INTRODUCTION TO ALGEBRAIC TOPOLOGY

MARTIN CADEK

14. SHORT OVERVIEW OF SOME FURTHER METHODS IN HOMOTOPY THEORY

We start this sections with two examples of computations of homotopy groups.
These computations demonstrate the fact that the possibilities of the methods we have
learnt so far are very restricted. Hence we outline some further (still very classical)
methods which enable us to prove and compute more.

14.1. Homotopy groups of Stiefel manifolds. Let n > 3 and n > k > 1. The
Stiefel manifold V,,  is (n — k — 1)-connected and

Z  for k=1,
Tn-k(Var) =< Z for k# 1 and n — k even,
Zo for k# 1 and n — k odd.

Proof. The statement about connectivity follows from the long exact sequence for the
fibration

Vi1 = Vg = V1 = 571

by induction.
As for the second statement, it is sufficient to prove that

7, for n even,

n— Vn =
Tn-2(Vn2) {ZQ for n odd

and to use the induction in the long exact sequence for the fibration above.
We have the fibration

Sn_2 = Vn—l,l — Vng ﬁ> le = Sn_l

which corresponds to the tangent vector bundle of the sphere S"~1. If n is even, there
is a nonzero vector field on S™~!. This field is a map s : S™ ' — V, 5 such that
ps = idgn-1. Such a map is called a section and its existence ensures that the map
Pu o1 (Vi) = m,-1(S™7!) is an epimorphism. Hence we get the following part of
the long exact sequence

o1 (Vo) B 0 1(S"71) -5 10 (S™72) = 1o (Vina) — 0.

Consequently, m,_2(V,,2) = Z.
The case n odd is more complicated. We need the fact that the Euler class of tangent

bundle of S"7! is twice a generator € H"*(S""!). We obtain the following part of
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the Gysin exact sequence for cohomology groups with integer coefficients

U2

0= H" 2(Vyo) — HO(S™ 1) =25 B 1(S" 1) = H" Y (V,5) — 0.
From this sequence and the universal coefficient theorem we get that
0= H"?(V,9;7) = Hom(H, _5(V,2),7)
Zy = H" ' (V,5) 2 Hom(H, 1 (Vns),Z) ® Ext(H, _2(Vna),Z)

which implies that H,,_o(V}, 2; Z) = Zy. The Hurewicz theorem now yields 7,1 (V},2)
Zs.
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14.2. Hopf fibration. Consider the Hopf fibration
st — g% 1y g2
defined in 10.5. From the long exact sequence for this fibration we get
m:(S?) =2 m;(S?)  for i > 2.
Particularly,
m3(S%) 2 Z
with [n] as a generator (since [id] is a generator of 73(5?)). By the Freudenthal theorem

>~ 75(S5?) opl, 74(S®) = 7%, The methods we have learnt so far give us only that
74(S3) & 7§ is a factor of Z with Xn as a generator.

Exercise. Try to compute as much as possible from the long exact sequences for the
other two Hopf fibrations in 10.5.

14.3. Composition methods were developed in works of I. James and the Japanese
school of H. Toda in the 1950-ies and are described in the monograph [Toda]. They
enable us to find maps which determine the generators of homotopy groups m,1(S™)
for k not very big (approximately & < 20). For these purposes various types of
compositions and products are used.

Having two maps f : S* — S™ and ¢g : S — S™ their composition gf : S* — S™
determines an element [gf] € m;(S™) which depends only on [f] and [g]. If the target
of f is different from the source of g, we can use suitable multiple suspensions to be
able to make compositions. For instance, if f : S® — S* and g : ST — 5% we can make
composition go (X?f) : S? — 93, (Here X stands for reduced suspension.) In this way
we get a bilinear map m, x w5 — m,_,.

More complicated tool is the Toda bracket. Consider three maps

whxsyhyz
preserving distinquished points such that gf ~ 0 and hg ~ 0. Then gf can be extended
toamap F: CW — Y and hg can be extended to a map G:CX — Z. (C stands

for reduced cone.) Define (f,g,h) : W = 5+WUCLW — Z as GoCf on 5+W and
hoF on C_W.
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FIGURE 14.1. Definition of Toda bracket < f,g,h >.

This definition depends on homotopies gf ~ 0 and hg ~ 0. So it defines a map
from 7j X 73 X 7} to cosets of 77, ;... See [Toda] and also Exercise 39 in [Hatcher],
Chapter 4.2.

The Whitehead product [ , | : m(X) X mj(X) — m4j_1(X) is defined as follows:
f:I'"— X and g : I’ — X define the map f x g : I'*7 = I' x I’ — X and we put
[f.q] = (f x g)/0T"*.

Having a map f : S** ' — S" n > 2, we can construct a CW-complex C; =
S™ Uy e*™ with just one cell in the dimensions 0, n and 2n. Denote the generators of
H"(Cy;Z) and H**(C};Z) by « and S, respectively. Then the Hopf invariant of f is
the number H(f) such that

o? = H(f)S.
The Hopf invariant determines a homomorphism H : ma,_1(S") — Z.

For the Hopf map 7 : S% — S? we have C, = CP?, consequently

H(n) =1.
For id : S? — S? we can make the Whitehead product [id,id] : S* — S? and compute
(see [Hatcher|, page 474) that
H([id,id]) = £2.
Since m3(S?) = Z, we get [id,id] = +27. One can show (see [Hatcher], page 474 and
Corollary 4J.4) that the kernel of the suspension homomorphism 73(S?) — m,(S?) is

generated just by [id,id]. By the Freudental theorem this suspension homomorphism
is an epimorphism which implies that

7T4(SS) = ZQ.
Consequently, 7] = Zs.

Remark. J. F. Adams proved in [Adamsl] that the only maps with the odd Hopf
invariant are the maps coming from the Hopf fibrations S® — 52, S7 — S% and
S5 — 8.



Another important tool for composition methods is the EHP exact sequence for the
homotopy groups of S, S"*! and S*":

Tan_2(S™) D 731 (S™) s 130 0(52) D mra05(S™) — ...
o (S D (8 D (87 D (ST =

Here F stands for suspension, H refers to a generalized Hopf invariant and P is defined
with connection to the Whitehead product. See [Whitehead], Chapter XII or [Hatcher],
page 474.

For n = 2 the EHP exact sequence yields

71(52) 5 15(5%) L 1u(SY) D m3(8%) B ma(S?) — 0.

Since 74(S?) X Zy, m3(S?) = Z and 14(S*) = Z, we obtain that P is a multiplication
by 2 and H = 0. From the long exact sequence for the Hopf fibration (see 14.2) we
get that m4(S5?) = 74(S?) = Zy with the generator n(Xn). So m5(S?) is either Zy or 0.
By a different methods one can show that

71'5(53) = ZQ
with the generator (Xn)(X%n).

14.4. Cohomological methods have been playing an important role in homotopy
theory since they were introduced in the 1950-ies.

By the methods used in proofs in Section 12 we can construct so called Filenberg-
MecLane spaces K(G,n) for any n > 0 and any group G, Abelian if n > 2. These spaces
are up to homotopy equivalence uniquely determined by their homotopy groups

0 fori#n,
G fori=n.

mi(K(G,n)) = {

Moreover, these spaces provide the following homotopy description of reduced singular
cohomology groups

(X, %), (K (G,n), *)] — H"(X;G).
To each [f] € [(X, %), (K(G,n), )] we assign
fr(1) € H'(X;G)
where ¢ is the generator of
H"(K(G,n);G) = Hom(H,(K(G,n); Z),G) =~ Hom(G, G)

corresponding to idg. N N
A system of homomorphisms 0x : H"(X;G1) — H™(X;Gy) which is natural, i. e.
[0y = O0xf* for all f: X =Y, is called a cohomology operation. A system of coho-

mology operations 0; : H"™ — H™% is called stable if it commutes with suspensions
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The most important stable cohomology operations for singular cohomology are the
Steenrod squares and the Steenrod powers:

Sq': H"(X:Zy) — H'"(X;Zy)
P H"(X;Z,) — H"™?"=0(X;7.) for p# 2 a prime.
For their definition and properties see [SE] or [Hatcher|, Section 4.L. These operations

can be also interpreted as homotopy classes of maps between Eilenberg-McLane spaces,
for instance

Sq' . K(Zy,n) — K(Zg,n +1).

Example A. We show how the Steenrod squares can be used to prove that some
maps are not homotopic to a trivial one. Consider the Hopf map n : S% — S2. We
know that C, = CP? and H?(CP?* Z,) and H*(CP?* Z,) have generators a and a?.
Since one of the properties of the Steenrod squares is

Sq"r = 2* for x € H*(X;7Zy),

we get that S¢?a = o # 0. Using this fact we show that [Yn] € m4(S?) is nontrivial.
For reduced cones and reduced suspensions one can prove that

Cs, = ©C, ~ SCP?.

Then Ya : SCP* — K(Z,,3) and Ya? : XCP? — k(Zy;5) represent generators in
H3(X.CP? Zy) and H°(XCP?* Z,), respectively. Now

S¢*(Za) = B(S¢*a) = Ya? # 0.

If ¥n were homotopic to a constant map, we would have 527, = 53V S® and conse-
quently, S¢?(Xa) = 0 since S¢? is trivial on S3.

Example B. We outline how to compute m,1(S™) using cohomological methods.
A generator « € H™(S™) induces up to homotopy a map S™ — K(Z,n). Further,
H"(K(Z,n);Z) = Z with a generator « and H" (K (Z,n); Zs) = Z, with the generator
Sq*pr where p : H"(X;Z) — H"(X;Zs) is induced by reduction mod 2. Sq¢?pe induces
up to homotopy a map

K(Z,n) 22 K(Zg,n +2).
Consider the fibration

where PX is the space of all maps p: I — X, p(1) = g and QX is the space of all
maps w : I — X, w(0) = w(l) = z. (These maps are called loops in X.) One can
show that QK (Zs,n + 2) has a homotopy type of K(Zy,n + 1). The pullback of the
fibration above by the map Sq¢?pt : K(Z,n) — K(Zy,n + 2) is the fibration

K(Zy,n+1) - E % K(Z,n).
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Since S¢?pa = 0 in H"™2(S™;Z), one can show that the map «a : S® — K(Z,n) can

be lifted to a map f: 5" — FE.
ey
p

S" K(Z,n)

One can compute f* in cohomology (using so called long Serre exact sequence) and then
also f. in homology. A modified version of the homology Whitehead theorem implies
that f is an (n + 2)-equivalence. Hence f, : m,41(S™) = mp41(F) is an isomorphism.
Using the long exact sequence for the fibration (E, K(Z,n),p) we get

Zo = Tt (K (Za,n + 1)) — g1 (E) = i (7).
For more details see [MT].

The Steenrod operations form a beginning for the second course in algebraic topology
which should contain spectral sequences, other homology and cohomology theories,
spectra. We refer the reader to [Adams2], [Kochman], [MT], [Switzer], [Whitehead] or
to the last sections of [Hatcher].
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