INTRODUCTION TO ALGEBRAIC TOPOLOGY

MARTIN CADEK

4. HoMoLOGY OF CW-COMPLEXES AND APPLICATIONS

4.1. First applications of homology. Using homology groups we can easily prove
the following statements:
(1) S™ is not a retract of D"
(2) Every map f : D™ — D" has a fixed point, i.e. there is x € D" such that
flz) ==
(3) If ) #U CR™ and ) # V C R™ are open homeomorphic sets, then n = m.

Outline of the proof. (1) Suppose that there is a retraction r : D" — S". Then we
get the commutative diagram

id

Z = H,(S") H,(S") =17

Hn(Dn+1) =0

which is a contradiction.

(2) Suppose that f : D™ — D™ has no fixed point. Then we can define the map
g : D" — S"! where g(z) is the intersection of the ray from f(z) to x with S"~1.
However, this map would be a retraction, a contradiction with (1).

(3) The proof of the last statement follows from the isomorphisms:

7 for i = n,
0 for i # n.

g

H,(U,U—~{x}) = HR" R"—{a}) = H_(R"—{z}) = H;_,(S"") = {

4.2. Degree of a map. Consider a map f : S® — S™. In homology f, : H,(S") —

H,,(S™) has the form
fo(zx) =azx, ac€Z.
The integer a is called the degree of f and denoted by deg f.
The degree has the following properties:
(1) degid = 1.
(2) If f ~ g, then deg f = degg.
(3) If f is not surjective, then deg f = 0.
(4) deg(fg) = deg f - degy.
(5) Let f:S™ — S™ f(xo,x1,...,2n) = (—=Zo,Z1,...,2,). Then deg f = —1.
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(6) The antipodal map f: S™ — S", f(x) = —z has deg f = (—1)""L.
(7) If f: S™ — S™ has no fixed point, then deg f = (—1)"1,

Proof. We outline only the proof of (5) and (7). The rest is not difficult and left as an
exercise. 3

We show (5) by induction on n. The generator of Hy(S°) is 1 — (—1) and f, maps
it in (—1) — 1. Hence the degree is —1. Suppose that the statement is true for n. To
prove it for n+ 1 we use the diagram with rows coming from a suitable Mayer-Vietoris
exact sequence

o

0 — H,y (") — H,(S") —0
f*l l(f/s")*
0 ——> Hy 1 (S™Y) —— H,(S") —=0

If (f/S™). is a multiplication by —1, so is f..

To prove (7) we show that f is homotopic to the antipodal map through the homo-
topy
t(x) = (1=t

Ht) = ff@ =1 oal

Corollary. S™ has a nonzero continuous vector field if and only if n is odd.

Proof. Let S™ has such a field v(z). We can suppose ||v(z)|| = 1. Then the identity is
homotopic to antipodal map through the homotopy

H(z,t) = costm - x + sintm - v(x).
Hence according to properties (2) and (6)
(—1)" = deg(—id) = deg(id) = 1.

Consequently, n is odd.
On the contrary, if n = 2k+1, we can define the required vector field by prescription

’U(LU(), r1,T2,T3,...,Tok, $2k+1) = (—xl, o, —X3,L2y ..., —L2k41, LL’Qk).

g

Exercise. Prove the properties (3), (4) and (6) of the degree.

4.3. Local degree. Consider a map f : S — S™ and y € S™ such that f~(y) =
{x1,29,...,2,}. Let U; be open disjoint neighbourhoods of points x; and V' a neigh-
bourhood of y such that f(U;) C V. Then

(f/Ui)w : Ho(Ui, Uy — {a;}) & Ho(S™, 8" — {2;}) = Z
— H,(V,V —{y}) = H, (5", 5" —{y}) = Z

is a multiplication by an integer which is called a local degree and denoted by deg f|z;.



Theorem A. Let f:S" — S", y € S™ and f~'(y) = {x1,29,...,2m}. Then
deg [ = Zdeg flz;.
=1

For the proof see [Hatcher|, Proposition 2.30, page 136.
The suspension Sf of a map f : X — Y is given by the prescription Sf(z,t) =

(f(2),1).
Theorem B. deg Sf = deg f for any map f: S™ — S™.

Proof. f induces C'f : C'S™ — CS™. The long exact sequence for the pair (C'S™, S™)
and the fact that SS™ = C'S™/S™ give rise to the diagram

~ ~ Ox o
Hp1 (S™) —= Hp (CS™, S™) —= H,(S™)

1%

o) or| E

Hyi 1 (S™Y) —> H,yr (CS™, 8™) ——> H,(S™)

o5}

14

which implies the statement. O

Corollary. For any n > 1 and given k € Z there is a map f : S™ — S™ such that
deg f = k.

Proof. For n = 1 put f(z) = 2 where z € S' € C. Using the computation based on
local degree as above, we get deg f = k. The previous theorem implies that the degree

of S"71f . 8" — 8™ is also k. O

4.4. Computations of homology of CW-complexes. If we know a CW-structure
of a space X, we can compute its cohomology relatively easily. Consider the sequence
of Abelian groups and its morphisms

(Ha(X™, X"71), dn)
where d,, is the composition
Hn(Xn, anl) On Hn(anl) Jn—1 anl(Xnil, an2>'

Theorem. Let X be a CW-complex. (H, (X", X" 1), d,) is a chain complex with
homology
HW(X) = H,(X).
Proof. First, we show how the groups Hy(X", X" 1) look like. Put X~! = ) and
X%/0 = X°U {*}. Then
. -~ Z n=k
H(X", X7 = By (XX = Hy(\/ 57 = 4 Do ’
KX, ) = Hy(X"/X"") = Hy(\/ S3) {0 04k,

Now we show that
Hi(X") =0 fork>n.
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From the long exact sequence of the pair (X", X" 1) we get Hy(X™) = Hp(X"1). By
induction H*(X™) = Hy(X~1) = 0.
Next we prove that
Hp(X") = Hi(X) fork<n-1

From the long exact sequence for the pair (X", X™) we obtain Hj(X™) = Hy(X"™1).
By induction Hg(X™) = Hi(X™"™) for every m > 1. Since the image of each singular
chain lies in some X" ™™ we get H(X") = Hy(X).

To prove Theorem we will need the following diagram with parts of exact sequences
for the pairs (X", X™) (X", X"!) and (X"! X"2).

0

0 Hn(Xn+1)

I

H,(X™)

Jn
8n+l

dn+1 dn

Hn+1(Xn+l,Xn) Ty Hn(Xn,Xn_l) _mo n_l(Xn—l’Xn—2)

\ jn_lT
H, (X"

!

0
From it we get
Andn1 = Jjn-1(0njn)Ons1 = jn-1(0)0n1 = 0.
Further,
Kerd, = Kerd,, = Imj, = H,(X")
and
Imd, 1 ZImad,,,
since j,_1 and j, are monomorphisms. Finally,

HCW(X) ~ Kerd, _, H,(X™)
" C Imdyyr ImOpp

~ H, (X"~ H,(X).

Example. H,(X) = 0 for CW-complexes without cells in dimension n.

A for k£ < 2n even,
0 in other cases.

H,(CP™) = {
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4.5. Computation of d,. Let e} and eg_l be cells in dimension 7 and n — 1 of a
CW-complex X, respectively. Since

nl ! )
H,(X™, X1 = @Z H, (X', X"2) = @Z

they can be considered as generators of these groups. Let ¢, : 9D — X"~1 be the
attaching map for the cell el. Then
Z dopeyy”

where d,p is the degree of the following composition

St =0Dp £ X o XX s X /(XU e ) = s
v#B
For the proof we refer to [Hatcher], pages 140 and 141.

Exercise. Compute homology groups of various 2-dimensional surfaces (torus, Klein
bottle, projective plane) using their CW-structure with only one cell in dimension 2.

4.6. Homology of real projective spaces. The real projective space RP" is formed
by cell €%, ¢!, ..., e", one in each dimension from 0 to n. The attaching map for the
cell eFt1 is the projection ¢ : S¥ — RP*. So we have to compute the degree of the
composition

f: 8% 5 RPF — RP*/RP*! = S*.

Every point in S* has two preimages x;, z». In a neihbourhood U; of z; f is a
homeomorphism, hence its local degree deg f|x; = £1. Since f/U, is the composition
of the antipodal map with f/Uj, the local degrees deg f|z; and deg f|z; differs by the
multiple of (—1)¥+1. (See the properties (4) and (6) in 4.2.) According to 4.3

0 for £+ 1 odd,

deg f = £1(1 + (=11 = {ﬂ for b+ 1 even

So we have obtained the chain complex for computation of HEW (RP"). The result is

7z for k =0 and k = n odd,
Hp(RP") = < Zs for k odd , 0 < k <mn,
0 in other cases.

4.7. Euler characteristic. Let X be a finite CW-complex. The Euler characteristic

of X is the number

X(X) = (—1)* rank Hy(X).

=0
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Theorem. Let X be a finite CW-complex with ¢, cells in dimension k. Then

k=0

Proof. Realize that ¢, = rank Hj(X* X*~!) = rankKerdy + rankImdy,; and that
rank Hy(X) = rank Ker d;, — rank Im dj, ;. Hence

o0

X(X) = (~1)*rank Hy(X) = > (—1)*(rank Ker d;, — rank Im d,)
k=0 k=0
= Z(—l)k rank Ker dj, + Z(—l)k rank Im dj, = Z(—l)kck.
k=0 k=0 k=0

Example. 2-dimensional oriented surface of genus g (the number of handles attached
to the 2-sphere) has the Euler characteristic x(M,) = 2 — 2g.

2-dimensional nonorientable surface of genus g (the number of M&bius bands which
replace discs cut out from the 2-sphere) has the Euler characteristic x(N,) =2 —g.

4.8. Lefschetz Fixed Point Theorem. Let GG be a finitely generated Abelian group
and h : G — G a homomorphism. The trace tr h is the trace of the homomorphism

Z" = G/ Torsion G — G/ Torsion G = Z"

induced by h.
Let X be a finite CW-complex. The Lefschetz number of a map f: X — X is

[e.9]

L(f) =Y (=1)'tr Hf.

i=0
Notice that L(idyx) = x(X). Similarly as for the Euler characteristic we can prove
Lemma. Let f, : (Cy,d,) — (C,,d,) be a chain homomorphism. Then

S Hif =Y (-1t f;
=0 =0

whenever the right hand side is defined.

Theorem (Lefschetz Fixed Point Theorem). If X is a finite simplicial complex or its
retract and f : X — X a map with L(f) # 0, then f has a fized point.

For the proof see [Hatcher|, Chapter 2C. Theorem has many consequences.

Corollary A (Brouwer Fixed Point Theorem). Every continuous map f : D" — D"
has a fized point.

Proof. The Lefschetz number of f is 1. O

In the same way we can prove
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Corollary B. If n is even, then every continuous map f : RP" — RP" has a fized
point.

Corollary C. Let M be a smooth compact manifold in R™ with nonzero vector field.
Then x(M) = 0.

The converse of this statement is also true.

QOutline of the proof. If M has a nonzero vector field, there is a continuous map f :
M — M which is a ”small shift in the direction of the vector field”. Since such a map
has no fixed point, its Lefschetz number has to be zero. Moreover, f is homotopic to
identity and hence

X(M) = L(idy) = L(f) = 0.
0

4.9. Homology with coefficients. Let G be an Abelian group. From the singular
chain complex (C,(X),d,) of a space X we make the new chain complex
Co(X;G0)=Co(X)® G, 05 =0,®idg.
The homology groups of X with coefficients G are
H,(X;G) = H,(C.(X;G),07).

The homology groups defined before are in fact the homology groups with coefficients
Z. The homology groups with coefficients G satisfy all the basic general properties as
the homology groups with integer coefficients with the exception that

0 for n # 0,
H,;G) =
(:G) {G for n = 0.

If the coefficient group G is a field (for instance G = Q or Z, for p a prime), then
homology groups with coefficients GG are vector spaces over this field. It often brings
advantages.

The computation of homology with coefficients G can be carried out again using a
CW-complex structure. For instance, we get

Zo for 0 <k <n,

0 in other cases.

Hy(RP"; Zy) = {
For an application of Zy-coefficients see the proof of the following theorem in [Hatcher],
pages 174-176.
Theorem (Borsuk-Ulam Theorem). Every map f : S™ — S™ satisfying

f(=x) = = f(z)

has an odd degree.
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