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Motivation

Analysis in R™:

e It is concerned with the study of differentiable/smooth functions
f:U—=R™ U C R" open.

e Sometimes already other domains than open subsets U C R" oc-
curred:
- Method of Lagrange multipliers to find local extrema of func-
tions f : R? — R subject to the condition that (z,y) € ¢g~1(0)
for g : R? — R.
- Theorems of Gaufl, Green and Stokes: domains called curves
and surfaces appear.

Such domains are called submanifolds (with or without boundary) in R™.

Plan of the Course:

e Generalise the differential and integral calculus from open subsets
of R™ to submanifolds of R”, which leads also naturally to the no-
tion of abstract manifolds.

e Manifolds can be equipped with various geometric structures and
as such they become objects of modern differential geometry:
— Hypersurfaces in R™ inherit from the inner product in R™ a
Riemannian metric. ~» Riemannian submanifolds of R™.
— Riemannian manifolds
— Symplectic manifolds
— Other geometric structures

e Lie Groups

— appear as symmetry groups of geometric structures
— appear in the study of PDEs

These lecture notes are mainly based /follow [2], [6], [7], [8] and [9].






CHAPTER 1

Smooth Manifolds

1.1. Submanifolds of R"

Submanifolds of R™ are sufficiently nice/regular subsets of R", on which
we can develop a differential and integral calculus as on open subsets of R".
What are some nice subsets?

For m < n consider the inclusion
R™ =R™ x {0} = R™ x R"™™ =R". (1.1)

Recalling that differentiability is a local concept, we may consider subsets of

R™ that locally have the form of (1.1).

DEFINITION 1.1. A subset M C R™ admits local m-dimensional triv-
ialisations, if for every x € M there exists an open neighbourhood U of z
in R™, an open subset V of R and a diffeomorphism ¢ : U — V such that

p(UNM)=VNR™ CR™ xR"™ =R".
We may also consider graphs of smooth functions g : RF — R~
gr(g) ={(z,g9(z)) :x € R} CR™ x R"™™ =R". (1.2)
Localising yields:

DEFINITION 1.2. A subset M C R™ is locally the m-dimensional
graph of a smooth function, if for every x € M there exists an open
neighbourhood U of x in R™, an m-dimensional subspace W C R", an open
subset V' C W and a smooth function g : V — W+ such that

UNM =gr(g) cWa W =R",

where W+ = {z € R" : (z,w) = 0 Vw € W} is the orthogonal compliment
of W in R™ with respect to the standard inner product (-,-) : R" x R” — R.

We may also consider zero sets of smooth regular functions. A smooth
function

f:U—=R"™™ U CR" open ,

is called regular at y € U, if the derivative D, f : R" — R"™™ is surjective.
It is called regular, if f is regular at all points of U. Note that if f is regular
at y, then it is so locally around y, since the rank of D, f is locally constant.

DEFINITION 1.3. A subset M C R" is locally the m-dimensional zero
set of a regular smooth function, if for every x € M there exists an open

7



8 1. SMOOTH MANIFOLDS

neighbourhood U of z in R™ and smooth function f : U — R"™" that is
regular at = such that

MNU=f10)={yeU: f(x)=0}.

Yet another nice class of subsets arise as images of open subsets of R™
under immersions into R™:

DEFINITION 1.4. A subset M C R" admits local m-dimensional parametri-
sations, if for every x € M there exists an open neighbourhood U of z in
R™, an open subset V' C R™ and a smooth map v : V' — U such that

o Dy R*F — R™ is injective for all y € V, and
e ¢ induces a homeomorphism onto its image: ¢ : V=2 M NU =

().

THEOREM 1.5. Assume M C R" is a subset of R™, 1 < m < n. Then
the following are equivalent:

(a) M admits local m-dimensional trivialisations.

(b) M is locally the m-dimensional zero set of a regular smooth function.
(¢) M is locally the m-dimensional graph of a smooth function.

(d) M admits local m-dimensional parametrisations.

The proof is based on the Inverse Function Theorem, which we recall
now:

THEOREM 1.6 (Inverse Function Theorem). Let U C R™ be an open
subset, F: U — R™ a smooth map, and x € U. If the derivative D, F : R" —
R™ of F at x is a linear isomorphism, then there exist open neighbourhoods

V of x and W of F(x) such that F(V) =W and
F‘V VoW
s a diffeomorphism.

PROOF. See Analysis/Calculus class. O

An immediate corollary is:
COROLLARY 1.7 (Implicit Function Theorem). Assume m < n. Suppose
fR®TxR"™ 5 R™
is a smooth function with f(0,0) =0 and
92f(0,0) := Do 0) flgn-m : R"™ = R*"™™

is a linear isomorphism. Then there exists locally a unique solution g(z) of
f(z,g9(x)) =0 and x — g(x) is smooth.

PROOF. Consider F' : R™ x R"™"™ — R™ x R"™™ given by F(x,y) =
(z, f(z,y)). Note that F' is smooth, F'(0,0) = (0,0) and

(1, 0
Dot = ( % azf<0,0>>



1.1. SUBMANIFOLDS OF R™ 9

is invertible. By Theorem , F~1 exists locally around (0, 0) and is smooth.
By construction of F, the local inverse F~! is of the form F~!(u,v) =
(u, G(u,v)) with G smooth. Hence,

f(.%',y):() — F($7y):($70)
— (xay) = F71<m70) = (ve('%O))
— y=G(z,0) = g(x).

O

PROOF OF THEOREM [L.5l

(a) = (b)

(€)= (d)

Assume x € M, U,V C R" open and ¢ : U — V a diffeomorphism
as in Definition Set f:=mo¢p : U — R*"™, where 7 :
R™ x R*™™ — R™ ™ is the natural projection. By construction,
f750) =U N M and f is smooth. Moreover,

Dyf = Dyymo Dy¢p =mo Dy¢: R" 2 R" - R"™™

is surjective for all y € U.

Assume x € M and f : U — R™™ as in Definition Then
D,f : R" — R™™ is surjective and ker(D,f) =: W C R" an
m-dimensional subspace. Identify R* = W @ W' and write = =
w+ wr. Then D, flyr : W — R?™™ is a linear isomorphism.
Hence, by Corollary there exists open neighbourhoods V- C W
and V' C W+ of w respectively w and a smooth function g : V —
vV’ C W+ such that

MOV xV)=fH0)nV xV')={(v,g(v));veV}.

Assume x € M, U,V ¢ W, and g : V — W+ as in Definition
. Now consider the map ¢ : V. — W @ Wt = R" given by
Y() = (v,g9(v)). It is smooth and (V) = M N U. Moreover,
since the natural projection my : W @ W+ — W is a continuous

left-inverse of v, i.e. my oy = Id, ¢ is a homeomorphism onto its
image. Also, for Dyt : W — W @ W one has

Dyy(w) = (w, Dygw) = (0,0) <= w = 0.

Assume x € M, V C R™ and U C R" open and ¢ : V — U as
in Definition Without loss of generality we may assume 0 € V
and ¥(0) = z. Then W := Im(Dpy) C R™ is an m-dimensional
subspace and we identify R” = W & W=. Now define

o:V x W+ R

O (v,w) := P(v) + w.
Note that ®(0,0) = = and with respect to the identification R™ =
W @ W+ the derivative of ® at (0,0) has the form

_ (Do 0
D<070>‘I’_< 0 IdWL>'

Hence, D p® : W & WL — R” is a linear isomorphism and, by
Theorem (1.6, there exist open subsets Vi € V, Vo ¢ W+ and
S C R™ with x € § such that & : V; x V5 — S is a diffeomorphism.
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Since Y 2V = UnNM is a homeomorphism, there exists an open
subset S C R" with (V) = SAM. Set U:=UnNnSNS C R™,
which is an open neighbourhood of x by construction, and define

¢ = (@71)\6 U — ¢(U):=V.

Then ¢ is a diffeomorphism between the open subsets U CR"™and
VCVlXVQCVXWJ_CRn Moreover, 1fy€MﬂU then in
particular y € M N S , which implies that there exists v; € V; such
that ¢ (v1) = y. Since y € S, this shows ¢(y) = (v1,0). Conversely,
if (v1,0) € VAW, then ®(v1,0) = ¢(v1) € U N M by definition of
. Hence, p(UNM)=VNW.

O

DEFINITION 1.8. Assume 1 < m < n are integers. A subset M C R"
is called a (smooth) submanifold of R" of dimension m, if M satisfies
any of the equivalent conditions in Theorem [I.5]

Note that as a subset of R™ a submanifold M C R” inherits a topology
from R"™, namely the subspace topology:

UCMisopen < U = UNM for some open subset U CR"

REMARK 1.9.

e If one replaces smooth/C™ everywhere by C” for 1 < r < oo or
by C“, one obtains the notion of C"-submanifolds respectively real
analytic submanifolds of R™.

e Similarly, if one replaces R by C and smooth by holomorphic, one
obtains complex submanifolds of C".

e Replacing C*° in Definition by C° leads to topological sub-
manifolds of R™. In this case, not all the definitions are
equivalent! Definition is stronger than

Some trivial examples and natural constructions:

EXAMPLE 1.1 (Open subsets). Any open subset U C R" is an n-dimensional
submanifold of R™ and all n-dimensional submanifolds of R™ are of this form.
More generally, any open subset of a submanifold in R" is again a subman-
ifold (of the same dimension). Note also that of course any open subset
of R™ can be seen as an n-dimensional submanifold of R¢ via the standard
inclusion R” < R% for n < d.

EXAMPLE 1.2 (Products). If M C R® and K C R’ are submanifolds of
dimensions m respectively k of R” respectively RY, then

M x K C R" x Rt = R"**
is an m + k dimensional submanifold of R™ x R¢.
Some non-trivial examples:

ExAMPLE 1.3. Consider R™*! equipped with its standard inner product
(-,-) : R™*1 x R™*+! 5 R. Then the n-dimensional (unit) sphere

M= {z e R™:||z|| =1} c R™!
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is the prototypical example of an m-dimensional submanifold of R™*!. For
m = 1, one gets the unit circle S' in R%. To see this, note that S™ can be
described globally as the zero set of the smooth function f : R™*1\ {0} — R
given by f(z) = (z,z) — 1, i.e. f71(0) = S™. Since for any x € R™+1\ {0}
and v € R™*! one has

D,fv= %\t:()(l‘ +tv,x+tv)y —1= %’t:0<$,$> + 2t(x,v) + 3 (v, v)
= 2(z,v),

the derivative D,f : R™*! — R is surjective by non-degeneracy of (-, -).
Hence, f is regular.

ExXAMPLE 1.4. For fixed positive real numbers ay,...,a,+1 € Rsg con-
sider the function

f:]RimH\{O}—HR{

2 m—+41 2
f(@1, .0, Tns1) Z% Z %
@ i=d+1 a;
It is smooth and regular. Hence, f~1(0) := M is an m-dimensional sub-

manifold of R™*!. Depending on d, these submanifolds are m-dimensional
ellipsoids or hyperboloids.

EXAMPLE 1.5. Consider C™ = R?™ as real vector space. Then
"= {2€C": |z = ... = |z4| = 1} CR?™

is an m-dimensional submanifold of R?*™, since f~1(0) = T™, where f :
C™\ {0} — R™ is the smooth regular function given by

f(z1y e zm) = (|21l = 1, . lzm] — 1).
Of course, also
T =St x .. x ST CR? x ... x R =R?™,
m—times m—times

so T™ is an m-dimensional submanifold of R?™ by Examples and It
is called the m-dimensional torus.

EXAMPLE 1.6. Consider the vector space Hom(R™,R™) of linear maps
from R™ to R™. Via a choice of basis of R"”,

Hom(R™, R™) 2 M,y n(R) = R™,

where M,,.,(R) denotes the vector space of real n x n matrices. Since the
determinant det : M,,«,(R) — R is continuous (polynomial in the eneries of
the matrix), the subset

GL(n,R) := {A € Myyn(R) : det(A) £ 0} € Myyn(R) (1.3)

is open and as such an n?-dimensional submanifold of M, x,(R) = R
Note that GL(n,R) is also a group with respect to matrix multiplication. It
is called the general linear group.
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In fact, det : GL(n,R) :— R is smooth and also regular, since for any
A € GL(n,R) one has

(D4 det)(A) = %ytzo det(A + tA)

- %’t:(] det((1+1¢)A) = %H:o(l +t)"det(A) = ndet(A) # 0,

which shows that D4 det : My, (R) — R is surjective for all A € GL(n,R).
Hence, also f := det—1 : GL(n,R) :— R is a smooth regular function.
Therefore,

SL(n,R) := f71(0) = {A € GL(n,R) : det A = 1} C My,»n(R)

is an (n? — 1)-dimensional submanifold of M, x,(R). It is also a group with
respect to matrix multiplication, called the special linear group.
Now consider the map

f:GL(n,R) = M,xn(R)
F(A) = AA" —1d
and set
O(n) := f10) = {A € GL(n,R) : AA" =1d}. (1.4)
Note that f(A)! = f(A). Hence, f has values in the subspace M.% (R) C

nxn
M« (R) of symmetric n x n-matrices. The function

n(n+1)

f:GL(n,R) = MY (R) =Rz

nxn

is obviously smooth. To see that it is also regular, note that (A4, B) — AB!
is bilinear as a map M, xn(R) X M, xn(R) — M, xn(R). Therefore, for any
A € GL(n,R) and B € M,x,(R), one has DofB = AB! + BA!. So, if
A € 0(n) and S € M7\ (R) is arbitrary, then for B := 1SA one has

nxn

_1 t gt t _1 t _
DafB = (AALS' +SAA) = J(S' + ) = S,

=Id =Id
which shows that Daf : Myxn(R) — M0 (R) = RS s surjective for
any A € O(n). Therefore, the set O(n) of orthogonal n x n-matrices is

a submanifold of R™ of dimension M. It is also closed under matrix

multiplication and hence a group, called the orthogonal group.

For submanifolds of R", we have an obvious notion of defining smooth
maps between them:

DEFINITION 1.10. Suppose M C R" is an m-dimensional submanifold.
e Amap f: M — R’ is smooth, if for every point z € M there
exists an open neighbourhood U of z in R" and a smooth function
f:U — R’ such that f|Mﬂﬁ = flyno-
e For a k-dimensional submanifold K ¢ R a map f : M — K is
smooth, if it is is smooth as a map M — R

It follows immediately that constant maps, the identity map and com-
position of smooth maps are smooths.
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DEFINITION 1.11. Suppose M C R™ is an m-dimensional and K C R¢ a
k-dimensional submanifold.

e Amap f: M — K is called a diffeomorphism, if f is a smooth
bijection with smooth inverse. We call M and N diffeomorphic,
if there exists a diffeomorphism between them.

e A local diffeomorphism between M and K is a smooth map
f:+ M — K such that for any € M and f(z) € K there exist
open neighbourhoods U € M and V' C K of x respectively f(z)
such that f|y : U — V is a diffeomorphism.

Note that diffeomorphic manifolds have necessarily the same dimension, i.e.
m=k.

ExaMPLE 1.7. Note that matrix multiplication
o Mysn(R) X Myyn(R) = My xn(R) w(A,B) = AB
is smooth, since it is just polynomial in the entries of the matrices. Hence,
if G = GL(n,R),SL(n,R) or O(n), then also u : G x G — G is smooth as

a restriction of a smooth map. Therefore, (G, ) is a Lie group, that is, a
(sub-)manifold with a smooth group structure.

To understand smooth maps better we introduce the concept of charts,
which will be also key for the notion of abstract manifolds.

DEFINITION 1.12. Suppose M C R" is an m-dimensional submanifold.
A (local) chart (or coordinate chart) for M is a diffeomorphism

u:U—=V,

where U is an open subset of M and V' an open subset of R™. Note that such
a chart v : U — w(U) =V C R™ associates to each point z € U coordinates
in R™:

u(z) = (u(z),...,u™(2)) € V. C R™,
The functions v’ : U — R are smooth and called the local coordinates
associated with the chart (U, u).

LEMMA 1.13. Suppose M C R" is an m-dimensional submanifold and
YV = U a local parametrisation for M, where U C R™ and V C R™ are
open subsets. Then,

wi=y U=V, U:=UnM,
defines a chart for M. Conversely, given a chart w : U — V, then U =

UNM for an open subset U C R" and u™! : V — U — U defines a local
parametrisation.

PrOOF. The map ¢ : V — U is bijective and smooth, since it is smooth
as a function V — U. It remains to show that the inverse 1)~ ! is smooth. By
(d) = (a) in the proof of Theorem For any 2 € U = UNM there exists
an open neighbourhood U’ C R™ of z and an (n — m)-dimensional subspace
W+ c R™ and an open neighbourhood V' of (¢~*(z),0) in V x W+ such
that ® : V' — U’ given by ®(y,w) = ¥(y) + w is a diffeomorphism. Hence,
1 U' N M — R™ is given by pr; o CI?]E,IQM, where pry : V x Wt =V,
which is the restriction of a smooth map pr; o ®~! from U’ C R" to V. [
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Suppose M C R™ and K C R¢ are submanifolds of dimension m and k
respectively and let f : M — K be a continuous map. Fix x € M and let
(U,u) be a chart for M with = € U and (V,v) a chart for K with f(z) € V.
Then u(f~1(V)NU) C R™ is open and

vofou Tl u(fH(V)NU) = v(V)

is a continuous map between open subsets of R™ and R¥. With respect to
(U,u) and (V,v) we can therefore write it as

f=(f1, fr)s
where v/ (f(y)) = f;(ut(y),...,u™(y)) or short v/ = f;(ul, ..., u™).

DEFINITION 1.14. We call (f1, ..., fx) the local coordinate expression
of f with respect to (U,u) and (V,v).

THEOREM 1.15. Suppose M C R™ and K C R’ are submanifolds of
dimension m and k respectively and f : M — K a map. Then the following
are equivalent:

(a) f is smooth.

(b) f is continuous and for every x € M there exist charts (U,u) for M
with x € U and (V,v) for K with f(x) € V such that vo fou™!:
u(f~X(V)NU) — v(V) is smooth.

(c) f is continuous and for every x € M and every chart (U,u) for M
with x € U and every chart (V,v) of K with f(x) € V the map
vofou l:u(f~H(V)NU) — v(V) is smooth.

(d) f is continuous and has smooth local coordinate expressions with
respect to some charts.

(e) f is continuous and has smooth local coordinate expressions with
respect to arbitrary charts.

ProOF. Evidently, (b)) <= (d) and (¢) <= (d) and (¢) = (b).
Moreover, since compositions of smooth functions are smooth, we also have
(a) = (c). It remains to show that (b)) == (a): assume vo fou~!
is smooth. Since u : U — uw(U) C R™ is smooth, for every z € U there
exist an open neighbourhood U in R"™ and a smooth map w : U — R™
such that @l 5 = ul,,z. Note that @~'(u(U)) C R™ is open and hence
@ Y (uw(U)) — u(U) smooth. Set

fi=vtowofouYou:a t(uU)) — V.

Then f is smooth as a composition of smooth functions and for any y €
@ (u(U))NU, one has f(y) = f(y). O

1.2. Abstract Manifolds

As we shall see it is useful to introduce the concept of abstract manifolds,
which is based on the notion of charts.

DEFINITION 1.16. Suppose M is a topological space.

(a) A chart with values in R™ for M is a homeomorphism u : U —
u(U) from an open subset U C M onto an open subset u(U) C R™.
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(b) A C*-atlas of charts with values in R™ for M is a family of
charts with values in R™,

A={(Uy,uy) : a € I},

such that
-~ M =J,ec; Ua, and
— for any two charts (Ua,us) and (Ug,ug) in A the transition
map (or corresponding coordinate change)

Upe = ug o uyt : ua(Us NUg) — ug(Usy NUp) (1.5)

is smooth.
Note that ug, is a map between open subsets of R™, hence it makes
sense to require it to be smooth. Moreover, ug, is inverse to u.g,
hence the transition maps are diffeomorphisms.

There is a natural notion of equivalence for atlases.

DEFINITION 1.17. Two atlases for a topological space M are called equiv-
alent (or compatible), if their union is again an atlas for M.

Note that any atlas A is contained in a unique maximal atlas A« given
by the union of all atlases compatible with A.

DEFINITION 1.18. A (smooth) manifold of dimension m is a second
countable Hausdorff topological space M equipped with a maximal C*°-
atlas of charts with values in R™, or equivalently, with an equivalence class
of C*®-atlases of charts with values in R™.

REMARK 1.19.

e Similarly, one may define C*-atlases for 0 < k < oo or k = w and
C*-manifolds respectively real analytic manifolds.

e Atlases wit values in C" and requiring the transition maps to be
holomorphic leads to holomorphic atlases and the notion of complex
manifolds.

REMARK 1.20. Suppose M is a topological space such that every point
admits an open neighbourhood homeomorphic to an open subset of R™, i.e.
M 1is a topological manifold. Then the following are equivalent:

e M is Hausdorff and second countable.

e M is metrisable and separable (i.e. there exists a countable dense
subset).

e M is Hausdorff, paracompact and has only countably many con-
nected components.

ExamMpLE 1.8. By Lemma [1.13] any submanifold M of R” of dimension
m is in a natural way an m-dimensional manifold.

EXAMPLE 1.9. Let us construct a smooth atlas for the m-sphere S™ C
R™*!. Fix p; € 8™ as ,north pole’ and denote by ps := —p; the correspond-
ing ,south pole’. Then U; := S™ \ {p;} for i = 1,2 are open subsets of S
such that

S™ =U; UUs.
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Now stereographic projection gives rise to a chart u; : U; — R™ = pf‘ by
mapping = € U; to the point of the intersection w;(z) of the line (1—\)p;+A\x
through x and p; with the hyperplane pf‘ C R™*! Since

0= (p1, (1 = Npi + Az) = [|pil|* = Aps, (pi — )) = 1= Mps, (pi — ),

we get that A = <pi’(p1i7x)> = 1701%@). Hence, for ¢ = 1,2 stereographic

projection is given by

u;  U; — R™ = pf‘
1

— (& = (pi, 2)pi),

T (o Peom)

which is obviously continuous. Moreover, it has an inverse given by mapping

a point y € piL to the point of intersection u;l(y) = z of the line through y
and p; with S™. If we write x = p; + pu(y — p;), then

ui(x) =

1= (z,2) = (pi, pi) +20(pi, (v — p)) + 1> ((y — pi), (v — i),
=1

2(ps,(Pi—y))  _ 2
(y—pi),(y—pi)) [yll2+1-

which implies that © =0, i.e. x = p;, or p = 7 Hence,

one has
ui_l :R™ — U;

u; ' (y) 2y — (lyII* = 1)ps),

1yl
which is also continuous. Therefore, the maps u; are homeomorphisms. To
see that they define a smooth atlas for S™ we have to compute their transi-
tion map. Note that ui(U; N Usz) = ua(Up NUsz) = R™ \ {0} and one easily
verifies that

ug ouyt : R™\ {0} — R™\ {0}

y
Yy
[lyl?

which is smooth.
Motivated by Theorem [1.15| we define:

DEFINITION 1.21. Suppose M and N are smooth manifolds with maxi-
mal atlases Ajp; and Ay respectively. Let f: M — N be a map.

(a) f is smooth (or C*°) at x € M, if there exist charts (U,u) € Ay
with € U and (V,v) € Ay with f(x) € V such that

vofou l:u(UN f_l(V)) — (V)

is smooth. Moreover, f is called smooth, if it is smooth at all
points.

(b) f is a diffeomorphism, if f is a smooth bijection with smooth
inverse.

(c) We say that M is diffeomorphic to N, if there exists a diffeomor-
phism between them.
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Note that (a) is independent of the choice of charts, since the transition
maps are smooth, cf. Theorem [1.15 if (U;,w;) € Ay and (Vi,v;) € Ay for
1 =1,2, then
w0 fouyt = (vpovt)o(vio fourt)our oy
DEFINITION 1.22. Suppose M and N are smooth manifolds with maxi-
mal atlases Ajys and Ay respectively. Let f: M — N be a smooth map.

(a) f is an immersion (respectively a submersion) at z € M, if
there exist charts (U,u) € Ay with x € U and (V,v) € Ay with
f(z) € V such that

vofout:u(UNfHV)) = u(V)

is an immersion (respectively submersion) at u(z).

(b) f is called of constant rank 7 on an open subset W C M, if
for every x € W there exist charts (U,u) € Ay with z € U and
(V,v) € Ay with f(z) € V such that the derivative of

vofou t:u(UnNfHV)) = u(V)
at u(z) is of rank r.

As we already noticed any submanifold of R™ is natural a smooth man-
ifold. In fact, also the converse is true by a Theorem of Whitney: Any
m-dimensional manifold is diffeomorphic to a (smooth) submanifold of R?™.
The notion of abstract manifolds is however nevertheless useful, since is often
easier to construct an atlas to show that a topological space can be given the
structure of a smooth manifold then to realise that space as a submanifold
in some R™. An example that demonstrates that well is the following:

EXAMPLE 1.10 (Projective space). Consider the set of lines through 0 in
R™*1! given by the quotient

RP™ :=R™ 1\ {0}/ ~,

where z,y € R™*! are equivalent, denoted by x ~ y, <= there exists
A € R\ {0} such that z = Ay. Denote by

7 R™1\ {0} - RP™
Loloa™t
homog. coordinates

the natural projection, where x = (x!,...,2™*1) denotes the standard coor-

dinates in R™*!. Then we may equip RP™ with the quotient topology with
respect to m:

UCRP™isopen <= 7 Y(U)c R™!\ {0} is open .

Recall that for this topology a map f : RP™ — X for some topological space
X is continuous <= fox:R™ 1\ {0} = X is continuous.
Note that for i = 1,...,m + 1 the subset

Up={[z': ... : 2™ € RP™: 2" #£ 0} C RP™
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is open, since 7~ 1(U;) is, and RP™ = Uf’;{l U;. For i = 1,...,m + 1 define
now
U - Ui — R™
2l piml it 2

willet e = (G ),

Evidently, u; is evidently continuous, since u; o 7 on 7~ (U;) is. Moreover,

(b ™) = e et ™)
defines a continuous inverse. Hence, u; : U; — R™ is a homeomorphism. To
show that the u;’s define a smooth atlas for RP™ it remains to verify that

the transition maps are smooth. Note that for ¢ < j one has
wi(U;NU;j) = {z € R™ : 2971 £ 0}
For ¢ +1 < j the transition map is give by

wjou;t u (Ui NU;) — uj(U; N U ) (1.6)
) R e S
(1.7)
and for i +1 = j it is given by
(@) 2™ (zl “:Elxl ”””; %m)

In either case it is smooth. Similarly, one verifies that u; o ui_l is smooth for
J < i. Hence,

A={U,w;):i=1,...m+ 1}
defines a smooth atlas for RP™. Therefore, RP™ is an m-dimensional man-
ifold, called m-dimensional projective space.

The category of smooth manifolds respects the operations of taking finite
products and restrictions to open open subsets.

EXAMPLE 1.11. Suppose M is a smooth manifold with atlas A = {(U;, u;) :
i €1} and U C M an open subset. Then Al := {(U NUj,wilvny,) : i € I}
defines an atlas for U.

EXAMPLE 1.12. Suppose (M;, A;) are smooth manifolds for i = 1, ..., n.
Equip M := M x ... x M, with the product topology. Then

A:={(U1 X ... x Up,ug X ... X uy): (Ui,u;) € A}
defines an atlas on M for which the natural projections pr; : M — M, are
smooth. The product M has the following universal property: If N is a
manifold and f; : N — M; are smooth functions, then there exists a unique

smooth map f : M — N such that pr; o f = f;. This characterises the
manifold structure on M uniquely.

We also have a natural notion of submanifolds of manifolds.

DEFINITION 1.23. Suppose (NN, A™#*) is a manifold of dimension n and
m < n. A subset M C N is a submanifold of N of dimension m, if for any
x € M and any chart (U,u) € A™ with x € U the subset w(U N M) C R"
is a submanifold of R™ of dimension m.
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Note that in Definition [I.23]it is enough to ask for one such chart around
point x € M and that for N = R" the definition coincides with Definition
Given a submanifold M of a manifold (N, A4™*¥) then for any z € M
we can find (U, u) € A™** such that u|ynpr has values in R™ = R™ x {0} C
R™ x R™ ™. Then the tuples (U N M, u|yny) for such charts (U, u) € A™>*
form an atlas for M making M into an m-dimensional manifold. This is
called the standard manifold structure of the submanifold M C N. It
has the following universal property:

PROPOSITION 1.24. Suppose (N, A™*) is a manifold and M C N a
submanifold. Then the inclusion i : M — N is a smooth injective immersion
and the standard manifold structure on M is the unique one satisfying the
following universal property: for any manifold P a map f : P — M is smooth
< jof: P — N is smooth.

PROOF. Note first that the standard manifold structure M C N satisfies
the universal property: with respect to charts ¢ o f has locally the form

R Ly rm & R

which is smooth < RP? i> R™ is smooth. Applied to f = Ids this shows
that 4 : M — N is smooth. It remains to shows that this property charac-
terises the manifold-structure on M uniquely. Suppose M is equipped with
two different manifold structures satisfying the universal property, the stan-
dard one B™** and another one C™**. Then Id : (M, B™*) — (M,C™**) and
its inverse are smooth <= i : (M, B™*) — (N, A™) and i : (M,C™) —
(N, Am#%) are. The latter are smooth, since (M, B™**) and (M,C™**) sat-
isfy the universal property and hence, as we observed, this implies that the
inclusion into (N, A™#*) is smooth. O

DEFINITION 1.25. Suppose M and N are manifolds. Then a smooth
map f: M — N is called a (smooth) embedding, if the following holds:
(a) f: M — f(M) is a homeomorphism
(b) f: M — N is an immersion.

Images of embeddings are submanifolds:

PROPOSITION 1.26. Suppose M and N are manifolds of dimension m
and n respectively. Then f: M — N is an embedding <

(a) f(M)C N is a submanifold of N.
(b) flar: M — f(M) is a diffeomorphism.

PROOF.

"<’ By Proposition and (b), the map f : M — N is a smooth immer-
sion.

"= Since f : M — f(M) is a homoemorphism, it remains to show that
f(M) C N is a submanifold and that f : M — f(M) is a local diffeomor-
phism. Both properties are of a local nature, so we only need to verify it
locally around any point z € M and f(x) € N. Fix x € M, a chart (U, u)
for M with € U and a chart (V,v) for N with f(xz) € V. Since f is a
homoemorphism onto f(M), we may assume f(U) C V N f(M). Replacing
f by vo fou! reduces the statement to the case where M and N are open
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subsets of R™ and R"™ respectively and the result follows from Theorem
(i.e. existence of local parametrisations). O

PROPOSITION 1.27. Suppose M and N are manifolds of dimension m
and n respectively and f : M — N a smooth map of constant rank r. Then
for any y € f(M), f~1(y) C M is a submanifold of dimension m —r in M.

PROOF. Being a submanifold is a local property, hence taking charts we
can reduce the problem to open subsets of R™ and R™. The results then
follows from an exercise in the tutorial. O

REMARK 1.28. View M = R as a topological manifold. Then 4; = {id :
R — R} and Ay = {u(z) = 2® : R — R} are not compatible C*-atlases,
since u ! oid is not smooth, but (M,.A;) and (M, As) are diffeomorphic via
f= \3/5: (M, Ay) = (M, As).

REMARK 1.29.

o If k < k' are elements of Z~o U {oo,w}, then any C*-manifold is
C*-diffeomorphic to a C¥-manifold. If two C*'-manifolds are C*-
diffeomorphic, then they are C* _diffeomorphic.

e Any topological manifold of dimension < 3 admits a unique C*-
structure. If two C*-manifolds of dimension < 3 are homeomorphic,
they are C¥-diffeomorphic.

e There are topological manifolds without any C'-structure and there
exist some with many different differentiable structures. For S™
the diffeomorphism classes of C'°°-structures are known in some
dimensions:

m <3 45 6 7 8 9 10 11 12 13 14 15..
Diffeo. classes 1 7 1 1 28 2 8 6 992 1 3 2 16256 ..
In dimension 4, the classification of topological and smooth
manifold differs. For m # 4, R™ has unique smooth structure,
but R?* has uncountably many!
e The classification of topological manifolds of dimension 1 and 2 is
known:

— Any connected 1-dimensional manifold is homeomorphic to R
or St.

— Any 2-dimensional connected compact manifold is homeomor-
phic to the connected sum of g > 0 copies of T2 or g > 1 copies
of RP?, and any of them are not homeomorphic. They admit
a unique smooth structure, but many different holomorphic

structures ~» Theory of Riemann surfaces.

1.3. Partitions of Unity

To extend local constructions and locally defined objects to global ones
we need a natural way to ’glue’ them. For that we need functions which only
locally do not vanish, are > 0 and sum up to one. Such functions are called
partitions of unity. In particular, the existence of partitions of unity implies
the existence of globally defined smooth functions on manifold.
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DEFINITION 1.30. Suppose M is a manifold.
(a) For a map f: M — R* the support of f is defined by

supp(f) :={z € M : f(z) # 0}.
(b) A (smooth) partition of unity on M is a family
F={fi:M—->R:iel}
of smooth real-valued functions satisfying:
(i) F is locally finite: for any z € M there exists an open neigh-
bourhood U, C M of z such that the set {i € I : supp(f;) N
U, # 0} is finite;
(ii) Any f € F has values in [0, 1];
(iii) For any x € M, > . ; fi(z) = 1.
Note hat the sum in (#i¢) is finite by (7).

DEFINITION 1.31. Suppose M is a manifold.

(a) An open cover of M is a family U := {U; : j € J} of open subsets
Uj C M such that M = J,c,Uj.

(b) A partition of unity F :={f; : M — R:i € I} on M is subordi-
nate to an open cover U := {U; : j € J} of M, if for every i € I
there exists j € J such that supp(f;) C Uj.

THEOREM 1.32. Suppose M is a (smooth) manifold and U := {U; : j €
J} an open cover of it. Then there exists a (smooth) partition of unity of
countably many functions F := {fr : M — R : k € N} subordinate to U.

For a proof of this theorem see e.g. [7, Theorem 2.18|, but let us just
mention that, apart from the topological assumptions we made in our defi-
nition of a manifold, key to Theorem [1.32]is the following:

LEMMA 1.33. For any xg € R™ and any open neighbourhood U C R™ of
xg, there exists a smooth function f : R™ — R with supp(f) C U, f >0 and

f(l’o) > 0.
PROOF. Let p: R — R be the function
1
e 2, ift>0
t) = ’ ’ 1.8
plt) {0, ift<0. (18)

It is smooth (but not real-analytic around 0). There exists € > 0 such that
Bae(z9) = {z € R™ : ||z — z¢|| < 2¢} C U. Then define the following smooth
function

f:R™ =R (1.9)
f(x) = p(e* = ||z — ol ). (1.10)

Note that f(z) > 0 for all x € R™, since p > 0, and that f(x) > 0 if and
only if x € Be(zo). In particular, f(zg) > 0. Moreover,

supp(f) = {x e R™ : ||z — xo|| < e} C U.
U

REMARK 1.34. On complex manifold there exist no holomorphic parti-
tions of unity.
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Typical applications of partitions of unity are:

COROLLARY 1.35. Suppose M is a manifold, U C M an open subset,
A C M a closed subset with A C U. Then the following holds:

(a)
(b)
()

There ezists a smooth function ¢ : M — [0, 1] such that supp(¢) C
U and ¢(z) =1 for all z € A ("Bump function’).

If f : U — RF is a smooth function, then there exists a smooth
function f: M — R* such that fls = f|a.

Suppose M C R" is a submanifold and f : M — R* a smooth
function. Then there exist an open subset U CR" with M C U and
a smooth function f: U — R* such that f|M = f.

PROOF.

(a)

Set V := M\ A, then {U,V} is an open cover of M. By Theorem
there exists a partition of unity F := {fx : M — R : k € N}
subordinate to {U,V'}. Hence, for f; € F either supp(fx) C U or
supp(fx) N A =0. Let ¢ : M — [0, 1] be the sum of all fj such that
supp(fx) C U. Then ¢ has the required properties.

Choose ¢ as in (a) and define

= o Jf@e(x), ifrel,
f(x)_{o, ifz € M\U.

Since supp(¢) C U, the open subsets U and M \ supp(¢) form
an open cover of M and f is smooth on both, hence on M. By
construction, f|4 = f, since ¢ equals 1 on A.

By definition of smoothness, for every x € M there exist an open
neighbourhood U, C R™ and a smooth function fo U, — RF
such that fm\U v = flg, M Consider the open subset U :=
U. MU C R". Then U = {U, : = € M} is an open cover of U.
By Theorem [1.32] [1.32] there exists a partition of unity of {¢ : £ € N}
of U subordinate to U. For each ¢ € N choose Ug € U such that
supp(¢¢) C U, and write fy for the corresponding function. As in

(1.11)

(b) we can extend fede by 0 from a smooth function on Ug to a
smooth function U — R¥. Then

F=>_ fide

leN
defines a smooth function U — RF. Moreover, for x € M,

= fil@)ge(x) =) f(x)e(w) = (@)D ulw) =

LeN leN leN
1



CHAPTER 2

The Tangent Bundle

For a smooth map f : R™ — R", the derivative D, f : R™ — R" of f at a
point x € M is the best linear approximation of f near . To generalise this
to maps f : M — N between manifolds we need first a linear approximation
of M at x, which is called the tangent space T, M of M at x. The derivative
of f at x will be a linear map T, M — Ty, N.

2.1. The tangent space of a submanifold of R"
For an open subset U C R™ and x € U we set
T,U = {(z,v) : v € R™}.

Note that T,U is a vector space: (z,v) + Az, w) = (z,v + Aw) for A € R,
which is called the tangent space of U at x. It is a copy of R™ with origin
at .

For a smooth map f : U — R" the tangent map of f at x € U is given
by the linear map

Tzf T, U — Tf(x)Rm
T f(z,v) = (f(x), Dafv).
Under the identification T,U = R™ and T,)R" = R", T, f equals D, f.

Sometimes we also simply write Ty, fv = D, fv.

PROPOSITION 2.1. Suppose M C R" is a submanifold of dimension m <
n and fiv x € M. Then the following subset of T,R™ coincide:
(a) {(c(0),d(0)) : ¢ : (—€,€) = M smooth curve ,e > 0,c¢(0) = z},
where the derivative of ¢ is taken as a curve in R™.
(b) Im(Tyv)), where ¢ : V. — U C R™ is a local parametrisation for M

with P (y) = .
(c) ker(Tyf), where f: U — R™™™ is a local presentation of M as the
zero set of a reqular smooth function f (i.e. f~1(0) =M NU).

In particular, the subset of T,R™ given by any of these equivalent descriptions
s an m-dimensional subspace of T, R™.
ProoOF.
(b) C (a) By definition of ¢, Ty : T,V — T,U is an injective linear map.
Hence, Im(Tyy) C T,U is an m-dimensional subspace of the n-

dimensional vector space T, U = T,R". For any (y,v) € T,V there
exists € > 0 such that y+tv € V for |t| < ¢, since V is open. Hence,

c:(—e€) > M
c(t) =¥y + tv)

23
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is a well-defined smooth curve with ¢(0) = z. Moreover, ¢/(0) =
Dyyv. Hence, Ty (y,v) = (¢(0),(0)).

(a) C (¢) For any smooth curve ¢ : (—¢,e) — M with ¢(0) = z there exists
¢ > 0 such that ¢((—€,€)) € M NU, since U is open. Then the
smooth map foc: (—€,€) — R" ™ is identically zero. Therefore,
0= Dy(foc)=D,fd(0) and so (c¢(0),(0)) € ker(T,f).

In summary, (b) C (a) C (¢). Moreover, since Dy f : R® — R"™™ is surjec-
tive, ker(T, f) C T,R™ is an m-dimensional subspace. Hence, by dimensional
reasons, we must have (a) = (b) = (c). O

DEFINITION 2.2. Suppose M C R" is an m-dimensional submanifold
of R®. For x € M the tangent space of M at x, denoted by T, M, is
the m-dimensional subspace of T,R"™ defined by any of the three equivalent
descriptions in Proposition 2.1

ExampLE 2.1. If U C R" is an open subset, then Idy; : U — U is a global
parametrisation of U and so T, U = T,R", which justifies our definition of
T, U for open subset sets at the beginning of Section 2.1.

EXAMPLE 2.2. Consider the m-sphere S™ C R™*!. Recall that f~1(0) =
S™ where f : R™1\ {0} — R is the smooth function f(z) = (v,z) — 1.
Then for x € S™, the tangent map T, f : T,R™*! — TyR = R of f at x is
given by

T.f(z,v) = (0, Dy fv), veR™
Since D, fv = 2(x,v), one has
T.S8™ = ker(Ty.f) = {(2,v) € T,R™ : (x,v) = 0}

EXAMPLE 2.3. Since GL(n,R) C Myxn(R) is an open subset, for any
A € GL(n,R) the tangent space of the general linear group at A is given by

2

TAGL(n,R) = {(4,X) : X € Mpxn(R)} = Myun(R) ZR™.
ExaMPLE 2.4. Consider the orthogonal group
O(n) = {A € GL(n,R) : A™! = A},
Recall that O(n) = f~1(0) for the smooth function

(n+1)n
2

f: GL(n,R) » MI™(R) = R
f(A) = AA" —1d
and that for A € O(n) one has
Taf : TAGL(n, R) = To M50 (R) = M55 (R)
Taf(A, X) = (0,AX" + X AY).
Hence, for A € O(n), one obtains
T40(n) = {(A, X) € TAGL(n,R) : X' = —A7'X A}.

In particular,

(n—1)n

T1aO(n) = {(Id, X) € TiqGL(n,R) : X! = —X} = MV(R) 2 R~ 2

nxn
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REMARK 2.3. Let us remark that in the previous two examples the group
structure on GL(n,R) and O(n) induces on the tangent spaces at the identity
of GL(n,R) respectively O(n) the structure of a so-called Lie algebra, where
the Lie bracket is given by the commutator of matrices. The tangent spaces
at the identity of GL(n,R) and O(n) are usually denoted by gl(n,R) respec-
tively o(n) and are called the Lie algebra of GL(n,R) respectively O(n). We
will discuss this more in the tutorial.

EXAMPLE 2.5. Suppose M C R” and K C R¢ are submanifolds. Then
M x K C R™ x R is a submanifold of R**¢ and

Ty (M x K) 2 T,M x T,K C T,R" x T,R".

Note that if 11 : Vi — U7 and 99 : Vo — U; are local parametrisations of M

respectively K, then i1 X 1 : V1 x Vo — U X Us is a local parametrisation
for M x K.

For example, for 7™ = §1

X ... x S1 one therefore has
T.T" =T, 8" x .. x T, S,
where z = (21, ..., zm) € ST x ... x St = T™,

Suppose M C R™ and K C R’ are submanifolds and f : M — K a
smooth map. The tangent map of f at a point x € M should be a linear
map

If the chain rule should hold, the description of the tangent space in
Proposition [2.1](a)] suggests the following definition:

T f(c(0), ¢(0)) = (£(c(0)), (f 2 ¢)'(0)),  (e(0),c'(0)) € TeM,  (2.1)

where ¢ : (—¢,€) — M is a smooth curve with ¢(0) = .
LEMMA 2.4. The map (2.1)) is well-defined and linear.

PROOF. Smoothness of f implies that there exists an open neighbour-
hood U, C R™ of z and a smooth map f : U, — R such that f‘MﬂU

f] mnd,- Without loss of generality we may assume that ¢ : (—€,€) — M

with ¢(0) = z satisfies ¢((—¢,€)) € M NU,. Then foc= foc: (—¢,e) — RE
is a smooth curve with values in K and

(f o) (0) = (foc)(0) = Deyfc(0).

Hence, ([2.1) just depends on ¢(0) and not on the extension f of f, which
proves that it is well-defined. It is also linear as it is the restriction of the
linear map 7T, f : T,R"™ — Tf(l,)Re to the linear subspace T, M C T, R™. [

DEFINITION 2.5. Suppose M C R™ and K C R? are submanifolds and
f: M — K a smooth map. Then the tangent map of f at z € M is
denoted by

and is given by (12.1)).

From the chain rule for functions between the ambient vector spaces it
follows:
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COROLLARY 2.6. Suppose f: M — K and g : K — P are smooth maps
between submanifolds of M C R", K ¢ R® and P C R".
(a) Tu(go f) = Tramyg o Tuf : TuM — Ty(s(uy) P for any x € M.
(b) If f: M — K is a diffeomorphism, then for any x € M its tangent
map at x,

Txf T M — Tf(x)K,
is linear isomorphism with inverse (T, f)~! = Tf(x)ffl.

PROOF.

(a) Locally around z and f(z) we can find smooth extensions f and §
of f respectively g to smooth functions defined on open subsets of
R™ respectively R¢. It follows

To(go f) = (9(f(®)), Dx(g o f)l.m)
= (9(f(2)), Dy(@) 3|y i © Daflronr) = Teyg o T f.
(b) We have f~lo f =1Idys, fof~! =Idg and TpIdy, = Idp, 5 for any
x € M. By (a) it thus follows
Idr, = Toldy =To(f o f) = Ty f o T f.

Similarly, Ide(;v)K =Ty (fo Y =T.fo Tf(:c)f_1~
O

COROLLARY 2.7. Let f : M — K be a smooth map between submanifolds
M C R" and K C R
(a) If the tangent map Tpf : ToM — Ty K at x € M is an isomor-
phism, then there exist open neighbourhoods W1 C M and Wy C K
of x respectively f(x) such that

f‘Wl Wi — Wy
is a diffeomorphism.
(b) f: M — K is a local diffeomorphism if and only if Tpf : T,M —
Ty K 1s an isomorphism for all x € M.
PROOF.

(a) Let (U,u) be a chart of M with € M and (V,v) be a chart of
K with f(z) € K. Thenvo fou™l :w(UN f~4V)) = v(V) is a
smooth map between open subsets of R” and R’ respectively. We
have

Dywy(vo fou™) = DyuyvoDyf o Dygu™",

which is the composition of three linear isomorphisms. By the in-
verse function theorem there exist an open neighbourhood Wl of
u(xz) in R™ such that (vo fo u‘l)(Wl) —: W, is open and a
smooth map g : Wa — W) inverse to (vo fo u‘l)\wl. Then
Wy = u_l(Wl) is open in M, Wy = f(W)) = v_l(Wg) is open
in K and u=togow: Wy — W is inverse to f|w.

(b) Follows from (a) and Corollary
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2.2. The tangent bundle of a submanifold in R"

Ordinary differential equations (of first order) on (sub)manifolds M are
described by vector fields. To be able to speak about the smoothness of
them, it is convenient to form the disjoint union of the tangent spaces T, M
as x varies over points in M and equip it with a smooth structure. More
precisely, recall that a first oder differential equation is given by

2'(t) = f(x(t)), (2.2)
where f : U — R" is a smooth map and U C R" open. For any initial
condition z(0) = x there exists a unique maximal (solution) smooth curve

x: (a,b) — U with z(0) = z¢ satisfying (2.2).

If we replace U by a submanifold M C R™, then a solution of (2.2)) is a
smooth curve z : (a,b) — M, which implies that z'(t) € T, M. So f has
to be a map of the form

fiM— || M
xeM
such that f(x) € T, M for all x € M. To speak about the smoothness of f
we need to equip | |, ¢, T M with the structure of a manifold.

DEFINITION 2.8. Suppose M C R"™ is a submanifold.

(a) Set
TM = | | ToM = | {a}xTeM = {(z,v) : v € M,v € T,M} C R"xR"
zeM zeM

and denote by p : TM — M the natural projection p(z,v) = x.
Then T'M is called the tangent space of M and p: TM — M the
tangent bundle of M.

(b) If K C R is another submanifold and f : M — K a smooth map,
the the tangent map of f is given by

Tf:TM — TK
Tf(x,v) =T,f(z,v).
We also simply write T'fv = T,v for any v € T, M.

THEOREM 2.9. Suppose M C R", K C R¢ and P C R" are submanifolds.

(a) TM C R?®" is a submanifold of R®*" of dimension 2dim(M) and
p:TM — M is smooth.

(b) For a smooth map f: M — K, the tangent map Tf : TM — TK
s smooth.

(c) If g: K — P is another smooth map, then T(go f) =TgoTf. In
particular, if f is a diffeomorphism, then T f is a diffeomorphism
with (Tf)~t =Tf L.

PrOOF.
(a) Assume dimM = m and fix z € M. Let ¢ : U — R™ ™ be a

regular smooth function such that ¢»=1(0) = UNM, where U C R"
is an open neighbourhood of z. Then

Vi={(y,v) ER" xR":y e U} CR" x R"
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is open and

U:.V 5 RV™ x RV
U(y,v) = (¥(y), Dy v)

is smooth. Moreover, ¥(y,v) =0 <= (y,v) € TM by Proposition
. Hence, ¥71((0,0)) = TM NV. To see that ¥ is regular, note
that for v € T, M one has

([ Dy 0

which is a surjective linear map R"™ x R® — R™ ™ x R" ™ by
regularity of 1. Hence, TM C R?" is a 2m-dimensional submanifold
of R?". Moreover, the projection p : TM — M is smooth as it is
the restriction to T'M of the smooth projection p; : R® x R® — R"
to the first R™-component.

(b) Smoothness of f implies that for x € M there exists an open neigh-

b~ourhood (790 c R” ang a sglooth map f : (790 — R such that
g, o0 = Flg,aar- Set V= Uy x R* CR" x R and define
F:V >R xR
F(y,v) = (f(y), Dyfv).
Then for (y,v) € TM N V we have f(y) = f(y) and F(y,v) =
Tf(y,v) =Ty f(y,v). Hence, F' is a smooth local extension around

(2,0) of Tf and so T'f is smooth.
(c) By Corollary one has

T(go f)(@,v) =Te(go f)(x,0) = Ty) o Tef(x,0) = Tgo T f(x,v),

which implies the statement about diffeomorphism similarly as in

Corollary [2.6](b)].
(]

Distinguished charts for T'M from charts from M

Suppose (U, u) is a chart for an m-dimensional submanifold M C R™. Then

e T(u(U)) =u(U) x R™ C R™ x R™ = R?™ is an open subset;

e TU = p~Y(U) C TM is open, since p is continuous (by openness of
U, T,U=T,MzecU);

e Tu:TU — T(u(U)) is a diffeomorphism by Theorem [2.9(c)].

Hence, (TU,Tu) is a chart for TM.

Suppose now (Ua, uq) and (Ug,ug) are two charts for M with U, N Ug # 0.
Then their transition map

UBq = UG O u;l : ’U,a(Ua N Uﬁ) — uﬁ(Ua N Ug)
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is a diffeomorphism between open subsets of R™. Hence, its tangent map is
a diffeomorphism between open subset of R?™, given by

Tugy = Tug o Tuy' : (ua(Ua NUg) x R™ — ug(U, NUs) x R™  (2.3)
(y,v) = (uga(y), Dy(uga)v).

Therefore, an atlas of M induces in a natural way an atlas for 7M.

Suppose f : M — K is a smooth map between submanifolds M C R"
and K C R’ of dimension m and k respectively. Let (U, u) be a chart for M
and (V,v) be a chart for K. With respect to the induced charts (TU, Tu)
and (T'V,Tv) of TM and TK the local coordinate expresssion of T'f has the
form

TvoTfoTu ' =T(vo fou ™) : T(w(Un f~HV))) = Twu(V)
(Y, 0) = (F1(Y)s oo [5 (), Dy(f1s s FF)0)

Wy . 2L
= ((fl(y)’ 7fk(y)’ . .
) .. 2L

where (f1, ..., f*) denotes the local coordinate expression of f with respect
to (U,u) and (V,v). Recall that f*: u(U N f~Y(V)) — R is characterised by
v (f(z)) = fi(u(x)) for all z € UN f~L(V).

2.3. Vector fields

DEFINITION 2.10. Suppose M is a manifold. A (smooth) vector bun-
dle of rank r over M is a manifold E together with a (smooth) surjective
submersion p : E — M such that

(a) for any z € M the fiber p~1(z);= E, over x is endowed with the
structure of a real vector space of dimension r;

(b) for any x € M there exists an open neighbourhood U C M and a
diffeomorphism ¢ : p~}(U) — U x R” such that pr; o ¢ = Plp-1)
and such that ¢|g, : B, — {y} x R" is a linear isomorphism for all
y € U. Such a map ¢ is called a local trivialisation of E around
x.

Here, F is called the total space and M the base of p: E — M.

REMARK 2.11. If p : E — M is a vector bundle and U C M an open
set, then E|y := p~{(U)BU is a vector bundle over U.

DEFINITION 2.12. Two vector bundles p; : EY — M and py : E?2 — M
are called isomorphic, if there exists a diffeomorphism F : E' — E? such
that poo F' = p;y and F|p; : El — E2is a linear isomorphism for all = € M.

EXAMPLE 2.6. For any manifold M the natural projection p = pry :
M x R" — R" is a vector bundle of rank r over M. It is called the trivial
vector bundle over M of rank r. Note that (b) in Definition says that
locally any vector bundle is isomorphic to the trivial one.
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EXAMPLE 2.7. Suppose M C R" is an m-dimensional submanifold. Then
its tangent bundle p : TM — M is a vector bundle of rank m over M, hence
the name. Indeed, take a chart (U,u) for M centered at x € M, then
Tu:TU — uw(U) x R™ C R™ x R™ is a chart for TM. Define

¢:=ut xIdoTu: p~ () Thu(U) x R™ XM g7 o g,

Evidently,
e ¢ is a diffeomorphism as the composition of two diffeomorphisms
and pry(¢(y,v)) =y = p(y, v).

¢ dlr,v : T,U — {y} x R™ = R™ equals TyUMTu(y)u(U) = R™,
which is a linear isomorphism.

An important notion in the context of vector bundles is:

DEFINITION 2.13. Suppose p : E — M is a vector bundle over a manifold
M.

e A (smooth) section of p is a smooth map s : M — E such that
pos=1Idy (ie. s(x) € E, for all x € M).

e If U C M an open subset, then a section of E|y := p~ ' (U)BU is
called a local section of p defined on U.

LEMMA 2.14. Suppose p : E — M 1is a vector bundle over a manifold M .
Then the set of sections, usually denoted by I'(E), is a (infinite-dimensional)
real vector space, where for s,t € I'(E) and A € R one has:

(s + At)(z) :== s(x) + Xt(z)  for all x € M.

Moreover, it is a modul over the ring C*°(M,R) of smooth real-valued func-

tions: (fs)(x) = f(x)s(x) for f € C°(M,R).

DEFINITION 2.15. Suppose M C R" is a submanifold.

e A (smooth) vector field on M is a (smooth) section £ : M — M
of the tangent bundle p : TM — M.

e A local section of p: TM — M defined on an open subset U C M
is called a local vector field defined on U.

The vector space of sections of p : TM — M is either denoted by I'(T'M) or
classically also by X(M).

DEFINITION 2.16. Suppose M C R" is a submanifold of dimension m and
(U,u) a chart for M with corresponding local trivialisation ¢ = u~! x Ido T
for TM. Then for y € U we set

0 )
o (y) = ¢_1(ya el) € TyMa (24)

where e denotes the i-th vector in the standard basis of R™. Note that

%(y),..., %(y) form a basis of T, M for any y € U.

Evidently, one has:

LEMMA 2.17. In Definition 2.1@, 821' : U — TU defines a local vector

field on U, called the i-th coordinate vector field associated with (U, u).
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PROOF. The local coordinate expression of % : U — TU with respect
to (U,u) and (TU,Tu) equals

TuO%ou_1 cu(U) = u(U) x R™

2 (2,€),
which is smooth. O

Suppose M C R" is a submanifold of dimension m, (U, u) a chart for M,
and ¢ € C*°(U,R) for i = 1,...,m. Then, by Lemma [2.14}

szzzéw

is a local vector field on U. Hence, there are many local vector fields. Con-
versely, if £ € X(U), then for any y € U we may write

) = D EW)ar(v) € T,M (25)
=1

for uniquely defined real numbers ¢'(y) depending on . In fact, smoothness
of ¢ implies that the functions ¢ : U — R are smooth. Indeed, ¢ is by
definition smooth if and only if its local coordinate expressions are smooth.
The latter are given by the map

Tuotou ' :u(U) — u(U) x R™
(' (), ™ () = (W (@), W™ (), £ (), -, € ()),

which implies the claim.

Moreover, using partitions of unity, we can see that there are also many
global vector fields on a submanifold M C R": if £ € X(U) and z € U,
then there exists an open neighbourhood V of z in M such that V C U.
By Corollary there exists a smooth function ¢ : M — R such that
supp(¢) C U and ¢|y equal to 1. Setting

= Jo@)Ely), ifyel,
W= {0, ifye M\U,
then §~ € X(M) and §~|V =¢|y.

DEFINITION 2.18. Suppose M C R" is a submanifold of dimension m,
(U,u) a chart for M and & € X(M) a vector field. Then €|y € X(U) and

mo9 A
g;:;gaui for £ € C°°(U,R). (2.6)

[2.6) or also (£1,...,£™) are called the local coordinate expression of &
with respect to (U, u).

Let us now compute how the local coordinate expression of a vector field
changes when we change the chart. Suppose (Uq, uq) and (Ug, ug) are local
charts for a submanifold M C R" of dimension m with U, := U, NUg # 0.

Consider

1

UB = U O Uy : Ua(Uap) = ug(Uap).
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Then we know that
Tuga = Tug o Tua_1 Uua(Uag) X R" = ug(Uyg) x R™
(y,v) = (uga(y), Dyuga v).

o’

For x € Uyp set Ag(x) = 85;’ (ua(z)), which defines a smooth map U,z —
GL(m,R). Now we have:

. agl () = Tug (ua(z), e) '

o T uﬂ(aul ( )) - (uﬁ(x>7Dua(:c)uﬁa(eZ))'

i-th column of A

0 )
oug, Z ‘ 6ujﬁ

Jj=1

Hence, one has

Suppose & € X(M) and consider the local coordinate expressions (£}, ..., ™)
and (fé, -, &5") of & with respect to (Ua,uq) and (U, ug). Then one com-

putes:
9 ,
Elv,, = Z&g(w Zfa Zgﬁa

which implies fé =m & Al

EXAMPLE 2.8. Suppose M = R2. Let u, : R?\ {0} — (0,00) x [0, 27)
be the polar coordinates so that

u;l(r, @) = (rcos ¢, rsin @)

and ug = Idge the standard coordinates, i.e. ué = 2! and u% = 22. The

Jacobian of Id o uz! = u; ! equals
cos¢ —rsin¢
sing rcos¢ )
Therefore, one has
9 __ : _1/.1 0 2 0
. a—g cos¢8 I —i—sm¢d —g(x W;—Bx Wi ,
* 95— —rsm¢a T+ TC0SPay = —T 5T+ X 5.

An important operation with vector fields is the pull-back via local dif-
feomorphism:

DEFINITION 2.19. Suppose M C R™ and K C R’ are submanifolds, and
f: M — K alocal diffeomorphism. For any ¢ € X(K),

ff&:M—TM
z = (T f)7'E(f (@),
defines a vector field, called the pull-back of ¢ via/with respect to f.
One verifies directly that:

PROPOSITION 2.20. Suppose f : M — K is a local diffeomorphism be-
tween submanifolds M C R™ and K C R.
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(a) f*: X(K) — X(M) is R-linear and for h € C*°(K,R) one has
fr(hE) = (ho f)f*E V¢ € X(K).
(b) If g : K — P is another local diffeomorphism between submanifolds,
then
(go /)= [f"(g"¢) Ve X(P).
(¢) For any & € X(K) one has Idi§ =& and if M = U C K is an open
subset of K and i : U — K the inclusion, then i*{ = &|y

EXAMPLE 2.9. Suppose M C R™ is a submanifold of dimension m and
(U,u) a chart for M. Then u(U) C R™ is an open subset and

0
5 uw(U) = T(uw(U)) =u(lU) x R™
x> (z,€")
is a vector field on u(U) (which extends to R™),—the i-th coordinate vector
field with respect to the standard coordinates on R™. Here, ¢* denotes the
i-the standard basis vector of R™. Then for any y € U one has

0 e l) = ()™ (s (u(0)

= () (uly), ) = ().

In particular, if £ € X(M) and €|y = >0, &° B(Zi its local coordinate expres-
sion, then

—1\* _ 7 -1
(u™)"¢lv = ;:15 ou o

DEFINITION 2.21. Suppose M C R™ is a submanifold, { € X(M), and
I C R an interval. A smooth curve ¢ : I — M is called an integral curve

of &, if
c(t) = &(c(t)). (2.7)

Note that for M = U C R"™ an open subset, equation defines a
system of ordinary differential equations of first order, where its solutions
are the integral curves of &.

Via charts the theorem about existence and uniqueness of solutions of a
system of first order differential equations implies:

THEOREM 2.22. Suppose M C R™ is a submanifold and § € X(M).

(a) For any x € M there exists a unique mazimal integral curve
Cp iy — M

of &, where I,, C R is an interval with 0 € I, and ¢(0) = z.
(b) D) = {(t,z) e Rx M : t € I,} C Rx M is an open subset
containing {0} x M and the map

FI*: D(¢) - M
(t,z) = cy(t)
is smooth, which is called the local flow of €.
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(c) Ify := Fl(s,z) exists, then F18(t+s,x) exists <= FI*(t,y) exists.
In this case,
FIS(t + s,2) = FIS(¢, F1 (s, 2)). (2.8)
In particular, if D(§) = M x R, then says that
(R, +) — (Diff(M), o)
t— FIS(t,_)
s a group homomorphism.

Notation: We also write Flf(x) = FI(t, ).

Note that (b) and (c) of Theorem imply:

COROLLARY 2.23. For any x € M there exists an open neighbourhood
UCM of x and € > 0 such that

FI*: (—e,e) xU - M

is defined and Flf : U — M is a local diffeomorphism for any t € (—e¢,¢€).
Note moreover, that, wherever defined, (Flf)*f = &, which is equivalent to

T,F1; £(x) = £(FI; (2)).

DEFINITION 2.24. Suppose M C R™ is a submanifold. A vector field
¢ € X(M) is called complete, if D(§) = M x R.

PROPOSITION 2.25. Suppose M C R"™ is a submanifold and & € X(M) a
vector field.

(a) Suppose there exists € > 0 such that for any x € M there exists an
open neighbourhood U, C M of x such that the local flow F1¢ of &
is defined on (—2¢,2¢) x Uy. Then £ is complete.

(b) If M is compact, £ is complete.

PROOF. (a) Set

Uy(z) = (FI9F o FIE_, )(2) = (FIfo...0o FIEoFL5_, )(),
N————
k—times

where k is the integer part of t/e. Note that this is defined for all
t € R and x € M. By (c) of Theorem we must have ¥; = Flf.

(b) By Corollary for any x € M there exist ¢, > 0 and an open
neighbourhood U, C M of x such that FI¢ : (—2€4,2€;) x Uy = M
is defined. Compactness of M implies that there exists finitely
many points i, ...., , such that M = Uy, U... UU,,. Then € :=
min;— ., €, satisfies the assumption of (a).

O

EXAMPLE 2.10. Let M = R? with coordinates (z,y) and corresponding
coordinate vector fields 8% and a%. Consider the vector fields
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Then their flows are given by

FIS(t, (2, 9)) = (x +ty, y)
l’2
FI"(t, (z,y)) = (z,y + t?),

and so both vector fields are complete. Note however that their sum

o 2?0
SHN=Va: T S gy
is not: if we write ¢(t) = (;Eg) € R? for a curve in R?, then
/ o x/(t) . . y(t)
)= (41 = e+ iy = (1}

(1)
2

solves this for initial value
not defined for all ¢.

implies that z”(t) = , which in turn yields (z(t))? = x(:gﬁ + const. If one
vi—=j
3

= 0 with g > 0, then the integral curve is

2.4. Tangent vectors as derivations

Suppose M C R” is a submanifold.

DEFINITION 2.26. A map 0 : C°°(M,R) — R is called a derivation at
x € M, if 0 is R-linear and

A(fg) = (0f)g(x) + f(z)0g Vf,g € C(M,R).

We set Der,(C>*°(M,R),R) := {0 : C*°(M,R) — R : Jis a derivation},
which is a real vector space in the obvious way.

LEMMA 2.27. Suppose 0 : C*°(M,R) — R is a derivation at x € M.

(a) (1) = 0 (which implies O(f) = 0 for all constant functions by
linearity of 0).

(b) If f1, fa € C°(M,R) coincide on an open neighbourhood U C M of
z, then 9(f1) = 0(f2).

PRrROOF.

(a) 9(1) =0(1-1) =19(1) + (1)1 = 20(1) and hence 9(1) = 0.

(b) Suppose U C M is an open neighbourhood of x on which fi, fo €
C*°(M,R) coincide. Then f := f; — fo vanishes on U. By Corollary
there exists g € C°°(M, R) such that supp(g) C U and g(x) =
1. Since supp(g) C U and f|y = 0, one has
0=20(0)=0(fg) =0f g(x) + f(x) g = Of = fr — Ofa.

<~ <~
=1 =0
O

LEMMA 2.28. Any tangent vector & € T, M in induces a derivation at x
given by
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PROOF. Let ¢: I — M be a C*°-curve with ¢(0) = z and ¢/(0) = £, and
f,g € C°(M,R) and A € R. Then (f + Ag) oc = foc+ A(goc), which
implies
0c(f +Ag) = ((f + Ag) 2¢)'(0) = (f 2¢)'(0) + A(g © ¢)'(0) = Oe(f) + A (g)-
Similarly, fgoc= (foc)(goc) and the product rule give

(fg00)(0) = (f o) (0)g(x) + f(x)(g o) (0) = Oe(fg(x) + f(2)0:(g).
O

Let (U,u) be a chart for M with € U. Then 621- () fori =1,....m
form a basis of T, M. Moreover,

ail (x) ' f = Tmf © Tu(:c)uil(u(x)v ei)
= Ty (f ou™ ) (u(@), ) = (f(x), D) (f ou™")e").

equals the i-th partial derivative at u(x) of the local coordinate expression
foul:u(U) — R of f. We therefore write

0 _of

Since any € € T, M can be written as

E=> ¢ O 1), €eRr
=1

out

we have

O(f) = Tefe = Y €T () =3 € T (a),
=1 =1

THEOREM 2.29. Suppose M C R"™ is a submanifold and x € M a point.
Then the map

Uy : TpyM — Der, (C*°(M,R),R)
5 —> 05
s a linear isomorphism. Moreover, for any smooth map F : M — K and

K C RY another submanifold, the following diagram commutes

T,M —Y* 5 Der,(C*(M,R),R)

[ree B

Vr(
T K —— Derp(p)(C(K,R),R),
where F.(0)(g) :==0(go F) for all g € C*(K,R).

PROOF.
e Linearity of W,: this is clear, since T, f is linear for any f €
C>(M,R).
e Commutativity of the diagram:
Fu(W2(6))(9) = Fu(9%)(9) = Oe(g o F)
=Ty(go F){ = (Tr@)g o TaF)E = 01, ¢ (9)-
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e Injectivity of W,: If 0 # £ € T, M, then we need to show that there
exists a function f € C°°(M,R) such that J¢(f) # 0.

Let V be an open neighbourhood of z such that V C U, where
(U,u) is a chart. By Corollary [L.35 there exists g € C°(M,R)
such that supp(g) C U and gy = 1. Then gu® can be extended
by zero to a smooth function @' : M — R, which locally around
r coincides with u’. By construction, @' o u ~1 locally around u(z)
equals the i-th projection. If £ = ZJ (82 5.7 (), then

Z 6] 3u3 N

Since for ¢ # 0 there is at least one nonzero coefficient £, we con-
clude that ¥, is injective.

e Surjectivity of U,: Let (U, u) be a chart with 2 € U. Without loss
of generality u(xz) =0 and u(U) D B1(0) :={z e R" : ||2]| < 1}. If
y € U such that u(y) € B1(0), then for f € C*>°(M,R) we have

-JZ (v)

where h; : u=1(B1(0)) — R is a smooth function. So we can write
f locally around x as

x) + Z u'(y)h

By Corollary we can extend h; and u’ to smooth functions on
M without changing them locally around x. So locally around x

we have
If 0 € Der, (C*°(M,R),R), then by Lemma one has
= 0(u') hi(x) + u'(x) O(hs)
- —— N~

of =0
Bui (m)

- Za (‘—)uz

This shows that d = 9 with £ =Y, 9(u?)
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2.5. The tangent bundle of an abstract manifold

Suppose (M, A) = (M, Anax) is an abstract manifold of dimension m.
Then we define the tangent space of M at x € M as the vector space
Ty M := Der, (C*(M,R),R). (2.9)
We use the notation £, (f) := &, - f for & € T, M and f € C*°(M,R).

REMARK 2.30. Alternatively, we could have defined T, M as the set of
equivalence classes of smooth curves ¢ : (—e,€) — M, where ¢; ~ ¢y if
c1(z) = ca(x) and for a (equivalently, any) chart (U,u) around x one has
(woc1)'(0) = (uocg)'(0). In contrast to (2.9)), it is however not obvious that
this is a vector space.

DEFINITION 2.31.
e The tangent bundle of M is defined as
T™ = | | oM = ] {a} x TuM,
zeM rzeM
and we write p : TM — M for the natural projection.

e For a smooth map between abstract manifolds F' : M — K we
define its tangent map by

Tf:TM - TK (2.10)

Tf(ﬂ?,fx) = (f(x)7T:cf£:c)7
where T, f : To M — Ty, K is given by

Tof(§e)(f) = (Tuf&) g :=Elgo f) =& (gof)
for all g € C*°(K,R).

It follows directly, cf. the analogues statements for submanifolds:

PROPOSITION 2.32. Suppose M, K and P are smooth manifolds, and
f:M— K and g : K — P smooth maps. Then one has:
(a) T(g o f) = Tg o Tf and TIdM = ]dTM-
(b) f is a local diffeomorphism if and only if Tof : TeM — Ty K is a
linear isomorphism for all x € M.

There is natural topology on T'M: We may equip T'M with the coarsest
topology such that TU C TM is open and Tu : TU — Tu(U) = u(U) x R™
is a homeomorphism for all (U,u) € A. It is again second countable and
Hausdorff. Moreover,

Ary = {(TU, Tu) : (U,u) € A},

defines a C*-atlas of charts with values in R?™ (cf. the corresponding state-
ment for submanifolds). Hence, (T'M, Arr) has naturally the structure of
an abstract manifold of dimension 2m.

As for submanifolds, with respect to this smooth structure on T M, p :
TM — M is a smooth vector bundle of rank m over M and for a smooth
map f: M — K alsoTf : TM — TK is smooth. Moreover, vector fields are
again defined as (smooth) sections of the tangent bundle. Also, of course, the
local coordinate expressions of T'f and vector fields remain valid. Similarly,
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all the definitions and statements about the pull-back of vector fields via
local diffeomorphisms and about the local flow of vector fields remain valid
without change.

2.6. Vector fields as derivations and the Lie bracket
Suppose (M, A) is a manifold. For any £ € X(M) and f € C*(M,R),
E-f M —>R
(gf)(l') =& f =T f& g(l‘):(l‘,fm),
defines a smooth functions, since £ - f is the second component of T o & :
M—-TM —-TR=R xR.
DEFINITION 2.33. A derivation of the algebra C*°(M,R) is a linear
map D : C*°(M,R) — C*°(M,R) such that
D(fg) = D(f)g+ fD(g) Vf,ge C*(M,R). (2.11)
We write Der(C*°(M,R)) for the vector space of derivations of C*°(M,R) .

THEOREM 2.34. The map ¥ : & — (f — £ - f) defines a linear isomor-
phism
X(M) = Der(C*(M,R)).

PrOOF. First, & : C°(M,R) — C°(M,R) is evidently also linear and
for f,g € C*°(M,R) one has

§-(f9)@) =& - (f9) = (& [g(@) + f(2)(&x - 9)
=& Nlg+ f(&-9) (),

which shows that U maps indeed vector fields to derivations of C*°(M,R).
Moreover, ¥ is linear, since T, f is linear for all x € M and f € C*°(M,R).

e Injectivity of W: If £ # 0, then there exists x € M such that &, # 0.
By Theorem we know that there exists f € C°°(M,R) such
that (& - f)(z) =& - f # 0.

e Surjectivity of U: Let D € Der(C*°(M,R)) and x € M. Then
f — D(f)(z) is a derivation at = by (2.11). Hence, by Theorem
there exists a unique &, € T, M such that D(f)(z) = & - f.
It remains to show that £ — &, is a smooth vector field. To show
smoothness fix x € M and a chart (U,u) with x € U. As in
the proof of Theorem we may extend u’ for i = 1,...,m to
smooth functions @' : M — R that coincide with u’ on some open
neighbourhood V' C U of x. Then D(@') : M — R is smooth and

i 0
& = Z (& -a")(y) E (y) YyeV (cf. Theorem [2.29).
f=Ew)
Hence, &y =), D(ﬁi)]V% is a smooth vector field on V.

Recall that for a chart (U,u) the function
0 of
ui /= out
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equals the i-th partial derivative of the local coordlnate expression fou~!
of f. This implies that for & € X(M) with &|y = 3, &'-2; one has

$f= Zéiaul

LEMMA 2.35. Suppose £,n € X(M) are vector fields on a manifold M.
Then

ou’

f=&-m-f)=n-(&-f)
defines a derivation of C*°(M,R).
PROOF.

E-n-(fg)=¢&-(n-flg+fn-9)
=E-m-g+m-HE -9+ & Hn-g)+f(&-(n-9)).

symmetric in £ and 7

O

DEFINITION 2.36. Suppose M is manifold. Then the Lie bracket of two
vector fields £, € X (M) is the unique vector field [, n] € X(M) such that

(Enl-f=&6-f)=n-(&-f) VfeC®(MR).

PROPOSITION 2.37. Suppose M is manifold and §,n,( € X(M) vector
fields.

(a) [5777] = _[nag] and
(& [0, + [, (G €+ (G [€6,m] = 0 (Jacobi Identity).
(b) For all f € C*°(M,R) one has

&, fn)] = fl&n]+ (& fin
[f&n) = fl&n) — (- f)E.
PROOF.

(a) Skew-symmetry is clear and the Jacobi identity follows from a mind-
less computation.

(b) Let f,g € C°°(M,R). Then for all x € M one has
((fn) - 9)(x) = f(2)(nz - 9) = f(n-g)(2),
which implies that
§-((fn)-9)=(&-Nn-g)=FE-(n-9))
Moreover, (fn)-(£-9) = f(n-(£-g)), which together gives

&, fn] = fI&nl+ (& fF)n.

The second identity follows from the first by skew-symmetry of the
Lie bracket .

O
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REMARK 2.38. The properties in [(a)] of Proposition say that (X(M),[-,—])
is an infinite-dimensional Lie algebra, i.e. an infinite-dimensional vector space
X(M) equipped with a skew-symmetric bilinear bracket

[L,—]: X(M) x X(M) — X(M)
satisfying the Jacobi identity.

PROPOSITION 2.39. Suppose M and N are manifolds and f: M — N
s a local diffeomorphism.

(a) fr[&n] = [f& frn) for all &n € X(N), (i.e. f*: X(N) — X(M)
is a Lie algebra homomorphism,).
(b) If U € M is open and i : U — M the natural inclusion, then

(€ nllo =i [€,n] = [7€,™n] = [Elu,nluv] V€ n € X(M).

In particular, if |y = 0, then [€,n]|lu = for all other vector fields
ne X(M).

(¢c) Suppose (U,u) is a chart and &,n 6 X(M) vector ﬁelds with local
coordinate expressions &y = >, &2 5 and Ny =315 1. Then

m

0
(&nlo =D &5
i=1
where (€0 = Y71 (55 — 07 §55)-
PRrROOF.
(a) By definition f*¢ = (Tf) ' oo f for £ € X(N). Now for g €
C*°(N,R) one has
(f7) - (go f)(@) = (f€a- (9o f) = (Tuf ) 9="E5@) 9,
that is, (f*¢) o (go f) = (£ g) o f. Therefore, we have
&l - (go f) =" (f'n-(go f) = fn-(f& (g0f))
—_—
(n-g)of
=&-m-glof—n-(§-g)of
= ([&n-g)of=f"&n]-(gof)

(b) Follows directly from (a).
(c) By (b), we have

0 0
& nllu = [Elo,mlo] =D [¢ 5! 8uJ]
4,J

’7 a 0 a AR i 9w ow " o au“
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since [%, %] = 0. Indeed, by the symmetry of 2nd partial deriva-
tives,
o 0 0 0 0 0
0% f ’*f
Outdud S Owou
~——

2nd-partial derivative of fou—1

O

The following proposition gives a geometric interpretation of the Lie
bracket showing that it measures the behaviour of one vector field along the
flow lines of the other.

PROPOSITION 2.40. Suppose &,m € X(M) are vector fields.

(a) Gle—o(FI})™n)(x) = ¢, 1](x) for all x € M.
(b) €] =0 = (Flf)* = 1, whenever defined <= Flf o FI7 =
Fl7o Flf, whenever defined.

PROOF. See Tutorial. O

DEFINITION 2.41. Suppose f: M — N is a smooth map between mani-
folds. Then £ € X(M) and n € X(N) are called f-related, if

Tfr&(x) =n(f(x)) Voe M.

PROPOSITION 2.42. Suppose f: M — N is a smooth map between man-
ifolds. If two vector fields & and n on M are f-related to vector fields &
respectively 1 on N, then [€,n] is f-related to [£,7)].

PROOF. See Tutorial. O

2.7. Distributions and the Frobenius Theorem

Let us revisit the concept of a flow of a vector field £ € X(M) on a
manifold M. For any x € M there exists an integral curve c: I — M, 0 € I,
through ¢(0) = z. (i.e. ¢(t) = Fl(x)).

o If {(x) =0, then ¢(t) = = is the the constant curve.

o If {(z) # 0, then &(y) # 0 for all y in some open neighbourhood
U C M of z. In this case, the integral curve through x defines
a submanifold of U of dimension 1. Hence, £ decomposes U into
a union of 1-dimensional submanifolds, given by the images of the
integral curves of ¢ through the points y € U.The tangent space of
such a submanifold through y equals

Ré(y) € T, M.

Moreover, if we replace £ by f€ for a nowhere vanishing function
f € C°(M,R), then the integral curves of f¢ and £ are just reper-
ametrisations of each other. Hence, they define the same family of
1-dimensional submanifolds.
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Suppose E : x — E, C T, M is a map that assigns to each point x € M
a 1-dimensional subspace E, C T,M such that there exists an open cover
{U;} of M and local vector fields & € X(U;) such that R¢;(y) = E, for all
y € U; and for all . Then the existence of integral curves implies that for
any © € M there exists a unique local smooth submanifold K, C M such
that

TyK,=FE,CTyM Vye&cK,.

DEFINITION 2.43. Suppose M is a (smooth) manifold of dimension m.

(a) A distribution E of rank k is an assignment of a k-dimensional
subspace E, C T, M to every point x € M.

(b) A (smooth) section of a distribution £ C TM is a (smooth)
vector field € € X(M) such that {(x) € E, for all z € M.

(c) A distribution E C TM of rank k is called smooth, if for every
x € M there exists an open neighbourhood U of x and local sections
&1, .., &k € X(U) of E such that {&i(y),...,&k(y)} form a basis of
E, for all y € U. A smooth distribution is also called a vector
subbundle ' C T'M of the vector bundle T'M and such collection
of local sections of F is called a local frame.

(d) A distribution E C TM is called involutive, if for any local sec-
tions ¢ and n of E their Lie bracket [£, 7] is also a local section of
E.

(e) A distribution F C TM is integrable, if for each x € M there
exists a submanifold K C M with z € K such that for any y € K

T,K = E, CT,M.
Such submanifolds are called integral submanifolds.
The existence of flows implies:

PROPOSITION 2.44. Any smooth distribution of rank 1 on manifold is
integrable.

Distributions of higher rank are not anymore always integrable. A nec-
essary condition for integrability is involutivity:

Let E C TM be an integrable distribution and K C M an integral
submanifold, i.e. T, K = FE, for all x € K. Assume £ and n are local sections
of E defined on some open neighbourhood U of x € K in M. Replacing, K
by KNU, we may assume K C U. Then there exist vector fields ¢, N € X(K)
that are i-related to &|y respectively n|y , where i : K <— U C M is the
natural inclusion. Hence, by Proposition [£,7] € X(K) is i-related to
[€|,m|u]. This shows that

(€, m)(y) € Im(Tyyi) = E, Vye€ K.

The Frobenius Theorem states that also the converse is true, i.e. any
involutive smooth distribution is integrable.
Note that involutivity is easy to check:

LEMMA 2.45. Suppose E C T'M is a smooth distribution on a manifold
M. Then E s involultive <= locally around each point x € M there exists
a local frame {&1, ..., &} such that [&;, ;] is a local section of E for all i, j.
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PROOF. Follows from (b) of Proposition O
Recall that the coordinate vector fields %,..., 8%,1 corresponding to a
chart (U,u) of M define a local frame of T'M and [%, %] = 0 for all

i.j. Note that for k& < m, the coordinate vector fields %,..., % span an
integrable distribution on U. Its integral submanifolds are given by

u(y,a) for fixed a € u(U) NR"*,
where u(U) C R™ = RF x R,
LEMMA 2.46. Suppose M is a manifold of dimension m and V C M
an open subset. If &1,....& € X(V) are local vector fields on V' such that

&(y), .. &(y) € T,V = T,M are linearly independent for all y € V, then
the following are equivalent:

(a) [&,&]=0.
(b) For anyy €V there exists a chart (U,u) withy € U CV such that
0 0
w - £1|Ua ey W = gk‘U
PROOF.

(b) = (a): This is clear.

(@) = (b): Fix y € V and let (U, @) be a chart with y € U C V, a(y) = 0 and
&i(y) = %(y) for i = 1,...,k. There exists open neighbourhoods
W C R¥ and W c R™ ¥ of zero such that

Bt th tF P ) = (FISE o L o FISE) (@ 1(0, ..., 0, ¢5 71 L ™))

is defined for all (!, ...ltk) e W and all (¢t . t™) e W. Tt is a
smooth map ¢ : W x W — M such that ¢(0,0) = y.
For i < k we have,
a¢ _ d 1 7 m
%(t) = %Lg:o(;ﬁ(t ,..,t + s, ,t ) (212)
= FIS (6(1)) = &(e(1)),

i & _ 3 & i . £
since Flti s = Flg o Flti and Flg commutes with all Fltj- . In par-
ticular,

9¢ ) ,
%(0) =&(y) = B (y) fori<k.

For i > k£ we have

99 d o d
%(0) = %|t=0¢(te )= £|t:oqz5(0, oty 0)
d ~—
= le=ot 10,...,0, ..., t,...,0)
; 0
= T ~—1 1 — . '
0,0u "€ 55 (y)

This implies that T )¢ is invertible as it maps the basis {%(0)}

to the basis {81612 (y)}. Hence, by possibly shrinking W and W we

can assume that ¢ : W x W — U is a diffeomorphism, where U
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is an open neighbourhood of y in M. Then (2.12) implies that
uw=¢ 1 :U =W xW CRF x Rm™* = R™ is the required chart.

O

COROLLARY 2.47. If £ € X(M) is a vector field, then for any x € M
with £(x) # 0, there exists a chart (U,u) with x € U such that & |y = %

THEOREM 2.48 (Frobenius Theorem, local version). Let M be a manifold
of dimension m and E C T M a smooth involutive distribution of rank k < m.
Then for each x € M there exists a chart (U,u) with x € U such that

o u(U) = WxW C RExR™F = R™, where W € R¥ and W ¢ R™*
are some open subsets; and

e foreacha € W the subset u=*(W x{a}) C M is an integral manifold
for E.

In particular, any involutive smooth distribution is integrable.

Proor. We will show that around every point in M there exists a local
frame for F that consists of pairwise commuting vector fields. Then the
result follows from Lemma [2.46]

Fix z € M and a local frame {&,...,&} for E defined on some open
neighbourhood U C M of . Without loss of generality we may assume U
is the domain of a chart (U, @) of M with @(z) = 0. Then for j = 1,...,k we
have

0 ) 00 (T
50 fj € C=(U,R).

& :Zf}
=1

Since {;(y) ;?:1 is basis of E, for all y € U, the m x k matrix (f]Z (y))éill”;?
has rank % for all y € U. Renumbering the coordinates, we may assume that

at z the first k rows of ( f; (z)) are linearly independent. By continuity, this

holds locally around z, and so by possibly shrinking U , we may assume that
it holds on U.

For y € U let (g; (y)) be the inverse of (f;(y));zll”

GL(k,R) is smooth, the functions g} : U — R are smooth for all i, j. Now
fori=1,...,k,

k* Since inversion in

k
i = Z gi&;
=1

are local smooth sections of E defined on U. Since (g; (y)) is invertible for

ally € U and {&, ..., &} s a local frame, also {1, ..., ni} is a local frame for
E defined on U,

Claim: [;,7;] = 0 for all 4, j.
Indeed, note that

k
; i O 0 0
ni ;:1 9;&; E g 1; 55 = 9 + £§>k h; 5ot (2.13)

1<€<m,1<j<k
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for some smooth functions he . By involutivity,

(ni, ;] = ch]nr for c; ; € C>°(U,R). (2.14)

By (2.13)), the rlght—hand 51de, RHS, of ([2.14]) equals
k

. 0 - 0
RHS—ZCHa~ Zhrag Zciﬁjaerghf,jw

r=1 r=

for some ﬁf’j e C°(U,R). Now, by (2.13), the left-hand side, LHS, of (2.14)

equals
0
Z 13%’3 j Z :th,jw

for some he € C>(U,R). Hence, hf,j = hf’- and ZT 1 ”am =0onU.
The latter in turn implies that ¢j ; = 0 on U. By the proof of Lemma m
there exists a chart

uw:U = uU) =W x W c RF x Rm~% = R™

LHS =

such that
e zcU, u(z) = (0,0) and U C U, and
. _ 0
* nily = 0t

Hence, for any a € W, u~'(W x {a}) is an integral submanifold for E
(described by the equations u*+1 = aF*+1 . w™ = a™). O

Note that Theorem [2.48| says, that given an involutive smooth distribu-
tion £ C T'M on a manifold M of dimension m, locally around point in M
there exists a chart (U, u) such that U is filled up by integral submanifolds
and in the corresponding coordinates they are given by affine horizontal sub-
spaces R* x {a} of R™. — make a picture.

The charts in Theorem are called distinguished charts for (M, E)
and the integral submanifolds u=!'(W x {a}) are called plaques. Note
that, if (Ua,uq) and (Ug,ug) are two distinguished charts for (M, E) with
Uo NUg # 0, then the transition maps are of the form

ug o uy : ue(Uy NUg) — ug(Uy NUp) (2.15)
(z,y) = (f(z,9),9(v))

for smooth maps f, g. Hence, the transition maps map subsets W, x {a} to
subsets W3 x {b}.

DEFINITION 2.49.

(a) A foliated atlas of dimension k on a manifold (M, .A) of dimen-
sion m is a subatlas A" C A consisting of charts (U,u) € A such
that

— u(U) =W x W C RF x R"~% = R™ for open subsets W C R¥
and W C R™F,
— the transition maps are of the form ([2.15).
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(b) A k-dimensional foliation F on a manifold M is a maximal foli-
ated atlas of dimension k on M.

The Frobenius Theorem shows that any involutive smooth distribution
E C TM of rank k defines a k-dimensional foliation F¥ on M. Conversely,
any such foliation F determines a smooth involutive distribution £ C T'M
given by
Ey = Tyyu (TwR" x {0})
for a chart (U, u) of the foliation with 2 € U and u(z) = w+w € W x W
(by (2.15) E, is well defined, i.e. independent of choice of chart around x).

Given a smooth involutive distribution £ C T'M, we know by the Frobenius
Theorem that through any point x € M we have an integral submanifold.

Question: What about maximal integral submanifolds a given point?

These are in general not real submanifolds but so-called initial submani-
folds as the following example shows: consider the 2-dimensional torus 72
(= R%/Z?) and denote by 7 : R? — T2 the natural projection given by
7(z,y) = (e*,e"¥). Now consider the vector field & = a% —1—046% on R?, whose

const + ¢ <1> .
«

The vector field ¢ is m-related to a vector field on 72, whose integral curves
are the images under 7 of the integral curves of £. If « is rational, then

7(t(1,a)) = (e, ") c T?

integral curves are lines

is a submanifold. But, Ii « is irrational, then it is not, since it winds densely
around the torus. In an appropriate chart around any point, (e, e?®)
sists of countable many line segments. One can separate these segments
however, since it is not possible to move from one to another by a smooth
curve. This suggest the following definition:

con-

DEFINITION 2.50. Suppose M is a manifold of dimension m.
(a) For a subset A C M and xp € A set

Crpo(A) ={z € A:3C>*—curve c: [0,1] = M s.t. ¢(][0,1]) C A,¢(0) = ¢ and ¢(1) = z}.

(b) K C M is called an initial submanifold of M of dimension k, if
for any x € K there exists a chart (U,u) of M with z € U, u(xz) =0
and

u(Cp(UNK)) =u(U)N (RF x {0}) c RF x R™~*F =R™,
If K ¢ M is an initial submanifold, the there exists a unique C°°-

manifold structure on K such that properties (P) hold, that are:

e the inclusion ¢ : K < M is an injective immersion,
e for any manifold N and a map f : N — K, f is smooth <~
iof: N — M is smooth.
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Note that the connected components are 2nd countable, but there might be
uncountably many of them (so K might be not 2nd countable)!

The smooth structure on K is given by the atlas B = {(C,(UNK), ug)zex }
consisting of charts as in (b) of Definition [2.50]

e Equip K with final topology with respect to the inclusions C, (U N
K) — K. This topology on K is usually finer than the subspace
topology on K induced from M (hence, in particular still Haus-
dorff). (The set C,(U N K) is in general not open in subspace
topology. If ¢ is a homeomorphism onto its image, then it however
isand C,(UNK) = VN K for an open subset V' C M. In this case,
K C M is an actual submanifold.)

e The transition maps of elements in B are smooth as they are re-
strictions of smooth maps.

e Uniquenes follows from (P) (cf. submanifolds).

Conversely, one may show that images of injective immersions satisfying
properties (P) are initial submanifolds.

Let us come to integrable distributions. Suppose E C T'M is an integrable
distribution of rank k with corresponding foliation F¥. For any 2 € M let
FE denote the set of points y € M such that there exists a smooth curve
c:[0,1] = M connecting ¢(0) = x and c(1) = y satisfying ¢/(t) € E) for
all t € [0,1]. Then F7Z is called the leaf of the foliation F¥ through x.

Note that if a plaque intersects FZ, then it must be contained in it.
Hence, the plaques contained in FZ and the corresponding charts of the
foliation can be used to give FZ the structure of a k-dimensional manifold
(plaques in FZ form basis of the toplogy). Then one may show:

e i: FF < M is an initial submanifold (Hausdorff and second count-
able).

e 7F is an integral submanifold and any connected integral (initial)
submanifold that intersects FZ is contained in FZ. Hence, the
leaves of F¥ may be thought of as the maximal integral (initial)
submanifolds of E.

Hence, a foliation F¥ of dimension k divides M into k-dimensional initial
submanifolds.

Given a manifold M equipped with a smooth involutive distribution £ and
corresponding foliation F¥. Then one can equip M with a different manifold
structure (and topology) Mg, where the atlas (inducing also the toplogy) is
given by maps of the form

pry o Uy 1 uy H(Wy x {a}) = W, € RF

for charts (Uy,uq) in FE. The topology on Mg is then finer than that of
M and the connected components of Mg are the leaves of F¥. Note that
Mg is Hausdorff, but not second countable, since it has uncountably many
connected components.

In summary, one has:
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THEOREM 2.51 (Frobenius Theorem, Global Version). Suppose M is a
manifold, E C TM a smooth involutive distribution of rank k and FE the
corresponding foliation. Then the following holds:

(a) If E # TM, the topology on Mg is finer than that on M.

(b) Mg has uncountably many connected components given by the leaves
of FE.

(¢) Id: Mg — M is a bijective smooth immersion.

(d) Each leaf of F¥ is an initial submanifold of M and a mazimal
connected (initial) integral submanifold of E.

2.8. Applications of the Frobenius Theorem and
bracket-generating distributions

Let us discuss some applications of Theorem [2:48| to the study of PDEs:

EXAMPLE 2.11. Let us write (z,y, z) € R3 for the standard coordinates
in R3 and consider the following system of PDEs for a function f : R? x R:

af of

2 —

2z o —i—2xaz =0 (2.16)
af af
3YJ A

3z oy +2yaz =0.

It is a linear system of PDEs of first oder and it is overdetermined.
Question: Does (2.16) has any non-constant solution?

Consider the vector fields

0 0

X =22 +20—
Z@x+ Yoz

0 0

Y =328 — +2y—.
3z 8y+ yaz

Note that they span a distribution E of rank 2 on the open subset V =
{(z,y,2 € R®) : 2 # 0} C R3. Moreover,

0 0 4 4

[X,Y] = 1222~ +8yz— =~y - Y x,

oy Ox z z
which shows that F is an involutive, hence integrable distribution, on V.
By Theorem there exists locally around any (z,yo,20) € V a chart
(U,u) such that E is spanned by % and =2;. Then (2.16) in coordinates

W.
(ul(z,y, 2),u%(z,y, 2)),u3(z,y, 2)) is equivalent to
o o,
oul  ou?z

Hence, f = u? is a solution and solutions in a sufficiently small neighbour-

hood of (xg, %0, 20) are of the form f(z,y,z) = g(u®(x,y,2)) for a smooth
function g in one variable.
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ExXAMPLE 2.12. Consider the following system of PDEs for a function
f:R?2 5 R:
of
) = Bwv. o)

where «, B are smooth functions defined on some open subset V' C R3. This
is again an overdetermined system of PDEs of possibly non-linear first oder
equations.

Question: When does (2.17)) have a solution?

. 2 2 . . .
Since aa:cafy = %, a necessary condition is

0 0
gy&(l‘, Y, f(xa y)) - %B(xv Y, f(xa y))7
which by the chain rule means that
50 785, =2, T %, (2.18)

must hold at any point (x,y, z) € V where there is a solution of (2.17)) with
flz,y) ==

Thus, is a necessary condition for to have a solution in a neigh-
bourhood of any point (zg,yo) with arbitrary initial value f(xg,y0) = zo.
By the Frobenius Theorem, is also sufficient: it implies that for any
(70,0, 20) € V there exists an open neighbourhood U of (g, 10) € R? and

a unique solution f: U — R of (2.17)) such that f(xo,y0) = 20.

Why? Note that describes the tangent plane to the graph of f in
terms of coordinates of the graph. The collection of tangent planes defines a
rank 2 distribution on V' and is equivalent to the involutivity of that
distribution. Indeed, suppose f : U — R were a solution (on some open

subset U C R?) of (2.17). Then,
YU —R3
7,/}(.’1,',2/) = (%%f(%@/))

is a diffeomorphism onto gr(f) (¢ is a parametrisation of the submanifold
gr(f) C R3). Then, Ty(z,yyer(f) is spanned by

T 9) = ey, [ )+ D w,9) (. f (o)

——
:oc(:v,y,f(x,y))
of

T 0l (00) = 5 (@0 S 4 () 5 (o S

——
:B(x7y7f(xvy))



2.8. APPLICATIONS OF THE FROBENIUS THEOREM AND BRACKET-GENERATING DISTRIBUTIONS
Note that the vector fields

X =2 (e, fy)

0z
0 0

span a rank 2 distribution £ on V. It is straightforward to check that F is
involutive (hence integrable) <= (2.18) holds. Moreover, in this case, f is
a solution of (2.17) <= gr(f) is an integral submanifold of E.

In summary, if holds, then through any point (zg,y0,20) € V there
exists an integral submanifold K C V' C R? of E through (0,0, 20), which
locally (as a submanifold) must have the form gr(f) for a smooth func-
tion f : U — R, where U is an open neighbourhood of (x9,%) € R? with

f(x0,%0) = 20

On the opposite ending of integrable distributions within the world of
distributions one has so-called bracket generating distributions, which are
maximally non-integrable:

DEFINITION 2.52. A (smooth) distribution £ C T'M on a manifold M
is called bracket-generating, if any local frame {1, ...,&;} of E together
with its iterated Lie brackets, [&;,&;], [€e, [&i,&;]] -.- and so on, forms a local
frame of T'M.

Note that, if this is true for some local frame of F around a point in M,
then this is true for any other local frame of F around that point.

ExAMPLE 2.13. (Contact manifolds)
Consider R? with coordinates (z,y,2) € R? and let E C TR? be the rank 2
distribution spanned by the vector fields

0 0 0
X == — dY = —.
ox + Y9, ¢ oy
Then [X,Y] = % is not a section of E and so E is not integrable. Moreover,

X,Y and [X,Y] span TR3?. Hence, E is bracket-generating and called the
standard contact distribution on R3.

More generally, a contact distribution on a manifold M of dimension
2m + 1 is a rank 2m distribution £ C T'M such that

L. E, XEx%TxM/Em%R
§a X Ny > qx([ian](ﬂf))

is non-degenerate for all z € M, where £ and 7 are extensions of &, re-
spectively 7, to local vector fields around x. It is easy to check that £, is
well-defined, i.e. independent of the choice of local extensions £ and 7.

EXAMPLE 2.14. (Driving a car)
The configuration/phase space (or phase space) of a car consists of all points

(z,y,a, ) € R? x S' x (—m/4,7/4) =2 M,
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where (x,y) is the position of the midpoint of the rear axle, a the angle of
the chassis to the z-axis, and 8 the steering angle of the front wheels.

— make a picture.

Driving a car traverses a curve

c(t) = (z(t)),y(t), a(t), B(t))
in M. There are non-holonomic constraints, that are constraints on position
and velocity that can not be integrated to constraints on position only. We

have:
i ) e (3250

d (x(t) + Lcos(a(t)) s parallel to cos(a(t) — B(t))
3 () L teimaten) et o (S0 560

where £ is the length from the midpoint (x,y) of the rear axis to the midpoint
of the front axis (connecting the two front wheels). This means we have the
following to linear equations for (2/(t),y'(t), &/ (t), 8'(t)):

and

o' (t) sin(a(t)) — y'(t) cos(a(t)) = 0
(#'(t)—Csin(a(t))a/ () sin(a(t) = B(t)) = (¥ (t)+L cos(a(t))a’ (t)) cos(a(t)—-B(t)) = 0.

Any solution is of the form

2/ (t) 0 Ccos(a(t)) cos(B(t))
y'(t) | 0 Csin(a(t)) cos(B(t))
o) | At) of T #(t) —sin(5(t))
B(t) 1 0
Let us set
X = 885 (steer vector field)
Y :=/{cos B cos oz2 + £ cos B sin Oz2 — sin BE (drive vector field)
) Ox oy Do '

Note that the two control vector fields X and Y span a bracket-generating
distribution on M, which describes the space of possible velocities. Indeed,
check that X,Y,[X,Y] and [Y, [X,Y]] span TM. What does this mean?



CHAPTER 3

The Cotangent Bundle

Constructions in the category of vector spaces can be generalised to the
category of vector bundles. In particular, for any vector bundle we can form
its dual and wedge products of it. In this case of the tangent bundle this
leads to the cotangent bundle and wedge products of it, whose sections are
called 1-forms respectively k-forms.

3.1. 1-forms

Suppose M is a manifold of dimension m and p : £ — M a vector bundle
of rank k. Given two local trivialisations of E, ¢ : p~1(Uy,) — Us x R¥ and
¢ : p 1 (Ug) — Ug x R¥ | the transition map is of the form:

$50da" : Ua NUs x R¥ - Uy N U5 x RF
(y,v) = (y7¢ﬁa(y)v)a
for a unique smooth map ¢g, : Uy N Ug — GL(E, R).

REMARK 3.1.

e The local trivialisations (U,, ¢n) (also called vector bundle charts)
of F form a so-called vector bundle atlas of E.

e Any vector bundle over M may be also defined as smooth map
E — M that is equipped with a maximal vector bundle atlas.

e The family of maps ¢, (associated to a vector bundle atlas) satisfy

baa(y) =y
$ap(Y)Pary(y) = day(y) (cocycle condition).

The Cech cohomology class of the cocycle of transition functions
determines a vector bundle up to isomorphism.

For any x € M consider the dual vector space Ef = {\ : E;, — R :
A is linear} of E;. Set
E*:= | | E},

zeM
and denote by ¢ : E* — M the natural projection.

LEMMA 3.2. For any vector bundle p : E — M of rank k, q : E* — M

1s also naturally a vector bundle of rank k, which is called the dual vector
bundle of E — M.

PROOF. By construction, ¢ : E* — M is a surjection such that ¢~!(z) =

E? is a k-dimensional vector space for any x € M. Fix z € M and let

53
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(Uq, o) be a chart for M with x € U,. By possibly shrinking U,, we can
assume that £ — M trivialises over U,, i.e. there exists a local trivialisation

o :p_l(Ua) — U, x RF

defined over U,. (Note that ug Xidody : p~1(Us) = 1a(Uy) X RF € R™ x RF
is a chart for the manifold E). Now define a bijection

o q N (Uy) — Uy x (RF)*, (3.1)

[0}

where ¢%|g, == ((¢ale,) ™) : Ef — {y} x (R¥)*. Then pr; 0 ¢} = qly-117,)-
Moreover,

(Ua X 1) 0 % 2 ¢ H(Us) = ua(Uy) x RF € R™ x R¥,
defines a bijection for any choice of isomorphism u : (RF)* = RF. Let

(upg x p) o ¢ ¢ 1(Us) — ug(Us) x R¥ another such bijection for a chart
Uz, ug) and local trivialisation (Ug,ug) with U, N U, (). Then
By Up B Up B

((us x 1) 0 63) 0 ((a x 1) 0 65) ™ 2ta(Ua N Up) x B = ug(Us NUp) x B
(4, 0) = (uga(y), (1 ° (950 uz* (1)) o ™) ()

is smooth, since ugy, ¢ga, and inversion and dualising in GL(k,R) are
smooth. Hence, we can use the bijections of the form to equip E*
with the structure of a smooth manifold of dimension m + k whose maximal
atlas is induced by these bijections (cf. the construction of the smooth struc-
ture on T'M for a abstract manifold M in Section . By construction, it
follows that ¢ : E* — M is a smooth vector bundle for this smooth structure
on E*. O

DEFINITION 3.3.

(a) For any manifold M the dual vector bundle ¢ : T*M — M of the
tangent bundle p : TM — M is called the cotangent bundle of
M. |We write T M := ¢ '(z) for its fiber over x € M.

(b) A (smooth) section of g : T*M — M is called a (smooth) 1-form
on M. We write I'(T*M) or Q' (M) for the set of 1-forms, which is
a real vector space and a modul over C*°(M,R) by Lemma

Suppose (U, u) is a chart for M. Then the map

¢ = ut x IdoTHu: T*U = ¢ HU) Z%u(U) x (R™)* 210 « (R™)*,
where
Tyu =T ulrzy = (Tyu)™')* = (Tyu)*) ™,
is a local trivialisation of T*M — M.

DEFINITION 3.4. Let {A1,..., Am} be the basis of (R™)* dual to the stan-
dard basis of {e!,...,e™} of R™, i.e. A;(e/) = d;;. Then we write du’ for the
section of T*U — U defined by

du'(y) = (¢*) " (5, N) = (T"u) " (u(y), \i) Yy € U.
Evidently, du'(y),..., du™(y) form a basis of T;U = T;;M for any y € U,
which is dual to the basis %(y) O_(y) of T,U =T,M.

e Gum
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For smooth functions w; : U — R, i =1, ..., m, the sum

m
E widuz,
i=1

is a local 1-form defined on U. In particular, locally there are many 1-forms
on a manifold and from the existence of partitions of unity it follows that
this is also true globally. Conversely, any w € Q'(M) may be restricted to
U, where it can be written as

wly = Zwidui, (3.2)
=1

for unique smooth functions w; € C*°(U,R). Note that smoothness of w is
equivalent to w; being smooth for all 7.

DEFINITION 3.5. Suppose w € QY(M) = T'(T*M) is a 1-form on a man-
ifold M and let (U, u) be a chart for M. Then (3.2)) or (wq,...,wy,) is called
the local coordinate expression of w with respect to (U, u).

Note that we have a bilinear map:
T(T*M) x T(TM) — C*®(M,R)
(w, &) = (w(&) : & = wa(&a))-
By construction, dui(%)(x) = §;; for all z € U and wly(
du'(€|v) = £

REMARK 3.6. Note that for a not necessarily smooth section w of T* M,
i.e. amap w: M — T*M such that gow = Idy, the following are equivalent:

a
ou’

) = w' and

e w is smooth;
e w has smooth local coordinate expressions for any chart of M;
e w(¢&) is smooth for any local smooth vector vector field &.

Let us now compute how the local coordinate expression of a 1-form w €
Q(M) changes when we change the chart: suppose (Uy,uqs) and (Ug, ug)
are two charts of M. Recall that

where Ag (x) =

where

resp.

where B; is the inverse to A;.
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DEFINITION 3.7. For f € C°°(M,R) we may define a 1-form df € Q(M)
by
df(x)(gx) =T,f¢& forxe M,§ € T, M.

Indeed, df : M — T*M is smooth, since df ({) = & f for any £ € X(M), and
df(x) € Ty M for all z € M.

The operator d : C°°(M,R) — Q(M) is the easiest special case of the
so-called exterior derivative on differential forms as we shall see. In local
coordinates (U, u) we have:

.., of .
cﬁh/::E:cU(au»dul: éﬂidu?

Note that for f = u’, we have du’ = 3 j dui(%)duj = du’, which explains

our notation for the local 1-forms du’.
3.2. Review: Multi-linear algebra

Suppose Vi,..., V. are (real) finite-dimensional vector spaces. For a vector
space W we write

LV, .., Vs W)

for the vector space of r-linear maps Vi x ... x V,, = W.

DEFINITION 3.8.
(a) The tensor product of Vi,..., V. is the vector space

Vi®...0V, =LV}, .., V5R).

(b) For (v1,...,v,) € Vi X ... x V; we write 1] @ ... ® v, € V] ® ... @V,
for the map

V] ® . @Up t (A1y ey Ap) = T N ().
Note that the map
R:ViXx. xV,=>V®.V,
(V15 ey V) = 01 @ ool @ Uy,

is r-linear, i.e. ® € L(V4,..,V;; V1 @ ... @ V).

Properties of the tensor product:

e Universal property: For any r-linear map f: V3 x ... x V, = W
to a vector space W there exists a unique linear map

fVi®.oV,sW

such that f = f o ®. In particular, f — f defines an isomorphism
LV, ., Vi W) 2LV ®...0V,, W).
e There are natural isomorphisms:
VieV) @V =2V @V Vs
MoV eWz=21el,olhe Vs
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e Basis: If {e; j}1<j<n, is a basis of V; for i = 1,...,7, then

Ji & Jr J1<5i<n,1<i<
{61] & X erjr}1<] <n;,1<i<lr

is a basis for V; ® ... ® V.. In particular, dim(V; ® ... ® V;.) =
II7_, dim(V;) = nq - ... - n,.
e There exists canonical isomorphisms:
VieoVy =(1els)
A ® Ay — (Ul X vg — )\1(’01))\2(02))

Vif® Vo = L(V4, Va)
Al ® vy — (7)1 — )\1(1)1)1)2).

o If f; : V; — W, are linear maps for ¢ = 1, ..., 7, then by the universal
property there exists a unique linear map

f1®...®fr:V1®...®w—>W1®..‘®WT,
such that f1®...® fro® = Qo f1 X...X f. : Vi X..xV, = W1®...QW,.
DEFINITION 3.9. Suppose V is a real finite-dimensional vector space and
write L"(V,R) := L(V,...,.V;R) =V*® .. V*.
——

r

(a) A r-linear map w € L"(V,R) is called alternating, if

W(UU(1)7 S UO’(’V‘)) = Sigﬂ(O‘)W(Ul, X UT)

for all vy, ...,v, € V and for all o € S, := {bijections of {1,...,r}}.
Note that w is alternating <= w vanishes if one inserts an element
twice. We write

NV = Ly (V,R) € L"(V,R)

for the subspace of r-linear alternating maps.
(b) There is natural projection Alt : L"(V,R) — L7}, (V,R), called al-
ternator, given by

1 .
Alt(w)(v1, ..oy vp) = pl Z sign(o)w(Vg(1), -+ Vo(r))-
" 0ES,

Note that, if w € L], (V,R), then Alt(w) = w.

It follows that, if r > dim(V'), then /A\"V* = 0, since any r-linear map is
uniquely determined by its values on elements of a basis of V' and vanishes
if an element is inserted twice. Moreover, if r = dim(V'), then A"V* is 1-
dimensional: fix a basis B = {e!,...,e"} of V, then det = detg : V x...xV —
R (the determinant of r vectors with respect to the basis B) is an element
of N"V*. If w € A"V*| then

w(v1, ..oy vp) = det(vy, ..., v )w(el, ... e"),

by multilinearity and being alternating.
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DEFINITION 3.10. For a (finite-dimensional) vector space V' we set

AV = DAV
r>0
with the convention that A°V* := R and A'V* := V*. Then A*V* is a
finite-dimensional vector space.

Note that any linear map f : V' — W between (finite-dimensional) vector
spaces V and W induces a linear map f* : AN"W* — A"V* given by

fro(vr, o) = w(f(v1), ., flur)),
which extends naturally to a linear map f*: A*W* — A*V*. One has
(gof) =f"og" (3.3)
for any other linear map g: W — Z.

DEFINITION 3.11. For w € A"V* and n € A’V™ their wedge product
wAn € NTSV*is given by

r+s)!
WAN(VLy eery Upgg) = ( r's') Alt(w @ n)(v1, ..., Upts)
1 :
= Z Sign (o)W (Vg(1)s s Va(r) )N (Vo (r41)s -+ Vo (r+s))-
o O'ESr+s

By bilinearity, we can extend A to /A\*V*:
ZWT A an = ZWT Ans  wp,m € NV,
r r r,s

PROPOSITION 3.12. The vector space \*V* := @, o /\"V* is an asso-
ciative (unitial) graded-anticummutative algebra, i.e.
(@) (WA AC=wA(nAQ) for allw,n,( € N*V* (associativity);
(b) 1 € R = AV* satisfies 1A w = wAl = w for allw € N*V* (unitial);
(c) N'V*ANSV* C N'TSV* (graded algebra);
(d) wAn=(=1)"nAw forwe N'V* and ne NV*,
Moreover, for any linear map between vector spaces f : V. — W, the linear
map f*: /NW — N*V* is a graded algebra morphism (of degree 0), i.e.
fflwnn)=ffonfn ff1=1and f*N"W* C N'V*.
PROOF. See algebra class or tutorial. U

PROPOSITION 3.13. Suppose V is an n-dimensional vector space.
(a) Ifwi,...,w, € V* and vy, ...,v, € V, then
w1 A A wr(vl, ...,UT) = det(wi(vj)lg,jgr).

In particular, w1, ...,w, are linearly independent if and only if
wi A Awy # 0.
(b) If {1, ..., \n} is a basis of V*, then

{)\il/\.../\)\iT:lgil < ...<ir§n}
is a basis of N"V'*.

PROOF. See algebra class or tutorial. U
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3.3. Tensors

Suppose M is a manifold. For a fixed point x € M consider
TM@. QT MRITyM® ..o ThM=L(T;M,..TiM,T,M,... T,M;R).

p—times q—t‘irmes
and denote by TM®? @ T*M®? the disjoint union over all z € M of these
vector spaces. It is easy to see that the natural projection
T TM®P @ T*M®1 — M

admits the structure of a (smooth) vector bundle, which is induced from the
vector bundle structures on TM and T*M (see tutorial).

DEFINITION 3.14.

e A (smooth) (Z ) -tensor is a (smooth) section of .

e We write 77 (M) for the vector space of (smooth) (g > -tensors on

M, which is also a modul over the ring C*°(M,R).
o If o€ TP (M) and ¢ € T (M), then ¢ ® 1, defined by

(¢®¢)(x) = ¢ @Y, Vo e M,

is a (Z 1 :) -tensor on M. (Note that z — (¢g,Vs) = ¢r @ )y is

smooth as composition of smooth maps).
Suppose (U, u) is a chart for M, then the local tensors of the form
0
ouht Ou'r
form a basis of 77!(x) at any point x € U. Hence, any tensor ¢ € T (M)
can be written on U as:

ity O 5} ; '
dly = Z o5 G @ 5 @ du’' ® ... ® du (3.4)

®.Q®

®du' ® ... ® dul € TP(U)

U15eep3d15-50q

for real-valued functions qb;lllﬁl functions on U, which are called the local

coordinate expressions of ¢ with respect to (U,u). Smoothness of ¢ is
equivalent to the smoothness of the local coordinate expressions for any
chart.

Any ¢ € TF(M) gives rise to a map, which we will also denote by ¢,
given by

¢ T(T*M) x ... x T(T*M) x T(TM) x ... x D(TM) — C®(M,R) (3.5)
(wlv R wpv 517 R ’Eq) = (.T = (bl"(wl(x)? "'7wp(x)7 51('7")7 ct &I(x)))
By construction, (3.5)) is C°°(M,R)-linear in each entry and, by (3.4)),
(b(wlv ceey wpa {17 (X3 ’Sq)
is indeed an element of C*°(M,R), since on the domain U of any chart (U, u)
it is given by o A
DL Onwn e

11500301 5-50q
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which is smooth as a sum of products of smooth functions.

REMARK 3.15. Note that
o , 9 )
11y.e5tp 11 7
G = ol e, S )
Moreover, smoothness of a tensor ¢ is equivalent to ¢(w!, ...,wP, &1, ..., &) be-
ing smooth for any smooth local 1-forms w', ..., wP and vector fields &1, ..., &q-
Let us consider two special cases:
e ¢ € TO(M)=T(T*M) is a 1-form and we know already that ¢(¢) :
M — R is smooth for & € I'(T'M).
e ¢ € TH(M) =T(TM) is a vector field and ¢(w) = w(¢) : M — R
is smooth for w € T'(T*M).

REMARK 3.16. Elements of 7'(M) (respectively, 7(M)) are called p-
times contra-variant (respectively, ¢g-times covariant) tensor, which refers to
the way they change under coordinate transformations.

The following proposition characterises tensors:

PROPOSITION 3.17. Associating to a tensor ¢ € TF (M) the map (3.5)
defines a linear isomorphism between T (M) and the vector space

WP(M) := Lese(apy(D(T*M), ., T(T* M), T(TM), .., T(TM); C*(M,R))
of C*°(M,R)-multilinear maps.

PRrROOF. We already know that ¢ € 77 (M) gives rise via (3.5) to a map
in WE(M) and evidently that association is linear and injective. Conversely,
let

¢ T(T*M) x ... x T(T*M) x T(TM) x ... x T(TM) — C*®°(M,R)

be C°°(M,R)-multilinear, i.e. an element in W4 (M). Then we have to show
that
P() (W' (), ey &4(2)) = P(w', ..., &) (@)

for 1-forms w?® and vector fields & ;j just depends on the value of these 1-forms
and vector fields at z. If this is the case, z + ¢, is an element of T/ (M). It
is sufficient to show that if a 1-form or vector field o vanishes at z, so does
d(wh, ... 0, ., &) ().

Suppose first o vanishes identically on a open neighbourhood U C M of
x € M and let f € C’OO(M R) be such that f[yny =1 and f(z) = 0 (which
exists by Corollary . Then 0 = fo and by C*°(M, R)-linearity, we have

S, oy 0y €)(@) = S, s O, £)(2) = F(2)B(W, e 0y, Eg) (@) =

This shows that for a chart (U, u) with x € U, ¢(w?, ...,&,)|v (and in partic-
ular its value at x) just depend on the restrictions of the the 1-forms w’ and
vector fields §; to U. Hence, we have

ol = Y erTwl Wl el g (3.6)

i1 oo ensda
Therefore, if o(z ) =
d(wh, ..o, .., &) ()

0, then its local coordinate expressions vanish at xz, and

0 by (B.6). O
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EXAMPLE 3.1. A tensor g € 732(M) on a manifold M of dimension m
is a called a (pseudo-)Riemannian metric on M, if for any = € M the
bilinear form

g(x) : TyM x T,M — R
is symmetric and non-degenerate. If M is connected, the signature (p,q) of
g(x) does not depend on z and is referred to as the signature of g (p+q = m).
In particular, if g is positive definite, i.e. the signature is (m,0), then g is
called a Riemannian metric, and if g has signature (m—1,1) or (1,m—1),
then it is called a Lorentzian metric.

If M = R™, the standard inner product gives rise to the Euclidean (or
standard ) metric on R™ given by

g=dz' @ dat + ... + dz™ @ dz™.

Similarly, the standard Lorentzian inner product on R™ gives rise to the
standard Lorentzian (or Minkowski) metric given by

g=—dz' @dz' + ... + dz™ @ dz™.

3.4. Differential forms
Suppose M is a manifold of dimension m.
DEFINITION 3.18.

(a) A (differential) k-form on M is a <0

k‘> ~tensor w € T2(M) such

that w(x) € AFTFM for all x € M.
(b) We write Q*(M) C T2(M) for the subspace of k-forms on M,
which is also a mudul over C*>°(M,R). We use the convention that
QO(M) = TO(M) = C=(M,R).
Note that for k > m one has Q¥(M) = {0}.

REMARK 3.19.
o NFT*M = uweM/\’“T;M CT*M®...®T*M is a subbundle.

~
k—times

o OF(M) =T'(A\*T*M) = space of sections of AFT*M.

By Proposition we can consider a k-form w € QF(M) also as a
k-linear, alternating map

w:T(TM) % ... x T(TM) — C®(M,R),
that is linear over C*°(M,R) in each entry.

DEFINITION 3.20. Suppose f: M — N is a smooth map between mani-
folds. If w € QF(N), then f*w, called the pull-back of w via f, is a k-form
on M given by:

f*CU(ZL')(€1, Sx) gk) = W(f(lf))(wagl, ) wagk’) gz €1, M.
If &,..,& € T(T'M), then
o€, &) = (wo )T f oy, ... Tf o),

which shows that f*w is indeed a smooth tensor field on M.
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REMARK 3.21. More generally, one can pull-back <2> -tensor via smooth
maps.
We have a natural map
Alt - TO(M) — QF(M)
Alt(¢)(x) = Alt(¢2),

where we have Alt(w) = w for w € QF(M).

DEFINITION 3.22. For w € QF(M) and n € QY(M) the wedge product
wAn € QM) of w and 7 is given by
(€ +E)!
k0!
For f € Q%(M) = C®(M,R) and w € Q¥(M): fAw= fuw.

(WAN)(T) =wy ANy = Alt(wy ® 15).

Extending A by bilinearity to a map
A QY (M) x Q(M) — Q" (M),
where Q*(M) := Py~ QF(M), Proposition implies:

PROPOSITION 3.23. The vector space QL*(M) is an associative (unitial)

graded-anticommutative algebra over C*°(M,R) (in particular, over R), i.e.
satisfies (a)-(d) of Proposition[3.19, since it does so pointwise.

Moreover, we have:

PROPOSITION 3.24. Let f : M — N be a smooth map between manifolds.
Then f*: QF(N) — QF(M) extends to a morphism
ffFQ%(N) - Q"(M)
of (unitial) graded algebras, i.e. f* is R-linear, f*1 =1, f*(wAn) = ffwA
f*n and f*QF(N) C QF(M). Moreover, if g : N — P is another smooth
map between manifolds, then

(gof) = f"og".

PROOF. Since (f*w)(z) = (Tpf)*w(f(z)) for all x € M, the first claim
follows from Proposition and the second claim from (3.3) and T'(go f) =
TgoTf. (]

If (U,u) is a chart for M, then {du®* A ... Adu® : 1 <iy < ...<ip <m}
form a basis of A¥T, M for any = € U. For w € Q¥(M) we therefore have

OJ|U = Z wil,“ikduil VANPYRAN duik,
1< <. <ip<m
o) 2]
where Wiy ..ip, — W(W, ceey m) € COO(U, R)

Recall that we have an operator
d: QM) =C>®(M,R) — Q' (M)
f=df

We can extend this operator to an operator d : QF(M) — QF1(M) for any
k > 0 in a natural way.
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DEFINITION 3.25. Suppose w € Q¥(M). Then we define
dw : T(TM) x ... x D(TM) — C®(M,R)

k1

k

dw (€0, €1, ) = Z(— )i - w(E0s iy oy )

+Z Z+]w glafj] 607' 7£i7"'7éj""7§k)’

1<j
where fl means that this element is omitted.

LEMMA 3.26. For w € QF(M) one has dw € Q1 (M). Moreover, by
linearity, we can extend d to a map
d: (M) — Q*(M),
called the exterior derivative on differential forms.

PROOF.

o dw is alternating: Suppose §; = &j+1. Then the fact that w is
alternating and [£,£] = 0 implies that

dW(§O7 "7€j7€j+17 7516) = (_1)j§7 'w(éba "’7€j7£j+1'-‘7§k)
+ (=1 w (o, o 5y €jraenns )
+Z erjw 5175]] 507' 7éi7"'>£j7€j+17"'7§k)

1<j

+ DD (5, 5], €0r s iy 5 €1, o E)

1<j

D DN G AR [T 1 N 0 S TR S 39

JH+1<e

+ Z ]+1+Z §]+17§Z] 507' '7§j7éj+17""€i""’§k)

J+1<e

Note that the the first and the second, the third and the fourth,
and the fifth and the sixth term cancel each other, since they are
the same but with a different sign.

e dw is C°°(M,R)-linear in each entry: by being alternating, it is
enough to show this for one entry. For f € C°°(M,R) one has

dw(fg()vél:"'vfk):(fg()) 517- 75’6 +Z f€07' 7517"'7{]6)
>0
+Z f£0752] gla' '75%'"7619)
1<s
+ Z H_]fw gla&j] €07' agla' 75]) agk)
1<i<y

= fdw(€07£1) --')fk)a
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since [f&o,&] = fléo. &) — (& - f)éo and

Ei - W(FE0s s Eiy oo &k) = (& - (05 ooy &y ons E)  F(Ei - W(E0y ons Eiy ooy E8)).-
O

THEOREM 3.27. The operator d : QF(M) — QFFY(M) satisfies the fol-

lowing properties.

(a) For f € C*(M,R), df(§) =& f for all § € T(T*M).

(b) Forw € QF(M) and n € QY(M) we have

dlwAn) =dwAn+(=1)*w A dn.

(c) d>=dod=0.

(d) d is a local operator: if w € QF(M) vanishes identically on an
open subset U C M, then dw also vanishes identically on U. In
particular, for w € QF(M), dw|y just depends on w|y for an open
subset U C M.

(e) If (U,u) is a chart for M and w € QF(M), then

i i Owiy iy i i i
dw|y = Z d(wiy..ip )N A Adu'™ = Z Wdu OAdu" .. Adu't,

i1<...<ip 11 <...<ig;%0

where w|y = Zi1<...<ik wil,,.ikduil A . A du'k.
(f) d is a natural operator: If f : M — N is a smooth map between
mamnifolds, then

d(f*w) = ffdw.
PROOF.

(a) Clear from the definition.

(d) Suppose w|y = 0. Then for arbitrary vector fields &, ..., { one has
w1, &) |lv = 0 and also & - w(&y,...,& )|y = 0 for any vector
field &y. Hence, dw|y = 0. In particular, if w|y = 7|y, then

0=dw—n)lv = dw|y — dnlu,

which implies dw|y = dn|y.
(e) We first prove a special case of (b). Suppose w € QF(M) and
f €M)= C>(M,R). Then
k

AF G0 r68) = D (=1)'€s - (FlGr s 60))

=0
+ Z(_l)ﬂ”]fw([g“ 5]]7 507 ) éiu (X3 g]) (X3} fk)
1<J
k

= (fdw) (&0, &) + D (1) (& - Hw (o, s iy o k),
i=0
which shows that
d(fw) = fdw + df Nw. (3.7)
Now we claim that

d(du™ A ... A du'™) = 0.
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Indeed, d(du®* A ... A du'*) vanishes upon insertion of any k + 1
coordinate vector fields, since du’* A ... A du’* is a constant upon

insertion of k coordinate vector fields and | 822-, %] = 0. Hence, (d)
and (3.7) imply
(dw)ly =d( Y wiyapdu™ A Adu'®)
11 <...<tg
= Z dw;, . i N du't A ... A dut
11 <...<i
= Z mdulo Adu® ... A du'.
ou'o
11 <...<%k;%0

(b) By (d) we can prove this in local coordinates. Suppose
wly = Zw;dul and n|y = andu‘],
I J
where [ = (i1 <i... <ig) and J = (ji <i... < jp) are multi-indices
and du! = du®* A ... A du*. Then one has
wAnly = ZW]?]JCZUI A du? .
1,J
Hence, one gets

dlwAn)|ly = Z d(wrny)dul A du”
1,J

= Z d(wp)nsdul A du” + ZWId(T]J)dUI A du’
1,J

I1,J
= d(wndu’ A nydu’ + (=108 wrdu A d(ng)du’
I J I J

= (dw An+ (—1)*w A dn)y.
(¢c) We can prove this again in local coordinates. We have already seen

that d(du A ... A du™) = 0. Hence, (b) and (e) imply that

(Pw)ly = d*(wr) Adu.
I
It remains to show that d?f = 0 for any f € C*°(M,R). Indeed,
by definition of the Lie bracket one has
d(df)(€o, 1) = o - df (&1) — & - df (o) — df ([€0, &)
=& (& f)—& (- f)—[&.&l f=0.
(f) Suppose g € QY(N) = C*°(N,R). Then f*g = go f. Hence, for
any vector field £ € X(M) one has
d(f*g)(§) =& (go f) = (Tf&) - g=dg(Tf&) = [dg(&). (3.8)
Suppose now (U,u) is a chart for N with f(N)NU # 0. For
wy = Y. ;wrdul we have by Proposition that

f*w|f-1(U) = Z f*wjf*dul = Z f*wilmikf*du“ A f*duzk

I 11<...<tp
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By (3.8), d(f*w;) = f*d(ws) and d(f*u’) = f*du’, and therefore

(¢) implies

d(frwlp-rqn) =Y d(f*wr) f*du’ = Zdwmdu F¥(dwly).

I

3.5. Lie derivatives

Suppose f: M — N is a local diffeomorphism between manifolds. Then
at any point x € M

f (T N Tf N = TiM
are linear isomorphism. Recall that ((T,f)~1)* = (T; f)~*

DEFINITION 3.28. Suppose f : M — N is a local diffeomorphism and
let ¢ € TF(N) be a <§> -tensor. Then the pull-back of ¢ via f is the

(2) -tensor f*¢ € TF(M) on M given by:

f*¢(x)(w17 "'7wp7 51) ceey fq) = qb(f(x))((T;f)_lwl) ceey T;f)_lwpa T:Efgl) seey Txffq)a
for w' € T#M and & € T, M.
Applied to local flows of vector fields we get:

DEFINITION 3.29. Suppose M is a manifold, £ € X(M), and ¢ € T} (M).
Then the Lie derivative L¢¢p € T,/ (M) of ¢ along € is the <§ ) -tensor given
by

(Led) () = %\tzo((Flf)*¢(x)) for all z € M.

Note that ¢ — (FI5)*¢(z) is a smooth curve (defined for small ¢, de-
pending on x) in the vector space T, M®P @ T* M®? and hence its derivative
at ¢ = 0 is again an element in this space. One checks that Lep : M —
TM®P @ T*M®? is a smooth section (see below).

PROPOSITION 3.30. Suppose £ € (M) is a vector field on a manifold M.
(1) Lef = df(€) for f € QM) =T (M) = C*(M,R).
(2) Len = [&n] forn € X(M).
(3) For ¢ € TY(M) and o € T7 (M) one has
Le(p@) =Lep @Y+ ¢ R Leah.

In particular, Le(w A p) = Lew A p+w A Lep for w € QF(M) and
w € QF(M).
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(4) For ¢ € 17 (M),
(£5¢)(w17 "'7wp77717 "’an) = £77(¢(w17 "'77711))

P
— Z dlw, .y Lew', oy m, .y mg)

q
— Z p(wh, . WP, s Ly e Mg)s

for all 1-forms w',...,wP and all vector fields ny,...,ng on M. In

particular, for u € QI(M),

k
(Lett) (s s g) = Le(plm, mg)) = Y (05 ooy LENis --0571g)
=1
k
=& (/‘L(nlv "'777(1)) - Z:U’(nla ) [57772']7 '-')nq)’
=1

for all vector fields 11, ...,ng on M.

PROOF.

(1) Lef(2) = SlocolFIE)* F)(@) = Lmo fFIE()) = TufE(x) = df () ().

(2) See tutorial.

(3) This follows from the fact that f*(¢ ® ) = f*¢ ® f*¢ for any
local diffeomorphism f : M — M (which in turn follows from the
definition of the tensor product) and the bilinearity of ® : (¢, 1) —

P& .
(4) Note that the full contraction map

C:oRw' ®@.wP@m®..0n,— ¢(w, ..., WP, n1, ..y 0y)
is linear and commutes with the pull-back of local diffeomorphisms
f: M — M, that is,
C(ffpow' @..0n) =C(f'o® fw ®..® fn))
=W, ., of=fClpaw ®@..2n,).
Using this the result follows immediately from (3).
O

Note that the formulae for L¢¢ and Lew in (4) imply in particular that
L¢g is again a smooth tensor field as the right-hand side is smooth upon
insertion of smooth vector fields and 1-forms.

On differential forms we have the following operators:
o d:QF (M) — QFFL(M)
o Le: QF(M) — QF(M) for € € X(M)
o
e s QF(M) — Q1 (M)
W tew = w(&— )
for £ € X(M).
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DEFINITION 3.31. A graded derivation of the algebra (w*(M),A)
of degree r is a linear map D : Q*(M) — Q*(M) such that
e D maps QF(M) to QF+" (M), and
e for any w € Q¥(M) and any 1 € QY(M),
D(wAn) =D(w)An+ (=1)" w A D(n).

PROPOSITION 3.32. Suppose M is a manifold and § € X(M).

(1) d is a graded derivation of degree 1.

(2) L¢ is a graded derivation of degree 0.

(3) ¢ is a graded derivation of degree —1.
Moreover, if D1 and Doy are two graded derivations of degree r1 respectively
r9, then

[Dl, DQ] = D1 (¢] D2 - (—1)T1T2D2 o} Dl (39)

s a graded derivation of degree r1 + ro.

PROOF. (1) and (2) we have already seen. For (3) and the last statement
see tutorial. O

REMARK 3.33. Denoting by Der, (£2(M)) the vector space of derivations
of degree r, then the vector space @,..; Der,.(2(M)) is a graded Lie algebra
with respect to the graded commutator (3.9)).

PROPOSITION 3.34. Suppose D is a graded derivation of degree v of
(W* (M), A).
(1) D is a local operator: if w € QF(M) vanishes identically on an open
subset U C M, then so does Dw. In particular, if two differential
forms agree on some open set U, so do their images under D.
(2) If D is anotehr graded derivation of degree r such that for any f €
C>(M,R)
D(f) = D(f) and D(df) = D(df),
then D = D.
PROOF. See tutorial. O

REMARK 3.35. The previous proposition implies in particular that d is
the unique graded derivation of degree 1 such that Df = df and D(df) = 0.

PROPOSITION 3.36. Suppose M is manifold and §,n € X(M) wvector
fields.

(1) [d,ﬁg]:doﬁg—ﬁgodzo

(2) [d,bg]:doLg—l—LEOd:ﬁg

(3) [d,d]=2dod=0

(4) [Le, Ln] = Leo Ly —LyoLe= Ly
(5) [Le,tn) = Le oy —inoLe =1y
(6) [testny] =teoty+tyote=0

PROOF. See tutorial. O



CHAPTER 4

Integration on Manifolds

Recall that the transformation formula (or coordinate change formula)
for multiple integrals: Suppose U C R™ is an open subset and ¢ : U — ¢(U)
a diffeomorphism between open subsets of R™. Let f : ¢(U) — R be a
smooth function with compact support. Then

L/ fz/uomMaw@L (4.1)
o(U) U

This looks like the transformation of m-forms on manifolds of dimension
m under coordinate changes. Indeed, suppose M is a smooth manifold of
dimension m, w € Q™ (M) an m-form and (Uy, us) & chart of M. Then we
know that

wlp, =W Ldul AL A du™,

where wf | = w(%,. 76um) U, — R. Suppose now (Ug,ug) is another
chart with U = U, = Ug and set ¢ := ug o uy! : ua(U) — ug(U). Let us
now compare the the local coordinate expression w§ , oug,' and wlﬁm oug1

of the functions wf* , and wf“m:

wf‘...m(ugl(y)) wlug (W) (Tyug e, ..., Tyug'e™)
w(ug (y )(T¢(y)u oTng)e o T (y)ugl oType™)
= det(Dyp)w(uy ' (y ))(T¢(y)u5 et T¢(y)uglem) (4.2)
= det(Dyo) wy_, (5" (6(1))).
£0

If we assume U is connected and hence so is u (U), then the sign of det(Dy¢)
is either always positive or negative on uq(U). Then says that the
integral over the local coordinate expression of the function w{*  is up to a
sign independent of the choice of charts. To fix the issue with the sign, we
need now to talk about orientation.

4.1. Orientation

4.1.1. Orientation of vector spaces. Suppose V is a real vector space
of dimension m. Then two ordered bases (v, ...,v™) and (w!,...,w™) of V
have the same orientation (respectively, opposite orientations), if the linear
map T : V — V, mapping one to the other, i.e. T(v?) = w' for all 4, has
positive (respectively, negative) determinant. It is easy to see that “having
the same orientation” defines an equivalence relation on the set of ordered
bases of V and there are exactly two equivalence classes.

69
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DEFINITION 4.1. Suppose V is a real vector space of dimension m > 1.

(1) An orientation for V is a choice of one of the two equivalence
classes of ordered bases of V.

(2) Having fixed an orientation for V, any basis in the chosen equiva-
lence class is called positively oriented and any one in the oppo-
site equivalence class is called negatively oriented.

(3) For a zero-dimensional vector space, we define an orientation to be
a choice of one of the numbers 1 or —1.

(4) A vector space with a choice of orientation is called an oriented
vector space.

ExXAMPLE 4.1. The standard orientation on R™ is the one induced by
the standard basis (e!,...,e™). Note that with respect to the standard orien-
tation a basis (v!,...,0™) of R™ is positively oriented, if det((v?,...,v™)) > 0.

PROPOSITION 4.2. Suppose V is a vector space of dimension m. Then
any nonzero element w € N"V* induces an orientation on V as follows:

(1) Ifm > 1, then the orientation is given by all ordered bases (v?, ..., v™)
of V such that w(v!,...,v™) > 0.
(2) If m = 0, the induced orientation is defined to be 1 for w > 0 and
—1 for w < 0.
Moreover, two nonzero elements in AN""V* define the same orientation if and
only if one is a positive multiple of the other.

PROOF. See tutorial. O

The previous proposition shows that the choice of an orientation for an
m-~dimensional vector space V is equivalent to the choice of one of the two
connected components of A™V*\ {0}.

EXAMPLE 4.2. Suppose that A, ..., Ay, is the basis of (R™)* dual to the
standard basis in R™. Then A\ A ... A Ay, € A™(R™)* induces the standard
orientation on R™.

DEFINITION 4.3. Suppose V and W are oriented vector spaces of dimen-
sion m. A linear isomorphism F' : V — W is called orientation preserving,
if F" maps any positively oriented basis of V to a positively oriented basis of
W.

PROPOSITION 4.4. Suppose V and W are vector space of dimension m
equipped with orientations induced by w € A™V* \ {0} respectively v €
ATW* N\ {0}. A linear isomorphism F : V. — W is orientation preserv-
ing if and only if the induced map F* : N"W* — N"V* maps v to cw for
some positive real number c.

PROOF. Exercise, see tutorial. O
4.1.2. Orientations on manifolds.

DEFINITION 4.5. Suppose M is a manifold.

(1) M is called orientable, if for any x € M one can choose an orien-
tation of T, M such that the following holds: for any point x € M
there exists an open neighbourhood U C M and a local frame
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&1y .y &m of TM defined on U such that (&1(x),...,&n(x)) forms a
positively oriented basis of T, M for all x € U.

(2) If M is orientable, a choice of orientation on each tangent space T, M
for x € M satistying the property in (1) is called an orientation
on M.

(3) An orientable manifold with a choice of orientation is called an
oriented manifold.

REMARK 4.6. If M is a zero-dimensional manifold, then the condition
in (1) is vacuous and an orientation is simply the choice of +1 attached to
any of its points, i.e. a map € : M — {+1}.

REMARK 4.7. Note that being orientable is equivalent to the possibility
of choosing an orientation on each tangent space such that for any local
frame local frame &, ...,&, of TM over a connected subset U, the basis
(&1(x), ...y &m(x)) of T, M is either positively or negatively oriented for all
zeU.

Note an on a connected orientable manifold, there are exactly two ori-
entations, which coincide if they coincide at a single tangent space. Also,
evidently, an orientation on a manifold induces an orientation on any of its
open subsets, making them oriented manifolds in a natural way.

DEFINITION 4.8. A local diffeomorphism F' : M — N between oriented
manifolds is called orientation preserving, if at each point z € M the
tangent map T, F': Tp M — Tp,) N is orientation preserving.

PROPOSITION 4.9. Suppose M 1is an m-dimensional manifold.

(1) If there exists nowhere vanishing m-formw € T'(AN™TM) (i.e. w(z) #
0 for all z € M ), then the orientation on Ty M defined by w(x) as
in Proposition [{.9 defines an orientation on M. In particular, M
s orientable.

(2) Conversely, if M is orientable and oriented, there exists a nowhere
vanishing m-form w € I'(AN™TM) inducing (as in (1)) the given
ortentation. Moreover, w is unique up to multiplication by a positive
smooth function on M.

PROOF.

(1) Suppose w € I'(/A™T'M) is nowhere vanishing. It remains to check
that the orientations on T, M induced by w(z) € AN™T, M satisfy the
property in (1) of Deﬁnition If m = 0 this condition is vacuous,
so assume m > 1. Let € M be any point and (1, ...,&n) a local
frame of T'M defined on a connected open neighbourhood U of z.
Then w(&y,...,&yn) : U — R is smooth, in particular continuous,
and nowhere vanishing on U. Hence, either w(y, ..., &) is either
always positive or always negative on U. Hence, &1(x),...,&n () is
a positive oriented basis of T, M for all z € U in the first case and
in the second case simply replace £&; by —&; to obtain a local frame
with that property.

(2) Fix an orientation on M. Let A = {(Uy,uq) : @ € I} be an atlas
for M such that for all & € I, U, is connected and =2 0

Lyeeey m
oul, oulr
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defines a positively oriented basis for all x € U,. Such an atlas
exists, since by Remark for any chart (U, u) for M defined on a
connected open subset U the corresponding coordinate vector fields
%, e %im define either a positively oriented basis or a negatively
oriented basis for all + € U and in the latter case replacing u!
by —u'! leads to a chart whose coordinate vector fields define a
positively oriented basis at all x € U. Now let F := {fx : M —
R : k € N} be a partition of unity subordinate to the cover U =
{Ua}aer- For each k € N choose oy, € I such that supp(fx) C U,,.
Then w* := fkduak A...Adug, can be extended by zero to an m-form
defined on all of M and local finiteness implies that

o= Yk

defines a (smooth) m-form on M. Fix x € M. Since ), fr(z) =1,
there exists k € N such that

@) (5o (@), s 5o (@) = i) > 0.

Since any chart (U,,uq) in A is by construction orientation pre-
serving, so are all the transition maps for elements in A. Since the
transition maps of A are orientation preserving and any element in
F has non-negative values on M, for any £ € N

0 O () >0.

7(9113% (), ..., 7(9“22

Hence, w(z) # 0. Therefore, there exists a nowhere vanishing m-
form on M as claimed. The last statement is obvious.

w(@)(

O

The proof of the previous Proposition suggest the following definition:

DEFINITION 4.10. Suppose M is an m-dimensional manifold, m > 1.
(1) An oriented atlas for M is an atlas A = {(Uy,uq) : « € I} for

M (i.e. a subatlas of the maximal atlas of M) such that for any
a, € I with Uyp := U, NUg # 0 the transition map

ug o u;l : ua(Ua/j) — UB(UOJJ’)

is an orientation preserving diffeomorphism between open subsets
of R™, where R™ is equipped with its standard orientation.

Two oriented atlases are equivalent, if their union is again an ori-
ented atlas. Any oriented atlas is contained in a maximal oriented
atlas.

PROPOSITION 4.11. Suppose M is a manifold of dimension m > 1. Then

the following are equivalent:

(1) M is orientable.
(2) M admits an oriented atlas.
(3) There exists an m-form w € T'(AN™TM) such that w(x) # 0 for all

e M.
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Moreover, if M is orientable, fixing an orientation is equivalent to fixing a
maximal oriented atlas or a nowhere vanishing m-form up to multiplication
by a positive smooth function.

ProOF. By Proposition we already know that (1) if and only if (3).
Also, the proof of (2) of Proposition |4.9| shows that (1) implies (2) and that
(2) implies (3). The remaining statements are obvious. O

Having fixed an orientation on an orientable manifold M, we call a chart
(U,u) of M oriented, if it is contained in the corresponding maximal ori-
ented atlas.

EXAMPLE 4.3. M = R™ is orientable with standard orientation induced
by the nowhere vanishing m-form da! A ... A dz™.

EXAMPLE 4.4. The m-sphere S™ C R™*! is an oriented manifold, which
can be seen as follows. Consider the m-form on R™*! given by

m+1 .
w= Z (1) tetdat Ao Adat A LA d™ T
=1

If v € S™, then T,8™ = {v € T,R™H = R™+1 . (g v) =0} = z*. Now, if
(v, ...,o™) is basis of 2+ = T,S™, then

we (vl .. v™) = det(z,v!, ..., 0™) £ 0.

Hence, w restricts to a nowhere vanishing m-form on S™ inducing the stan-
dard orientation on S™. Otherwise put, the vector field

_m+1 A 0 %meLl
v= Zz 9 € ( )
=1

is at every point € S™ orthogonal to 7,S™ and for Q = da! A ... A dz™H!
one has

1,0 = w.

EXAMPLE 4.5. The Mobius band M C R3, which can be parametrized
by
cos a1l + 5 cos §)
P(r,a) = | sina(l + 5 cos 3)
T

n &
2sm2

for 0 < o < 27 and r € [—1, 1], is not orientable.

ExaMPLE 4.6. Real projective space RP™ is orientable if and only if m
is odd; see tutorial.

EXAMPLE 4.7. For any manifold M its tangent space T'M is an oriented
manifold. Recall that any atlas for M induces an atlas for TM in a natu-
ral way, which turns out to be oriented, since its transition maps are
orientation preserving; check that (tutorial).
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4.2. Integration
For a k-form w € QF(M) on a manifold M let us write

supp(w) = {z € M : w(x) # 0}
for its support and denote by QF(M) the k-forms with compact support.

PROPOSITION 4.12. Suppose M is a (smooth) oriented manifold of di-
mension m. Then there exists a unique linear map

| soron -z,

such that for any oriented chart (U,u) of M and any w € Q*(U) one has

/Mw = /U(U)(ul)*w = /U(U)(ul)*w(el, €.

PROOF. Suppose A = {(U;,u;)}ier is an oriented atlas for M and let
F = {fi}icr be a partition of unity subordinate to the cover U = {U,}ier
such that supp(f;) C U;. Note that for any w € Q7*(M) one has

w = Z fiwa
el

where fiw € Q'(U;). Hence, by linearity, one must have

/Mw 23 /.(U')(ui_l)*(fiw)(el, ™). (4.3)

1

This shows uniqueness. The formula also allows to define a linear functional
f yy and that it satisfies the requested property follows from the transforma-

tion rules (4.1) and (4.2). Indeed, if w € Q7' (U), then by (4.1) and (4.2)),

one gets
= —1\*/ p. 1 m
/Mw_ze;/ui(UmU)(ui ) () )
‘;/mm *(fiw)(€ ™)
- _1 W ,..., = —1y* 17”.’ my

O

Note that the functional [, in Proposition depends on the chosen
orientation on M. If M is connected and —M, the manifold M equipped
with the opposite orientation, then

L=l

Also, if U C M is an open subset of an oriented manifold M, equipped with
the induced orientation, then for any w € QI*(M) with supp(w) C U, one

has
/ w:/w]U.
M U
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An immediate corollary from Proposition following from the uniqueness

of the functional, is:

COROLLARY 4.13. Suppose ® : M — N 1is an orientation preserving
diffeomorphism between oriented m-dimensional manifolds M and N. Then

for any w € QI*(N) one has
/ P*w = / w.
M N

REMARK 4.14. For a zero-dimensional manifold M with an orientation
€: M — {£1} and w € Q2(M) one defines

| o= X dajuta)

REMARK 4.15.

(1) If M =R is equipped with its standard notation, then for any real
numbers a < b and any w = fdt € Q'(R) we have

/[a,b}w _ / " Foyt.

(2) Line integrals: Suppose V' C R™ is an open subset, w = > 1" | w;dx’ €
QY(V) and v : I — V a smooth curve defined on an open interval
I CR. Then, v*w € QY(I) and for a,b € I one has

W= w; 0 1) (i(1))dt.
SR S IR

This is the line integral of w along v|(, 4 = «, also denoted by fa w.

4.3. Manifolds with boundary

It is useful and natural to extend the notion of manifolds to the notion
of manifolds with boundary, in particular in the context of integration.

Consider the m-dimensional half-space H™ C R™ given by
H™ .= {(z!,...,2™) € R™ : 2! <0}.

and denote by

int(H™) := {(z',...,2™) ¢ R™ : 2! < 0}

OH™) :=H™\ int(H™) = {(z*,...,2™) € R™ : 2! = 0}
the set of interior respectively boundary points of the closed subset H™ C
R™. Recall that for an open subset U C H™ a map F': U — R? is smooth
at x € U, if there exists an open neighbourhood U C R™ of z in R™ and
a smooth map F : U — R? such that Flgny = Flgny- For a smooth map
F : U — R? its restriction to U Nint(H™) is smooth in the usual sense.
DEFINITION 4.16. Suppose M is a topological space.

(1) A chart with values in H™ for M is a homeomorphism v : U —
u(U) between open subsets U C M and w(U) C H™.
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(2) A smooth atlas with values in H™ for M is a collection A =
{(Ua,uq) : o € I} of charts with values in H™ such that
o M =,crUa, and
e for any o, § € I with U, N Up # () the transition map

UBq = UG O u;l tUe(Ua N Uﬁ) — U5(Ua N Ug)
is smooth.

Analogously as for atlases with values in R™ one has a natural notion of
compatibility for atlases with values in H™ and for any atlas with values in
H™ there is a unique maximal atlas with values in H" containing it.

DEFINITION 4.17. An m-dimensional (smooth) manifold with bound-
ary is a Hausdorff second countable topological space M equipped with a
maximal smooth atlas of charts with values in H™.

PROPOSITION 4.18. Suppose (M, A) is (smooth) m-dimensional manifold
with boundary and let x € M be point. If there exists (U,u) € A such that
x € U and u(x) € OH™, then for every chart (V,v) € A with x € V one has
v(x) € OH™.

PROOF. Suppose, by contrary, that there exist chart (U,u),(V,v) € A
such that x € U NV and u(z) € int(H™) and v(x) € OH™. Since the
transition map ¢ :=voul : w(UNV) — v(UNV) and its inverse ¢! =
wo vl are smooth, there exists in particular an open neighbourhood W
of v(x) in R™ and a smooth map ¢ : W — R™ that agrees with ¢~ on
W noU NV). Since u(x) € int(H™), the set u(U N V) contains an open
neighbourhood W of u(z) in R™ (note that u(U N'V) as an open subset
of H™ must be of the form W’ N H™ for an open subset W’ of R™, hence
W = W’ Nint(H™) is an open neighbourhood of u(z) as requested). By
possibly shrinking W we may assume that qb(W) C W. By construction,

Yol =o' o gl = ldjp.
Therefore, for all y € W, Dy, ¢ o Dy¢ = Idg,gm, which implies that Dy¢ :
T,R™ — Ty, R™ is injective and hence an isomorphism for all y € w. By
the Inverse Function Theorem, it follows in particular that ¢ is an open map.

So, in particular, ¢(V) is an open subset of R™ that contains v(z) and is
contained in v(V) C H™. This contradicts the fact that v(z) € 9H™. O

DEFINITION 4.19. Suppose (M, A) is (smooth) m-dimensional manifold
with boundary.

(1) A point € M is called a boundary point, if for a (hence, every)
chart (U,u) € A with € U one has u(z) € OH™. We denote the
set of boundary points by

OM = {x € M : x is a boundary point}.

(2) A point z € M is called an interior point, if x € int(M) :=
M\ OM.

Since any open subset of R™ can be mapped diffeomorphically onto an
open subset of H™ that consist of interior points only, any m-dimensional
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manifold is an m-dimensional manifold with boundary whose boundary M
is the empty set.

EXAMPLE 4.8. Any open subset U C H™ is an m-dimensional manifold
with boundary 0U = 0H™ NU.

EXAMPLE 4.9. The unit ball in R™*!, given by
B™ := {z e R™" :||z|| < 1},
is an m-dimensional manifold with boundary o0B™ = §™~1.

Analogously as for manifolds without boundary, using charts, one de-
fines smoothness for functions on manifolds with boundary and for maps
between manifolds with boundary. The latter restrict on manifolds with
boundary OM = ) to the notion of smoothness defined in Definition [1.21]
Hence, the category of manifolds is a subcategory of the category of mani-
folds with boundary. Also, the theorem about the existence of partitions of
unity extends to manifolds with boundary.

PROPOSITION 4.20. Suppose (M, A) is (smooth) manifold with boundary
OM # O of dimension m > 2. Then OM, equipped with the subspace topol-
ogy, inherits from A the structure of a smooth manifold without boundary of
dimension m — 1 with the property that the natural inclusion i : OM — M
s a smooth immersion. In particular, any smooth function on M restricts
to a smooth function on OM.

PROOF. For any chart (U, us) € A with U, N OM # (), the restriction
Ua|varonr 2 Ua NOM — uq(Uy) N ({0} x R™)

defines a homeomorphism between an open subset of 9M and an open subset
of R™~1 = {0} x R™~! C R™. Setting

.A’aM = {(Ua n 8M, ua’UaﬂaM) : (Ua,ua) S .A)},

therefore defines a smooth atlas for OM with values in R™~!, since the
transitions maps as restrictions of smooth maps are smooth. By construction,
i is smooth with respect to A|sys and \A. O

As for manifolds without boundary, the tangent space of a manifold with
boundary M at some point x € M is defined to be the space of derivations
at x, that is,

T.M = Der,(C*(M,R),R)
and for a smooth map f : M — N between manifolds with boundary one
defines the tangent map T, f : TM — Ty, )N at a point z € M by the
same formula as in Section One may show then again that for any
point € M (for an interior point that is clear), the tangent space T, M is
an m-dimensional vector space spanned by %(m), s auim(x) for any chart
u:U — u(U) with z € U. Moreover, at any boundary point x € dM the
tangent space T,0M at x to the boundary can be identified, via the natural
inclusion Tyi : T,0M < T, M, with the m — 1-dimensional subspace of T,, M
spanned by %(l‘), - Mim(x). Therefore, at a boundary point z € IM el-
ements in T, M fall into three classes: either a vector &, € T, M is tangent
to OM, i.e. contained in T,0M, or if it is an element of T, M \ T,0M, then
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it is either inward pointing or outward pointing. According to our choice of
half-space, &, € T, M \ T,0M is inward pointing, if the coefficient of 8%1(:6)
when writing &, as linear combination of 6%1(:):), s %(w) is < 0 and out-
ward pointing, if it is > 0. Note that this is independent of the choice of
the chart. Similarly, as for manifolds without boundary, one can form the
disjoint union T'M of all tangent spaces and equip it with the structure of
a smooth manifold with boundary p~'(dM) of dimension 2dim(M) such
that the natural projection p : TM — M is smooth. Then one can define
vector fields, differential forms and general types of tensors in the same way
as for manifolds without boundary. Also, the exterior derivative of differ-
ential forms extend to manifolds with boundary. Finally, also the notions
of orientability and orientation extend without problem to manifolds with
boundary.

PROPOSITION 4.21. Suppose M is (smooth) manifold with boundary OM #*
0 of dimension m > 2 and assume it is orientable.

(1) Any oriented atlas for M induces, via restriction, an oriented atlas
on OM.

(2) An orientation on M induces an orientation on OM that has the
property that for any x € OM a basis of T,OM is positively oriented
if and only if adding an outward pointing vector as the first element
to it defines a positively oriented basis of T, M. In particular, OM
is orientable.

PROOF.

(1) Suppose A is an oriented atlas for M. Then in the proof of Propo-
sition we have seen that A|sys is an atlas for M (defining
the natural smooth structure on OM induced by the one on M).
For two chart (Uq,uq), (Ug,ug) € A such that U, "N Ug NOM # 0
consider the transition map:

UaB = Uq O ugl cug(Ua NUB) = ua(Us NUR)

Since the transition maps sends boundary points to boundary points,
for z € U, NUg NOM its derivative Duyg(ug(z)) at ug(x) has the

block matrix form
A0
v A’

where A € R\ {0}, v € R™! and A € GL(m — 1,R). Also,
the transition map has to sends interior points to interior point,
which implies that A > 0. Since A is oriented, det(Duqys(ug(z))) =
Adet(A) > 0, which hence implies det(A) > 0. Since A is the deriv-
ative at ug(z) of the transition map of the charts on dM induced
by u, and ug, the result follows.

(2) The first statement follows immediately from (1) and Proposition
[4.11] and the second from the construction of the induced orienta-
tion.

O
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4.4. Theorem of Stokes

Suppose M is an m-dimensional manifold with boundary M and let
w € Q™ Y(M) be an m — 1-form with compact support. By definition w
vanishes on the open set M \ supp(w) and so does dw by (d) of Theorem
which implies that supp(dw) C supp(w). Hence, in particular, dw is
again of compact support.

THEOREM 4.22. Suppose M is an oriented m-dimensional manifold with
boundary OM and let w € Q71 (M). Then

foefeefys

where i : OM < M is the natural inclusion. In particular, if OM = (), then
fM dw = 0.

PROOF. Since supp(w) is compact, there exist finitely many charts (U;, u;),
j=1,...,¢, of an oriented atlas of M such that supp(w) C U; U... U Uy, and
smooth functions f; : M — [0, 1] for j =1, ..., such that supp(f;) C U; and

Z?:l fj|supp(w) = 1. Then

14 )4
w= Z fiw and dw= Zd(fjw)
j=1

j=1
and supp(d(fjw)) C supp(fjw) C U;. Therefore,

w=Y [ dige (45)
fu=x),

In contrast, the right-hand side of (4.4) may be computed using the charts
(Uj NOM, uj|ly;nonm) and the functions fjlaps for j =1,....¢ as

AR S (49)

In order to prove that (4.5)) equals (4.6) it therefore suffices to prove that

/U_ d(fjw) :/U-maijw vj.

J J
Without loss of generality we hence may assume that supp(w) is contained
in the domain of a single chart (U, ). Then one has

m
w= Zwidul A Adui A A du™
i=1
for smooth functions w; : M — R with compact support contained in U.
Since the tangent space T,0M for a point x € M is spanned by 8?#’ (x) for
i > 2, du'lsy = 0 and therefore

wlon = w1 du® A .o A du™
This implies that

/ w= / whou™! = / wlowu™, (4.7)
oM du(U) {0} xR -1
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where the last equality follows from the fact that w! is of compact support
contained in U. On the other hand,
)4
dw =

Bu

:(Z( 1)i 12“”)d A Adu™

/ O(w;ou™t)
) ot

/ O(w; ou™t)
( OOO}XRm 1 8:62 ’

where the second equahty follows from the facts that the functions w; have
compact support contained in U. Fubini’s Theorem allows to decompose
any component in that sum into integrals over the individual coordinates,
where it does not matter in which order one integrates over the individual

implies that

-

>

jou~1t .
components. So for each 7 we may integrate % first along the i-th
coordinate, which by the Fundamental Theorem of calculus and the fact
that the functions w; have compact support gives

-1
/dw_/ / “1(;1“ )dxl) da?...dz™
Rm—1 — 00 €T

=(wrou~ 1)(0 z2,..

m

+ Z(—1)i1/

™)
/ wZ o da:i) da'....dz...dz™
i—2 (—00,0] xR —2

:/ (w1 ou™1)(0,22, ..., 2™) dajg....dxm,
Rm—1

which equals (4.7]).

4.5. Excursion: de Rham Cohomology

We know that (Q2*(M), A) is an (unitial) associative graded-anticommutative
algebra over R (even over C*°(M,R)):
o (M) =@~ (M), where QF(M) = {0} for k > m = dim(M),
is a graded vector space
o QF(M) AQYM) c QM) and for w € Q¥(M) and 1 € QY(M)
one has
wAn=(=1)*nAw.
Moreover, we have a linear map d : Q*(M) — Q*(M), which is a graded
derivation of degree 1, that is,
o d(QF(M)) C QF(M)
e d(wAn) = dwAn+(—1)kwAdn for any w € QF(M) and n € Q*(M)
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DEFINITION 4.23. Suppose w € Q*(M) is a differential form.
e w is called closed, if dw = 0.
e w is called exact, if there exists n € Q*(M) such that dn = w.

By linearity of d, the set of closed and the set of exact forms define vector
subspaces of Q*(M ), which we denote as follows:

Z* (M) :=ker(d) = {w € Q" (M) : dw = 0}
B*(M) :=1im(d) = {w € Q*(M) : In s.t. dn = w}.
We also set Z¥(M) := Z*(M) N QF(M) and B*¥(M) := B*(M) N QF(M).

By Theorem, d?> = dod = 0, so B*(M) C Z*(M) C Q*(M). Moreover,
dw An) = dw An+ (—1)%8@y A dy implies that B*(M) and Z*(M) are
subalgebras of Q*(M) and B*(M) even a two-sided ideal in Z*(M). There-
fore,

H*(M) = Z*(M)/B*(M) = D Z*(M)/B* (M)
k>0
is an (unitial) graded-anticommutative algebra over R. It is called the de
Rham cohomology algebra of M and
HY(M) = Z¥(0M) /B (M)

the k-th de Rham cohomology space or group of M. For w € Z¥(M)
we write [w] € H¥(M) for its cohomology class.
REMARK 4.24. By construction, [w]+[n] := [w+n] and [w]A[n] := [wA7].

One can show that, if M is compact, H*(M) is finite-dimensional. Also,
true for many non-compact spaces, but not always. The cohomology spaces
of degree 0 and dim(M) are easy to compute:

LEMMA 4.25. Suppose M is a (smooth) manifold of dimension m.

(1) HO(M) = Rf, where £ is the number of connected components of

(2) If M is compact, connected and oriented, then H™ (M) = R.

PROOF.
(1) df = 0 if and only if f : M — is constant on each connected
component of M.
(2) [ : @™"(M) — R induces by Stokes’ Theorem, a linear map
H™(M) — R,
which can be shown to be an isomorphism.
O
Recall that any C*°—map f : M — N between manifolds induces an
algebra morphism f* : Q*(N) — Q*(M). Since f*od = d o f* by Theorem
we have f*(Z*(N)) C Z*(M) and f*(B*(N)) C B*(M), which implies
that f* induces an algebra morphism
f* : H*(N) — H*(M)
[w] = [f*w],
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preserving the degree f#(H*(N)) c H*¥(M). Also, if g : N — P is another
smooth map between manifold, then
(go /¥ = f#og?,

since (go f)* = f*og".

PRroOPOSITION 4.26. If f : M — N is a diffemorphism between manifolds,
then

f# : H*(N) — H*(M)

is an isomorphism with inverse (f#)~! = (f~1)#.

PROOF. The identities fo f~! =Idy and f~! o f = Idy; imply that

(o f# = (fof O =1d =1dg-)

fro(f )t =(fTtof)# =1d}, = Id g (ar)-
O

By the previous proposition, diffeomorphic manifolds have isomorphic
de Rham cohomology groups. In fact, even more is true: The de Rham
cohomology of smooth manifold is a topological invariant. It can be identified
with the singular cohomology of M with real coefficients. This shows in
particular that homotopic equivalent (hence, in particular homeomorphic),
smooth manifolds have isomorphic de Rham cohomology. So tools from
topology can be used to compute the de Rham cohomology.
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