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1. Basic notions and constructions

1.1. Notation. The closure, the interior and the boundary of a topological space
X will be denoted by X, intX and ∂X, respectively. The letter I will stand for the
interval [0, 1]. Rn and Cn will denote the vector spaces of n-tuples of real and complex
numbers, respectively, with the standard norm ‖x‖ =

∑n
i=1 |xi|2. The sets

Dn = {x ∈ Rn; ‖x‖ ≤ 1},
Sn = {x ∈ Rn+1; ‖x‖ = 1}

are the n-dimensional disc and the n-dimensional sphere, respectively.

1.2. Categories of topological spaces. Every category consists of objects and
morphisms between them. Morphisms f : A→ B and g : B → C can be composed in
a morphism g ◦ f : A → C and for every object B there is a morphism idB : B → B
such that idB ◦f = f and g ◦ idB = g.

The category with topological spaces as objects and continuous maps as morphisms
will be denoted Top. Topological spaces with distinquished points (usually denoted by
∗) and continuous maps f : (X, ∗)→ (Y, ∗) such that f(∗) = ∗ form the category Top∗.
Topological spaces X, A will be called a pair of topological spaces if A is a subspace
of X (notation (X,A)). The notation f : (X,A)→ (Y,B) means that f : X → Y is a
continuous map which preserves subspaces, i. e. f(A) ⊆ B. The category Top2 consists
of pairs of topological spaces as objects and continuous maps f : (X,A) → (Y,B) as
morphisms. Finally, Top2∗ will denote the category of pairs of topological spaces with
distinquished points in subspaces and continuous maps preserving both subspaces and
distinquished points.

The right category for doing algebraic topology is the category of compactly gener-
ated spaces. We will not go into details and refer to Chapter 5 of [May]. In fact, the
majority of spaces we deal with in this text are compactly generated.

From now on, a space will mean a topological space and a map will mean a contin-
uous map.

1.3. Homotopy. Maps f, g : X → Y are called homotopic, notation f ∼ g, if there
is a map h : X × I → Y such that h(x, 0) = f(x) and h(x, 1) = g(x). This map is
called homotopy between f and g. The relation ∼ is an equivalence. Homotopies in
categories Top∗, Top

2 or Top2∗ have to preserve distinquished points, i. e. h(∗, t) = ∗,
subsets or both subsets and distinquished points, respectively.

1



2

Spaces X and Y are called homotopy equivalent if there are maps f : X → Y and
g : Y → X such that f ◦ g ∼ idY and g ◦ f ∼ idX . We also say that the spaces X and
Y have the same homotopy type. The maps f and g are called homotopy equivalences.

A space is called contractible if it is homotopy equivalent to a point.

Example. Sn and Rn+1 − {0} are homotopy equivalent. As homotopy equivalences
take the inclusion f : Sn → Rn+1 − {0} and g : Rn+1 − {0} → Sn, g(x) = x/‖x‖.

1.4. Retracts and deformation retracts. Let i : A ↪→ X be an inclusion. We say
that A is a retract of X if there is a map r : X → A such that r ◦ i = idA. The map r
is called a retraction.

We say that A is a deformation retract of X (sometimes also strong deformation
retract) if i ◦ r : X → A → X is homotopic to the identity on X relative to A, i.e.
there is a homotopy h : X × I → X such that h(−, 0) = idX , h(−, 1) = i ◦ r and
h(i(−), t) = idA for all t ∈ I. The map h is called a deformation retraction .

Exercise A. Show that deformation retract of X is homotopy equivalent to X.

1.5. Basic constructions in Top. Consider a topological space X with an equiv-
alence '. Then X/' is the set of equivalence classes with the topology determined
by the projection p : X → X/' in the following way: U ⊆ X/' is open iff p−1(U) is
open in X.

Exercise A. The map f : (X/')→ Y is continuous iff the composition f ◦ p : X →
(X/')→ Y is continuous.

We will show this constructions in several special cases. Let A be a subspace of X.
The quotient X/A is the space X/' where x ' y iff x = y or both x and y are elements
of A. This space is often considered as a based space with base point determined by
A. If A = ∅ we put X/∅ = X ∪ {∗}.

Exercise B. Prove that Dn/Sn−1 is homeomorphic to Sn. For it consider f : Dn → Sn

f(x1, x2, . . . , xn) = (2
√

1− ‖x‖2x, 2‖x‖2 − 1).

Disjoint union of spaces X and Y will be denoted X t Y . Open sets are unions of
open sets in X and in Y . Let A be a subspace of X and let f : A → Y be a map.
Then X ∪f Y is the space (X t Y )/' where the equivalence is generated by relations
a ' f(a).

The mapping cylinder of a map f : X → Y is the space

Mf = X × I ∪f×1 Y

which arises from X × I and Y after identification of points (x, 1) ∈ X × I and
f(x) ∈ Y .
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Figure 1.1. Mapping cylinder

Exercise C. We have two inclusions iX : X = X ×{0} ↪→Mf and iY : Y ↪→Mf and
a retraction r : Mf → Y . How is r defined?
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Prove that

(1) Y is a deformation retract of Mf ,
(2) iX ◦ r = f ,
(3) iY ◦ f ∼ iX .

The mapping cone of a mapping f : X → Y is the space

Cf = Mf/(X × {0}).

A special case of a mapping cone is the cone of a space X

CX = X × I/(X × {0}) = CidX .

The suspension of a space X is the space

SX = CX/(X × {1}).

Exercise D. Show that SSn = Sn+1. For it consider the map f : Sn × I → Sn+1

f(x, t) = (
√

1− (2t− 1)2x, 2t− 1).

The join of spaces X and Y is the space

X ? Y = X × Y × I/'

where ' is the equivalence generated by (x, y1, 0) ' (x, y2, 0) and (x1, y, 1) ' (x2, y, 1).

Exercise E. Show that the join operation is associative and compute the joins of two
points, two intervals, several points, S0 ? X, Sn ? Sm.
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1.6. Basic constructions in Top∗ and Top2. Let X be a space with a base point
x0. The reduced suspension of X is the space

ΣX = SX/({x0} × I)

with base point determined by x0× I. In the next section in ?? we will show that ΣX
is homotopy equivalent to SX.

The space
(X, x0) ∨ (Y, y0) = X × {y0} ∪ {x0} × Y

with distinquished point (x0, y0) is called the wedge of X and Y and usually denoted
only as X ∨ Y .

The smash product of spaces (X, x0) and (Y, y0) is the space

X ∧ Y = X × Y/(X × {y0} ∪ {x0} × Y ) = X × Y/X ∨ Y.

Analogously, the smash product of pairs (X,A) and (Y,B) is the pair

(X × Y,A× Y ∪X ×B).

Exercise A. Show that Sm ∧ Sn = Sn+m. One way how to do it is to prove that

X/A ∧ Y/B ∼= X × Y/A× Y ∪X ×B.

1.7. Homotopy extension property. We say that a pair of topological spaces
(X,A) has the homotopy extension property (abbreviation HEP) if any map f : X → Y
and any homotopy h : A× I → Y such that h(a, 0) = f(a) for a ∈ A, and

f ∪ h : X × {0} ∪ A× I → Y

is continuous, can be extended to a homotopy H : X×I → Y such that H(x, 0) = f(x)
and H(a, t) = h(a, t) for all x ∈ X, a ∈ A and t ∈ I, i.e. H is an arrow making the
diagram

X × {0} ∪ A× I
f∪h //

��

Y

X × I

H

77ppppppp

commutative. If the pair (X,A) satisfies HEP, we call the inclusion A ↪→ X a cofibra-
tion.
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Figure 1.2. Homotopy extension property

Theorem. A pair (X,A) has HEP if and only if X×{0}∪A×I is a retract of X×I.

A× I

X × {0}

Figure 1.3. Retraction X × I → X × {0} ∪ A× I

Exercise A. Using this Theorem show that the pair (Dn, Sn−1) satisfies HEP. Many
other examples will be given in the next section.
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Figure 1.4. Retraction D1 × I → D1 × {0} ∪ S0 × I

Proof of Theorem. Let (X,A) has HEP. Put Y = X × {0} ∪ A × I and consider
f ∪ h : X × {0} ∪ A × I → X × {0} ∪ A × I to be an identity. Its extension
H : X × I → X × {0} ∪ A× I is a retraction.

Let r : X × I → X × {0} ∪ A× I be a retraction. Given a map f and a homotopy
h as in the definition which together determine a continuous map F = (f ∪ h) :
X × {0} ∪ A× I → Y , then H = F ◦ r is an extension of f ∪ h. �

Exercise B. Let a pair (X,A) satisfy HEP and consider a map g : A → Y . Prove
that (X ∪g Y, Y ) also satisfies HEP.

Exercise C. Let X be a Hausdorff compact space and let an inclusion A ↪→ X is a
cofibration. Prove that A is a closed subset of X.

Exercise D. Consider the closed subset set A = {1/n ∈ R;n = 0, 1, 2, . . . } ∪ {0} of
the interval [0, 1]. However, the inclusion A ↪→ [0, 1] is not a cofibration. Prove it.

Exercise E. Let Mf be a mapping cylinder of a map f : X → Y . Show that the
inclusion iX : X ↪→ Mf is a cofibration. In particular, the map f : X → Y can be
factored into the composition r◦iX of the cofibration iX and the homotopy equivalence
r. (See the exercise after the definition of the mapping cylinder.)
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