
MDA104 Introduction to Databases

5. Query Processing

Vlastislav Dohnal

MDA104, Vlastislav Dohnal, FI MUNI, 2024 2

Query Processing

Overview

Evaluation of Expressions

Measures of Query Cost

Evaluation algorithms

Sorting

Join Operation

MDA104, Vlastislav Dohnal, FI MUNI, 2024 3

Basic Steps in Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

MDA104, Vlastislav Dohnal, FI MUNI, 2024 4

Basic Steps in Query Processing (Cont.)

Parsing and translation

Translate the SQL query into its internal form.

This is then translated into relational algebra.

Parser checks syntax, verifies relations

Optimization

Generate a query-evaluation plan and choose algorithms

for evaluating individual operations

Evaluation

The query-execution engine takes a query-evaluation plan,

executes that plan, and returns the answers to the query.

Basic Steps in Query Processing (Cont.)

Example of query:

List salary of all instructors that earn less than $75,000.

SQL query

SELECT salary FROM instructor WHERE salary < 75000

Conversion to rel. algebra

salary(salary75000(instructor))

MDA104, Vlastislav Dohnal, FI MUNI, 2024 5

MDA104, Vlastislav Dohnal, FI MUNI, 2024 6

Basic Steps: Optimization

A relational-algebra expression may have many equivalent

expressions:

salary(salary75000(instructor))

salary75000(salary(instructor))

For a relational-algebra expression, an expression tree is

created

instructor

salary75000

salary

instructor

salary

salary75000

MDA104, Vlastislav Dohnal, FI MUNI, 2024 7

Basic Steps: Optimization (Cont.)

Each relational algebra operation can be evaluated using one

of several different algorithms

Correspondingly, a relational-algebra expression can be

evaluated in many ways.

Annotated expression specifying detailed evaluation strategy is

called an execution-plan or evaluation-plan.

E.g., to find instructors with salary < 75000

use an index on salary, or

perform complete relation scan and discard instructors with

salary  75000

MDA104, Vlastislav Dohnal, FI MUNI, 2024 8

Basic Steps: Optimization (Cont.)

Example of an evaluation-plan

instructor

salary75000

salary

Use index scan with index on salary

Eliminate duplicates by sorting

Use pipelining

MDA104, Vlastislav Dohnal, FI MUNI, 2024 9

Basic Steps: Optimization (Cont.)

Query Optimization

Amongst all equivalent evaluation plans choose the one
with lowest cost.

Cost is estimated using statistical information from the
database catalog

E.g. number of tuples in each relation, size of tuples, etc.

There is a huge number of possible evaluation plans

Optimization uses some heuristics

1. Perform selection early

reduce the number of tuples (by using an index, e.g.)

2. Perform projection early

reduce the number of attributes

3. Perform most restrictive operations early

such as join and selection.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 10

Evaluation of Expressions

Alternatives for evaluating an entire expression tree

Materialization

Evaluate one operation at a time, starting at the lowest-level.

Use intermediate results materialized into temporary relations

to evaluate next-level operations.

Pipelining

pass on tuples to parent operations even as an operation is

being executed

MDA104, Vlastislav Dohnal, FI MUNI, 2024 11

Evaluation of Expressions (Cont.)

Materialized evaluation

Compute σbuilding=`Watson’(department) and store it

Then read from stored intermediate result and compute its

join with instructor, store it

Finally read it and compute the projection on name and

output it.

This step can be conveniently evaluated using pipelining on

join result.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 12

Measures of Query Cost

Cost is generally measured as total elapsed time for answering

query

Many factors contribute to time cost

disk accesses, CPU, or even network communication

Typically disk access is the predominant cost and is also

relatively easy to estimate. Measured by taking into account

Number of seeks * average-seek-cost

Number of blocks read * average-block-read-cost

Number of blocks written * average-block-write-cost

Cost to write a block is greater than cost to read a block

Data is read back after being written to ensure that the write

was successful

MDA104, Vlastislav Dohnal, FI MUNI, 2024 13

Measures of Query Cost (Cont.)

For simplicity we just use the number of block transfers from

disk and the number of seeks as the cost measures

tT – time to transfer one block

tS – time for one seek

Cost for b block transfers plus S seeks

b * tT + S * tS

We ignore CPU costs for simplicity

Real systems do take CPU cost into account

We do not include cost to writing output to disk in our cost

formulae

MDA104, Vlastislav Dohnal, FI MUNI, 2024 14

Measures of Query Cost (Cont.)

Several algorithms can reduce disk I/O by using extra buffer

space

Amount of real memory available to buffer depends on

other concurrent queries and OS processes, known only

during execution

We often use worst case estimates, assuming only the

minimum amount of memory needed for the operation is

available

Required data may be buffer resident already, avoiding disk I/O

But hard to take into account for cost estimation

MDA104, Vlastislav Dohnal, FI MUNI, 2024 15

Selection Operation
File scan (table / sequential scan) – no index structure is necessary

Scan each file block and test all records to see whether they satisfy
the selection condition.

Cost estimate = br block transfers + 1 seek

br denotes number of blocks containing records from relation r

If selection is on a key attribute, can stop on finding matching record

cost = (br /2) block transfers + 1 seek

Linear search can be applied regardless of

selection condition or

ordering of records in the file, or

availability of indices

Note: binary search generally does not make sense since data is not
stored consecutively

except when there is an index available,

and binary search requires more seeks than index search

MDA104, Vlastislav Dohnal, FI MUNI, 2024 16

Selections Using Indices

Index scan – search algorithms that use an index

selection condition must be on search-key of index

Now, assume the sequential file is ordered by this key:

Algorithm for primary index & equality on primary key

Retrieve a single record that satisfies the corresponding
equality condition

Cost = (hi + 1) * (tS + tT)

hi – height of index i (for hashing hi =1)

+1 – for reading the actual record

Algorithm for primary index & equality on non-primary key

Retrieve multiple records.

Records will be on consecutive blocks

Let b = number of blocks containing all n matching records

Cost = hi * (tS + tT) + tS + tT * b

MDA104, Vlastislav Dohnal, FI MUNI, 2024 17

Selections Using Indices

Algorithm for secondary index & equality on non-primary key

Sequential file is not ordered by this search key!

Retrieve a single record if the search-key is a candidate key

Cost = (hi + 1) * (tS + tT)

Retrieve multiple records if search-key is not a candidate key

Each of n matching records may be on a different block.

Cost = (hi + n) * (tS + tT)

Can be very expensive!

MDA104, Vlastislav Dohnal, FI MUNI, 2024 18

Sorting Relations

We may build an index on the relation, and then use the index

to read the relation in the sorted order.

May lead to one disk block access for each tuple.

Use a sorting algorithm

For relations that fit in memory, techniques like quick-sort

can be used.

For relations that don’t fit in memory, external sort-merge

is a good choice.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 19

External Sort-Merge

Let M denote memory size (in pages/blocks):

1. Create sorted runs. Let i be 0 initially.

Repeatedly do the following till the end of the relation:

(a) Read M blocks of relation into memory

(b) Sort the in-memory blocks

(c) Write sorted data to run Ri ; increment i.

Let the final value of i be N

2. Merge the runs. (next slide)

MDA104, Vlastislav Dohnal, FI MUNI, 2024 20

External Sort-Merge (Cont.)

2. Merge the runs (N-way merge).

We assume (for now) that N < M.

1. Use N blocks of memory to buffer input runs, and 1 block to

buffer output.

2. Read the first block of each run into its buffer page

3. repeat

1. Select the first record (in sort order) among all buffer pages

2. Write the record to the output buffer.

If the output buffer is full write it to disk.

3. Delete the record from its input buffer page.

If the buffer page becomes empty

then read the next block (if any) of the run into the buffer.

4. until all input buffer pages are empty.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 21

External Sort-Merge (Cont.)

If N  M, several merge passes are required.

In each pass, continuous groups of M - 1 runs are merged.

A pass reduces the number of runs by a factor of M -1, and

creates runs longer by the same factor.

E.g. If M=11, and there are 90 runs, one pass reduces the

number of runs to 9, each 10 times the size of the initial runs

Repeated passes are performed till all runs have been

merged into one.

MDA104, Vlastislav Dohnal, FI MUNI, 2024
22

Example: External Sorting Using Sort-Merge

Available

memory

M=4

blocks.

One record

per block

g 24

a 19

d 31

c 33

b 14

e 16

r 16

d 21

m 3

p 2

d 7

a 14

initial

relation

a 19

c 33

d 31

g 24

b 14

d 21

e 16

r 16

a 14

d 7

m 3

p 2

runscreate

runs

(m-1)-way

merging

a 14

a 19

b 14

c 33

d 7

d 21

d 31

e 16

g 24

m 3

p 2

r 16

sorted

output

MDA104, Vlastislav Dohnal, FI MUNI, 2024 24

External Sort-Merge (Cont.)

Cost analysis:

Total number of merge passes required: logM–1(br /M).

Block transfers for initial run creation as well as in each

pass is 2br

for final pass, we don’t count write cost

we ignore final write cost for all operations since the

output of an operation may be sent to the parent

operation without being written to disk

Thus total number of block transfers for external sorting:

br (2 logM–1(br / M) + 1)

Seeks: next slide

MDA104, Vlastislav Dohnal, FI MUNI, 2024 26

Join Operation

Several different algorithms to implement joins

Nested-loop join

Block nested-loop join

Improved nested-loop join by reading records in blocks

Indexed nested-loop join

Improved by using an index to look up equal records

Merge-join

Hash-join

Choice based on cost estimate

For each of the variants a cost estimation can be stated.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 27

Nested-Loop Join

To compute the join r  s

for each tuple tr in r do begin

for each tuple ts in s do begin

test pair (tr ,ts) to see
if they satisfy the equality on shared attributes

if they do, add tr • ts to the result.
end

end

r is called the outer relation and s the inner relation of the join.

Requires no indices and can be used with any kind of join
condition.

Expensive since it examines every pair of tuples in the two
relations.

Cost = nr * (tS + tT) * (ns * (tS + tT))

where nr = number of tuples in r

Nested-Loop Join (Cont.)
In the worst case, if there is enough memory only to hold one block of each

relation, the estimated cost is

nr  bs + br block transfers, plus

nr + br seeks

Example on student and takes

student (the smaller one) as the outer relation:

5000  400 + 100 = 2,000,100 block transfers,

5000 + 100 = 5,100 seeks

takes (the larger one) as the outer relation

10000  100 + 400 = 1,000,400 block transfers and 10,400 seeks

If the smaller relation fits entirely in memory, use that as the inner relation.

Reduces cost to br + bs block transfers and 2 seeks

Example: student fits entirely in memory

the cost estimate is 500 block transfers.

Block nested-loops algorithm (next slide) is preferable.

nstudent=5,000

bstudent=100

ntakes=10,000

btakes= 400

MDA104, Vlastislav Dohnal, FI MUNI, 2024 28

Block Nested-Loop Join
Variant of nested-loop join in which every block of inner
relation is paired with every block of outer relation.

for each block Br of r do begin

for each block Bs of s do begin

for each tuple tr in Br do begin

for each tuple ts in Bs do begin

Check if (tr,ts) satisfy the join condition

if they do, add tr • ts to the result.
end

end
end

end

Cost: br * (1+bs) blocks; br * (1+1) seeks

For student (outer) and takes (inner):

100 + 100 * 400 = 40,100 block transfers

100 + 100 seeks

MDA104, Vlastislav Dohnal, FI MUNI, 2024
29

nstudent=5,000

bstudent=100

ntakes=10,000

btakes= 400

MDA104, Vlastislav Dohnal, FI MUNI, 2024 30

Merge-Join

1. Sort both relations on their join attributes

If not already sorted.

2. Merge the sorted relations to join them

Join step is similar to the merge stage of the sort-merge

algorithm.

Main difference is handling of

duplicate values in join attribute

Every pair with same value

on join attribute must be

matched

Merge-Join (Cont.)
Can be used only for equi-joins and natural joins

Each block needs to be read only once

assuming all tuples for any given value of the join attributes fit in

memory

Thus the cost of merge join is:

br + bs block transfers, and

max. 2*br / bb + 1 seeks

Assuming we read r in runs of bb blocks

+ the cost of sorting if relations are unsorted.

MDA104, Vlastislav Dohnal, FI MUNI, 2024 31

MDA104, Vlastislav Dohnal, FI MUNI, 2024 32

Hash-Join

A hash function h is used to partition tuples of both relations

JoinAttrs are the common attributes of r and s used in r  s

h maps JoinAttrs values to {0, 1, ..., n}

r0 , r1 , . . . , rn denote buckets of r

Each tuple tr  r is put in bucket ri

where i = h(tr [JoinAttrs]).

s0 , s1 , . . . , sn denotes buckets of s

Each tuple ts  s is put in bucket si,

where i = h(ts [JoinAttrs]).

MDA104, Vlastislav Dohnal, FI MUNI, 2024 33

Hash-Join (Cont.)

buckets ri of r buckets si of s

MDA104, Vlastislav Dohnal, FI MUNI, 2024 34

Hash-Join (Cont.)

Tuples in ri need only to be compared with tuples in si

Need not be compared with s tuples in any other bucket, since:

a tuple of r and a tuple of s that satisfy the join condition will

have the same value for the join attributes.

If that value is hashed to some value i, the tuple of r has to be

in ri and the tuple of s in si.

Cost of hash join is 3(br + bs) block transfers

3*(100+400) for student  takes
nstudent=5,000

bstudent=100

ntakes=10,000

btakes= 400

Summary – Takeaways

Steps in query processing

Idea of query optimization

expression transformations (in parse tree)

selection of algorithm to evaluate an operator

index vs table scan

Algorithms

Sorting large relations (exceeding RAM allocation)

Joining relations

nested loops, merge join, hash join

MDA104, Vlastislav Dohnal, FI MUNI, 2024 35

	Snímek 1: MDA104 Introduction to Databases 5. Query Processing
	Snímek 2: Query Processing
	Snímek 3: Basic Steps in Query Processing
	Snímek 4: Basic Steps in Query Processing (Cont.)
	Snímek 5: Basic Steps in Query Processing (Cont.)
	Snímek 6: Basic Steps: Optimization
	Snímek 7: Basic Steps: Optimization (Cont.)
	Snímek 8: Basic Steps: Optimization (Cont.)
	Snímek 9: Basic Steps: Optimization (Cont.)
	Snímek 10: Evaluation of Expressions
	Snímek 11: Evaluation of Expressions (Cont.)
	Snímek 12: Measures of Query Cost
	Snímek 13: Measures of Query Cost (Cont.)
	Snímek 14: Measures of Query Cost (Cont.)
	Snímek 15: Selection Operation
	Snímek 16: Selections Using Indices
	Snímek 17: Selections Using Indices
	Snímek 18: Sorting Relations
	Snímek 19: External Sort-Merge
	Snímek 20: External Sort-Merge (Cont.)
	Snímek 21: External Sort-Merge (Cont.)
	Snímek 22: Example: External Sorting Using Sort-Merge
	Snímek 24: External Sort-Merge (Cont.)
	Snímek 26: Join Operation
	Snímek 27: Nested-Loop Join
	Snímek 28: Nested-Loop Join (Cont.)
	Snímek 29: Block Nested-Loop Join
	Snímek 30: Merge-Join
	Snímek 31: Merge-Join (Cont.)
	Snímek 32: Hash-Join
	Snímek 33: Hash-Join (Cont.)
	Snímek 34: Hash-Join (Cont.)
	Snímek 35: Summary – Takeaways

