
Grid, HPC, Cloud & Containers for Computational
Biologists

RECETOX Bioinformatics

September 24, 2025

1

Motivation

• Local laptops/workstations are insufficient for modern bioinformatics:
• Large datasets (100s GB to TBs)
• Long runtimes (hours to days)
• High memory / many CPUs required

• Solution: distributed infrastructures — Grid, HPC, Cloud.

2

What is Grid Computing?

• Federation of compute & storage across multiple institutions.

• Users share resources through a unified access system.

• Scheduler manages who runs when.

• Best for many independent (“embarrassingly parallel”) jobs.

3

What is HPC?

• Centralized supercomputers with thousands of cores.

• High-speed interconnects (InfiniBand), shared parallel storage.

• Best for tightly coupled workloads (MPI, simulations).

• One big cluster, one scheduler.

4

What is Cloud Computing?

• Virtualized, on-demand infrastructure (AWS, Azure, GCP, OpenStack).

• Elastic scaling: spin up VMs/containers when needed.

• Good for bursty workloads, prototyping, custom environments.

• Pay-as-you-go vs. academic grids/HPC which are free but shared.

5

Comparison

Feature Grid HPC Cloud
Resources Distributed, federated Centralized supercomputer Virtualized, elastic
Access National/shared Institutional login Commercial account
Best for Many small jobs Large parallel jobs Flexible scaling

6

MetaCentrum (CZ national grid)

• Operated by CESNET, connects universities/institutes.

• Provides CPUs, GPUs, large memory nodes, storage.

• Scheduler: PBS Pro.

• Access via SSH frontend: ssh username@login.metacentrum.cz

7

Frontend nodes

• Entry point via SSH.

• Light work only: editing, compiling, job submission.

• Not for heavy computation.

8

Interactive jobs

qsub -I -l select=1:ncpus=4:mem=8gb -l walltime=02:00:00

• Opens a shell directly on a compute node.

• Useful for testing and debugging.

9

Batch jobs

Example script job.sh:

#!/bin/bash

#PBS -l select=1:ncpus=8:mem=16gb

#PBS -l walltime=04:00:00

#PBS -N fastqc_job

module add fastqc

fastqc data/*.fastq.gz -o results/

Submit with:

qsub job.sh

10

Scheduler basics

• Jobs wait in queue until resources are free.

• Resource requests: CPUs, memory, walltime.

• Commands:
• qsub job.sh — submit
• qstat — status
• qdel JOBID — cancel

11

Storage & environment

• Home directory: configs, small files.

• Project directories: /storage/... for large data.

• Module system to load software:

module avail

module add fastqc

• Use conda or containers if software not available.

12

Best practices

• Start small with interactive jobs.

• Scale up with batch jobs for real workloads.

• Keep raw data read-only, write results elsewhere.

• Monitor quotas and walltime limits.

• Document job scripts for reproducibility.

13

Practical exercises

1. Connect via SSH to MetaCentrum frontend.

2. Run an interactive job with 2 CPUs, 2 GB RAM, 30 min walltime.

3. Submit a batch script running fastqc.

4. Check status with qstat.

5. Explore software with module avail.

14

Containers in research computing

• Containers = portable, reproducible environments.

• Package OS libraries + software in one unit.

• Ensure analyses run the same across systems.

• Popular: Docker (workstations/cloud), Singularity (HPC).

15

Why Singularity?

• Docker needs root privileges — unsafe on HPC.

• Singularity runs containers without root, HPC-friendly.

• Integrates with job schedulers.

• Works like running any other program.

16

Using Singularity

Load module

module add singularity

Run from DockerHub

singularity exec docker://biocontainers/fastqc fastqc --help

Run from a local .sif image

singularity exec myenv.sif bwa mem ref.fasta reads.fq > aln.sam

Build an image (on a machine with Docker)

singularity build myenv.sif docker://ubuntu:22.04

17

Best practices with containers

• Use community images (e.g. BioContainers).

• Keep definition files under version control.

• Store containers in project storage for reuse.

• Combine with batch jobs for reproducible pipelines.

18

Summary

• Grid: federated resources (MetaCentrum).

• HPC: centralized supercomputers.

• Cloud: elastic, pay-as-you-go.

• Jobs: interactive vs. batch.

• Scheduler: request resources, monitor jobs.

• Containers: reproducible environments.

• Singularity: HPC-safe alternative to Docker.

19

