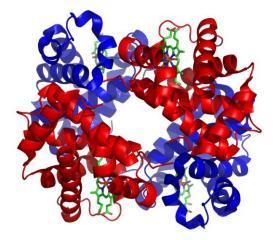
Determination of total protein concentration in body fluids

- proteins
- body fluids
- biuret reaction and its use in practice
- practical part: determination of protein concentration

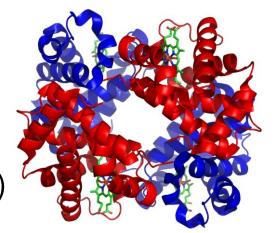

Proteins

- amino acids (AA) linked by peptide bond
- synthesis on ribosomes
- oligopeptides (2–10 AA), polypeptides (11–50/100 AA), proteins (more than 50/100 AA)

peptide bond

General function of proteins:

- structural
- transport and storage
- mediating movement
- catalytic, control and regulatory
- protective and defensive


Proteins

- amino acids (AA) linked by peptide bond
- synthesis on ribosomes
- oligopeptides (2–10 AA), polypeptides (11–50/100 AA), proteins (more than 50/100 AA)

peptide bond

General function of proteins:

- structural (collagen, elastin, keratin...)
- transport and storage (hemoglobin, transferrin...)
- mediating movement (actin, myosin...)
- catalytic, control and regulatory (enzymes, hormones, receptors...)
- protective and defensive (immunoglobulin, fibrin, fibrinogen...)

wiki: hemoglobine

Proteins

- amino acids (AA) linked by peptide bond
- synthesis on ribosomes
- oligopeptides (2–10 AA), polypeptides (11–50/100 AA), proteins (more than 50/100 AA)

peptide bond

Function of plasma proteins:

- immune (globulins) and hemostatic (fibrinogen)
- transport (albumins > non-polar fats, cholesterol, steroid hormones)
- oncotic pressure maintaining (albumins)
- pH maintaining (buffering)
- controlling and catalytic (hormones, enzymes)

Proteins in animal body fluids

 transport, storage, support function, etc. (matching the function of proteins)

Hydrolymph (echinoderms)

salt solution, few proteins and minimum of free cells

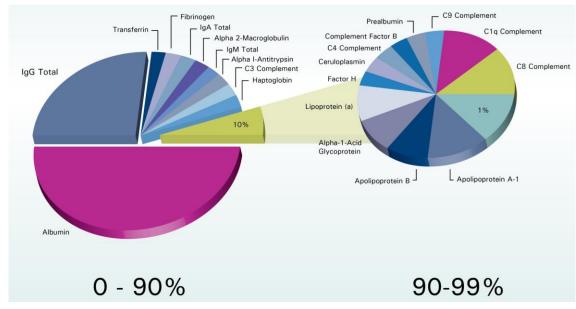
Hemolymph (insects, crustaceans, molluscs)

- open vascular system, hemolymph washes the organs
- population of free cells (hemocytes), total protein around 6 %
- various proteins:
 - storage proteins (vitellogenins = proteins that form the main component of yolk sac; more abundant in females compared to males)
 - transport proteins (lipophorins, transferrin etc.)
 - hormones (adipokinetic, prothoracicotropic, bursikon etc.)
 - immune proteins (lysozyme, coagulation proteins etc.)

Proteins in animal body fluids

Blood (vertebrates)

- plasma + blood elements
- transport of cholesterol, glucose, fats, ions (Fe, Cl and others)
- blood proteins (total protein 6-8%):
 - albumins (60 % of plasma proteins) bind water, transport Cu, Zn, fatty acids, hormones
 - globulins (40 % of plasma proteins) bind fat, hormones, immune reactions (Ig)


• fibrinogen etc. (<1 %)

Tissue fluid

extracellular fluid; free of plasma proteins

Lymph

- derived from tissue fluid
- immune and transport functions

Amniotic fluid, cerebrospinal fluid, perilymph and endolymph in the ear, aqueous humor in the eye and others.

Total protein concentration in vertebrate plasma

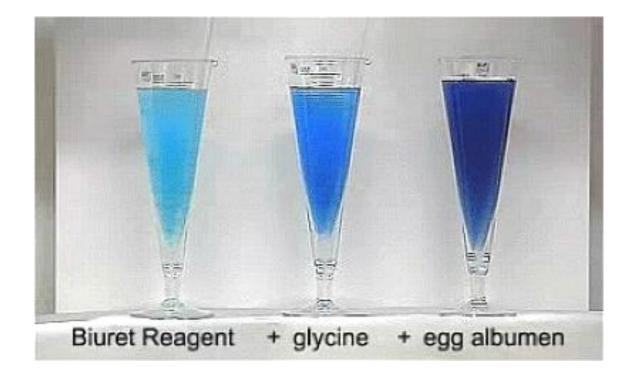
• indicative values only (selected from specific studies; relatively small number of individuals measured etc.)

Species	Total protein	Species	Total protein
	[g/l]		[g/l]
Grey parrot (Psittacus erithacus)	35-45	Cayman (<i>Caiman crocodilus</i>)	47
Cuban amazon (Amazona leucocephala)	29-51	Crocodile (<i>Crocodylus niloticus</i>)	65
Scarlet macaw (Ara macao)	26-43	Grass snake (<i>Natrix natrix</i>)	43
Parakeet (Melopsittacus undulatus)	14-36	Common European viper (<i>Vipera berus</i>)	55
Eurasian Goshawk (Astur gentilis)	24-31	Bengal monitor (<i>Varanus bengalensis</i>)	69
Pigeon (Columba livia)	15-35		
Wild duck (Anas platyrhynchos)	35-45	Cattle (Bos taurus)	65-80
		Pig (Sus domesticus)	65-85
Sturgeon (Acipenser sturio)	45	Horse (Equus ferus caballus)	46-70
Common carp (Cyprinus carpio)	41.5	Cat (Felis catus)	60-80
Rainbow trout (Oncorhynchus mykiss)	34.6	Dog (Canis familiaris)	60-80

Protein determination – biuret test

- evidence of proteins in the sample
- reaction with peptides formed by at least three AA
- biuret reagent: 6mM CuSO₄

5M NaOH


21mM C_4 H $_4$ KNa O_6 (chelaton 3)

Biuret

Copper Complex

Protein determination - biuret test

- in an alkaline environment, peptide bonds form a characteristic blue/violet-colored complex with copper salts = biuret
- the intensity of the color is proportional to the number of peptide bonds
- determination of specific proteins (electrophoresis, western blot, mass spectropmetry etc.)

Protein determination – lab practice

- sample limitations > scale-down
- commercial kits, e.g. Bio-Rad Protein Assay (Lowry method):
 - modification to microtiter plate
 - 5 μl sample/standard + 25 μl reagent A + 200 μl reagent B
 - after 15 min incubation measured at 700nm
 - calibration curve required

Practical part

- 1 ml biuret reagent + 20 µl blank/standard/sample > mix
 - blank (water) to eliminate the absorbance of biuret reagent itself
 - **standard** (commercial human serum with total protein concentration 70 g/l) to calculate total protein of other samples
 - **samples:** hemolymph of silkworms (female, male), serum or plasma of vertebrates (eg. mouse, cattle, dog, cat, carp, crucian carp, or others)
- 10-12 min incubation > visual assessment
- spectrophotometric absorbance measurement at 544nm
- Lambert–Beer's law: the concentration of a substance in a sample corresponds to its absorbance (directly proportional)

Total protein concentration in the measured sample
$$-c(g/l) = c_s \times \frac{A}{A_s}$$
 Absorbance of the standard

Protein concentration of the standard (70 g/l)

Practical part – What to pipette?

• name tubes > pipette according to example in the table:

Tube name	standard	blank	BM♂	ВМ♀	FBS	fish
Biuret reagent	1 ml	1 ml	1 ml	1 ml	1 ml	1 ml
Standard	20 µl					
Blank (water)		20 µl				
Silkworm hemolymph – male			20 µl			
Silkworm hemolymph – female				20 µl		
Fetal bovine serum (FBS)					20 μΙ	
Fish serum/plasma						20 µl
as well as other samples						