Exercises—Global Analysis

1. Consider the cylinder in R? given by the equation
M= {(e,y,2) € R :a? +y* = R?),

where R > 0. Show that M is a 2-dimensional submanifold in R3. Moreover, give
formula for local parametrizations and local trivializations, and a description of M
as a local graph.

2. Consider a double cone given by rotating a line through 0 of slope « around the
z-axis in R3. It is given by the equation

22 = (tana)?(2? + 2).

At which points is the double cone a smooth submanifold of R3? Around the points
where it is give a formula for local parametrizations and trivializations, and a de-
scription of it as a local graph.

3. Denote by Hom(R", R™) the nm-dimensional vector space of linear maps from R"
to R™. Consider the subset Hom,.(R", R™) of linear maps in Hom(R"™, R™) of rank
r. Show that Hom, (R", R™) is a submanifold of dimension of r(n + m — r) in
Hom(R", R™).

Hint: Let 7, € Hom,(R™,R™) be a linear map of rank r and decompose R" and
R™ as follows
R'=E@®Et and R™=FqF+, (0.1)

where F' equals the image of T and E* the kernel of Ty, and (-)* denotes the
orthogonal complement. Note that dim £ = dim F' = r. With respect to (0.1) any
T € Hom(R",R™) can be viewed as a matrix

A B
= (&)
where A € Hom(E, F), B € Hom(E+, F),C € Hom(E, F*)and D € Hom(E*+, F1).
Show that the set of matrices 7" with A invertible defines an open neighbourhood

of Ty and characterize the elements in this neighbourhood that have rank r (equiv-
alently, the ones that have an (n — r)-dimensional kernel).
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4. Fori = 1,...n let (M;, A;) be a smooth manifolds. Suppose M := M; x ... x M,
is endowed with the product topology. Then show that

A:={(U; X ... x Up,uy X ... X up): (Ui, u;) € A}

defines a smooth atlas on M and that the projections pr;, : M — M; are smooth.
Moreover show that, for any smooth manifold N, amap f : N — M is smooth if
and only if f; := pr, o f : N — M, is smooth for all 7, and show that this property
characterizes the smooth manifold structure on M uniquely.

5. Suppose (M;, A;) are smooth manifolds for ¢ € I, where [ is countable. Consider
the disjoint union

M = l—liGIMi = UiE[{(I,i) X e Mz}

endowed with the disjoint union topology and denote by inj; : M; < M the canon-
ical injections (inj,(z) = (z,%)). Show that A := U,c;A; defines a smooth atlas
on M and that the injections inj, are smooth. Moreover, show that for any smooth
manifold N, amap f : M — N is smooth if and only if f; := foinj, : M; = N
is smooth for all 7, and show that this property characterizes the smooth manifold
structure on M uniquely.

6. Suppose U C R™ isopen and f : U — R™ a smooth map such that D, f : R™ —
R™ is of rank r for all z € U. Show that for any z, € U there exists a diffeo-
morphism ¢ between an open neighbourhood of z, and an open neighbourhood of
0 € R™ and a diffeomorphism 1) between an open neighbourhood of yy = f(xo)
and an open neighbourhood of 0 in R" such that the locally defined map

Ypofodp l:R"xR™" 5 R xR"™
has the form (x1, ..., 2, ..., ) — (21, ..., 21, 0, ..., 0).
Hint: The idea is that f locally around x, looks like D, f, which is a linear map

R™ — R" of rank r, which up to a basis change has the form (z1,..,z,,) —
(1, ..y 2, 0, ..., 0).

(a) Set By := ker(D,,f) C R™and F, := E5, and F} := Im(D,, f) C R™ and
Fy := F. Decompose

Rm:El@EQ and anFl@FQ,

and consider f as a map f = (fi, f2) : E1 ® Ey — F| @ F, defined on
UCE & Ey,=R"

(b) Show that ¢ : By & Ey — Fy & Es given by

¢(I1,£C2) = (f1<x17x2) - fl(x(lhx?))va - :Cg)

is a local diffeomorphism around z, = (z}, %) whose local inverse will be
the required map.



(c) Show that g :== fo¢~ ' : F} ® Ey — F; @ F, has the form
9", y%) = (0 (v v%), 92((v", %) = (¥ + 4, 92(y", 0)).
Now % is easily seen to be...?

7. Suppose M and N are are manifolds of dimension m respectively n and let f :
M — N be a smooth map of constant rank r. Deduce from (1) that for any fixed
y € f(M) the preimage f~'(y) C M is a submanifold of dimension m — r in M.

8. Consider the Grassmannian of r-planes in R"™:
Gr(r,n) := {E C R" : E is ar-dimensional subspace of R"}.

Denote by St,.(R") the set of r-tuples of linearly independent vectors in R”. Identi-
fying an element X € St,(R") with a n X r matrix

X =(a',....,2") ' e R™,

shows that St,.(R™) equals the subset of rank  matrices in the vector space M, .- (R),
which we know from Tutorial 1 is an open subset. Write

7 : St (R™) — Gr(r,n)
for the natural projection given by w(X) = span(z', ..., ") and equip Gr(r, n) with

the quotient topology with respect to 7.

(a) Fix F € Gr(r,n) and let F' C R" be a subspace of dimension n — r such that
R"™ = E & F. Show that

Ugry ={W € Gr(r,n) : WNF = {0}} C Gr(r,n)

is an open neighbourhood of E.

(b) Show that any element W € U g, ) determines a unique linear map

—~

W.E— F

such that its graph equals W, i.e. W = {(x, Wa:) cx € E}.

(c) Show that the map ug r : Ug,p) — Hom(E, F') given by ug p(W) = Wisa
homeomorphism.

(d) Show that
A :={({Ug,r),wer) : E,F C R" complimentary subspaces of dimension r resp. n—r}
is a smooth atlas for Gr(r, n).

9. For a topological space M denote by C°(M) the vector space of continuous real-
valued functions f : M — R. Any continuous map F' : M — N between
topological spaces M and N induces a map F* : C°(N) — C°(M) given by
F*(f):=foF: M —R.



(a) Show that F™ is linear.

(b) If M and N are (smooth) manifolds, show that F' : M/ — N is smooth <—
F*(C*®(N)) C C*(M).

(c) If F'is a homeomorphism between (smooth) manifolds, show that F' is a dif-
feomorphism <= F*(C*(N)) C C*®°(M) and F* : C*°(N) — C*>°(M) is
an isomorphism.

10. We have seen in the first tutorial that Hom, (R™, R"™) is a submanifold of Hom(R", R™)
of dimension r(n +m — r) in. For X € Hom, (R", R™) compute the tangent space

TxHom, (R",R™) C TxyHom(R",R™) = Hom(R",R™).

11. We have seen in the first tutorial that the Grassmannian manifold Gr(r,n) can be
realized as a submanifold of Hom(R", R™) of dimension r(n—r). For E' € Gr(r, n)
compute the tangent space

TEGr(r,n) C TgHom(R",R") = Hom(R",R").

12. Consider the general linear group GL(n, R) and the special linear group SL(n, R).
We have seen that they are submanifolds of M,(R) = R"™ (even so called Lie
groups) and that T,(GL(n, R) = M, (R) = R".

(a) Compute the tangent space T14SL(n, R) of SL(n, R) at the identity Id.

(b) Fix A € SL(n,R) and consider the conjugation conj , : SL(n,R) — SL(n,R)
by A given by conj,(B) = ABA™!. Show that conj , is smooth and compute
the derivative Tigconj 4 : TiaSL(n, R) — Ti4SL(n, R).

(c) Consider the map Ad : SL(n,R) — Hom(714SL(n,R), Tl4SL(n,R)) given
by Ad(A) := Tjqconj .. Show that Ad is smooth and compute Ti3Ad.

13. Consider R" equipped with the standard inner product of signature (p,q) (where

p + q = n) given by
p n
(z,y) = inyi - Z ZiYi
=1

i=p+1

and the group of linear orthogonal transformation of (R", (-, -)) given by
O(p,q) :={A € GL(n,R) : (Az, Ay) = (z,y) Vr,y €R"}.
(a) Show that
O(p,q) = {A€GL(n,R): A ' =1, A"},

Id, O
0 —Id,
is its dimension?

where I, , = ) , and that O(p, ¢) is a submanifold of M, (R). What



(b) Show that O(p, q) is a subgroup of GL(n,R) with respect to matrix multipli-
cation x and that 1 : O(p, q) x O(p,q) — O(p, q) is smooth (i.e. that O(p, q)
is a Lie group.)

(c) Compute the tangent space T14O(p, ¢) of O(p, ¢) at the identity Id.

14. Suppose M = R? with standard coordinates (, y, z). Consider the vector field

How does this vector field look like in terms of the coordinate vector fields associ-
ated to the cylindrical coordinates (r, ¢, z), where x = r cos ¢, y = rsin¢ and z =
2? Or with respect to the spherical coordinates (r, ¢, 0), where © = 7 sinf cos ¢,
y =rsinfcos¢and z = rcos6?

15. Consider R? with coordinates (z,y, z) and the vector fields

0 o 0
(0,9,2) =70+ Yo+ 2 3
mx,y, z —l‘ax ya .',UZ az

Are they tangent to the cylinder M = {(x,y,2) € R® : 22 + 3*> = 1} C R3 with
radius 1 (i.e. do they restrict to vector fields on M)?

16. Suppose M = R? with coordinates (x,y). Consider the vector fields {(z,y) = y&

and n(z,y) = % 88 on M. We computed in class their flows and saw that they are

complete. Compute [£, 77| and its flow? Is [, ] complete?
17. Let M be a (smooth) manifold and £, € X(A/) two vector fields on /. Show that

() [¢,7] =0 <= (FI5)*n = n, whenever defined <= FI o FI7 = FI" o FL5,
whenever defined.

(b) If N is another manifold, f : M — N asmooth map, and § and n are f-related
to vector fields £ resp. 7j on N, then [€, 7] is f-related to [€, 7]].

18. Consider the general linear group GL(n, R). For A € GL(n, R) denote by
A4 GL(n,R) — GL(n,R) Aa(B) = AB

pa : GL(n,R) — GL(n,R) pa(B) = BA

left respectively right multiplication by A, and by p : GL(n,R) x GL(n,R) —
GL(n,R) the multiplication map.

(a) Show that A4 and p,4 are diffeomorphisms for any A € GL(n,R) and that
Tpia(B,X)=(AB, AX) Tppa(B,X) = (BA,XA),
where (B, X) € TgGL(n,R) = {(B, X) : X € M, (R)}.



(b) Show that
Tapi((A,B),(X,Y)) = TeAaY + Tap”X = (AB, AY + XB)

where (A, B) € GL(n,R) x GL(n,R) and (X,Y) € M,(R) x M,(R).
(c) Forany X € M,(R) = T;,GL(n,R) consider the maps

Ly :GL(n,R) = TGL(n,R)  Lx(B) = TraAs(ld, X) = (B, BX).

Ry : GL(n,R) = TGL(n,R)  Rx(B) = Tyapp(ld, X) = (B, XB).

Show that Ly and Rx are smooth vector field and that ALy = Lx and
piRx = Rx for any A € GL(n,R). What are their flows? Are these vector
fields complete?

(d) Show that [Lx, Ry| =0 forany X,Y € M,(R).
19. Suppose G is a Lie group, i.e. a manifold, which is also a group, where the group

multiplication 1 : G X G — G is smooth. Denote by A\; : G — Gand p, : G — G
the left resp. right multiplication by g € G, i.e. \j(h) = p(g,h) and p,(h) =

u(h, g).

(a) Show that the tangent map of p at (g, h) € G x G is given by

T(g h (f ?7) Th g77 + tha

where { € T,G and n € T},G.

(b) Show that the inversion (g) = ¢g~! is smooth and that its tangent map at g is
given by
Ty = —Tepg—10Tghg1 = =T Ag1 0Typy1,

where e € (G denotes the neutral element in . In particular, 7.t = —Id.

20. Suppose (G, i, e) is a Lie group as in the previous example. A vector field £ € X(G)
is called left- resp. right-invariant, if \;§ = £ resp. p;& =  forall h € G.

(a) Show that for any X € T.G, Lx(g9) = T.A\,X and Rx(g) = T.p,X define
a smooth left- resp. right-invariant vector field on GG. Moreover, show that
RX = L*(L, X)-

(b) Show that any left- resp. right-invariant vector field ¢ € X(G) is of the form
Lx resp. Rx for some X € T,.G.

(c) Show that for any X € T.G the vector fields Lx and Ry are complete.
(d) Show that [Ly, Ry] =0 forany X,Y € T.G.

21. Suppose a; fori =1,...,kand j = 1, ..., n are smooth real-valued functions defined
on some open set U C R"** satisfying

’L

(9&:" — 8  Oxd — T2t




where we write (z,2) = (x!,...,2", 2, ..., 2%) for a point in R"**. Show that for

any point (zg,29) € U there exists an open neighbourhood V' of z; in R™ and a
unique C*°-map f : V — R* such that

of 1
527 ©

a) =al(at a2t f (2, o fR(x)) and  f(xg) = 20.
In the class/tutorial we proved this for £ = 1 and j = 2.

22. Which of the following systems of PDEs have solutions f(z,y) (resp. f(z,y) and
g(x,y)) in an open neighbourhood of the origin for positive values of f(0,0) (resp.
f(0,0) and ¢(0,0))?

(a) % = fcosy and g—i = —flog f tany.
of _ =z of __

(b) L =e fanda—y = xe¥/.

(c) %:fand%:g;%:gandg—g:f.

23. Suppose EF — M is a (smooth) vector bundle of rank k£ over a manifold M. Then
FE is called trivializable, if it isomorphic to the trivial vector bundle M x R* — M.

(a) Show that £ — M is trivializable <= FE — M admits a global frame, i.e.
there exist (smooth) sections sy, ..., sy of E such that s;(z), ..., sx(z) span E,
forany z € M.

(b) Show that the tangent bundle of any Lie group G is trivializable.

(c) Recall that R™ has the structure of a (not necessarily associative) normed divi-
sion algebra over R for n = 1, 2,4, 8. Use this to show that the tangent bundle
of the spheres S' C R?, S? C R* and S7 C R® is trivializable.

24. Let V be a finite dimensional real vector space and consider the subspace of -

linear alternating maps A"V* = LI (V,R) of the vector space of r-linear maps

L"(V,R) = (V*)®". Show that for w € L"(V,R) the following are equivalent:

(@ weA'V*

(b) For any vectors vy, ..., v, € V one has
W(V1, ooy Vgy ooy Uy ey Ug) = —W(V1, ooy Uy ooy Uiy o,y U

(c) w is zero whenever one inserts a vector v € V' twice.

(d) w(vy,...,v,) = 0, whenever vy, ..., v, € V are linearly dependent vectors.

25. Let V be a finite dimensional real vector space. Show that the vector space A*V* :=
D,-, A"V* is an associative, unitial, graded-anticommutative algebra with respect
to the wedge product A, i.e. show that the following holds:

@ (wWANAC=wA (nAC) forall w,n,( € A*V*.



26.

27.

28.

(b) 1e R=AV*satisfiesl A\w=wA1l=1forallw € A*V*.
() A"V* ANANSV* C ATV,
d) wAn=(-1)"nAwforw e A"V*andn € A*V*.

Moreover, show that for any linear map f : V' — W the linear map f* : A*W* —
A*V* is a morphism of graded unitlal algebras, i.e. f*1 = 1, f*(A"W*) C A"V*
and f*(wAn) = ffwA f*n.

Let V' be a finite dimensional real vector space. Show that:

(a) fwy,...,w, € V¥and vy, ...,v, € V, then

wi A Awp(vr, e, vp) = det((wi(v)) )1<ij<r)-
In particular, wy, ..., w, are linearly independent <= w; A ... A w, # 0.
(b) If {\1, ..., A\, } is a basis of V*, then
{Aig A AN, 1<y << <n}
is a basis of A"V*.

Let V' be a finite dimensional real vector space. An element o € L"(V,R) is called
symmetric, if j1(vq, ..., v,) = ((Vo(1, ..., U(ry) for any vectors vy, ..., v, € V and any
permutation o € S”. Denote by S"V* C u € L"(V,R) the subspace of symmetric
elements in the vector space L"(V,R).

(a) For u € L"(V,R) show that
p €SV <= p(vr, .y Uiy oy Uy ooy Up) = (U1, ooy Ujy ooy Uiy ooy Uy

for any vectors vy, ..., v, € V.

(b) Consider the map Sym : L"(V,R) — L"(V,R) given by
1
Sym(p)(vy, ..., v,) = ] Z P(Vo(1)s s Var))-
oeS”
Show that Image(Sym) = S"V* and that y € S"V* <= Sym(u) = pu.

Let V be a finite dimensional real vector space and set S(V*) := @©22,S"V* with
the convention S°V* = R and S'V* = V*. For p € S"V* and v € S'V* define
their symmetric product by

pOvi=Sym(u®v)e STV
By blinearity, we extend this to a R-bilinear map ® : S(V*) x S(V*) — S(V*).

Show that S(V*) is an unitial, associative, commutative, graded algebra with re-
spect to the symmetric product ©.



29. Suppose p : EE — M and q : ' — M are vector bundles over M. Show that their
direct sum £ & F = Uyey B, & F, — M and their tensor product £ ® F =
Upernr By @ F,, — M are again vector bundles over M.

30. Suppose £/ C T'M is a smooth distribution of rank k£ on a manifold M of dimension
n and denote by Q(M) the vector space of differential forms on M.

(a) Show that locally around any point z € M there exists (local) 1-forms w!, ..., w" %

such that for any (local) vector field £ one has: £ is a (local) section of £/ <—>
wi(§) =0foralli=1,...,n — k.

(b) Show that E is involutive <=> whenever w!, ..., w" " are local 1-forms as in
(a) then there exists local 1-forms p%/ fori,j = 1,...,n — k such that

n

n—k

dw' = Z;ﬂ’j Awl,

(c) Show
Qp(M) ={we QM) :w|g=0} C QM)

is an ideal of the algebra (2(M ), A). Here, w|g = 0 for a /-form w means that
w(&, ..., &) = 0 for any sections &1, ...& of F.

(d) Anideal J of (Q2(M), A) is called differential ideal, if d(J) C J. Show that
Qg(M) is a differential ideal <= F is involutive.

31. Suppose M is a manifold. Then a graded derivation of the algebra (2(M), A) of
degree r is a linear map D : Q(M) — Q(M) such that

e D maps QF(M) to Q" (M), and
e for any w € Q%(M) and any n € QY(M),
D(wAn) =D(w)An+ (=1)"%w A D(n).
In class we have seen that d and L, for £ € X(M) are graded derivations of degree

1 respectively 0.

(a) Show that for two graded derivations D; and Ds of (2(M), A) of degree 7,
respectively 75,

[Dl, DQ] = Dl ¢) DQ — (—1)T1r2D2 ¢) D1

is a graded derivation of degree 1 + 7.

(b) Suppose D is a graded derivation of (Q(M), A). Letw € Q%(M) be a differen-
tial form and U C M an open subset. Show that w|; = 0 implies D(w)|y = 0.

Hint: Think about writing 0 as fw for some smooth function f and use the
defining properties of a graded derivation.
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(c) Suppose D and D are two graded derivations such that D(f) = D(f) and
D(df) = D(df) for all f € C°(M,R). Show that D = D.

32. Suppose M is a manifold and &, € I'(T'M) vector fields.
(a) Show that the insertion operator i¢ : QF(M) — Q*1(M) is a graded deriva-
tion of degree —1 of (Q2(M), A).

(b) Recall from class that [d, d] = 0. Verify (the remaining) graded-commutator
relations between d, L, i

(i) [d,L¢] = 0.
(i) [d,ie] = doi¢ +icod = Le.
(iii) [Le, L] = /3[5 -
(iv) [Le,dy] = 677}
V) [ig, in] =

Hint: Use (c) from previous exercise

33. Prove the Poincaré Lemma: Suppose w € QF(R™) is a closed k-form, where
k > 1. Show that there exists 7 € QF~1(R™) such that dr = w.

Hint: Show that for any k-formw =37, _ _; wi, s dz" A ... Adx™ on R™,

k 1 - _
= Z Z (—1)>t {/ i, (to)dt | Zieda™ A Adxie AN datE
0

a=11i1<...<i,
isa (k — 1)-form on R™ satisfying
w=d(P(w)) + P(dw).
Here, d/xz\a means that this term is omitted.
34. Show that for any manifold M its tangent space 7'M is an orientable manifold.

35. Suppose M C N is a submanifold of codimension 1 (i.e. dim M = dim N — 1) of
an oriented manifold N. Suppose there exists a smooth vector field along M that is
transverse everywhere to M, that is, a smooth map v : M — T'N such that for all
x € M one has

(i) v(x) € T,N and
(ii) v(x) and T, M span T, N.

Show that M is orientable. Deduce that a hypersurface
(M, g) C (R™,g) = (R™, g°)

in Euclidean space is orientable if and only if M admits a globally defined unit
normal vector field.



36.

37.

38.

39.

40.

41.
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Consider S™ C R™"! the unit sphere and the global unit normal vector field v(z) =
227:{1 xi% for S™. Show that for the nowhere vanishing m + 1-form

Q=dx' A Ade™ !
on R™+1,
w(z) = (1,2)(z) = Qz)(v(x),—, ..., ) forz € S™

restricts to a nowhere vanishing m-form on S that satisfies
Aw = (=1)"w,
where A : S™ — S™ is the antipodal map A(z) = —=.

Show that n-dimensional projective space RP™ is orientable <= m is odd.

Hint: For ,—' consider the natural projection 7 : S™ — RP™, given by 7(z) =
[z], and use the previous exercise. For , <’ construct an oriented atlas.

Suppose M and N are connected, compact, oriented manifolds of the same dimen-
sion m. Let fy, fi : M — N be smooth maps that are homotopic to each other,
i.e. there exists a smooth map F' : M x [0,1] — N such that F'(z,0) = fo(x) and
F(z,1) = fi(z). Show that for any w € Q™(NN) one has

| fiw= [ fw.

Hint: M x [0, 1] is an oriented manifold with boundary OM = —(M x {0}) UM x
{1}, where the minus indicates that the orientation on M x {0} is reversed. Use
Stokes” Theorem.

Use the previous exercise to show that, if the antipodal map A : S™ — S™ on
the sphere S™ is homotopic to the identity Idgm on S™ (i.e. there exists a map
F: 8™ x1[0,1] — S™ such that F'(z,0) = z and F(x,1) = —z), then m is odd.

Show that on a sphere S*>™ of even dimension any smooth vector field £ € X(S5?™)
has a zero.

Hint: Show that if £ € X(5%™) is nowhere vanishing, then there exists a homotopy
between the antipodal map and the identity.

Suppose (M,g) C (R g) = (R3 ¢™) = (R} < — —.) is a surface in Eu-
clidean space. Let u : U — u(U) be a local chart for M with corresponding local

parametrization
v=u"t:uU)— U

With respect to the frame {%, %} of TIR?, we can write v*g and v* I [ as matrices

E F q E F
Fqg) F G
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42.

43.

44.

where
E=oGugaler F=slgaap ey C=Ga5a v
and
) o 0 _ o 0 . o 0
_]I(aul’aul) v _I](w’&ﬂ) v —If(w,%)ov

Compute in terms of E, F, G, E , F and G, the Weingarten map L o v, the Gaul3
curvature K o v, the mean curvature H o v, and the principal curvatures x; o v and
Ko O V.

Let us write (z!, 2%, 23) for the coordinates in R3. Take a circle of radius 7 > 0 in
the (2!, z3)-plane and rotate it around a circle of radius R > r in the (2!, z?)-plane.
The result is a 2-dimensional torus M in R?. If I C R is an open interval of length
< 2m themap v : I x I — R? given by

v(p,0) = ((R+rcos)cos o, (R~ rcosf)sin g, rsinb)

defines a local parametrization of M. With respect to v, compute, using the previ-
ous exercise, the metric g on M induced by the Euclidean metric on R?, the 2nd
fundamental form, the Gaufl and the mean curvature, the principal curvatures and
the principal curvature directions of the surface (M, g) in R,

Hint: Note that v(¢,0) = (cos ¢ cosb,sin ¢ cosf, sin ) defines a local unit nor-
mal vector field for M.

Suppose (M, g) C (R™ g) = (R™F!, ¢°*¢) is a connected oriented hypersurface
in Euclidean space. Show that all points in M are umbilic if and only if M is part
of an affine hyperplane or a sphere.

Hint: For ,— show the following:

e Fix a global unit normal vector field v : M — R™"!, Then, by assumption,
for any x € M there exists A(z) € R such that

Since \ = % for any local vector field £ on M, A\ : M — R is smooth.
Show that A is constant, by, for instance, picking a chart and computing the
left-hand-side of [-2;, -2-] - v = 0.

dul dul
e If A = 0, show that any curve in M is contained in an affine hyperplane with
(constant) normal vector v.

e If A # 0, show that f : M — R™", given by f(z) = z — (), is constant.

Suppose V is an affine connection on a manifold M.
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(a) Show that its curvature, given by,

R(§,m)(C) = VeVy( = Vy Vel = Vigy(,

for vector fields &, 7, ¢ € X(M) defines a (1) -tensor on M.

3
(b) Show that, if V is torsion-free, the Bianchi identity holds:

R(&n)(C) + R(n, O)(&) + R(C, ) (n) = 0,

forany £,n,( € X(M).

45. Suppose & — M 1is a vector bundle over a manifold M equipped with a linear
connection V, that is, a R-bilinear map

V :T(TM) x T(E) — I(E)
(&,5) = Vs

such that for £ € I'(TM), s € I'(E) and f € C*(M,R) one has
° VfgS = ngS
o Vefs= fVes+ (- f)s.

(a) Show that V : ['(TM) x I'(E*) — T'(E*) (typically also denoted by V) given
by

(Ven)(s) = & - uls) — u(Ves), for p € T(E*),€, € T(TM), s € T(E)

defines a linear connection on the dual vector bundle £* — M.

(b) Suppose 2 — M is another vector bundle equipped with a linear connection
V. Show the vector bundle £ @ E — M admits a linear connection charac-
terized by

V£<S®§) =v§8®§+8®@§§

for§ e '(TM),s € '(E)and 5§ € T'(E).

46. Suppose V is an affine connection on a manifold M. Then the previous exercise
shows that V induces a linear connection V : I'(T'M) x TP(M) — TP(M) on all
tensor bundles. Show that it also induces a linear connection on the bundles AT M
for k = 1, ... dim(M) characterized by

Ve(wAp)=VewApu+wAVepu
for w € T(A*T*M) and p € T(A*T* M) and give a formula.

47. Suppose (M, g) is a Riemannian manifold.
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(a) For vector fields £, € X(M), let Ven € X(M) be the unique vector field
such that

(€907, O)+n-9(¢. ) =C-9(&, m+g([€: m)s O =g(l€: ) =([n. €1, )

N | —

g(vfna C) =

for all ¢ € X(M). Show that V defines a torsion-free affine connection satis-
fying
&-9(n,¢) = g(Ven, ) + g(n, VeC)

for&,n, ¢ € X(M).

(b) The connection V in (a) is called the Levi-Civita connection of (M, g). Show
that its curvature satisfies:

9(R(&n)(C), 1) = —g(R(&, m) (1), C)s
g(R(E (), 1) = g(R(C, 1) (€), M),
forf,n,(,,ué%(M).

(c) Suppose (U, u) is a chart for M and let R be the Riemann curvature, i.e. the
curvature of the Levi-Civita connection of (), g). Compute

o o9 ., 0
R N 9 A~ ~ 1
(au“ auﬂ)(auk)
in terms of the Christoffel symbols.
48. Suppose H = {(z,y) € R? : y > 0} is the upper-half plane and equip it with the

Riemannian metric

1 1
g:de@)dx%—?dy@dy.

(a) Compute the Christoffel symbols of g.
(b) Compute the geodesics of g.
(¢) Compute the Riemann curvature.

49. 1dentifying H = {(z,y) € R® : y > 0} = {z =ax +iy € C: y > 0} in the
previous example, we may write g as
Re(dz ® dz) =

g= Re(dz ® dz),

4
|z = 2[?
where dz = dx + idy, dZ = dz — idy, Im and Re denote imaginary and real part,
and |_| is the absolute value of complex numbers.

1
Im(z)?

Consider SL(2,R) = {A € GL(2,R) : det A = 1}. For A = (Z Z) € SL(2,R)
and z € Clet b
az
Jalz) = cz+d

(a) Show that f4 is a diffeomorphism from H to itself for any A € SL(2,R) and
that fap = fao fB.
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(b) Show that f4 is an isometry of H.
(c) Show that for any two points z, 2’ € H there exists A € SL(2,R) such that

fa(z) =27
(d) Characterize the elements A € SL(2,R) such that f4(i) = 1.



