
Exercises—Global Analysis

1. Consider the cylinder in R3 given by the equation

M := {(x, y, z) ∈ R3 : x2 + y2 = R2},

where R > 0. Show that M is a 2-dimensional submanifold in R3. Moreover, give
formula for local parametrizations and local trivializations, and a description of M
as a local graph.

2. Consider a double cone given by rotating a line through 0 of slope α around the
z-axis in R3. It is given by the equation

z2 = (tanα)2(x2 + y2).

At which points is the double cone a smooth submanifold of R3? Around the points
where it is give a formula for local parametrizations and trivializations, and a de-
scription of it as a local graph.

3. Denote by Hom(Rn,Rm) the nm-dimensional vector space of linear maps from Rn

to Rm. Consider the subset Homr(Rn,Rm) of linear maps in Hom(Rn,Rm) of rank
r. Show that Homr(Rn,Rm) is a submanifold of dimension of r(n + m − r) in
Hom(Rn,Rm).

Hint: Let T0 ∈ Homr(Rn,Rm) be a linear map of rank r and decompose Rn and
Rm as follows

Rn = E ⊕ E⊥ and Rm = F ⊕ F⊥, (0.1)

where F equals the image of T0 and E⊥ the kernel of T0, and (·)⊥ denotes the
orthogonal complement. Note that dimE = dimF = r. With respect to (0.1) any
T ∈ Hom(Rn,Rm) can be viewed as a matrix

T =

(
A B
C D

)
,

whereA ∈ Hom(E,F ),B ∈ Hom(E⊥, F ),C ∈ Hom(E,F⊥) andD ∈ Hom(E⊥, F⊥).
Show that the set of matrices T with A invertible defines an open neighbourhood
of T0 and characterize the elements in this neighbourhood that have rank r (equiv-
alently, the ones that have an (n− r)-dimensional kernel).
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4. For i = 1, ...n let (Mi,Ai) be a smooth manifolds. Suppose M := M1 × ... ×Mn

is endowed with the product topology. Then show that

A := {(U1 × ...× Un, u1 × ...× un) : (Ui, ui) ∈ Ai}

defines a smooth atlas on M and that the projections pri : M → Mi are smooth.
Moreover show that, for any smooth manifold N , a map f : N → M is smooth if
and only if fi := pri ◦ f : N → Mi is smooth for all i, and show that this property
characterizes the smooth manifold structure on M uniquely.

5. Suppose (Mi,Ai) are smooth manifolds for i ∈ I , where I is countable. Consider
the disjoint union

M := ti∈IMi = ∪i∈I{(x, i) : x ∈Mi}

endowed with the disjoint union topology and denote by inji : Mi ↪→M the canon-
ical injections (inji(x) = (x, i)). Show that A := ∪i∈IAi defines a smooth atlas
on M and that the injections inji are smooth. Moreover, show that for any smooth
manifold N , a map f : M → N is smooth if and only if fi := f ◦ inji : Mi → N
is smooth for all i, and show that this property characterizes the smooth manifold
structure on M uniquely.

6. Suppose U ⊂ Rm is open and f : U → Rn a smooth map such that Dxf : Rm →
Rn is of rank r for all x ∈ U .

Show that for any x0 ∈ U there exists a diffeomorphism φ between an open neigh-
bourhood of x0 and an open neighbourhood of 0 ∈ Rm and a diffeomorphism ψ
between an open neighbourhood of y0 = f(x0) and an open neighbourhood of 0 in
Rn such that the locally defined map

ψ ◦ f ◦ φ−1 : Rr × Rm−r → Rr × Rn−r

has the form (x1, ..., xr, ..., xm) 7→ (x1, ..., xr, 0, ..., 0).

Hint: The idea is that f locally around x0 looks like Dx0f , which is a linear map
Rm → Rn of rank r, which up to a basis change has the form (x1, .., xm) 7→
(x1, ..., xr, 0, ..., 0).

(a) Set E2 := ker(Dx0f) ⊂ Rm and E1 := E⊥2 , and F1 := Im(Dx0f) ⊂ Rn and
F2 := F⊥1 . Decompose

Rm = E1 ⊕ E2 and Rn = F1 ⊕ F2,

and consider f as a map f = (f1, f2) : E1 ⊕ E2 → F1 ⊕ F2 defined on
U ⊂ E1 ⊕ E2 = Rm.

(b) Show that φ : E1 ⊕ E2 → F1 ⊕ E2 given by

φ(x1, x2) = (f1(x
1, x2)− f1(x10, x20), x2 − x20)

is a local diffeomorphism around x0 = (x10, x
2
0) whose local inverse will be

the required map.
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(c) Show that g := f ◦ φ−1 : F1 ⊕ E2 → F1 ⊕ F2 has the form

g(y1, y2) = (g1((y
1, y2), g2((y

1, y2)) = (y1 + y10, g2(y
1, 0)).

Now ψ is easily seen to be...?

7. Suppose M and N are are manifolds of dimension m respectively n and let f :
M → N be a smooth map of constant rank r. Deduce from (1) that for any fixed
y ∈ f(M) the preimage f−1(y) ⊂M is a submanifold of dimension m− r in M .

8. Consider the Grassmannian of r-planes in Rn:

Gr(r, n) := {E ⊂ Rn : E is a r-dimensional subspace of Rn}.

Denote by Str(Rn) the set of r-tuples of linearly independent vectors in Rn. Identi-
fying an element X ∈ Str(Rn) with a n× r matrix

X = (x1, ...., xr) xi ∈ Rn,

shows that Str(Rn) equals the subset of rank rmatrices in the vector space Mn×r(R),
which we know from Tutorial 1 is an open subset. Write

π : Str(Rn)→ Gr(r, n)

for the natural projection given by π(X) = span(x1, ..., xr) and equip Gr(r, n) with
the quotient topology with respect to π.

(a) Fix E ∈ Gr(r, n) and let F ⊂ Rn be a subspace of dimension n− r such that
Rn = E ⊕ F . Show that

U(E,F ) = {W ∈ Gr(r, n) : W ∩ F = {0}} ⊂ Gr(r, n)

is an open neighbourhood of E.

(b) Show that any element W ∈ U(E,F ) determines a unique linear map

W̃ : E → F

such that its graph equals W , i.e. W = {(x, W̃x) : x ∈ E}.
(c) Show that the map uE,F : U(E,F ) → Hom(E,F ) given by uE,F (W ) = W̃ is a

homeomorphism.

(d) Show that

A := {(U(E,F ), u(E,F )) : E,F ⊂ Rn complimentary subspaces of dimension r resp. n−r}

is a smooth atlas for Gr(r, n).

9. For a topological space M denote by C0(M) the vector space of continuous real-
valued functions f : M → R. Any continuous map F : M → N between
topological spaces M and N induces a map F ∗ : C0(N) → C0(M) given by
F ∗(f) := f ◦ F : M → R.
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(a) Show that F ∗ is linear.

(b) If M and N are (smooth) manifolds, show that F : M → N is smooth ⇐⇒
F ∗(C∞(N)) ⊂ C∞(M).

(c) If F is a homeomorphism between (smooth) manifolds, show that F is a dif-
feomorphism ⇐⇒ F ∗ is an isomorphism.

10. We have seen in the first tutorial that Homr(Rn,Rm) is a submanifold of Hom(Rn,Rm)
of dimension r(n+m− r) in. For X ∈ Homr(Rn,Rm) compute the tangent space

TXHomr(Rn,Rm) ⊂ TXHom(Rn,Rm) ∼= Hom(Rn,Rm).

11. We have seen in the first tutorial that the Grassmannian manifold Gr(r, n) can be
realized as a submanifold of Hom(Rn,Rn) of dimension r(n−r). ForE ∈ Gr(r, n)
compute the tangent space

TEGr(r, n) ⊂ TEHom(Rn,Rn) ∼= Hom(Rn,Rn).

12. Consider the general linear group GL(n,R) and the special linear group SL(n,R).
We have seen that they are submanifolds of Mn(R) = Rn2 (even so called Lie
groups) and that TIdGL(n,R) ∼= Mn(R) = Rn2 .

(a) Compute the tangent space TIdSL(n,R) of SL(n,R) at the identity Id.

(b) FixA ∈ SL(n,R) and consider the conjugation conjA : SL(n,R)→ SL(n,R)
by A given by conjA(B) = ABA−1. Show that conjA is smooth and compute
the derivative TIdconjA : TIdSL(n,R)→ TIdSL(n,R).

(c) Consider the map Ad : SL(n,R) → Hom(TIdSL(n,R), TIdSL(n,R)) given
by Ad(A) := TIdconjA. Show that Ad is smooth and compute TIdAd.

13. Consider Rn equipped with the standard inner product of signature (p, q) (where
p+ q = n) given by

〈x, y〉 :=

p∑
i=1

xiyi −
n∑

i=p+1

xiyi

and the group of linear orthogonal transformation of (Rn, 〈·, ·〉) given by

O(p, q) := {A ∈ GL(n,R) : 〈Ax,Ay〉 = 〈x, y〉 ∀x, y ∈ Rn}.

(a) Show that
O(p, q) = {A ∈ GL(n,R) : A−1 = Ip,qA

tIp,q},

where Ip,q =

(
Idp 0
0 −Idq

)
, and that O(p, q) is a submanifold ofMn(R). What

is its dimension?

(b) Show that O(p, q) is a subgroup of GL(n,R) with respect to matrix multipli-
cation µ and that µ : O(p, q) × O(p, q) → O(p, q) is smooth (i.e. that O(p, q)
is a Lie group.)
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(c) Compute the tangent space TIdO(p, q) of O(p, q) at the identity Id.

14. Suppose M = R3 with standard coordinates (x, y, z). Consider the vector field

ξ(x, y, z) = 2
∂

∂x
− ∂

∂y
+ 3

∂

∂z
.

How does this vector field look like in terms of the coordinate vector fields associ-
ated to the cylindrical coordinates (r, φ, z), where x = r cosφ, y = r sinφ and z =
z? Or with respect to the spherical coordinates (r, φ, θ), where x = r sin θ cosφ,
y = r sin θ cosφ and z = r cos θ?

15. Consider R3 with coordinates (x, y, z) and the vector fields

ξ(x, y, z) = (x2 − 1)
∂

∂x
+ xy

∂

∂y
+ xz

∂

∂z

η(x, y, z) = x
∂

∂x
+ y

∂

∂y
+ 2xz2

∂

∂z
.

Are they tangent to the cylinder M = {(x, y, z) ∈ R3 : x2 + y2 = 1} ⊂ R3 with
radius 1 (i.e. do they restrict to vector fields on M )?

16. Suppose M = R2 with coordinates (x, y). Consider the vector fields ξ(x, y) = y ∂
∂x

and η(x, y) = x2

2
∂
∂y

on M . We computed in class their flows and saw that they are
complete. Compute [ξ, η] and its flow? Is [ξ, η] complete?

17. Let M be a (smooth) manifold and ξ, η ∈ X(M) two vector fields on M . Show that

(a) [ξ, η] = 0 ⇐⇒ (Flξt )∗η = η, whenever defined ⇐⇒ Flξt ◦ Flηs = Flηs ◦ Flξt ,
whenever defined.

(b) IfN is another manifold, f : M → N a smooth map, and ξ and η are f -related
to vector fields ξ̃ resp. η̃ on N , then [ξ, η] is f -related to [ξ̃, η̃].

18. Consider the general linear group GL(n,R). For A ∈ GL(n,R) denote by

λA : GL(n,R)→ GL(n,R) λA(B) = AB

ρA : GL(n,R)→ GL(n,R) ρA(B) = BA

left respectively right multiplication by A, and by µ : GL(n,R) × GL(n,R) →
GL(n,R) the multiplication map.

(a) Show that λA and ρA are diffeomorphisms for any A ∈ GL(n,R) and that

TBλA(B,X) = (AB,AX) TBρA(B,X) = (BA,XA),

where (B,X) ∈ TBGL(n,R) = {(B,X) : X ∈Mn(R)}.
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(b) Show that

T(A,B)µ((A,B), (X, Y )) = TBλAY + TAρ
BX = (AB,AY +XB)

where (A,B) ∈ GL(n,R)× GL(n,R) and (X, Y ) ∈Mn(R)×Mn(R).

(c) For any X ∈Mn(R) ∼= TIdGL(n,R) consider the maps

LX : GL(n,R)→ TGL(n,R) LX(B) = TIdλB(Id,X) = (B,BX).

RX : GL(n,R)→ TGL(n,R) RX(B) = TIdρB(Id,X) = (B,XB).

Show that LX and RX are smooth vector field and that λ∗ALX = LX and
ρ∗ARX = RX for any A ∈ GL(n,R). What are their flows? Are these vector
fields complete?

(d) Show that [LX , RY ] = 0 for any X, Y ∈Mn(R).

19. Suppose αij for i = 1, ..., k and j = 1, ..., n are smooth real-valued functions defined
on some open set U ⊂ Rn+k satisfying

∂αij
∂xk

+
k∑
`=1

α`k
∂αij
∂z`

=
∂αik
∂xj

+
k∑
`=1

α`j
∂αik
∂z`

,

where we write (x, z) = (x1, ..., xn, z1, ..., zk) for a point in Rn+k. Show that for
any point (x0, z0) ∈ U there exists an open neighbourhood V of x0 in Rn and a
unique C∞-map f : V → Rk such that

∂f i

∂xj
(x1, ..., xn) = αij(x

1, ..., xn, f 1(x), ..., fk(x)) and f(x0) = z0.

In the class/tutorial we proved this for k = 1 and j = 2.

20. Which of the following systems of PDEs have solutions f(x, y) (resp. f(x, y) and
g(x, y)) in an open neighbourhood of the origin for positive values of f(0, 0) (resp.
f(0, 0) and g(0, 0))?

(a) ∂f
∂x

= f cos y and ∂f
∂y

= −f log f tan y.

(b) ∂f
∂x

= exf and ∂f
∂y

= xeyf .

(c) ∂f
∂x

= f and ∂f
∂y

= g; ∂g
∂x

= g and ∂g
∂y

= f .

21. Suppose E → M is a (smooth) vector bundle of rank k over a manifold M . Then
E is called trivializable, if it isomorphic to the trivial vector bundle M ×Rk →M .

(a) Show that E → M is trivializable ⇐⇒ E → M admits a global frame, i.e.
there exist (smooth) sections s1, ..., sk of E such that s1(x), ..., sk(x) span Ex
for any x ∈M .

(b) Show that the tangent bundle of any Lie group G is trivializable.
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(c) Recall that Rn has the structure of a (not necessarily associative) normed divi-
sion algebra over R for n = 1, 2, 4, 8. Use this to show that the tangent bundle
of the spheres S1 ⊂ R2, S3 ⊂ R4 and S7 ⊂ R8 is trivializable.

22. Let V be a finite dimensional real vector space and consider the subspace of r-
linear alternating maps ΛrV ∗ = Lralt(V,R) of the vector space of r-linear maps
Lr(V,R) = (V ∗)⊗r. Show that for ω ∈ Lr(V,R) the following are equivalent:

(a) ω ∈ ΛrV ∗

(b) For any vectors v1, ..., vr ∈ V one has

ω(v1, ..., vi, ..., vj, ..., vk) = −ω(v1, ..., vj, ..., vi, ..., vk)

(c) ω is zero whenever one inserts a vector v ∈ V twice.

(d) ω(v1, ..., vk) = 0, whenever v1, ..., vk ∈ V are linearly dependent vectors.

23. Let V be a finite dimensional real vector space. Show that the vector space Λ∗V ∗ :=⊕
r≥0 ΛrV ∗ is an associative, unitial, graded-anticommutative algebra with respect

to the wedge product ∧, i.e. show that the following holds:

(a) (ω ∧ η) ∧ ζ = ω ∧ (η ∧ ζ) for all ω, η, ζ ∈ Λ∗V ∗.

(b) 1 ∈ R = Λ0V ∗ satisfies 1 ∧ ω = ω ∧ 1 = 1 for all ω ∈ Λ∗V ∗.

(c) ΛrV ∗ ∧ ΛsV ∗ ⊂ Λr+sV ∗.

(d) ω ∧ η = (−1)rsη ∧ ω for ω ∈ ΛrV ∗ and η ∈ ΛsV ∗.

Moreover, show that for any linear map f : V → W the linear map f ∗ : Λ∗W ∗ →
Λ∗V ∗ is a morphism of graded unitlal algebras, i.e. f ∗1 = 1, f ∗(ΛrW ∗) ⊂ ΛrV ∗

and f ∗(ω ∧ η) = f ∗ω ∧ f ∗η.

24. Let V be a finite dimensional real vector space. Show that:

(a) If ω1, ..., ωr ∈ V ∗ and v1, ..., vr ∈ V , then

ω1 ∧ ... ∧ ωr(v1, ..., vr) = det((ωi(vj))1≤i,j≤r).

In particular, ω1, ..., ωr are linearly independent ⇐⇒ ω1 ∧ ... ∧ ωr 6= 0.

(b) If {λ1, ..., λn} is a basis of V ∗, then

{λi1 ∧ ... ∧ λir : 1 ≤ i1 < ... < ir ≤ n}

is a basis of ΛrV ∗.

25. Let V be a finite dimensional real vector space. An element µ ∈ Lr(V,R) is called
symmetric, if µ(v1, ..., vr) = µ(vσ(1), ..., vσ(r)) for any vectors v1, ..., vr ∈ V and any
permutation σ ∈ Sr. Denote by SrV ∗ ⊂ µ ∈ Lr(V,R) the subspace of symmetric
elements in the vector space Lr(V,R).
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(a) For µ ∈ Lr(V,R) show that

µ ∈ SrV ∗ ⇐⇒ µ(v1, ..., vi, ..., vj, ..., vk) = µ(v1, ..., vj, ..., vi, ..., vk),

for any vectors v1, ..., vr ∈ V .

(b) Consider the map Sym : Lr(V,R)→ Lr(V,R) given by

Sym(µ)(v1, ..., vr) =
1

r!

∑
σ∈Sr

µ(vσ(1), ..., vσ(r)).

Show that Image(Sym) = SrV ∗ and that µ ∈ SrV ∗ ⇐⇒ Sym(µ) = µ.

26. Let V be a finite dimensional real vector space and set S(V ∗) := ⊕∞r=0S
rV ∗ with

the convention S0V ∗ = R and S1V ∗ = V ∗. For µ ∈ SrV ∗ and ν ∈ StV ∗ define
their symmetric product by

µ� ν := Sym(µ⊗ ν) ∈ Sr+tV ∗.

By blinearity, we extend this to a R-bilinear map � : S(V ∗) × S(V ∗) → S(V ∗).
Show that S(V ∗) is an unitial, associative, commutative, graded algebra with re-
spect to the symmetric product �.

27. Suppose p : E → M and q : F → M are vector bundles over M . Show that their
direct sum E ⊕ F := tx∈MEx ⊕ Fx → M and their tensor product E ⊗ F :=
tx∈MEx ⊗ Fx →M are again vector bundles over M .

28. SupposeE ⊂ TM is a smooth distribution of rank k on a manifoldM of dimension
n and denote by Ω(M) the vector space of differential forms on M .

(a) Show that locally around any point x ∈M there exists (local) 1-forms ω1, ..., ωn−k

such that for any (local) vector field ξ one has: ξ is a (local) section ofE ⇐⇒
ωi(ξ) = 0 for all i = 1, ..., n− k.

(b) Show that E is involutive ⇐⇒ whenever ω1, ..., ωn−k are local 1-forms as in
(a) then there exists local 1-forms µi,j for i, j = 1, ..., n− k such that

dωi =
n−k∑
j=1

µi,j ∧ ωj.

(c) Show
ΩE(M) := {ω ∈ Ω(M) : ω|E = 0} ⊂ Ω(M)

is an ideal of the algebra (Ω(M),∧). Here, ω|E = 0 for a `-form ω means that
ω(ξ1, ..., ξ`) = 0 for any sections ξ1, ...ξ` of E.

(d) An ideal J of (Ω(M),∧) is called differential ideal, if d(J ) ⊂ J . Show that
ΩE(M) is a differential ideal ⇐⇒ E is involutive.

29. Suppose M is a manifold and Di : Ωk(M) → Ωk+ri(M) for i = 1, 2 a graded
derivation of degree ri of (Ω(M),∧).
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(a) Show that
[D1, D2] := D1 ◦D2 − (−1)r1r2D2 ◦D1

is a graded derivation of degree r1 + r2.

(b) SupposeD is a graded derivation of (Ω(M),∧). Let ω ∈ Ωk(M) be a differen-
tial form and U ⊂M an open subset. Show that ω|U = 0 impliesD(ω)|U = 0.

Hint: Think about writing 0 as fω for some smooth function f and use the
defining properties of a graded derivation.

(c) Suppose D and D̃ are two graded derivations such that D(f) = D̃(f) and
D(df) = D̃(df) for all f ∈ C∞(M,R). Show that D = D̃.

30. Suppose M is a manifold and ξ, η ∈ Γ(TM) vector fields.

(a) Show that the insertion operator iξ : Ωk(M) → Ωk−1(M) is a graded deriva-
tion of degree −1 of (Ω(M),∧).

(b) Recall from class that [d, d] = 0. Verify (the remaining) graded-commutator
relations between d,Lξ, iη:
(i) [d,Lξ] = 0.

(ii) [d, iξ] = d ◦ iξ + iξ ◦ d = Lξ.
(iii) [Lξ,Lη] = L[ξ,η].
(iv) [Lξ, iη] = i[ξ,η].
(v) [iξ, iη] = 0.

Hint: Use (c) from 11.

31. Prove the Poincaré Lemma: Suppose ω ∈ Ωk(Rm) is a closed k-form, where
k ≥ 1. Show that there exists τ ∈ Ωk−1(Rm) such that dτ = ω.

Hint: Show that for any k-form ω =
∑

i1<...<ik
ωi1...ikdx

i1 ∧ ... ∧ dxik on Rm,

P (ω) =
k∑

α=1

∑
i1<...<ik

(−1)α−1
[∫ 1

0

tk−1ωi1...ik(tx)dt

]
xiαdxi1 ∧ ...∧ d̂xiα ∧ ...∧dxik .

is a (k − 1)-form on Rm satisfying

ω = d(P (ω)) + P (dω).

Here, d̂xiα means that this term is omitted.

32. Show that any manifold with a parallelizable tangent bundle is orientable.

33. Suppose M ⊂ N is a submanifold of codimension 1 (i.e. dimM = dimN − 1) of
an oriented manifold N . Suppose there exists a smooth vector field along M that is
transverse everywhere to M , that is, a smooth map ν : M → TN such that for all
x ∈M one has
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(i) ν(x) ∈ TxN and

(ii) ν(x) and TxM span TxN .

Show that M is orientable. Deduce that a hypersurface

(M, g) ⊂ (Rm+1, g) = (Rm+1, geuc)

in Euclidean space is orientable if and only if M admits a globally defined unit
normal vector field.

34. Consider Sm ⊂ Rm+1 the unit sphere and the global unit normal vector field ν(x) =∑m+1
i=1 xi ∂

∂xi
for Sm. Show that for the nowhere vanishing m+ 1-form

Ω = dx1 ∧ ... ∧ dxm+1

on Rm+1,
ω(x) := (iνΩ)(x) = Ω(x)(ν(x),− , ...,− ) for x ∈ Sm

restricts to a nowhere vanishing m-form on Sm that satisfies

A∗ω = (−1)m+1ω,

where A : Sm → Sm is the antipodal map A(x) = −x.

35. Show that n-dimensional projective space RPm is orientable ⇐⇒ m is odd.

Hint: For ,=⇒′ consider the natural projection π : Sm → RPm, given by π(x) =
[x], and use the previous exercise. For ,⇐=′ construct an oriented atlas.

36. Suppose M and N are connected, compact, oriented manifolds of the same dimen-
sion m. Let f0, f1 : M → N be smooth maps that are homotopic to each other,
i.e. there exists a smooth map F : M × [0, 1] → N such that F (x, 0) = f0(x) and
F (x, 1) = f1(x). Show that for any ω ∈ Ωm(N) one has∫

M

f ∗0ω =

∫
M

f ∗1ω.

Hint: M × [0, 1] is an oriented manifold with boundary ∂M = −(M ×{0})∪M ×
{1}, where the minus indicates that the orientation on M × {0} is reversed. Use
Stokes’ Theorem.

37. Use the previous exercise to show that, if the antipodal map A : Sm → Sm on the
sphere Sm is homotopic to the identity IdSm on Sm, then m is odd.

38. Show that on a sphere S2m of even dimension any smooth vector field ξ ∈ X(S2m)
has a zero.
Hint: Show that if ξ ∈ X(S2m) is nowhere vanishing, then there exists a homotopy
between the antipodal map and the identity.
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39. Suppose (M, g) ⊂ (R3, g) = (R3, geuc) = (R3, < −,−>) is a surface in Eu-
clidean space. Let u : U → u(U) be a local chart for M with corresponding local
parametrization

v = u−1 : u(U)→ U.

With respect to the frame { ∂
∂x1
, ∂
∂x2
} of TR2, we can write v∗g and v∗II as matrices(

E F
F G

)
and

(
Ẽ F̃

F̃ G̃

)
,

where

E = g(
∂

∂u1
,
∂

∂u1
) ◦ v F = g(

∂

∂u1
,
∂

∂u2
) ◦ v G = g(

∂

∂u2
,
∂

∂u2
) ◦ v,

and

Ẽ = II(
∂

∂u1
,
∂

∂u1
) ◦ v F̃ = II(

∂

∂u1
,
∂

∂u2
) ◦ v G̃ = II(

∂

∂u2
,
∂

∂u2
) ◦ v.

Compute in terms of E,F,G, Ẽ, F̃ and G̃, the Weingarten map L ◦ v, the Gauß
curvature K ◦ v, the mean curvature H ◦ v, and the principal curvatures κ1 ◦ v and
κ2 ◦ v.

40. Let us write (x1, x2, x3) for the coordinates in R3. Take a circle of radius r > 0 in
the (x1, x3)-plane and rotate it around a circle of radius R > r in the (x1, x2)-plane.
The result is a 2-dimensional torus M in R3. If I ⊂ R is an open interval of length
< 2π the map v : I × I → R3 given by

v(φ, θ) = ((R + r cos θ) cosφ, (R + r cos θ) sinφ, r sin θ)

defines a local parametrization of M . With respect to v, compute, using the previ-
ous exercise, the metric g on M induced by the Euclidean metric on R3, the 2nd
fundamental form, the Gauß and the mean curvature, the principal curvatures and
the principal curvature directions of the surface (M, g) in R3.

Hint: Note that ν(φ, θ) = (cosφ cos θ, sinφ cos θ, sin θ) defines a local unit nor-
mal vector field for M .

41. Suppose (M, g) ⊂ (Rm+1, g) = (Rm+1, geuc) is a connected oriented hypersurface
in Euclidean space. Show that all points in M are umbilic if and only if M is part
of an affine hyperplane or a sphere.

Hint: For ,=⇒′ show the following:

• Fix a global unit normal vector field ν : M → Rm+1. Then, by assumption,
for any x ∈M there exists λ(x) ∈ R such that

Lx = λ(x)IdTxM .

Since λ = g(L(ξ),ξ)
g(ξ,ξ)

for any local vector field ξ on M , λ : M → R is smooth.
Show that λ is constant, by, for instance, picking a chart and computing the
left-hand-side of [ ∂

∂ui
, ∂
∂uj

] · ν = 0.
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• If λ = 0, show that any curve in M is contained in an affine hyperplane with
(constant) normal vector ν.

• If λ 6= 0, show that f : M → Rm+1, given by f(x) = x− 1
λ
ν(x), is constant.

42. Suppose∇ is an affine connection on a manifold M .

(a) Show that its curvature, given by,

R(ξ, η)(ζ) = ∇ξ∇ηζ −∇η∇ξζ −∇[ξ,η]ζ,

for vector fields ξ, η, ζ ∈ X(M) defines a
(

1
3

)
-tensor on M .

(b) Show that, if∇ is torsion-free, the Bianchi identity holds:

R(ξ, η)(ζ) +R(η, ζ)(ξ) +R(ζ, ξ)(η) = 0,

for any ξ, η, ζ ∈ X(M).

43. Suppose E → M is a vector bundle over a manifold M equipped with a linear
connection∇, that is, a R-bilinear map

∇ : Γ(TM)× Γ(E)→ Γ(E)

(ξ, s) 7→ ∇ξs

such that for ξ ∈ Γ(TM), s ∈ Γ(E) and f ∈ C∞(M,R) one has

• ∇fξs = f∇ξs

• ∇ξfs = f∇ξs+ (ξ · f)s.

(a) Show that∇ : Γ(TM)×Γ(E∗)→ Γ(E∗) (typically also denoted by∇) given
by

(∇ξµ)(s) = ξ · µ(s)− µ(∇ξs), for µ ∈ Γ(E∗), ξ,∈ Γ(TM), s ∈ Γ(E)

defines a linear connection on the dual vector bundle E∗ →M .

(b) Suppose Ẽ → M is another vector bundle equipped with a linear connection
∇̃. Show the vector bundle E ⊗ Ẽ → M admits a linear connection charac-
terized by

∇ξ(s⊗ s̃) = ∇ξs⊗ s̃+ s⊗ ∇̃ξs̃

for ξ ∈ Γ(TM), s ∈ Γ(E) and s̃ ∈ Γ(Ẽ).

44. Suppose ∇ is an affine connection on a manifold M . Then the previous exercise
shows that ∇ induces a linear connection ∇ : Γ(TM) × T pq (M) → T pq (M) on all
tensor bundles. Show that it also induces a linear connection on the bundles ΛkT ∗M
for k = 1, ... dim(M) characterized by

∇ξ(ω ∧ µ) = ∇ξω ∧ µ+ ω ∧∇ξµ

for ω ∈ Γ(ΛkT ∗M) and µ ∈ Γ(Λ`T ∗M) and give a formula.



13

45. Suppose (M, g) is a Riemannian manifold.

(a) For vector fields ξ, η ∈ X(M), let ∇ξη ∈ X(M) be the unique vector field
such that

g(∇ξη, ζ) =
1

2

(
ξ·g(η, ζ)+η·g(ζ, ξ)−ζ·g(ξ, η)+g([ξ, η], ζ)−g([ξ, ζ], η)−g([η, ζ], ξ)

)
for all ζ ∈ X(M). Show that ∇ defines a torsion-free affine connection satis-
fying

ξ · g(η, ζ) = g(∇ξη, ζ) + g(η,∇ξζ)

for ξ, η, ζ ∈ X(M).

(b) The connection ∇ in (a) is called the Levi-Civita connection of (M, g). Show
that its curvature satisfies:

• g(R(ξ, η)(ζ), µ) = −g(R(ξ, η)(µ), ζ),
• g(R(ξ, η)(ζ), µ) = g(R(ζ, µ)(ξ), η),

for ξ, η, ζ, µ ∈ X(M).

(c) Suppose (U, u) is a chart for M and let R be the Riemann curvature, i.e. the
curvature of the Levi-Civita connection of (M, g). Compute

R(
∂

∂ui
,
∂

∂uj
)(

∂

∂uk
)

in terms of the Christoffel symbols.

46. Suppose H = {(x, y) ∈ R2 : y > 0} is the upper-half plane and equip it with the
Riemannian metric

g =
1

y2
dx⊗ dx+

1

y2
dy ⊗ dy.

(a) Compute the Christoffel symbols of g.

(b) Compute the geodesics of g.

(c) Compute the Riemann curvature.

47. Identifying H = {(x, y) ∈ R2 : y > 0} = {z = x + iy ∈ C : y > 0} in the
previous example, we may write g as

g =
1

Im(z)2
Re(dz ⊗ dz̄) =

4

|z − z̄|2
Re(dz ⊗ dz̄),

where dz = dx + idy, dz̄ = dx − idy, Im and Re denote imaginary and real part,
and |−| is the absolute value of complex numbers.

Consider SL(2,R) = {A ∈ GL(2,R) : detA = 1}. For A =

(
a b
c d

)
∈ SL(2,R)

and z ∈ C let
fA(z) =

az + b

cz + d
.
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(a) Show that fA is a diffeomorphism from H to itself for any A ∈ SL(2,R) and
that fAB = fA ◦ fB.

(b) Show that fA is an isometry of H .

(c) Show that for any two points z, z′ ∈ H there exists A ∈ SL(2,R) such that
fA(z) = z′.

(d) Characterize the elements A ∈ SL(2,R) such that fA(i) = i.


