B (X + PXP)>

=1

%

Therefore, for every normalized wave function ¥ € L2(R3Y) with v = 'y\(I,l ) we have

N
1
<\I/,ZXin\II> > —5a’

i<j

n % Tr [(mx — XPX — 20+ (5+38+ ) Tr(XP)QXQ — B~ (X + PXP)M

Choosing a = Tr[X 7| we obtain

<xp, ixixjxp> > %(Tr[Xfy])Q - %Tr[XPX’y}

1<J

- %((2 Te[XA] + (5+ 36+ 571 Tr[XP]) Tr[QX QY] + B~ Tr[(X + PXPM)

Now we choose two different projections P to conclude.
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Choosing P =1, then () = 0 and we have

N
<‘IJ,ZXin\If

i<j

> > —%(Tr[Xv])z - %TT[XW] — B~ Te[X).

Then we can take § — oo to get

<\11, ZXZ-X]»\I/> > §(Tr[X7])2 - %Tr[Xy].

i<j

—_

This is the easy bound we have used in the proof of the Lieb-Oxford inequality. If Tr[X~yr] >

1, then we get the desired conclusion

Uy XX

1<j

< > > LX) — 3 X5 min{L, (Tr[X7e]) 72}
Choosing P = v, then ) =1 — 7. Using

Tr(QXQy) = Tr((1 —7)X(1 —7)y) < Te(X(1 = 7)y) = Tr(Xyr)
we have

1<J

<\11, ZXin\p> > %(Tr[X’y])z - %Tr[XyXﬂ
((7+ 38+ 871 TH[X3) Tr[X7r] + 287 Te[X1] + Te(X7X1]))

AV2
N o — DN =

(T{X7])? — 5 TH{X7X7]

Te[XA] ((7 + 38+ Y Te[X e + 2ﬂ‘1).

Now we only need to consider when Tr[X~r] < 1. In this case,

inf ((7+36+57) Tr[Xya] +2571) < O(Tel X)) /2

(if Tr[Xyr] = 0 it is obvious; otherwise we can take 8 = (Tr[X~r])~"/?). Thus

> > L(THXA)? — 5 TH{X7X3] — O Tr{X3] Tr[X 2] 72

N
<x1/, > XiX; U

1<j
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In summary, in all cases we have

<\1/, ZXin\IJ> > %(Tr[Xy])z - %Tr[XyXy] — C'Tt[X~] min {1,Tr[X7T}1/2}.

i<j

This completes the proof of the lemma. n

Now we are ready to provide

Proof of Bach’s correlation inequality. Let ¥ be a normalized wave function in L2(R3*") and

denote v = 7\(1,1 ), Ayt = v —~% Thanks to the Fefferman-de la Llave representation

dr
|95 - y| / = /R3 21 e (2) LBz (y)

we can write
dr
v Z / / dz \1; ]ler)(xZ)]lB(zr)(mJ)\I/>
i<j &2 —x]| RS g

For every r > 0 and z € R3, applying the previous lemma to X = 1 B(=r) (this multiplication

operator is a projection) we have

N

1
Z <‘If, L) (z:) LBy (%‘)‘If> Z 5 ((TT[]IB(z,rW])Q - TT(]IB(ZW)V]IB(MWD
i<j

-C Tr<]lB(z,r)’y) min{l, (Tr[]lB(z,r)PYT])l/2}-

Using the Fefferman-de la Llave representation again we obtain

1 [>dr 1 [>dr
% [ et =1 [ % [ a [ artsen @@ [ e, we
™ Jo T R3 ]R3 RS R3

//p” dxd
R3 JR3 |x—y|

Similarly, using

(e ylpeny) (@, ) = /R ) dyl gz (@) (2, Y) L Bew) (Y)Y (Y, 7) = /R ) Ayl gy (2) L (W) (2, )]
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we can write

dr dr
/ / dZTI' ]lB (z,r) 7]13 (z,m) / / dZ/ dr dy]lB(zr)( )ﬂB (z,m) ( )"7(1‘ y)‘
R3 R3 R3 R3

2
_/ @ 9E g,
R3 JR3 |37—?J|

Thus

P (@)p4(y) — |72, y)|?
A= E <\I/]lz,, 7)1 gz (25) ——// 2l 2l dzdy
b Bl ’ R3 JR3 |57U— yl

1<j

r .
—C/ = / dz Tr(]lB(z,T)*y) min{1, (Tr[]lB(zvr)fyT])l/z}.
0 R3

We control this error term by the maximal functions similarly the proof of the Lieb-Oxford

inequality:
1
Tr(Lp(emy) = / dyp,(y) < Cr°M,(2), M,(2) = SUP o T p+(y)dy
B(z,r) r>0 | (Z,’l") B(z,r)
and .
Tr(llB(Z,T)P)/T> < CTBMPT (Z)a MPT(Z) =Sup 57—~ p’YT(y)dy'
r>0 ‘B(’Z? 7”)| B(z,r)
Thus

> d
Az =0 [T [ aMy ) min{l, 2, ()2,
o 7% Jrs

For every z € R3, for every R = R(z) > 0 we can bound

*d d > d
/ T—Zmin{l,r?’/QMpT(z)l/Q} g/ TT 3/2M (2 )1/2+/ ar
0 R

0 7

< C(My(2)'2RY? + R7Y).
Then optimizing over R > 0 we get
1/2 p1/2 -1 12 p1/2y2 p1) /? 1/3
My () 2RV o B e (M (2) 2RPERT) T = M (2)
we get

“dr .
| S mind LA ()12 < OMy ()
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Thus

A>-C / dzM,(2)M,,.(2)"/?
R3

—C ( /R 3 dsz(z)4/3>3/4 ( /]R 3 dszT(z)4/3) .
> ¢ ( I dzp7<z>4/3>3/4 ( [ nte) )1/4.

Here we have used Holder’s and the Hardy—Littlewood maximal inequalities. This completes

v

\Y
W~
~
w

the proof of Bach’s correlation inequality. O

9.4 Error bound for atomic Hartree—Fock energy

In this section we compare the ground state energy Ey of the atomic Hamiltonian

N

Hy = (= N2PA,, -

=1

1 —1 1 2 3N
)N S Lo o LAEY)

|:] iy [T = |

with the Hartree—Fock energy
EU = inf &9F(y)

0<4<1
Try=N

where

gHF(V) = Tr((—N_2/3A —|z|7Y) + % /Rg /R3 Pv(x)PwﬁZ)__;r(xa y)|2dxdy.

Since Ey < B < B from the analysis for E™M in the previous section we know that
0< E" — Ey < E'MF — By = O(NY3).

Now we prove that

( Theorem. We have E™Y = Ex 4 o(NY3) o0 )

This estimate was contained implicitly in the work of Fefferman and Seco (1990) when

they derived the expansion

EN = —ClN + 02N2/3 — C3N1/3 + 0<N1/3)N—>oo-
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This result was proved explicitly and elegantly by Bach (1992), using his correlation inequal-
ity.

In order to put Bach’s correlation inequality in a good use, we need to show that the one-body

density matrix of an (approximate) ground state is close to a projection.
Lemma. Let U be a normalized wave function in L2(R3N) such that

<\IJ,HN\I/> = EN aF O(N)

Then the truncated one-body density matriz yp = v — ¥2, v = yfpl), satisfies

Tr(yr) = o(N)N-sco-

Proof. Step 1. Let
h=—N"28A T @TF — |z~ — fTF 4 |z|1,
From the analysis of the reduced Hartree-Fock theory we know that
(U, HyW) > Tr(hy) — ND(f™, f7%) + O(NY?) > Tr(h_v) — Tr(h_) + E™ + o(N)

and
Ey < B = ETF 4 o(N).

Therefore, since ¥ is an appropriate ground state we find that
0 < Tr(h_vy)—Tr(h-) < o(N).

This implicitly implies that « is close to 1(h < 0) which is a projection. We will make this
quantitative below.

Step 2. For every € > 0, define
P.=1(h < —e¢).

Using 0 < yr =7(1 —v) < v and yr < 1 — v we have

Tr(’VT) = Tr((l - PE)’YT) + Tr(PE'VT) < Tl"((l - Pa),)/) + Tr(Pa(l - '7))
= Tr(y) = Tr(F:) + 2Tr(P.(1 — 7).
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Combining with P. < —h_ /e we obtain
Tr(yr) < N — Tr(P.) + 26 Tr(h_(1 — 7).

Recall the estimate Tr(h_(1 — v)) = o(/N) in Step 1. Moreover, for every € > 0, by Weyl’s
law for the number of negative eigenvalues we have
Tr(P) = Tri(h+¢e <0) =Trl(-A — N*3(®"F —¢) < 0)
= N1y [ 87 = 2 o)y
R

Thus
limsup N~ ' Tr(yp) < 1 — L8173/ [@TF — 6]‘1/2.
R3

N—oo

Sending € — 01 on the right side, we conclude that

N—o00

limsup N ' Tr(yp) < 1 — L8{3/ (®TF)3/2 = 0.
R3

Exercise. Let 0 <V € L¥?*(R?) N L'*42(R%). Prove that

Tri(—A+ AV <0) = Lg{d/ (A2 1 o(XY?) 5,00

Rd

Hint: You can use Weyl’s law for sum of eigenvalues and a Tauberian argument.

Now we are ready to give

Proof of the estimate Ex — EMF = o(N'/3). We only need to consider the lower bound for

Ex — EUF. Take U an approximate ground state for Ey such that
(U, HyU) = Ex + O(N7Y).

Let v = 7\(1,1 ) and vt = v — 2. By Bach’s correlation inequality we have

2

(U, Hy®) > Te((—N"23A — |2|)y) + % /Rg /RS pw(x)pw(y&—_ |7|(”(fv,y)| drdy

Y
- 3/4 1/4
_CN 1(/ pfy/?)) (/ p%%)
RS R3
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3/4 1/4
HF —1 4/3 4/3
> B _ ON (/Rgp,/) (/Rgpyé) .

It remains to bound the error term on the right side. By Holder’s and the Lieb—Thirring

inequalities

1/2 1/2
Lot () [ )" <cmpmn -
R3 R3 R3

For the truncated one-body density, we use p%g < ,03/ % for the kinetic term and the bound

Tryr = o(NN) in the previous lemma

1/2 1/2
/f P < (/ Pif’) (/ va) < C(NPE)2o(N)2 = o(NV?),
R3 R3 R3

Thus in summary,

3/4 1/4
N ) (o) < en o) = o)

This completes the proof of the theorem. n

9.5 Hartree—Fock energy of a homogeneous Fermi gas

So far we have focus on the atomic Hamiltonian, which was the original motivation of the
development of Hartree—Fock theory. In practice, the Hartree-Fock approximation can be
applied to a wide class of fermionic systems. In this section, we consider a simpler situation
where the particles are confined in the torus T® = [0,27]® (with the periodic boundary

condition), described by the Hamiltonian

N
Hy =3 =N7PA, + N7 S Vie—a;) on LX(T™).

i=1 1<i<j<N

Here the potential V : R® — R is periodic, even, bounded and of positive type

V(z) =Y _V(k)e*, V(k)>0, VkeZ

keZ3
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The ground state energy of Hy is

N — inf <\IJ,HN\I/>

H‘I,HLg(IR?’N)

The corresponding Hartree-Fock energy is

. - 1
EY = inf (Tr(-N 2/3A7)+—// [pw(m)pw(y)—lv(%y)IQ V(z—y)daedy ) .
0%:72]\%1 2N Jrs Js
y=

Without the interaction (i.e. V = 0), the Hartree-Fock minimizer is given by the plane

waves

= 3T fle) = @) 82t vp ez,

pPEBF

Here for simplicity we assume that the Fermi ball B := B(0, kr) N Z? contains exactly N
integer points, such that TryP¥ = N (put differently, N is defined via kr). Thus

3
kp ~ (4_)1/3N1/3 + O(1) Nosoo-
T

Now we consider the interacting case. Given the regular interaction potential, it turns out
that

e The HF theory is good: EM — Ey is O(N~'/3) (instead of o(N'/3) as in the atomic

case).

e The HF theory is trivial: 4" remains the unique HF minimizer.

é Y
Theorem. Assume that V >0 and ), (14 |k[)V (k) < co. Then

Ey > EF(4PY) + O(N~V/3),

. Consequently, E'Y = Ex + O(N~Y3). )

Proof. Let Uy € L2(R3M) be an arbitrary normalized wave function. For the kinetic energy,
we have

<x1/N, i(—Am].)\I/N> = Tr(—Ay{)) > Tr(—Ay™).

j=1
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Hence, it suffices to show that

Y Viara)ta) 25 [ [ o @)1 @) - dsdy O,

1<€<]<N

Since V' > 0 we can use Onsager’s lemma:

N N
Z V(:vg—mj)—i-gV(O)—%ZZlV Ty — ;) —%Z Z )eiP(ze=i)
= €z £,j=1

1<U<j<N
LS ||

pEZ3 /=1

1~
> §V(O)N2.

Note that V/(0) is finite as V € ¢*. Thus we have the pointwise estimate

1~ N
> Viwe—15) 2 GVON* = ZV(0)
1<0<j<N
which in particular implies that
1+ N

1<0<j<N

Next, consider the interaction energy of the plane waves. Note that

— ip-(x— W W N
VP (2, 1) Z fo(x = (2m)7° Z e @=y), PP () = APV (2, ) = 2n
pEBFR pEBFR
Hence,
L [ @@V e~ y)dsdy = N(2m)* [V = N7 (0)
T3 JT
and

ip-(z—y)

2
V(z —y)dzdy

[ [ by - iy = o [[ |3
T3 JT3 T3 xT3 peB

[ S e

pEBF

27'(' /TSZ zpmz —zquV zk:xdx

pEBF q€BF kez3

V(z)dx
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ST Y ny s [ e

kez3 p,q€EBF B
NP I
keZ3 p,9€EBF
=Y " V(k)|Br N (Bp + k).
keZ3

Here |Br N (Br + k)| is the number of integer points in Br N (B + k). We have

|Br 0(Br + k)| = |Br| = |Be\(Br + k)| > N — C|k|N*?

Figure: Br\(Br + k) is the set of integer points in the grey area

Thus the exchange term can be bounded from below by

[ [ ™ PV - ydady = 37 T - CIEN)
T3 JT3

kez3
=N Y V(0) = CN*2 3" K[V (k) = NV(0) + O(N*?).
kez3 kez3

In summary,

Y V) )z [ (@) b7 )PV () dedy+ O,
T3 JT3

1<€<y<N

Hence, we conclude that
Ex > EM(PY) + O(NV?) = E"F + O(N'%) > Ex + O(N7'/?).

In particular, we have Ey = EHF + O(N~1/3). O



198 CHAPTER 9. HARTREE-FOCK THEORY

Theorem. Assume that V >0 and N-Y3%", s V(k) < 1/3. Then AP* is the unique

Hartree—Fock minimizer.

Proof. We use the argument of Gontier—Hainzl-Lewin (2018) where they proved that
EUY — gHE(APW) i exponentially small for the electron gas in an infinite volume. Here since
we have a bounded potential on finite box, the spectral gap of the Laplacian dominates the
effect of the mean—field interaction potential.

Recall that h = N~'/3 and A\ = N~!. The condition on the potential reads

~ 1
MV [ < §h2.

Step 1. Take 0 <y =~? <1 on L?(T?) with Try = N. Let us show that

E(7) — EGP) = Te((~12A — AG)(y — ™))

A

=5 [ [ =) PV @~ ey
T3 JT3

By the definition of the Hartree-Fock functional,

&) = 0m) = To(=*A0 =) =5 [ [ [hte )l = b ) V(@ - )y

A
5 [ L)) = po(0)proe @V (2 = )iy
13 JT3
Note that p,ew is a constant since the kernel of 4*V is 4*¥(z — y) with

(@) = (2m)70 3 e

PEBFR

Hence, from the condition ¥ > 0 and Jps Py = Jps pypv = N = (270) 2 pyow(2) we find that

/11‘3 /’JI‘3 [pv(ff)pw(y) - p7PW(£L‘)p7pw(;L‘)]V(x _ y)d.rdy > 0.

Indeed,

/11‘3 /1r3 Py (@) py(y)V (z — y)dedy = /TB/T () (y) Z f}(k)efik-(zfy)dxdy
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= (2m)° Y VE)p k) = (2m)°V(0)[7,(0)

We can rewrite the exchange term using

(@, )P = 7P (@ — »))* = vz, y) — Y™ (@ — y)]? + 2R(v(z, y) — ¥ (@ — )V (y — )
and

/Ts / (1w y) =™ (& = 9)7™" (y = 2)V (y — 2)dedy = Tr((y =7™)G)

where G is an operator on L*(T?) with kernel vP¥(z — y)V (z — y). Equivalently, in Fourier

space G is the multiplication operator G(k) with

= > V(k-p)

PEBF

because

GN@ = [ ™= nVe—niwa = [ oY eIV - f)

pEBF

and hence
GT(k) = (2m)° / (Gf)(@)e *od
(2m) Z// e @Y (3 — ) f(y)dudy

pEBR
S [ et ) sy
pGB T3 JT3

e Y ([t ve) ([ etim)

PEBF

= > V(k=p) (k)

pEBFR
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In particular G > 0 and hence Tr(G(y — ~+?V)) € R. Thus
/ 1y (z,9)|? = 7" (@ = y) "IV (& — y)dedy
T3 JT3
= [ [ ) =97 = )PV @ — y)dady + 2 TGl = ™))
13 JT3

This completes the desired equality.

Step 2. Next, consider the kinetic term. We find an operator A > 0 on L?(T?) such that

TH[(~*A — AG)(y — ")) = TeA(y — 17)?)

The point here is that we can represent the kinetic term as a quadratic expression of v — PV,

similarly to the interaction energy. Since v and yPV are projection we have
(v = ™) = (") (r =A™ (™) =A™ = Y, ()T =1
Hence,
Te[A(y = 9™)%] = Te[((4™) " AG™) " = 4™ Ay™) (y = ™).
Since Tr(y) = Tr(y?") = N, it suffices to find A such that

(,VPW)LA(,YPW)L o ,YPWA,VPW — _hQA —\G — Co

for a constant ¢y € R. We will choose A to be the multiplication operator A(k) on the Fourier

space, for which the latter identity becomes
A(k)L(k € BS) — A(k)1(k € Br) = h?|k|* — AG (k) — co,
or equivalently

2|k|? — AG(k) — co, k€ BS

A(k) = [R?|k[* = MG (k) = co| =
—(R2|k]2 = AG(k) — o), k€ Bp.

This choice is only possible if ¢, satisfies

sup <h2|k:|2 - /\G(k)> <c < inf <h2|/<:|2 - AG(k)).

keBp
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In fact, for every ki € Bp, ko € B we have |ky| > |k;| (as we assume that the Fermi ball
is completely filled) and hence |ks|*> — |k1|*> > 1 (since the left side is a positive integer). On
the other hand,

0<Gk) =Y Vp+k) < [V]e < .

pEBFR
Thus
h2|ks|? — MG (ky) — <h2|k1|2 - AG(/@) > 12— \|V]a.

Hence, if )\||‘7||g1 < h?/3, we have

inf <h2|k:\2 - AG(k)) ~ sup (h2|k:|2 - AG(k:)) > §h2.

keBEg keBp

We can take ) .
_ 2 2 - 2 2
o=, nf (h Ik AG(k’)) +5 sup <h k| AG(k))

k€eBp

which satisfies the above condition and moreover,

2

A(E) = |W2k]> = MG (k) — co| > % vk € 78,

Step 3. Using
A> B3> MVl = MV ]|z~

we conclude that

£() = 0™ 2 TlAG =) = 5 [ [ ) = @ )PV (e - y)dndy
> %Tr[(v — ™) - % /TS @ y) =™ @)l

= (4 - A Y gy — e 2 By - ey

Thus ~?% is the unique Hartree-Fock minimizer. O

The correlation energy Ey — EMY will be studied in the next chapter.



Chapter 10
Correlation energy

Since Slater determinants are the least correlated fermionic states, the difference Ey — EHF
is called the correlation energy. Calculation the correlation energy is generally difficult.
In this chapter, we will formulate a general framework to discuss the correlation energy, and

then focus on the homogeneous gas described by the Hamiltonian

N
Hy =) I(=A;)+ N > V(zi—x;) on L*(T*N), h=N""2
=1

1<i<j<N

We will prove the following result of Benedikter—-Nam—Porta—Schlein—Seiringer (2020).

é N
Theorem. IfV > 0, compactly supported and small enough, then

En = EHF 4 peorr +O(N_1/3).

Here the correlation enerqy is given by E®™ = N~1/3 > x 9(k) with

gk)=——"V(k)+ £ /000 log [1 + 2mkV (k) (1 — arctan’l(kfl))] d\, k= (%) 1/3.
N v

It is convenient to use the Fock space formalism where the number of particles are not fixed.
The reason is that we have to perturb the Hartree-Fock minimizer and the correlation energy
will be described by the excited particles which live in a Fock space rather than in a fixed

n-body space.

202
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10.1 Fock space formalism

4 N
Definition. Let L*(Q) be a one-particle Hilbert space (with Q C R?). The corresponding

fermionic Fock space is the Hilbert space
F=FI*Q)=PLAo") =Co L*(Q) o L") @ ...
n=0
o Any vector in F has the form ¥ = (¥,)°%, where ¥,, € L2(Q") and

120% = > 1%allZ20m
n=0

e The vector |0) = (1,0,0,...) is called the vacuum.

.

On Fock space, we will use the second quantization method, which goes back to Dirac (1927).

A key concept is creation and annihilation operators.

é R
Definition. For any f € L*(2), we can define the creation operator a*(f) and the

annihilation operator a(f) on the fermionic Fock space F(L(2)) as follows:
o a*(f): LA(Q™) — L2(Q") for alln =0,1,2, ...

n+1

+

1
n—+1

(1) f (%) n(@1, - - -, Bjm1, g1, - - - s Tnd)-
1

(@ () Cn)@s s Tas) =

<.
Il

o a(f): L2(Q"™) — L2(Q™) for alln =0,1,2, ...

(@(F)T) @1, Tnr) = \/ﬁ/ﬂm@n(x,xl,...,xnl)dx.

. .

Remarks:
e f > a*(f) islinear, but f — a(f) is anti-linear.

e a(f)]|0) = 0 and a*(f)|0) = f. More generally, if {u;}¥, are orthonormal functions in

L*(Q2), then the corresponding Slater determinant can be written as

uy Aug A ... ANuy = a*(uy)...a*(uy)|0).
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For example,

a*(up)a*(u2)|0) = a*(uy)ug = %(ul(xl)uQ(asg) — uy(wo)us(x1)) = ug A us.

The following exercise shows that we cannot put two particles in the same quantum state,
which is consistent with Pauli’s exclusion principle (we will come back to Pauli’s exclusion

principle later).

Exercise. Prove that for every f € L*(Q), we have (a*(f))* = 0 on the fermionic Fock
space F(L*(Q)).

The following exercise shows that a*(f) is adjoint of a(f).
Exercise. Prove that for all f € L*(0), we have

(@ ()T, @) r = (T, a(f)P)r, V¥, @€ F(L Q).

It turns out that the creation and annihilation operators satisfy the following nice algebraic

relations.

\
Theorem (Canonical Anti-commutation Relations - CAR). Consider the Fock space

F(L3(R2)). For all f,g € L*(Q), we have

. Here {A, B} := AB + BA.

A consequence of the third relation is that

a*(fla(f) +a(fa*(f) = [If]*
Thus both a(f) and a*(f) are bounded and [[a(f)[lep < [lFIl, [la*(f)llop < IF1]-

Proof. Step 1. First, let us prove that {a(f),a(g)} = 0, namely

a(f)a(g) +a(g)a(f) = 0.
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It suffices to show that
a(f)a(g)V, = —a(g)a(f)P,

for any function ¥, € L2(Q") and for any n > 2. By the definition of the annihilation

operator, we have
(@()alg) U w1, o0-3) = V=T [ T a0 ) 021, 02y
= m/m <\/ﬁ/m\lln(x,y,a:1, ...,xn_g)dx) dy
Sy E— // TG O (4, 21, s o) dady.

Similarly,

(@(@)a()Un) (@1, - 0) = v/l — 1) / / ST @) W (2, 21, o )y
= \/n(n -1) // FW)g(x)V,(y, x, 21, ..., Tp_o)dzdy.

The equality a(f)a(g)V,, = —a(g)a(f)V, follows from the anti-symmetry

U (2, Y, 1, ey Tpo) = =V (¥, 2, 21, .oy Tp_a).

Step 2. Since a*(f) is the adjoint of a(f), by taking the adjoint of

{a(f).a(g9)} = a(f)alg) + a(g)a(f) =0

we find that {a*(f),a*(g)} = 0.

Step 3. Finally, we prove that

{a(f),a*(g)} = a(f)a"(g) + a*(g)a(f) = (f, 9)-

When testing with the vacuum, we have

a(f)a*(9)|0) + a*(g)a(f)|0) = a(f)g — 0= (f,g).
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Now consider any function ¥,, € L2(Q") with any n > 1. We have

(@(£)a* (9) ) (w1, o) = a(F) (0" (9) L) (1, o 20)
—Vatd / T (0" ()W) (Faers 21, oo 2) A

=vVn+1 / f(@n1)(=1)"(@*(9) V) (@1, ooy Ty Tpg1 ) AT
1 n+1

= \/n—i—l/f(xnﬂ)(—l)"\/n_HZ(—l)i1g(xi)\11n(x1,...,xi1,xi+1,...,xn+1)dxn+1

n+1

= /f(l'nﬂ) Z(—l)nﬂflg(%)‘yn(ﬂ?l, s Tty Tig 15 ey Ty ) A1
i=1
= <f7 9>‘I’n(931> ,xn) + Z(_l)nﬂ_ig(ﬂ?i) /f(iUnH)‘I’n(iEl, vy Li—1, it 1, ---7$n+1)d$n+1-
i=1

On the other hand,

(@ (@)l ) (01, 22) = (@) @) L) )
== S @) V)01, i1 )

1 <& - _
= % Z(—l)z 19(%)\/5/ F(@ni ) Un (g1, T1y oy Timt, Tie 1 ooy Tn) AT
i=1
I ¢ i—1 IRV
= /n Z(—l) 9@V [ f@n) (D) W0 (21, 0 Ti1, Tig s oo Ty Trg1 )T
i=1
= Z(-l)nilg(l’l) / f($n+1)‘11n(x1, ey Li—1, .’L'Z'+1, vy Ty xn+1)d$n+1.
i=1
Using Since (—1)"™1~% + (—=1)"% = 0, we obtain

a(f)a*(9)¥n + a*(g)a(f)¥n = (f,9)¥n

for all U,, € L2(Q"). Thus {a(f),a*(g9)} = (f, 9). O

Using the creation and annihilation operators, we can write many operators on Fock space

in a convenient way. For example, consider the number operator

N = Zn]ng(Qn).

n=0



10.1. FOCK SPACE FORMALISM 207

For any vector ¥ = (¥,,)>° , € F, the expectation of the number of particles is

(e o]

(TNT) =D 0T,

n=0

Let {u;}52, be an orthonormal basis for L?(€2). Then we can write

N =

o
1=

a*(u;)a(u;).

1

More generally, we have

~
Theorem (Second quantization of one-body operators). Let h be a self-adjoint operator

on the one-body Hilbert space L*(Q)). Then the operator on the fermionic Fock space
F(L2 ()

o0

AT (h) ;:@( 5 hi) —00h®(he1+1QA)®...

n=0 =1

1s called the second quantization of h. It can be rewritten as

dU(h) = > (ttm, htt)a™ () a(uy,).

m,n>1

Here {u, }n>1 is an orthonormal basis for L*()). The representation is independent

. of the choice of the basis (provided that all (u,,, hu,) are finite).

Proof. Let us write a,, = a(u,) for short. It suffices to prove that

N
Zhi\IJN = Z (U, hup)ar a, ¥y
i=1

m,n>1

for all U € 5N and for all N. Recall from a previous computation

N
(ay,a, ¥ N)(T1,...,xN) = Z(—I)N_ium(xi) /un(y)\lfn(xl, ey Tim1, Tig 1y - TN, Y)Y

=1

Therefore,

Z(um, huy)(ay,a, V) (21, ..., TN)

m,n
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Mz

Z Upn, Pty

m,n =1

(‘UAHZ (Z(um,hunmm(xz)) /m‘I’N(mh---,%1,$i+17---,$N,y)dy

) /un(y)\IjN(xla ey Li—1, Tig 1,y -3 TN, y)dy

M-

s
Il
—

-

@
I
-

(_1)N_iz<hun)(xi) /M‘IJN(%, vy Ti—1, Tit1, -~-,iUN7?J)dy

n

(—)NY [(|hun><un|)N\pN} (L1, ooy Tity Ty oons TN, L)

n

N-i|(p, lun) (un| ) YN | (21, .y Tio1, Tig1, ooy TN, T5)
2 .

(=)~ [hN\IjN} (@1, ooy Ti1, Tig 1y ooy TN, L)

'MZ

@
Il
—

Mz

1

<.
Il

.MZ
Mz

s
I
_

[h ‘I’N} L1y ey Bim 1y Tiy Tif 1, oy TN ).
=1

Here we have used the Parseval’s identity

Z(um, htty Y, = huy,

m

the resolution of the identity operator

Z ) (n| = 1,

and the anti-symmetry
N—i
(—1) \If(xl, oy L1y Ljdb1y oeey ZL‘N,ZL‘Z‘) = \I/(l’l, ey Li— 1y L1y -y ZL‘N).

This completes the proof. O

For the two—body interaction operators, we have

Theorem (Second quantization of two-body operators). Let W be a self-adjoint oper-
ator on L*(Q%) such that Wi, = Way. Then the operator on the fermionic Fock space
F(H)

o0

@( Z VVU) :OEBOEBWIQEB<W12+W23+W13)€B...

n=0 1<i<j<n
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15 called the second quantization of W. It can be rewritten as

B( X W)=3 X nouWu,eu) @ (w)alualu)

n=0 1<i<j<n m,n,p,q>1

Here {uy}n>1 is an orthonormal basis for L*(Q). The representation is independent

L of the choice of the basis. )

The proof of this result is left as an exercise.

Remarks:

e From the method of second quantization, the typical Hamiltonian

N
HN:Zhi+ Z Wi;
=1

1<i<j<N

on L2(Q2V) can be extended to be an operator on the fermionic Fock space F as

= 1
@ HN - hmnaman + 5 Wmnpqamanaqap
N=0 m,n

m7n’p7q

where a,, = a(u,,) with an orthonormal basis {u,} for .7 and

Pn = <um7 hu’n> ’ Wmnpq = <um & Uy, W’Up X uq> .

e In the littérature, people also use the creation and annihilation operators a} and a,,
x € (1, defined by

() = [ f@ads, () = [Faauds, Vs e
These operator-valued distributions satisfy the CAR
{az,a,} =0, {ay,a;} =0, {aza,} =do(z —y).

The advantage of these notations is that we can use the second quantization without

specifying an orthonormal basis for .7#°. For example, the typical Hamiltonian
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on L2(QY) can be extended to be an operator on Fock space as

= 1
@ Hy = / a,(—A, +V(x))a,dr + 3 / W(r —y)aa,a,a,drdy.
N—=0 9] QxQ

4 )
Definition. Let ¥ be a normalized vector in the fermionic Fock space F(L*(Q)). Its

one—body density matrix 7\(1,1 ) s a trace class operator on L*(Q2) defined by

(9,79 f) = (T, a*(f)a(g)¥), Vf.ge€ L} Q)

Exercise. Let U be a normalized vector in the fermionic Fock space F(L*(Q)) with

(U, N'¥) < oo. Prove that its one-body density matriz satisfies

0<qy) <1, Trgd) = (U, ND).

10.2 Particle—hole transformation

é Y
Theorem. Let {u;}32, be an orthonormal basis for L*(Q2). For every N > 1, there

exists a unitary operator R on the fermionic Fock space F(L*()) such that
RI0) = uy Aug A ... ANuy = a*(uy)...a" (uy)|0)

and
a(u; if it <N,
R*a*(u;)R = () /
a*(u;) ifi> N.

. Moreover, R = R* = R !.

Proof. The fermionic Fock space has an orthonormal basis of Slater determinants
{a*(uil)...a*(uil)|0> 1<i <in<..<ip (=0, 1,2,...}.
The operator R is defined by

Ra" (usy)...a”(u,)|0) = a*(uy,)...a" (uy,)]0)
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where 1 < 71 < jo < ... < Jjg is determined from 1 <147 < 75 < ... < iy such that
(s ey = Jlis e > NI < r S N i@ (i, ie} )

Then clearly R is a unitary operator since it maps an orthonormal basis to an orthonormal
basis. Moreover, R = R* = R~!. Since the identity

a(u;) if i <N,
a*(u;) ifi>N

R*a*(u;)R™

holds for all Slater determinants, it holds for any vector on Fock space by the linearity. [

Note that the transformation R is a special example of a Bogoliubov transformation. We

will come back to Bogoliubov theory later in connection to the bosonic picture.

Now let us focus on the homogeneous Fermi gas where N fermions are confined in the torus

T3 = [0,27]* (with the periodic boundary condition), described by the Hamiltonian
HN—ZhQ )+ N~ Z Viz;—x;) on L*(T3N), h=N"13
1<i<j<N

For simplicity we assume that v > 0 and is compactly supported. Using the annihilation
operators

ay = a(w,), u, = (2m) 2P

we can write in the second quantization formalism (why?)

Hy = Z np*aia, + 2N Z Vik ) 4Gy 1,0 -

kez3 k,p,q€Z3

Also for simplicity we assume that
=|Br|, Br = B(0,kr)NZ".

The Fermi ball Br corresponding to the Slater determinant /\pE B, Up Which is the unique

Hartree-Fock minimizer. To find a correction to the Hartree-Fock theory, we apply the

R|0) = /\ Up

pEBF

particle-hole transformation
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and

a if p € Bp,
RaR={" "
a, if p € BY%.

This operator really makes a hole in a Fermi ball and create a particle outside.

For a warm-up, let us consider the kinetic term. We have

R Z np*aya, | R= Z Wp*R*(aja,) R

pEZ3 pEZ3
- Z np*(asay,) + Z hp*(ayar)
pGB; pEBF
= Z hp*(aia,) + Z np*(1 — aay)
pEB% pEBF
= Z h2p2(a;ap) — Z h2p2a;ap + h? Z P2
PEBE PEBF pEBF

We define
om0 Bt | B0 Y = Y W)~ Y K
Pz pEBp pEBS, PEBF

Note that the operator Hy does not seem positive at first sight, but it is, at least for the

relevant class of wave functions.

Lemma. There exists a constant ¢y € %N such that for every ¢ = RV with ¥ a

normalized function in L2(T3N), we have

Hyy = h? Z |k* — colatary  and kienzfg k% — co| >

keZ3

N | —

Proof. Note that

R*NR=R* Za;ap R = Z a,a, + Z apa,,

pEZ3 pEBE PEBF
_ * * _ * *
= E apty + E (1 —aya,) =N + E apty — E Qp
pEBY, pEBF pEBY, pEBR

= N4+ NP - N
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Hence, the condition ¢ = RV with ¥ € L2(T3) implies that
VS

Using the fact that |ko|? — |k1|* > 1if ky € B, k1 € Br (since the Fermi ball is completely
filled) we obtain
inf |k|* — sup |k|* > 1.

keBg kEBp
Define
1
—C inf - 2
o=, Inf k" + sup [K[
Then
1
sup k> < ¢ < mf k|2, 1nf k? —co| > =
k€Bp ke 2
Moreover, using (NP — N")y = 0 we find that
Hyy = Z h2p2a;ap@/z - Z thZaZapq/J
pEBE pEBF
Z W (p* — co)adaph + Z h*(co — p*)asayth + co(NP — N
pEB” pEBFR
= Z W2 |p* — colasay.
pEZ3

Now we turn to the interaction part. We introduce the set I'™" of all momenta k = (ky, ko, k3)

in Z3 Nsupp V satisfying

ks >0 or (ks =0 and kg > 0) or (ka = k3 =0 and k; > 0) .
This set is chosen such that

reern (=reen) =0, I™mru (-1 = (Z3 N supp V) \ {0} .
A length but straightforward computation shows that

1 > * * N = 1 =5
IN Z V(k)ay,paq_raqapy | R = 2V( TON Z;B Vip—¢)+Q+X

k,p,qeZ3
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1 > *
X=o2 > VK (@ () (k) + D*( k)@(—k))

kel"nor
1 - *

+ ﬁk;mwk) (@ (—k)b(k) + D" (k)b(—Fk) + h c>
1 - * * *

+ N Z V (k) (3 Z apap — 2 Z a,a, — Z apap>

kez? heBpn(Bp+k) pEBSN(Br-+k) pEBSLN(BS+k)

and

b (k) :== Z a4,

pGB%ﬁ(BF-'rk)

(k) := Z plpf — Z O

peBLN(BS+k) pEBRN(Bp+k)

In summary, we have

Lemma.
R*HyR=F"Y +H,+ Q+ X.

This follows from the above computations and the following expression of the Hartree—Fock

energy

E"F = p2 Tr(—AqPY) )+ 5% /TS /TS e () proe () — [P (2 — ) P]V (& — y)dady

= h? =V Vip-
ZP+ 2N (p—q)

pEBF p,QEBFR

since

APV (z—y) = (2n) Z ePre PV = Z eP@ g pu(2) = (2m) 3N

PEBF pEBF
As we will see, the terms Hy and Q contribute to the leading order of the correlation energy
(which is ~ N~/3) and the term X can be treated as a small error. More precisely, Hy
and Q are bosonizable terms, namely they can be compared with certain quasi-bosonic

operators, while X is non-bosonizable but can be removed.
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10.3 Estimates for kinetic and number operators

In this section we derive some useful estimates for Hy and A'. We start with

Lemma. Let U € L2(T?) be a normalized function such that
(U, HyW) < E"F 4 O(N~1/3),
Then the state 1 = RV satisfies

(b, Hopp) < CN7M3, (s, Ny < CN'3,

Proof. In the previous chapter we have proved that

LS Vi -a) 2 Y00 - v = X0 - L S 96— 9+ o),

2 2N

i<j p,9€BF
Moreover, for the kinetic part we can write
h? <\I’, Z an;ap\IJ> =h? <Rw, ( Z an;ap> Rw> = h? Z P+ (¢, Hyo).
pEZ3 pEZ3 pEBF

Thus
(U, HyW) > BN + O(N=V3) (1, Hy).

Consequently, if (U, HyW) < EHF + O(N~Y/3), then
<¢7 H077Z)> < ON_l/S-

Moreover, we can write

1

Heth = h2 2 x : 2_ o>

o =h Z |k* — colajaryy  and klélzfg |k* — co| > 5

kez3
and hence
) ) h? h2
(0, How) = h* Y K = col(, apant)) > = Y (b, ajand) = - 3 (4, N0).
kez3 kez3 kez3

Since (¥, Hoyp) < CN~Y3 and h = N='/3 we find that (¢, N) < CN/3,

215
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By a technical reason, we will focus on a well-prepared approximate ground state.

Lemma. There exists a normalized function U € L2(T3N) such that h
(W, HyW) < Ex + O(N %)
and that the state v = RV satisfies
. P =1N < CNY3)p, (i, Hopp) < CN7V/3, )

We will need the following localization technique on Fock space. The idea goes back to Lieb
and Solovej (2001). The formulation below is taken from a paper of Lewin—Nam-—Serfaty—
Solovej (2013).

f
Lemma (IMS formula on Fock space). Let A be a non—negative operator on the fermionic

Fock space F(L*(Q)) such that P,D(A) C D(A) and P,AP; = 0 if |i — j| > {, where
P, =1(N =4). Let f,g: R — [0, 1] be smooth functions such that f>+g¢* =1, f(xz) =1
forx <1/2 and f(x) =0 for x > 1. For any M > 1 define

fu = fN/M),  gu=gN/M).

Then o8
I‘:<A — fmAfm — gMAgM) < ﬁ
Lwhere Cr = 1f' Iz + 193 and [Algiag := Y 12y PAP:.

[Aldiag LN < M + )

Proof. Using the “double commutator identities”

A, gar, 9n1] = 93, A+ Agiy — 290 Agur.

we have the “IMS-identity”

A= fuAfu — guAgu = 5 ([[A, fuls ful] + (1A, 9wl garl)) -

N | —

This is an analogue of the standard formula for the Laplacian

(~8) = J(-8)f — g(~Dg) = S (VS +]VgP), f*+g* =1
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which was named after Ismagilov, Morgan, Simon and Israel Michael Sigal.

Next, by decomposing further

1r= ipi
i=0

we find that
A, farl, far]] = ZP [[A, farl, fad]] P Z( i)+ £210) = 2fuiD) fu (7)) PAP;
=3 (5 = fui)) PAP = S° (F/A0) — 5G/M)) PAP,
4,j=0 1<i—j|<¢e

In the last equality we have used the assumption that P,AP; = 0 if |i — j| > ¢. Combining

with a similar formula for g,;, we arrive at

A= fuAfu—onAg =5 S0 [(FG/M) ~ FG/M) + (g(/M) — oG/ M) AP,

1<li—j|<t

Since f, g are smooth, we have the uniform bound for all |i — j| < ¢:

2

(PG /M)~ £GP+ (gl M) g /M))* < Oy (5 < MAD), Cp = [ 3+
On the other hand, since A > 0 we have the Cauchy-Schwarz inequality
+(P,AP; + h.c.) < PAP, + P;AP;.
Thus we conclude that
+ <A — fuAfu — QMA9M>

=y S0 (M) = S+ (9li/M)  gU/M)P] (PP + PAP)

1<]i—j|<e
1002 & -
<15 Z 1(i,j < M + ()(P,AP; + P;AP))
1<]i—j|<¢
Cif3 S O3
< D Ui S M+ OPAP = 25 Auag (N < M+ 0).
=0

This completes the proof of the lemma. O
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Application to the homogeneous gas. Step 1. We will apply the above abstract result to
A=R'HyR - E"™ + C,N /3

We can choose Cy sufficiently large such that A > 0. We can take ¢ = 4 as the Hamiltonian

A changes particle number by at most +4. Moreover, from the explicit formula
A=Hy+Q+ X+ CyN~1/3
we find that

Ating = Ho + N1 37 V()b (k)b(k) + % > V) (D (0)D(K) + D (~K)D(~k) )

kel"nor kel“nor
1 i * * * —
+ SN Z V (k) (3 Z ayap — 2 Z apa, — Z apap) + CyN~/3
kez3 he€BrN(Bp+k) pEBLN(BF+k) pEBLN(BS+k)
with

b (k) :== Z apy 1, D(k) = Z pllp—f, — Z .

pEBLN(Br+k) pEBGLN(BS+k) pEBFpN(Bp+k)

Let us estimate Agiag from above. Clearly

j:<3 Z apap — 2 Z a,ap — Z a;ap> <3 Z ana, = 3N

he BpN(Br+k) pEBLN(BF+k) pEBLN(BS+k) peZ3

Moreover, for every |k| ~ O(1) by the Cauchy—Schwarz inequality we have

b*(k)b(k) = Z Ay 1.Cg— 10y
p,q€BSN(BF+k)

< 1 * % * %
< 5 A0y, Op—kQp + AaQy_1Og—k0q
p,q€BEN(Br+k)

= |Bp N (Brp + k)| Z 0ty 10y
pEBLN(BF+k)
< CON?/3 Z aa, = CN*BPN

peZ3
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and

*(k)D (k) < 2 Z Ay g + 2 Z Ay 1y 10q

p,q€BSN(BS%+k) p,q€ BrN(Bp+k)
<4 Z Oy p,0q = 4 Z ay(Opg — @y _1Qp_1)ayq
P.qE€Z3 Pp.q€Z?
=4N +4 Z Ay 1 Gglp},
P.qE€Z?
< AN +2 Z (apay ag—kay + an_yaza.a, )
P.qE€Z?
= 4N +2 Z(a;/\/ap +ay  Nay_)
pez?
= AN 23 (e, — 1) + 0 gV - 1)
pez?

= AN +4AN(N — 1) = 4N2.
Thus in summary,
Adiag < Hp + 4N_1N2 —+ CN_1/3N+ CN_l/S,

Hence, for every M ~ N'/3 the abstract localization lemma gives

C
i<A — fmAfu — QMAQM) < W(Ho +O).

which is equivalent to

C
i(RHNR* — fuRHNR fay — gMRHNR*gM) < 275 (Ho + O).

Step 2. Now let W, € L2(T3) be a ground state for Hy and denote 1)y = RV, Then we
know that
<wgs> Howgs> S CN—1/37 <wgs,./\/‘¢gs> S CN1/3

Hence, with M ~ N'/3 we have
<¢gs, (RHNR* — fyRHNR fa — gMRHNR*gM) ¢gs> > _CON"2/3,

Note that
<wgS7 RHNR*¢gs> = <\Ing7 HN\Ilgs> - EN
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and
(thgss g RHN R gartbgs) > Enllgntbes||? = En(1 — || fartes|?)-

Thus we conclude that
<¢gsa fMRHNR*wags> < EN||fM77Z)gsH2 + ON_2/3.

Note that we can choose M = CNY? > 4(1),., N)g), which ensures that

Il = (e Gt < W ) < 3.
namely
sl = 1= lgarbal® 2 5.
Finally, we define ot
il v e

Then we have
(U, HyV) = (¢, RHyR*)) < Exy + CN72/3,

Moreover, ¢ = 1(N < M)y = 1(N < CNY3)y and

<¢>H0¢> S 2<wgs7 fMHOwags> S 2<wgsaHO¢gs> S CNil/g.

10.4 Removing the non-bosonizable term

In this section we estimate the error term

+ % Z V(k) (3 Z apap — 2 Z apay — Z a;ap)

kez3 he€BrN(Bp+k) pEBLN(BF+k) pEBLN(BS+k)
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where

b (k) :== Z apy 1, D(k) = Z pllpf, — Z Q.

peBSLN(Bp+k) peBLN(BS+k) pEBRN(Bp+k)

rLemma. Let v = RV with ¥ € L2(T?) and b
Y =1N < CNY®)p, (¢, Hpp) < CN"'3
Then we have
s (1), X¢) < o(N71) )

Proof. Step 1. The third sum in X is easy since
+N! (3 Z apap — 2 Z a,ap — Z a;ap) < 3NNV
he BpN(Bp+k) pEBSN(Br+k) pEBSN(BS+k)

and

N=Hy, Ng) < O(N2?).

Step 2. Now let us prove that for every 0 # k € Z3,|k| ~ O(1),
N~ g, D*(F)D(k)¢) < o(N?) <= (4, D*(k)D(k)y) < o(N*?).

Note that we have proved D*(k)® (k) < 4N?2. However, from that bound and the a-priori

estimate on N we only have
(6, D" (R)D(R)) < 4, N?9) < ON*2,

To obtain the refinement o(N?/3) we need a better approach.

By the Cauchy—Schwarz inequality (A + B)*(A + B) < 2(A*A + B*B) we have

(W, D" (R)D(k)Y) <2 > (W, azapka; raq))

p,qEL3

=2 Z (¥, a;(épq - a;—kap_k)aq¢>

p,qEL3

=20, NY) =2 > (¥, a3 yap—raqt)).

P,qE€L?
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The first term is bounded by O(N'/3). For the second term, by the Cauchy-Schwarz inequal-

ity again we can bound

‘ Z <waa;a27kapfkaqw>

p,q€Z3

< Z lag—kapi|lllap—raq|

p,q€Z3

< Z (ApHaqfkapwHZ"’Bp”apfkaqwuﬂ

p,qeZ3

<> (AllayN + 1)V + Byllay-x (N + 1))

pEZ3

provided that
A,>0, B,>0, 2y/A,B,>1.

Combining with the condition ¢ = T(N < CN'/3)¢) we have

ey ra)| < ONVEST (A gl + Byllay )?)
ZB

pEZ3

To estimate further the right side, we split the sum into two parts:

X1 ={p € Z% : max{|p’ — co|, |(p — k)* — col} = £},
Xo={p € Z’ :max{|p’ — col.|(p — k)° — ol } <}

with a large parameter ¢ (eventually we can take £ = N2/1). Here the constant cq is taken

from the representation of the kinetic operator

DN | —

Hyy = Z |k* — colataryy  and kiélZf3 k> — co| >

kez3

Part 1: For p € X; we choose

|(p — k) — co
/1/2

|P2 - Co|
02

A, = B, =
Then 2,/A,B, > 1 because

min{[p* — col. |(p — k)* — col} = 1/2
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and
max{|p® — col, |(p — k)* — col} > L.

Thus using the kinetic bound

(v, Hot) = h* Y |p* = eol (Yapa) < CN

pEZ3
we have

1 . CN1/3
> (Aollawll® + Byllap-l®) < 775 D I = eol(aap) < =5

pEX] peEZ3

Part 2: For p € X, we simply choose A, = B, = 1. Using the fermionic property ||a,||op < 1

we obtain

Z (ApHap¢H2 + BpHapfka) < 2[X]

pEX2

We can show that (see below)

| X,| < CPPN®, Ve > 0.

Thus in conclusion,

* ok N1/3 €
) Z <¢a apaq_kap—kaq¢>‘ < CN1/3 (W + 2N ) .

p,q€L3

By optimizing over ¢ (e.g. taking ¢ ~ N2/1%) we find that

Y gk < o(N*).

P,qEZ3

Thus we get the desired estimate

(1, D (k)D(k)y) < o(N*/?).

Counting problem for |X5|. We prove that

| X,| < CPPNE, Ve > 0.
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Proof. Note that for p € X5 by the triangle inequality
120 k| = p* — (p— k)? + K?| < [p* — co| + |co — (p— k)?| + K < 20+ K* < 4.
Hence,
XoC{peZ?:|p* —co| < ,|p- K| <20}

The desired inequality |X,| < C¢2N°¢ follows from the fact that for every given r,s € Z,
|r —co| < ¢, |s| < 2¢, we have

peZ’:p*=rp-k=s} <CN®, Ve>0.

We will need a fundamental fact from number theory.

[ Theorem (Integer points on ellipses). Let dy € N. Then when M — oo, the equation b

m?+don® = M

. has at most O(M?) solutions (m,n) € Z?, for every € > 0.

This result was proved by Cilleruelo and Cérdoba [Lattice points on ellipses, Duke Math.

J., 1994]. Let us accept it and conclude the counting argument.

Easy case: Assume k& = (k1,0,0) with k; # 0. Then condition p - £ = s determines p;

uniquely and for every given p; the equation
Py+ps =711

as at most O(N¢) solutions (py,p3) € Z? for every ¢ > 0. Here we used |r — p?| < CN%3.

General case: Now we turn to the general case. We can assume that k = (ki, ko, k3) with
k1 # 0 and (k2, k3) # (0,0). Then we use the fact that the following vectors are orthogonal
in R3:

k= (kb k27k3>7 kJ_ = (07 _k37 k2)7 k’.j_ = (_k% - k,?2,7 klk27 klkS)-
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Using the orthogonality of (k, %k, k') we can write

2 2 2

k k) K’
2 L
=lp-—| +|p-—| +|p- )
‘p’ ‘p |k’ ‘p |kJ-’ ‘p |kj_
Combining with |k | = |k||kL|, we obtain

K Pl = [k k[P + KPlp - ko ? + |p - KL
Every p € Z? is determined uniquely by (n1,ny,n3) € Z3 with
n=p-k, ng=p-ky, nz=p-k.

In particular, the constraints

can be rewritten as

n=s, |k['ny+ng = K. ['r — [kL|*s".

For every given r, s € O(kr), the second equation has at most O(N¢) solutions (ng, n3) € Z2.
This completes the proof of | X,| < C¢?N¢. Thus Step 2 is finished. O

On the counting problem on ellipses. Here is a proof of the counting problem on circles.

Proof. We need to prove that for M — oo the equation
2yt =M

has at most O(M?¢) solutions (z,y) € Z* In this case, the number of solutions, denoted by

ro(M), can be computed explicitly. For every M € N we can write uniquely
M et 20& -m - Hpﬁp
p

where the last product is taken over prime numbers p = 3 mod 4, and m is the product of

(powers of ) primes = 1 mod 4. Then

0, if m is not a square
ra(M) = _—
AT+ Bp), if m is a square.
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Consequently, we get the upper bound
rao(M) <41+ 8,)
p

over prime numbers p = 3 mod 4 which are factors of M. We can divide the product into
two parts.

Part 1. If p < K for a large constant, then we simply bound 3, by log M and get

[+ 5,) < (Clog M)X.

p<K
Part 2. If p > K, then using
14 B, < e < KP/1osK < pbo/logK
we find that

[T0+ ) < [T /s < it

p>K p>K

In summary, we obtain
ro(M) < (Clog M)¥ M/ 1K

for any K large. This implies that ro(M) < O(M?®) for any € > 0. O

Step 3. For the second term of X, we use the Cauchy—Schwarz inequality
+ (D*(k)b(—k) + h.c.) < e 'D*(B)D(k) + b* (k)b(k).
We need to prove that the expectation against 1 is o(N?/3). We have proved that
(£, D (k)D(k)y) < o(N*?).
Therefore, it suffices to show that
(b (k)b(k)y) < CN??
and optimize over £ > 0. The latter bound follows from the kinetic bound

(¢, Hoyp) < ON/3
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and the following lemma.

Lemma. For every 0 # k € 73, |k| ~ O(1) we have

N~y b (k)b(k)y) < C(y, Ho).

This inequality was first proved by Hainzl-Porta—Rexze (2018). Below is a simplified
proof. Recall that

b (k) = Z aps 1, Hopp = Z h?|p? — colayayy.

pEBSLN(Bp+k) peZd

Proof of the lemma. As in [HPR], By the triangle and Cauchy—Schwarz inequalities we can

write

2

Ib(k)y]* < > el

pEBLN(BF+k)

1
Y. 1= =k llaprapl? >

2 _ _ 2
pEBEN(Br+k) pEBEN(Br k) p* = (p — k)?|

IN

The first term can be bounded by the kinetic energy

Yoo 1= 0= B llapray

pEBLN(Bp+k)

= Z ((p = k)* = ol lap-rap|* + Z lco — P*|llap-rap¥|®
peEBSLN(BF+k) pEBSLN(BF+k)

< Y e -k =alllap-P+ D o = Pl
pEBSN(Bp+k) pEBLN(Br+k)

<31 — collagll? = N34, Hoy).
peZ3

Thus it remains to show that

> L < ON'/3,

2 _ _ 2

Here the sum is taken over O(N?/3) terms. Note that if p € B¢ N (Bp + k), then |p| ~ N/3
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and hence
((p — k)2 — p?| = 2|p- k| + O(1) < ON'2,

If this term were > N'/2 for all p € B% N (Br + k), then we are done. However, |p - k| may

be small (e.g. O(1)) and we have to count these terms carefully. We write

1 C|Bs|
<
Z )IPQ—(p—/f)QI_ Z |s] +1

pEBSLN(Br+k |s|<CN1/3

where

Bs={pe ByN(Br+k):p-k=s}

We count |B;| using a similar idea of counting | Xs| in Step 2.

First try. We can write

BSIUBs,ry BS’T:{peBgﬂ(BF‘i‘k)2p-/€:57p2:¢}_

Here the condition p € B} N (Br + k) means
p* > k> (p—k)
When p - k = s, p?> = r, it is equivalent to
k2 4+2p-k—k?>p? > k% <= ki+25s— k> >r> ki

Thus for any given s, we have at most C(|s| 4+ 1) choices of r. Moreover, for given (s,r), we
have |B;,| < O(N¢) for every € > 0, by the same argument as in counting | Xs|. Thus we
conclude that

|B,| < C.N%(|s| +1), Ve > 0.

From this bound we can obtain

1 C|B,|
< LS CONY3*E e >0
2 )IPQ—(p—k)Ql 2 |s| +1

pEBGN(Br+k |s|<CN1/3

which is close to the desired bound O(N'/3), but not enough.

Second try. Let us proceed differently, using the following
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[ Theorem (Integer points in ellipses). Let dy € N. For every R > 0 consider the ellipse b
E(R) = {(z,y) € R* : 2 + dpy* < R*}.
Then the number of integer points in E(R) is

. S(R) = |E(R)| + O(R*®)psoc. )

When dy = 1, this is the bound from the Gauss circle problem that we discussed before. The
result for ellipses is slightly more difficult, but could be obtained by a similar argument (in
general, the bound O(R?/3) holds for any convex set, and it is optimal).

Now let us show that
|B,| < C(|s] + N*/?).

Easy case: Assume k = (k1,0,0) with k£, # 0. Then conditiion p - k = s determines p;
uniquely. Recall that the condition p € B$, N (Bp + k) means

Kr42p - k—k>p? > kh = K+ 25—k —p? > pi4pl >k —pl

The number of integer solutions (po,p3) € Z? is equal to the integer points in the annulus
B(0, Ry)\B(0, R,) with

Ri= /K —pt, Ro= [k +2s— k2t

Note that
R, < Ry, <CN'Y3 R2—R?2<C(s|+1).

By Gauss circle problem, the number of integer solutions in the annulus B(0, R2)\B(0, R;)
is

[BO, Ro)| = B0, Ba)| + O(B) = m(R — BE) + O(R)®) < C|s| + N*7%).
General case: Assume that k = (ky, ko, k3) with k; # 0 and (kq, k3) # (0,0). Using the

orthogonal vectors in R3:
k’ — (kl,kg,k3>, ]ﬂ_ — (0,—/{73,]{?2), ]{73_ — (—kg —kg,kle,klkgg).

we can write
K Plpl? = ko k> + [KPlp - ko)* +[p- K%
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Moreover, every p € Z? is determined uniquely by (ny,ng, n3) € Z3 with
ni=p-k, no=p-ki, ny=p-k|.
From the conditions p € Bf. N (Bp + k) and ny = k- p = s we have
k2o4+2p-k— K >p* > ki = |K Pk} +2s — k°) > [k |*s® + |k[*n3 +n3 > |K| Pk%.
Thus (ng,n3) € E(Ry)\E(R1) where E(R) is the ellipse
E(R) = {(z,y) € R*: [k[*2* + y* < R*}

and

Ry = \JIW, 2K% — ko[22, Ry= Ik, (K3 + 25 — £2) — ko [252.

Note that B; < Ry < CN'Y? and R? — R? < C(|s| + 1). Hence, by the Gauss counting
problem on ellipses, the number of integer points (nq,n3) € Z? in E(Ry)\FE(R;) is

|B(Rs)| — |E(Ry)| + O(RY?) = w2 — wd + O(N?) < C([s| + N*?).
Thus in conclusion, we have proved for all |k| ~ O(1),
[B.] < Cmin{N<(s| + 1), |s| + N*}.

Therefore,

1 C|B,|
<
Z Ip? — (p—k)?| — Z 8| +1

peBLN(BFr+k) |s|<CN1/3
CN/3
CN=(|s| +1 C(ls|+1
< T SR X SeT
|s|<N2/9 |s|=N2/0

_ CN2/9+€ + CN1/3.
This completes the proof of the bound

N, 0 (R)b(k)y) < C(, Hoy).
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Thus we have estimated the non-bosonizable part 4 (1, X)) < o( N~1/3). O

10.5 Diagonalization of bosonizable term

Now we conclude the proof of

4 N
Theorem. IfV > 0, compactly supported and small enough, then

EN _ EHF | peorr +O(N_1/3).

Here the correlation energy is given by E<™ = N=Y35" g(k) with

g(k)=——"7V(k)+ z /00 log [1 - 27T/<J‘A/(k:)(1 - arctan_l()\_l))] d\, k= (%) 1/3.
\ 0 J

The discussion in this section is only heuristic. We consider the bosonizable term

HtQ = 37 Wtk lasay S0 V) (B (R)B(R) b (k)b )b ()6 (—)-b(—R)b(R) ).

peZ? kelnor

Recall that
b*(k) = Z iy, ..
pEBSN(Br+k)
For any given k and p € B N (Br + k), we think of the operator
by (k) = aya;
as a bosonic creation operator. The reason is that it satisfies

[, (), by (k)] = apa,,_yaqaqy, — agag_yaya, =0, [by(k), bg(K)] = 0

and

_ * * * *

= ap 1 (0pg — aqap)aq—k - aq((qu - ap,kaqfk)ap
* * * * *

= Opg(Ap—ry_y — a3ap) — Qp pazaa;  + 0y Qg ap
*

- 5PQ(aP—k?a’p k apap>
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= Opq(1 — ap_pap—k — ayay)

_ _ * *
= Opg — Opg(@p_pap—r + ayap).

These relations look similar to approximate CCR. for bosonic operator. The error term
Opq(ay_pap—x — ayay) in [by(k),b5(k)] is not identically equal to 0, but it is small in average
since

ST (W ala) < (6, NY) < ONV3 < N2,

peBSLN(Br+k)

Similarly, we can show that if £ # ¢, then
[b, (), b3 (O)] = 0, [bp(K), bg(€)] = 0, [by(k), b3 (€)] ~ 0.

This means that the different momenta k correspond to different Fock spaces. This is con-
sistent with the random phase approximation developed by Bohm—Pines (1960s).

Thus the interaction term

:% ) ‘7(’f)<b*(/f)b(k)+b*(—k>b(—/€)+b*(/<:)b*(—k)+b(—k)b(k))

keT'mor
= TP S (SRR + BRI (k) + BRI (K) + by (k)b (R))
keI'nor p,9€BSN(Br+k)

looks like a quadratic Hamiltonian in a bosonic Fock space.

It is somewhat less obvious that the kinetic operator is also quadratic in terms of b;‘,(k) and
b,(k). Heuristically,

= W=k, > Y RAR = (p— k)R (k)by(k) =: Ho.

pEZ3 kelmer pe B&.N(Bp+k)

Indeed, it does not hold in general, but it holds for a class of quantum state close to the

ground state. Our key observation is that

H07 b* Z Z h2 ’p2 - k%’| [CL;CLP, a’qaq k]

pEZ? g€ BSN(Bp+k)

=Y > P Rl (e ailay o+ aglagay, i)

peZ3 q€ BLN(Br+k)

- Z Z h?|p? _kF|( gy g, + Op gk gy k)

pEZ? g€ BSN(Bp+k)
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= Y W - K+l — R - K

qEBELN(Br+k)

= h*(¢* — (g = k)*)b(k)
while

[Ho, bk = > Y Y. B = (= 0P 0by(0), by (k)]

telmor pe BEN(Bp+-L) € BLN(Br+k)

~ ) S R (p— 080,46 (k)

LeTmor pe BGN(Bp+L) g€ BLN(Br+k)

= h*(q* — (g — k)" (k).

Thus although Hy and Hy look very different, the commutators [Hy, b (k)] and [Ho, b (k)] are

close. This is the so-called linearization of the kinetic operator.

Now we focus on

Ho+ Q=3 (> 10— (- kbR (k)
kernor  pe BN (Bp+k)

FTH) S (B bRy (k) + BRI (k) + b (k) () ).
p,q€BSN(Br+k)

This operator can be treated similarly as a quadratic bosonic operator. If it were a truely
bosonic, it could be diagonalized by a Bogoliubov transformation. Here it is only approxi-

mately bosonic, but we can still define a Bogoliubov transformation of the form e” with

B= Y > K(k)pgb (k)b (k) — hec.

kerner p ge B N(Bp+k)

The matrices K (k) are determined exactly as in the truely bosonic case (there is an algebraic

formula for that). Thus using the approximate CCR we find that

T(Hy +Q)e” & BT 4 Y Ay(k)by (k)b (F)

keTmor

where E° is the desired correlation energy and A,(k) > 0.

Thanks to the linearization of the kinetic operator, the difference Hy — ]i-v]lo is mostly invariant
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under the Bogoliubov transformation. Indeed,
~ ~ L q ~
_B<H0 — Ho)eB - (HO — Ho) = / & {e_tB(Ho — Ho)etB} dt
0
1 ~
:/ e "B[Hy — Hy, Ble'Pdt
0

This term is small because [Ho—Hy, B] ~ 0, which follows from the fact that [Hy—H,, by (k)] ~

0. Thus in summary we have

e PRHNR® ~ EM + B + Ho—Ho+ Y Y Ay (k)b (k)by(k)

p
kerner pe Be \(Bp+k)

For an upper bound, we can apply the above operator inequality for the vacuum and find
that
Ey < (0le P R*HyReP|0) ~ EMF + Eomr.

The lower bound is more difficult as we have to estimate

Ho—Ho+ Y Y Ak)bi(k)b(k)

kerner pe B N(Bp+k)

from below. At this point, we need the smallness condition on the interaction potential V.
Note that

> Y AWE, =Y > (AR -0 )bk ()

kerner pe B N(Bp-+k) kermor pe Be N(Bp-+k)

When V is small, then

Ap(k) = B*(p* — (p— k)?)| < eh®(p* — (p — k)?).

Hence, we can conclude using the operator inequality

ST R (p— k)b (k)b (k) < CH

pEB%ﬂ(BF+k)

which can be proved similarly to the kinetic inequality in the previous section.



Chapter 11

Stability of matter

We consider a sample of ordinary matter composed of N quantum electrons and M classical

nuclei located at {R;}2L, C R3®. The system is described by the Hamiltonian

. - N N M ZeZk
MW_Z zi) ZZ’% Rk!+ Z + Z \Rz

x;
i=1 i=1 k= 1§i<j§N| ¢ 1<b<k<M

on L2(R3M). Here the nuclear charges satisfy
0< Zy< Z, Vk=1,2,..,M.
Let E(M, N) be the ground state energy of the system, namely

E(M, N) = inf inf <\II,HM7N‘I/>.

(B} I g3y

Note that we minimize over both the electronic wave functions and the positions of nuclei.
The nuclear repulsion Z1<e k<M ] RZZ Zlg | is not important for the first infimum, but it is

crucial for the second.

It is expected that this microscopic description of matter is consistent with what we observe
everyday in the macroscopic level. In particular, we expect the existence of thermody-

namic limit, namely

y BOMAN) o
N/(M+N)—n

This implies, for example, the energy of two half-filled glasses of water is essentially the same

with the energy of one fully-filled glass of water. Proving this existence is a nontrivial issue.

235
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A crucial step of the proof is the uniform lower bound

Theorem (The stability of matter). If 0 < Z, < Z for all k, then

E(M + N) > —Cz(M +N), YM,N.

Once it is done, the existence of thermodynamic limit follows easily from a general argument
based on the sub-additivity

E(M; + My, Ny + M) < E(My, Ny) + E(Ma, N).

The stability of matter was first proved by Dyson and Lenard (1967). In 1975, Lieb and

Thirring gave a very short proof, using their kinetic inequality
N
<\P’Z(_A$i)qj> > K3/ pu(x)*de
i=1 R?

and Teller’s no-binding theorem in the Thomas—Fermi theory. Another route to the
stability due to Solovej is to use the Lieb—Thirring inequality together with Baxter’s elec-

trostatic inequality. These approaches will be discussed in this chapter.

11.1 Teller’s no-binding theorem

Take M nuclei located at {R}L, C R® and with the nuclear charges {Z;}2L,, Z;. > 0.

Denote the nuclear potential
V(z) = L
@) == TR
k=1

Let us consider the Thomas-Fermi functional, with a constant ¢'F > 0,

P v B 5

1<b<k<M

The Thomas—Fermi (absolute) ground state energy is

E (R} AZi}) = if  E57(p).

0<peLnL5/3

Similar to the atomic case, we have



11.1. TELLER’S NO-BINDING THEOREM 237

’
Theorem (Existence in the Thomas—Fermi theory). For every given {Rp}L, and

{Z, M the infimum ETY({Ry},{Z1}) is obtained by a unique density p™* and it sat-

1sfies

\ ~ y

The proof of this theorem is left as an exercise. Actually we do not really need this result
for the proof below.

The main result in this section is that if we minimize E™"({ Ry}, {Zx}) over {Rx}L,, then
BT () = it BT (R, {4)
k

is obtained when the nuclei are infinitely separated, namely there is no molecular binding

in the Thomas—Fermi theory.

é Y
Theorem (Teller’s no-binding theorem). For every given {Zy}2L,, we have

EY({Zi}) = ZE;EEm

Here

' 1 p(x)p(y)
pmm= e ([ (e 2Dy L[ [ A,
atom( k> ngeanlﬂLs/f‘ ( R3 (C p($) F |33| ) 2 R3 JR3 ’SC - y’ /

This theorem was discovered by Teller (1962) . A rigorous proof was found by Lieb and

.

Simon (1977). The following proof is due to Baxter (1980), with some further simplification
of Loss.

Proof. The inequality
M

ETF {Z} Z atom

k=1
is obvious since we can always put each nucleus infinitely far from the others. Here we focus

on the lower bound. It suffices to show that for every given { Ry}, and {Z,}2L,,

M
ETF<{Rk}k 1,{Zk}k 1 > Z atom
k=1
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By induction in M, we only need to show that

ET (Rl AZehny) = BV (RS AZbii) + Eavom(Z0).

atom

Denote
M M—1
Ly, Ly, A,
Viz) = — = Vylx)+ Vp(z), Vilx)=-— , Vp=———7-——.
@) ==L gy~ Va@ Vo) Vaw) ==X = Ve sy

It suffices to show that for every 0 < p € L'(R3) N L53(R?) (we can also assume p > 0
everywhere), we can find two functions g, h > 0, g + h = p such that

Ev'(p) = &y, (9) + Evyy ().

For the kinetic energy, the condition g + h = p immediately implies the pointwise inequality
(g + h)®3 > ¢°3 4 h®/3, and hence

/pS/SZ/ g5/3+/ R3/3.
R3 R3 R3

Thus it remains to compare Coulomb potentials. We need to find g + h = p such that

1 p(@)p(y) ZoZy,
_/Rg p(x)V (z)dr + z/Rs /R o —y] BT > (R, — Ry

1<b<k<M

> [oemiarey [ G080y S EE

1<b<k<M—1
- /R () Vale)dr + /]R 3 /R 3 —h|<§)_h;7>d:cdy

which is equivalent to

_ /]RB h(z)Va(x)dr — . g(z)Vp(x)de + /1[@3 /R3 %dxdy+ Z % > 0.

1<0<M—1

To make the notation more transparent, let us introduce

Do = [ [ 4 W andy = [ gthefal )
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(this notation extends naturally when g, h are measures) and

M-1 1 M-1
2 i — Ry | ka4, MAa kz; k0 (x k)
Zy 1

VB<$):_ — *xMp, mB:ZMé(x—RM)

o —Ra el

Then the desired inequality can be written as
—2D(h,ma) —2D(g,mp) +2D(g,h) +2D(ma, mp) = 2D(g — ma,h —mp) > 0.

To construct g and h, we need the following special version of Baxter’s electrostatic

inequality.
Exercise. Let 0 < p € LY(R®) N L%3(R3). Then there exists 0 < g < p such that
2|tk g <|z| ' *ma, ae x€R3
Moreover, |x|™ % g = |z|™ x ma on {x € R®: g(x) < p(x)}.

(For our application, it suffices to prove the exercise with p > 0 everywhere.)

Now we can conclude the proof of no-binding theorem. We choose g as in the above exercise

and take h = p — g > 0. Then

2D(g — ma,h —mp) = / (|z| ™t % g — |z|~* * ma)(h — mp)
R3

/ +/ / (|a:]’1 * g — ]1:|’1 xma)mp > 0.
9=p

11.2 First proof of the stability of matter

Now come back to the Hamiltonian on L2?(R3V):

N M

S . o LSRRI S
HMJV_Z( AtV (@) + Z | Tt Z |R¢ — Ry’ V(x) Z|xi_Rk|.

x
i=1 1<i<j<N """ J| 1<t<k<M
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We prove that the ground state energy

E(M,N)=inf inf (U, Hy V)

TRA} 112 )y
satisfies the lower bound E(M,N) > —C(M + N).

First proof of the stability of matter. Take a normalized wave function ¥ € L2(R3*"). Then
N

(U, HynV) = <‘P’Z(_Awi)‘1’> +/

3
i=1 R 1<i<j<N

1 AV

1<b<k<M

By the Lieb—Thirring inequality we have

<\If,i<—Am>W> > K [ o

i=1 R3

with a constant K > 0. Moreover, by the Lieb—Oxford inequality

pu(w 4/3
(r 2 —wjr UES TN \x—y\ e Dy o[ s

1<z<j<N
K
> = / / ,0\1/ dedy — — 5/3 _C ow
R3 JR3 |x—y| 2 Rs R3

K
<\IJ,HM,N\IJ>2—/ o3y /Vp += //‘”J dzdy
2 Jgs R3 R3 JR3 |x—y|

Zng
+ 0y —CN
1<<k<M |R€

= x;F(P\I/) —CN.

Thus

By Teller’s no-binding theorem,

M
> 3 B2 2 -0 7P = —CMZ
k=1 k=1

Thus we conclude that
(U, Hyn¥) > -CMZ"® — CN.

Optimizing over ¥ € L2(R3Y), the lower bound for E(M, N) follows. O
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Remark: In the original proof of Lieb and Thirring (1975), they did not use the Lieb—Oxford

inequality. They bound the indirect energy by Teller’s no-binding theorem as follows. From
pu(x ZyZy, 73,

d.rd + >-C» Z,

L f [ e 5 e oy

taking Z, = 1, M = N, Ry = x, p = py with ¥ € L2(R3N) we have
K
/ 53 _ p w |z / / pulr dxdy + Z > —CN.
R3 JR3 |£C — 1<’L<]<N €T; — Z'Jl

This inequality holds pointwise for all {z;}¥, C R3. Taking the expectation against the

normalized wave function ¥ € L2(R3"), we obtain

K 1
/ 5/3 /pq,*’:ﬂ Yoy + = //—>d3:dy—|—<\11 > —\IJ>Z—CN
g3 Jrs [T — Y| |z — x4

1<i<j<N

which is equivalent to

K
v, / / dxd - / % _ CN.
< Z |I1—Ig| R3 JR3 |x—y| 2 R3

1<i<j<N

11.3 Baxter’s electrostatic inequality

In 1980, Baxter proposed a simplified approach to the stability of matter. He proved the
following this inequality that quantifies electrostatic screening (effectively, any electron sees

only the nearest nucleus).

é Y
Theorem (Baxter’s electrostatic inequality). For any {z;}Y,, {Rx}L, C R3 and Z >

0. Then

Z |z—l']| ZZL’L’@ Z Z—RIJZ_

1<i<j<N =1 k=1 1<£<k<M

27 +1

NE

=1

where O () = miny<g<pr | — Ri| is the distance to the nearest nucleus.

We will derive Baxter’s result from another basic electrostatic inequality. The idea is due to

Solovej.
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Proof. Step 1. Define

Mooz 7
¥ =) TR D)

The function ®(z) is the potential generated by all nuclei but the nearest one. In particular,

we can write

72 7Y
Y 2 IS am
1<t<k<M |Re— Ryl 2 k=1

A useful picture to keep in mind is the Voronoi cells where the nucleus Rj is associated
with the cell
Dp={r €R®: |z — Ry| < |v— Ry| forall {#k}.

Figure: Voronoi cells in 2D

" Lemma. We can write p D
RS |Z — Y|
with some non-negative measure v on R3 supported on the surfaces
L {r €R®: |v — Ry| = |v — Ry| for some £ # k}. y

Proof. We need to prove that
—Ad = 47v.
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Since —A(|z|™!) = 0 for all z # 0, it is clear that —A®(z) = 0 for all z € R? except the
surfaces. Hence, if —A® = 47 then v must be supported on the surfaces. To compute v,

let us take f € C>°(R?) and use Voronoi’s cells

O(x)(Af)(@)de =Y [ O(x)(Af)(z)dz
L /
— Jr,
_Z(/ div(®V f)(x)dx — /W -V f(z)de )
_Z(/m 2y - V£ (z)dS /deiv(fvcb)(m)dm+ ka(x)A(I)(x)dx).

Here n;, is the outward normal vector to 0I'y, and dS is the 2D surface measure on OI';,. Note
that on each surface |z — Ry| = |r — Ry, the outward normal vectors n; and n, point in
opposite directions. Moreover, ® and V f are continuous on R®. Thus the contribution from

all boundary terms is 0. We also have

f(z)A®(z)dz =0

Ty

since A® = 0 on I'y,. Thus

/qu)( JASf Z/ div(fV®)(x)de = Z p - VO(z)dz.

ark

Note that this term is non-zero since V& is not continuous on R3. A straightforward com-

putation shows that

1
/W (2)(Af)(x —222 z)ny, - v| _Rk|d,r

ark
=22 | flx )de.

Ty |z — Ry
Here we have a factor 2 because any surface term is counted twice. Thus
—A® =47y

with

R
Ardv(z) = 222]1 T € am# > 0.
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Here n - (x — R;) > 0 on = € Iy, since Iy, is convex. O

Step 2. We have the following basic electrostatic inequality.

Lemma. Let u be a measure with D(p, 1) < oo. Then

Dln) - [ e+ 3 Lz

1<b<k<M

Recall that
1
) = _/ F@)9() 4.4
2 Jps Jrs |z —yl
This notation extends naturally when f, g are measures.
Proof. Using ®(x) = |z|~! * v we have

mmm—/w@mszw#wammmz—m%w

since D(p — v, — v) > 0. It remains to calculate D(v,v). Using the equation ® = |z|~! x v
and the fact

M 7 M
SR i R m_ZZASQRk "

we can write

1 Z
DV,V:—/CD — // (y — Ry) dydv(z
( ) 2 R3 22 R3 JR3 k y| <)

7 & 1 7 &

— oy — Ry) ( dux)dy:— 0y — Re)®(y)dy

?;Aﬁ o (Lpgo) =33 [ o= Row)
M

7 72

— (R _

2 ; 1<1Z<Zk<M‘RZ_R’“‘

Here we also used the fact that v is a positive measure. This completes the proof of the
O

lemma.

Step 3. Now we conclude the proof of Baxter’s electrostatic inequality. Recall ©(z) =
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miny |z — Ry|. Denote the smeared out spherical charges

1
0 (2;)?

dp;(z) = 50(|lz — x| = D(x;)/2)dw, i=1,2,..,N.

Note that u;(R?) = 1 and that D(z) > D(z;)/2 for every z € suppy,;. We apply the above

lemma )

Dlu =~ [oapn)+ 3 T

1<b<k<M

with pu = Zfil 1. By Newton’s theorem we have

Dl ) //dm Dduly) 1
o R3 JR3 |z — 9| 5‘3(%)’

dpi(x)dpe; (y 1 L,
9 - ) v )
D) =3 [ [ S ey i

and hence,

1 1
:%:D(m,uj) < > m+29(x

1<i<j<N i=1

Using ©(z) = ming |z — Ry| > ©(x;)/2 for every x € supppu;, by Newton’s theorem we have

/ Z/ z)dp; (@ /|x_R|uz Z/@ dpi(

121

:ZZW Ri| /

g i=1 9(%)

v
WM:

Thus in summary

ZQ
0 < D(p, ) — /q’(ﬂf)/ﬁ(diﬂ) + Y m
1<t<k<m *% k
M N N
1 27 +1
< D T Z Z + D +>.5
1<i<j<N |2 — ] h—1 iz1 |Ti 1<t<k<M ’ ¢ Rk i—1 (:)

which is equivalent to the desired inequality. O
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11.4 Second proof of the stability of matter

Come back again to the Hamiltonian on L2 (IR3V):
N
ZyZy,
+ A
e Y 2. &Rl

i=1 i=1 k=1 1<z<]<N Li — 7‘ 1<b<k<M

We prove that the ground state energy

E(M, N) = inf inf <\I’,HM,N\I/>

{BR} IO g3y

satisfies the lower bound E(M,N) > —C(M + N).

Second proof of the stability of matter. Step 1. We consider the simple case where Z;, = Z

for all kK =1,2,..., N. We use Baxter’s electrostatic inequality

N oz +1
O Xijm m*‘§:|m mv*ﬁlmm

1<i<j<N =1 k=1 1<b<k<M

where ©(x) = minj << |z — Rg| is the distance to the nearest nucleus. Thus

e (o)

Hence, by Pauli’s exclusion principle and the Lieb—Thirring inequality, for every pu > 0 we

have
o () o
SRS Rl
_L173/]RS {% —u}imdx—,u]\f.

Since D (z) = minj<x<pr | — Ry, we have

[QZ+1 }52 i{QZJrl r/?
_M .
D(x) — |z — Ry N
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and hence
27 +1 }52 / {2Z+1 }5/2
— dzr < dz
/Rs[zm : Z o Rl ],
27 +1 5/2 227 +1)3
- M {_Jr_u} @:MM,
R3 ’SL’| + 4\//7
In summary,
5m2(27 +1)3
Hyn > e il 2z +1) — uN.

NG
This gives the desired lower bound E(M,N) > —C(M + N). Actually by optimizing over
> 0 we find that

E(M,N) > —C(2Z + 1)?)M*3N'/3.

Step 2. Now we come to the general case when 7, < Z for all k =1,2,..., M. The proof in

this case follows from Step 1 and the following monotonicity in nuclear charges.

Lemma. Denote E(M, N,{Zy}) be the ground state energy of Hyn with given nuclear
charges {Z}. If Z), < Ty forallk =1,2,..., M, then

E(M,N,{Z}) > E(M,N,{Z}).

This observation is due to Daubechies and Lieb (1983).

Proof of the lemma. Note that for every ¢ € {1,2,..., M}, the mapping Z, — H)s y is linear.

Therefore, the mapping
Zy— E(M,N,{Z})

is concave (the concavity holds separately for each Z;, not jointly for {Z;}). Under the

condition 0 < Z, < Zg we can write
Zy=t-04+(1—t)-Z, forsometel0,1].
Hence, the concavity implies that

E(M7 N, {Zk‘}) > tE(M’ N, {Zk})\ZZZO + (1 - t)E<M7 N, {Zk})\ZZ:ZZ'
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On the other hand, setting Z, = 0 is equivalent to putting R, at infinity, and hence
E(M, N, {Zk})\Ze=0 > E(M, N, {Zk})|ZZ:Z'

Thus
E(M7 N, {Zk}) = E(Mv N, {Zk})|Z[=§g'

By induction, we find that
E(M,N,{Z}) > E(M,N,{Z}).

This completes the proof of the lemma. O

From the condition Z, < Z for all k =1,2,..., M and the lemma, we find that
E(M,N,{Z}) > E(M,N,{Z,Z,...,Z}).

By Step 1, we have
EM,N,{Z Z,...Z}) > =Cz(M + N).

This implies the same lower bound for E(M, N,{Z;}). Thus E(M,N) > —-C(M + N). O

11.5 Existence of thermodynamic limit

Consider the Hamiltonian on L2(R3Y)
N N M 7.7
H — xl + #
M.N Z Zzlzlm Ry Z Z_x]| Z R, — Ryl

=1 1<i<j<N 1<b<k<M

and the ground state energy

E(M,N)=inf inf (U, HyyU).
(B} 0] g0y

(Theorem (Existence of thermodynamic limit). Assume Z, = Z for all k =1,2,..., M. ]
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For every n € (0,1), we have

. E(M,N) _
N/(M+N)—n

The function e : (0,1) — R is bounded and convex (consequently it is continuous).

Proof. Step 1. We have the following sub-additivity
E(M; + My, Ny + No) < E(My, Ny) + E(M,, Ns).

This is an easy consequence of the variational principle. More precisely, given two wave
functions Uy, € L2(R3™) and Uy, € L2(R3M2) we can construct a trial wave function 111531) Ny

in L2(R3MN1+02)) by antisymmetrizing the product

Un (21, oo, 3 ) YNy (TN 1 F s o TN, T ).
Then

E(Ml + My, N1 + NQ) < lim <\If§3)7N2a HM1+M2,N1+N2\IJ§\€1),N2>

ly| =00 !

- <\IJN17 HM17N1\IJN1> + <\PN27 HMz,NQIIjN2>'

Technically, if we have the nuclei { R }n2, for Hyy, n, and {ﬁk}i\fl for Hp, n,, then we take
the nuclei
{R17 R27 e RM17 él +Y, é? T Y- §M2 + y}

for Has, 40,8y +N,- Optimizing over Wy, , ¥y, and the locations of the nuclei, we obtain the

desired inequality.

Step 2. From the sub-additivity and the negativity of atomic energy we find that E(M, N) <
0 and (M, N) — E(M, N) is decreasing. From the stability of matter, we obtain

o EO14N)

> —C.
- M+N T

Hence, for every n € (0, 1), we can find a sequence (M;, N;) such that

N

J

_ E(M,,N))
— ) _ 1 J
M+N, " e

M;,N; — o0 )
Jr =17 ’ j o0 Mj—i—N]

exists.



250 CHAPTER 11. STABILITY OF MATTER

U

It remains to show that for any (M}, N}) with M}, NI — oo, % — 1 we also have

) E(M]’.,N]’-) . E(Mj,Nj)
lim ————" = lim ————~
j—o0 Mj—i—Nj j—o0 Mj—l—Nj

Indeed, by passing to a subsequence of (Mj, N) if necessary, we can assume that M /M; — oo

and Nj/N;j — oo. Define
M/ N/
fommn (2] [ 4]} e

J J

where [t] is the integer part of ¢ (i.e. [t] <t < [t] +1). Then

L;(M; + N;)
j J
N’ N; ..
The last convergence comes from the fact that 7 - iy and e " N, have the same limit. Thus

by the monotonicity and the sub-additivity of E(M, N) we have

E(M;, N;) _ E(LjM;, L;N;) _ L;E(M;, Nj) _ Li(M; + N;)  E(M;, N;)

M;+N; — M + N; - M+ N; M; + N} M; + N;
Thus E(M,NY) E(M..N
limsup —a ) oy, EOL N
Similarly, by passing to a subsequence of (M}, N;) if necessary, we can assume that M; /M G

oo and N;/Nj — oo. The same argument as above

E(M:, N E(M;, N;

In summary,

Hence, the limit

MN—oco M+ N
N/(M+N)—n

exists.

Step 3. Since 0 > E(M + N) > —C(M + N), we have

0>e(n) =-C
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for every i € (0,1). Thus e(n) is bounded. The convexity of n — e(n) follows from the sub-
additivity of E(M, N). Indeed, let n,n" € (0,1) and let N,M = M(N),M' = M'(N) — oo
such that

N N
M+nN T N T
Then
NM+N)+NM+N) 1 N N N _>n+n’
2(M +N)(M'+N) — 2\M+N M+N 2

Note that 2(M + N)(M' + N) — N(M + N) — N(M' + N) = NM + NM' + 2MM’. Hence,

E(NM+NM'+2MM',N(N+M)+N(N+M')) I
2(M + N)(M' + N) %6< 2 )

On the other hand, by the sub-additivity of the ground state energy, we have

E(NM -+ NM'+2MM',N(N + M) + N(N + M"))

< E(NM,N*) + E(NM',N*)+ E(MM',NM) + E(MM', NM")
< NE(M,N)+ NE(M',N)+ ME(M',N)+ M'E(M,N)
=(M'+ N)E(M,N)+ (M + N)E(M',N).

Dividing both sides by 2(M + N)(M' + N) we obtain

E(NM + NM'+2MM’ N(N + M) + N(N + M’))
2(M + N)(M' + N)
_1 (E(M, N) E(M’,N)>'

=9\ M+ N M'+ N

Taking the limit we conclude that

(1) < 5 et + ).

2

Since e(n) is uniformly bounded in (0, 1), the latter bound implies the convexity, namely

e((L—thn+ty) < (1—te(n) +te(n), Vte(0,1).
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Exercise. Let f:(0,1) — R be a bounded function such that

f(a;b) < f(a);f(b), Va,b e (0,1).

Prove that f is convex in (0,1).

11.6 Grand-canonical stability

There is also the stability in the grand-canonical setting, where the ground state energy
is computed without the particle number constraint, but with a volume constraint. For
simplicity, let us consider a system of N particles of charge —1 and M particles of charge +1

in an open bounded set  C R3. The system is described by the Hamiltonian

N M ) ] N M ]
Hun =300 +3 a0+ Y 0 Y Loyy L
A e N NN T TR S DI PT
on L2(QN) ® L2(QM). The grand canonical ground state energy is
E(Q) = inf inf <‘1/, HM,N‘IJ>'
M,N  weCe(QM+N)
W]l 2=1

é Y
Theorem (Grand-canonical stability). We have
E(Q) > -C|Q|
. with a finite constant C' > 0 independent of §2. )

This result holds under a more general assumption, where the masses and the charges of the

particles can be different.

Proof. By the canonical stability we have

Z(_%Ami)—'— Z m"‘ Z ;—szZ_O(M‘f“N)'

1<k<t<M |95 — Yl i=1 k=1
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Note that we used only half of the kinetic energy of the first N particles and did not use the
kinetic energy of the last M particles. By the Lieb-Thirring inequality (or the Berezin—Li-Yau

inequality as we have the Dirichlet boundary condition) we have

N M
1 K 5/3 1 K 5/3
2 (‘5A“) > e 2 (‘5%) = e

with a constant K > 0. Thus in summary,
K 5/3 5/3
HM,NE,Q’—Q/?)(M + N°/°) = C(M + N).

Thus

. K 5/3 5/3y _
E(Q)Zﬁ}]{[(lmm(M LN (M +N)) > —C|9)|.

Note that the energy F/(f2) satisfies the following properties:

e Translation-invariant E(Q + z) = E(Q) for all z € R3.

o Stability £(Q) > —C|).

All that implies

4 Y
Theorem (Existence of thermodynamic limit). The limit

im 2
a=[-L.r® |9Q|
L—o0

exists and it is finite.

The proof of this theorem is left as an exercise. Actually the existence of the thermodynamic

limit holds for a much bigger class of domains €2. For example, tilling domains are allowed.
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11.7 Instability for bosons

In the proofs of the stability of matter, the fermionic property is crucial. Indeed, the stability

fails if Pauli’s exclusion principle is turned off. Let us consider the Hamiltonian

N N M

YAVA®
HM,N = Z<_A%) - ZZ |xZ Rk| + Z |{L‘ — x]| T Z |Rg Rk|

i=1 i=1 k=1 1<i<j<N 1<t<k<M

on L?(R3N) (without the anti-symmetry assumption). The corresponding ground state en-

ergy is
Eg(M,N) = inf inf (U, Hyy n0).

{Ric} 1] 2 gy

Remark: It is well-known that by a convexity argument (c.f. the diamagnetic inequality),
the ground state energy on the full Hilbert space L*(R3") is the same with the restriction to

the bosonic/symmetric space L2(R3V).

é Y
Theorem (N instability). Let M = N and Z;, = 1 for all k. Then

—CN®3 < Eg(M,N) < —CIN%/3

Lfor a constant C' > 0 independent of N. )

The lower bound was proved by Dyson and Lenard (1967). The upper bound was proved
by Lieb (1979).

Proof. Lower bound. By Baxter’s electrostatic inequality

N3
DD _g;]| sz ARSI RkIZ_ZQ(%)

1<i<j<N i=1 k=1 1<t<k<m " i=1

where ©(z) = min;<g<ps |z — Ry| we have

al 3
Huaw 2 ) (_A“ - @(xa) '

Thus the desired inequality follows from the one—body operator inequality

3

> _(CON?/3 L%(R?).
D) = C on L*(R?)
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By Sobolev’s inequality (c.f. CLR bound), there exists g > 0 such that for every pu > 0

AECRCES

3
—A— —— > 0.
@(m)_l—ﬂ_

satisfying

we have

By the definition of ©(x), we can bound

L, l@?) ‘“E/Qdm : i/ Lx—gRu ‘“E/Qd‘”

3/2
:N/ {——,u} dr = CNp =32,
R3 ’.2?| +

Thus the condition CNpu=3/? < g is satisfies when p ~ N?/3, as desired.

Upper bound. We take the trial function

®N(

U(zy,..,en) = u (21, ..., zn) = w(x))u(zs)...u(zN).

with a normalized function u € L?(R3). Then

N(N -1 2 (1) |2
Eg(M,N) < (u®N Hynu®N) =N [ |Vu]> + NN=1) / Ju(@)Pluly)l® dady
7 R3 2 R3 JR3 |.1' — y|

B S RO .
i1 R3 |I—Rk| ‘R —Rk|

1<t<k<n Y

Note that this upper bound holds for any choice of the nuclear positions { R }4_;. Hence, we
can average over { Ry ;.

First try. Integrating the above variational inequality against
lu(Ry)?...|u(Ry)[?dR;...dRy, Rj € R?
we obtain

N(N -1 2 2
Eg(M,N)< N [ |Vul>+ g/ dedy
R3 2 R3 JR3 |[E—y|

2 2
e u@Pl(R)E | e / / i) Rz)' AR, dR,
g3 Jrs | — R e JRs [fh—
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2 2
= N< |Vl _/ dedy) )
R3 R3 JR3 |$ - y|

This leads to the upper bound E,(M,N) < —CN.

Second try. We divide the support of u into N disjoint sets {2, }2_; such that

Jul* =

1
=, Vk=1,2,..N.
a N

Then integrating the above variational inequality

_ 2 2
By, N) < N [ w4 Y=L / [u@Plu@)P g,
R3 JR3

R3 2 |z —yl
[ Ju@) 1
- N dr + _
ZZ:; R3 |$ — Rk| 1<é§k:<N |Rg — Rk|
against
<N|u(R1)|2>...<N|u(RN)|2>dR1...dRN, Ry €
we obtain

N(N -1 2 2
Eg(M,N) < N |Vu|2—|—¥/ [e@P@I 4 g,
R 2 reJrs [T — Y

2 2
S i
R3 JR3 |1' - R|

N? [u(Ry)?lu(Ry)|? / / u(Ry)[? |U Rz)|
+ — dR{dR dR;dR
2 (/R3 R3 |Ry — Ry S Q. Jo, |Ry — e

N
<N |vu|2—N22/ / [@P)E g,
R3 —1 Q, |z =yl

We can choose the support of u like a cube [0, L]?, and any set €2, has diameter ~ L/N'/3.
This gives

N1/3
N2// )P lu(y) dxdy2N2// () Plu(y) dxdy: .
o Jo. T =Y O CL/N1/3 CL

Moreover, if u behaves as a constant inside its support, then ||Vu||3, ~ L2 (the spectral
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gap of the Laplacian). Thus

N
Es(M,N) < N \vu|2—N2Z/ / [@PlWP 4,
R3 k=1 Qk

|z — |

C 1£_CN4/3

Optimizing over L > 0 we obtain the desired upper bound
Eg(M,N) < —C~'N°/3,

]

In the above we have ignore the kinetic energy of the nuclei. The situation changes a bit
when we consider nuclei with finite masses, however the instability remains. In the following

let us consider the Hamiltonian

2 ot 2

1<z<]<N Li 1<t<k<N |y€ yk’

yk|
on L*(RY) (without the anti-symmetry assumption) and the ground state energy

EB(N) = inf <\IJ,HN\I/>

||\II||L2(R6N):1

é Y
Theorem (N7/° instability). We have

. Eg(N) : / 2 5
lim ——t = f 2|V — I ?)dz
N TNT/B ”u”ng]R?’):l RS( [Vu(z)] olu(@)[”’%)
where
2\¥* > 1 45/4T°(3/4)
I() = - dt = .
| m 0o 1+tt4+2vt4 +2 571/4T(4/5) )

The upper bound —C~*N7/® was first proved by Dyson (1966) and the lower bound —C' N7/
was proved by Conlon, Lieb, and Yau (1988). The exact limit of Eg(N)/N7/° was proved
much later by Lieb—Solovej (2004, lower bound) and Solovej (2006, upper bound), based

on a justification of Bogoliubov’s theory.
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Sketch of Solovej’s proof of the sharp upper bound. Step 1. First we work on Fock space

where the number of particles is not fixed. We consider a trial state of the form
v = WU|0)
with Weyl unitary transformation

)

W = V2N @=a) <y e 2R, ||ule=1

and a (bosonic) Bogoliubov unitary transformation U. Note that applying Weyl’s tran-

formation to the vacuum gives us a coherent state

00 n/2
wioy = 3 eV BN o)

n=0

whose particle number expectation is exactly 2N. On the other hand, applying Bogoliubov
tranformation to the vacuum gives us a quasi-free state which can be fully characterized

by the one-body density matrix

{f;79) = (0]U"a"(9)a(f)UJ0).

The expectation of the particle number of U|0) is Tr~y. Thus the expectation of the total
particle number of ¥ is 2N 4 Tr+. In our choice, Try < CN3/° < N.

Note that u stands form the Bose—FEinstein condensation and v stands for excited particles.
In this two—component charged Bose gas, there is a huge cancellation in Hartree theory
(due to the screening effect of Coulomb potential), and the contribution from the excited

particles are crucial.
A lengthy but straightforward computation gives us the energy expectation of W:
E=(V, P HTV) =2N | |Vuf’ +Te(-Ay)+ NTr [K(v — /(1 + v))}
n=0 R3

where K is a non-negative Hilbert—Schmidt operator on L?(R?) with kernel

-2
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Finally, let us construct an explicit formula for v using the coherent state method. Let

G be non-negative even function with ||G|| 2@s) = 1 and denote

fry(z) = 7Gx —y).

Recall the coherent identity

[ 1 ol = 1,

R3 (]

with a suitable function M (k,y). The semiclassical approximation to the energy
Tr(—Av) + NTr [K(v — /(1 + 7))]

is

/RS /RS (|27rk| M(k,y) + |k:|2| u(y) (M (k,y) — \/M(k:,y)(l—l—M(k,y))> dkdy

For example, we have

T80 = [ [ M) e K by

/R3 RSMk: . Y) (/RS/R3 e~ 2RI (g — y) |(93)—(z|) Qﬂik.zG(y_Z)dxdz) dkdy

L v 6 = utoua)6t — 2)adediay

e—27r7,k~(x—z)
L[ 166~ pPlu) Pty (@~ 2)
R3 JR3 JR3 JR3 |z — 2|

—2mik-z
[ ] ] ™=@ sy wazanay
R3 JR3 JR3 JRS3 |Z|

1
~ Mk y)—— 2qkd 2 5.
/R3 /RB /R:s R3 ( 7y)ﬂ|k|2|u(y)‘ y (G )

Optimizing over M (k,y) the latter expression we get

Q

E~2N [ |Vuf> - N5/4IO/ PIRGS
R3 R3
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We can take
u(z) = 03 %ug(0x)

with a normalized function uy € L*(R?), and obtain

E~2NCZ [ |Vug|? = N2BAT [ |ug|*?
R3 R3

(the power 3/4 comes from 2 - 2 — 3). We choose £ such that

N2 = N3/4pi — ¢ = N5,

Thus

E~ NP (2 V| — [0/ |U0|5/2> :
R3 R3

Optimizing over ug gives us the desired upper bound.

Step 2. It remains to find a trial state in the 2 N—particle sector. We can repeat the choice
of the trial state
v = WU0)

but now we use the Weyl unitary transformation
W = VM@ W=a) < ye L2(R%), ||lullpe=1
with M = 2N — C' N3/, so that
(U, NU) = M +Try < 2N — N3/,

Recall that with our choice of y, the number of excited particles is Try = O(N3/®). Moreover,

we have

(U, N2 — (I, N2 = <\p (N— <\II,N\II>)2\IJ> < CN.

Similarly to Step 1, we have

E= <\Il, @Hn> < N5 inf / (2|Vu(x)]* = Io|u(z)|*/?)dz + o(N7/?).
n=0 R3

||UHL2(R3):1
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At the moment, W is still a state on Fock space. To go to fixed particle sectors, we denote
U= (Tu)plg, Va€ L*(R™), ZH‘P I*=1.

Then .
<\If @H > Z U, Hy W) > |0, Ex(n).
n=0 n=0

To conclude, we use the fact that n — Eg(n) is decreasing and that 0 > Eg(n) > —Cn"/?

(we do not need a sharp lower bound here). Then

N)< D I PEe(N) < Y [1Wal?Es(n)

n<2N n<2N
—ZH‘I’ PEs(n) = Y [ Wal*Es(n) < E+C Y |[,]*n™".
n>2N n>2N

The error term with n > 2N > (U, N'¥) + N4/? can be estimated by the variance bound and
the Cauchy-Schwarz inequality

[n— (&, NB)[\*°
3 Ittt < 3 o (=

n>2N n>2N

e 7/10 9\ 3/10
g(Zuan) (ZH\P ("= jﬁ;ﬁ”’”))

9 3/10
U, (N — (U, NT)) T
_ \Ij NQ\IJ 7/10 < ( < >> >
- (< 9 >) N6/5
217/10 N 310 _ I_3 7/5
SOV (<) =CONTR < NP

Thus we conclude that

Eg(N) < E+0o(N7®) < N™® inf / (2|Vu(x)* = Io|u(z)|/?)dz + o(N/?).
R3

||u||L2(R3):1

This is the desired upper bound in the 2/N-particle sector. O
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