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Motivation

Analysis in Rn:

• It is concerned with the study of differentiable/smooth functions

f : U → Rm, U ⊆ Rn open.

• Sometimes already other domains than open subsets U ⊆ Rn oc-
curred:

- Method of Lagrange multipliers to find local extrema of func-
tions f : R2 → R subject to the condition that (x, y) ∈ g−1(0)
for g : R2 → R.

- Theorems of Gauß, Green and Stokes: domains called curves
and surfaces appear.

Such domains are called submanifolds (with or without boundary) in Rn.

Plan of the Course:

• Generalise the differential and integral calculus from open subsets
of Rn to submanifolds of Rn, which leads also naturally to the no-
tion of abstract manifolds.

• Manifolds can be equipped with various geometric structures and
as such they become objects of modern differential geometry:
– Hypersurfaces in Rn inherit from the inner product in Rn a

Riemannian metric.  Riemannian submanifolds of Rn.
– Riemannian manifolds
– Symplectic manifolds
– Other geometric structures

• Lie Groups
– appear as symmetry groups of geometric structures
– appear in the study of PDEs

These lecture notes are mainly based/follow [2], [6], [7], [8] and [9].
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CHAPTER 1

Smooth Manifolds

1.1. Submanifolds of Rn

Submanifolds of Rn are sufficiently nice/regular subsets of Rn, on which
we can develop a differential and integral calculus as on open subsets of Rn.
What are some nice subsets?

For m ≤ n consider the inclusion

Rm = Rm × {0} ↪→ Rm × Rn−m = Rn. (1.1)

Recalling that differentiability is a local concept, we may consider subsets of
Rn that locally have the form of (1.1).

Definition 1.1. A subset M ⊂ Rn admits local m-dimensional triv-
ialisations, if for every x ∈ M there exists an open neighbourhood U of x
in Rn, an open subset V of Rn and a diffeomorphism φ : U → V such that

φ(U ∩M) = V ∩ Rm ⊂ Rm × Rn−m = Rn.

We may also consider graphs of smooth functions g : Rk → Rn−m:

gr(g) := {(x, g(x)) : x ∈ Rm} ⊂ Rm × Rn−m = Rn. (1.2)

Localising (1.2) yields:

Definition 1.2. A subset M ⊂ Rn is locally the m-dimensional
graph of a smooth function, if for every x ∈ M there exists an open
neighbourhood U of x in Rn, an m-dimensional subspace W ⊂ Rn, an open
subset V ⊂W and a smooth function g : V →W⊥ such that

U ∩M = gr(g) ⊂W ⊕W⊥ = Rn,

where W⊥ = {x ∈ Rn : 〈x,w〉 = 0 ∀w ∈ W} is the orthogonal compliment
of W in Rn with respect to the standard inner product 〈·, ·〉 : Rn×Rn → R.

We may also consider zero sets of smooth regular functions. A smooth
function

f : U → Rn−m, U ⊂ Rn open ,

is called regular at y ∈ U , if the derivative Dyf : Rn → Rn−m is surjective.
It is called regular, if f is regular at all points of U . Note that if f is regular
at y, then it is so locally around y, since the rank of Dyf is locally constant.

Definition 1.3. A subsetM ⊂ Rn is locally the m-dimensional zero
set of a regular smooth function, if for every x ∈M there exists an open
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8 1. SMOOTH MANIFOLDS

neighbourhood U of x in Rn and smooth function f : U → Rn−m that is
regular at x such that

M ∩ U = f−1(0) = {y ∈ U : f(x) = 0}.

Yet another nice class of subsets arise as images of open subsets of Rm
under immersions into Rn:

Definition 1.4. A subsetM ⊂ Rn admits localm-dimensional parametri-
sations, if for every x ∈ M there exists an open neighbourhood U of x in
Rn, an open subset V ⊂ Rm and a smooth map ψ : V → U such that

• Dyψ : Rk → Rn is injective for all y ∈ V , and
• ψ induces a homeomorphism onto its image: ψ : V ∼= M ∩ U =
Im(ψ).

Theorem 1.5. Assume M ⊂ Rn is a subset of Rn, 1 ≤ m ≤ n. Then
the following are equivalent:

(a) M admits local m-dimensional trivialisations.
(b) M is locally them-dimensional zero set of a regular smooth function.
(c) M is locally the m-dimensional graph of a smooth function.
(d) M admits local m-dimensional parametrisations.

The proof is based on the Inverse Function Theorem, which we recall
now:

Theorem 1.6 (Inverse Function Theorem). Let U ⊂ Rn be an open
subset, F : U → Rn a smooth map, and x ∈ U . If the derivative DxF : Rn →
Rn of F at x is a linear isomorphism, then there exist open neighbourhoods
V of x and W of F (x) such that F (V ) = W and

F |V : V →W

is a diffeomorphism.

Proof. See Analysis/Calculus class. �

An immediate corollary is:

Corollary 1.7 (Implicit Function Theorem). Assume m ≤ n. Suppose

f : Rm × Rn−m → Rn−m

is a smooth function with f(0, 0) = 0 and

∂2f(0, 0) := D(0,0)f |Rn−m : Rn−m → Rn−m

is a linear isomorphism. Then there exists locally a unique solution g(x) of
f(x, g(x)) = 0 and x 7→ g(x) is smooth.

Proof. Consider F : Rm × Rn−m → Rm × Rn−m given by F (x, y) =
(x, f(x, y)). Note that F is smooth, F (0, 0) = (0, 0) and

D(0,0)F =

(
Idk 0
∗ ∂2f(0, 0)

)
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is invertible. By Theorem 1.6, F−1 exists locally around (0, 0) and is smooth.
By construction of F , the local inverse F−1 is of the form F−1(u, v) =
(u,G(u, v)) with G smooth. Hence,

f(x, y) = 0 ⇐⇒ F (x, y) = (x, 0)

⇐⇒ (x, y) = F−1(x, 0) = (x,G(x, 0))

⇐⇒ y = G(x, 0) =: g(x).

�

Proof of Theorem 1.5.
(a) =⇒ (b) Assume x ∈ M , U, V ⊂ Rn open and φ : U → V a diffeomorphism

as in Definition 1.1. Set f := π ◦ φ : U → Rn−m, where π :
Rm × Rn−m → Rn−m is the natural projection. By construction,
f−1(0) = U ∩M and f is smooth. Moreover,

Dyf = Dφ(y)π ◦Dyφ = π ◦Dyφ : Rn ∼= Rn → Rn−m

is surjective for all y ∈ U .
(b) =⇒ (c) Assume x ∈ M and f : U → Rn−m as in Definition 1.3. Then

Dxf : Rn → Rn−m is surjective and ker(Dxf) =: W ⊂ Rn an
m-dimensional subspace. Identify Rn = W ⊕W⊥ and write x =
w + w⊥. Then Dxf |W⊥ : W⊥ → Rn−m is a linear isomorphism.
Hence, by Corollary 1.7, there exists open neighbourhoods V ⊂W
and V ′ ⊂W⊥ of w respectively w⊥ and a smooth function g : V →
V ′ ⊂W⊥ such that

M ∩ (V × V ′) = f−1(0) ∩ (V × V ′) = {(v, g(v)); v ∈ V }.
(c) =⇒ (d) Assume x ∈ M , U , V ⊂ W , and g : V → W⊥ as in Definition

1.2. Now consider the map ψ : V → W ⊕ W⊥ = Rn given by
ψ(v) = (v, g(v)). It is smooth and ψ(V ) = M ∩ U . Moreover,
since the natural projection πW : W ⊕W⊥ → W is a continuous
left-inverse of ψ, i.e. πW ◦ ψ = Id, ψ is a homeomorphism onto its
image. Also, for Dvψ : W →W ⊕W⊥ one has

Dvψ(w) = (w,Dvg w) = (0, 0) ⇐⇒ w = 0.

(d) =⇒ (a) Assume x ∈ M , V ⊂ Rm and U ⊂ Rn open and ψ : V → U as
in Definition 1.4. Without loss of generality we may assume 0 ∈ V
and ψ(0) = x. Then W := Im(D0ψ) ⊂ Rn is an m-dimensional
subspace and we identify Rn = W ⊕W⊥. Now define

Φ : V ×W⊥ → Rn

Φ(v, w) := ψ(v) + w.

Note that Φ(0, 0) = x and with respect to the identification Rn =
W ⊕W⊥ the derivative of Φ at (0, 0) has the form

D(0,0)Φ =

(
D0ψ 0

0 IdW⊥

)
.

Hence, D(0,0)Φ : W ⊕W⊥ → Rn is a linear isomorphism and, by
Theorem 1.6, there exist open subsets V1 ⊂ V , V2 ⊂ W⊥ and
S ⊂ Rn with x ∈ S such that Φ : V1 × V2 → S is a diffeomorphism.
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Since ψ : V → U ∩M is a homeomorphism, there exists an open
subset S̃ ⊂ Rn with ψ(V1) = S̃ ∩M . Set Ũ := U ∩ S ∩ S̃ ⊂ Rn,
which is an open neighbourhood of x by construction, and define

φ := (Φ−1)|
Ũ

: Ũ → φ(Ũ) := Ṽ .

Then φ is a diffeomorphism between the open subsets Ũ ⊂ Rn and
Ṽ ⊂ V1 × V2 ⊂ V ×W⊥ ⊂ Rn. Moreover, if y ∈ M ∩ Ũ , then in
particular y ∈ M ∩ S̃, which implies that there exists v1 ∈ V1 such
that ψ(v1) = y. Since y ∈ S, this shows φ(y) = (v1, 0). Conversely,
if (v1, 0) ∈ Ṽ ∩W , then Φ(v1, 0) = ψ(v1) ∈ Ũ ∩M by definition of
ψ. Hence, φ(Ũ ∩M) = Ṽ ∩W .

�

Definition 1.8. Assume 1 ≤ m ≤ n are integers. A subset M ⊂ Rn
is called a (smooth) submanifold of Rn of dimension m, if M satisfies
any of the equivalent conditions in Theorem 1.5.

Note that as a subset of Rn a submanifold M ⊂ Rn inherits a topology
from Rn, namely the subspace topology:

U ⊂M is open ⇐⇒ U = Ũ ∩M for some open subset Ũ ⊂ Rn.

Remark 1.9.
• If one replaces smooth/C∞ everywhere by Cr for 1 ≤ r < ∞ or
by Cω, one obtains the notion of Cr-submanifolds respectively real
analytic submanifolds of Rn.
• Similarly, if one replaces R by C and smooth by holomorphic, one
obtains complex submanifolds of Cn.
• Replacing C∞ in Definition 1.1 by C0 leads to topological sub-
manifolds of Rn. In this case, not all the definitions 1.1–1.4 are
equivalent! Definition 1.2 is stronger than 1.1.

Some trivial examples and natural constructions:

Example 1.1 (Open subsets). Any open subset U ⊂ Rn is an n-dimensional
submanifold of Rn and all n-dimensional submanifolds of Rn are of this form.
More generally, any open subset of a submanifold in Rn is again a subman-
ifold (of the same dimension). Note also that of course any open subset
of Rn can be seen as an n-dimensional submanifold of Rd via the standard
inclusion Rn ↪→ Rd for n ≤ d.

Example 1.2 (Products). If M ⊂ Rn and K ⊂ R` are submanifolds of
dimensions m respectively k of Rn respectively R`, then

M ×K ⊂ Rn × R` = Rn+`

is an m+ k dimensional submanifold of Rn × R`.

Some non-trivial examples:

Example 1.3. Consider Rm+1 equipped with its standard inner product
〈·, ·〉 : Rm+1 × Rm+1 → R. Then the n-dimensional (unit) sphere

Sm := {x ∈ Rm : ||x|| = 1} ⊂ Rm+1
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is the prototypical example of an m-dimensional submanifold of Rm+1. For
m = 1, one gets the unit circle S1 in R2. To see this, note that Sm can be
described globally as the zero set of the smooth function f : Rm+1 \{0} → R
given by f(x) = 〈x, x〉 − 1, i.e. f−1(0) = Sm. Since for any x ∈ Rm+1 \ {0}
and v ∈ Rm+1 one has

Dxf v =
d

dt
|t=0〈x+ tv, x+ tv〉 − 1 =

d

dt
|t=0〈x, x〉+ 2t〈x, v〉+ t2〈v, v〉

= 2〈x, v〉,

the derivative Dxf : Rm+1 → R is surjective by non-degeneracy of 〈·, ·〉.
Hence, f is regular.

Example 1.4. For fixed positive real numbers a1, ..., an+1 ∈ R>0 con-
sider the function

f : Rm+1 \ {0} → R

f(x1, ..., xn+1) :=
d∑
i=1

x2
i

a2
i

−
m+1∑
i=d+1

x2
i

a2
i

− 1.

It is smooth and regular. Hence, f−1(0) := M is an m-dimensional sub-
manifold of Rm+1. Depending on d, these submanifolds are m-dimensional
ellipsoids or hyperboloids.

Example 1.5. Consider Cm ∼= R2m as real vector space. Then

Tn := {z ∈ Cn : |z1| = ... = |zn| = 1} ⊂ R2m

is an m-dimensional submanifold of R2m, since f−1(0) = Tm, where f :
Cm \ {0} → Rm is the smooth regular function given by

f(z1, ..., zm) = (|z1| − 1, ..., |zm| − 1).

Of course, also

Tm ∼= S1 × ...× S1︸ ︷︷ ︸
m−times

⊂ R2 × ...× R2︸ ︷︷ ︸
m−times

= R2m,

so Tm is an m-dimensional submanifold of R2m by Examples 1.3 and 1.2. It
is called the m-dimensional torus.

Example 1.6. Consider the vector space Hom(Rn,Rn) of linear maps
from Rn to Rn. Via a choice of basis of Rn,

Hom(Rn,Rn) ∼= Mn×n(R) ∼= Rn
2
,

where Mn×n(R) denotes the vector space of real n × n matrices. Since the
determinant det : Mn×n(R)→ R is continuous (polynomial in the eneries of
the matrix), the subset

GL(n,R) := {A ∈Mn×n(R) : det(A) 6= 0} ⊂Mn×n(R) (1.3)

is open and as such an n2-dimensional submanifold of Mn×n(R) ∼= Rn2 .
Note that GL(n,R) is also a group with respect to matrix multiplication. It
is called the general linear group.
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In fact, det : GL(n,R) :→ R is smooth and also regular, since for any
A ∈ GL(n,R) one has

(DA det)(A) =
d

dt
|t=0 det(A+ tA)

=
d

dt
|t=0 det((1 + t)A) =

d

dt
|t=0(1 + t)n det(A) = n det(A) 6= 0,

which shows that DA det : Mn×n(R)→ R is surjective for all A ∈ GL(n,R).
Hence, also f := det−1 : GL(n,R) :→ R is a smooth regular function.
Therefore,

SL(n,R) := f−1(0) = {A ∈ GL(n,R) : detA = 1} ⊂Mn×n(R)

is an (n2 − 1)-dimensional submanifold of Mn×n(R). It is also a group with
respect to matrix multiplication, called the special linear group.

Now consider the map

f : GL(n,R)→Mn×n(R)

f(A) := AAt − Id

and set
O(n) := f−1(0) = {A ∈ GL(n,R) : AAt = Id}. (1.4)

Note that f(A)t = f(A). Hence, f has values in the subspace M sym
n×n(R) ⊂

Mn×n(R) of symmetric n× n-matrices. The function

f : GL(n,R)→M sym
n×n(R) ∼= R

n(n+1)
2

is obviously smooth. To see that it is also regular, note that (A,B) 7→ ABt

is bilinear as a map Mn×n(R) ×Mn×n(R) → Mn×n(R). Therefore, for any
A ∈ GL(n,R) and B ∈ Mn×n(R), one has DAfB = ABt + BAt. So, if
A ∈ O(n) and S ∈M sym

n×n(R) is arbitrary, then for B := 1
2SA one has

DAfB =
1

2
(AAt︸︷︷︸

=Id

St + S AAt︸︷︷︸
=Id

) =
1

2
(St + S) = S,

which shows that DAf : Mn×n(R) → M sym
n×n(R) ∼= R

n(n+1)
2 is surjective for

any A ∈ O(n). Therefore, the set O(n) of orthogonal n × n-matrices is
a submanifold of Rn2 of dimension n(n−1)

2 . It is also closed under matrix
multiplication and hence a group, called the orthogonal group.

For submanifolds of Rn, we have an obvious notion of defining smooth
maps between them:

Definition 1.10. Suppose M ⊂ Rn is an m-dimensional submanifold.
• A map f : M → R` is smooth, if for every point x ∈ M there
exists an open neighbourhood Ũ of x in Rn and a smooth function
f̃ : Ũ → R` such that f̃ |

M∩Ũ = f |
M∩Ũ .

• For a k-dimensional submanifold K ⊂ R` a map f : M → K is
smooth, if it is is smooth as a map M → R`.

It follows immediately that constant maps, the identity map and com-
position of smooth maps are smooths.
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Definition 1.11. Suppose M ⊂ Rn is an m-dimensional and K ⊂ R` a
k-dimensional submanifold.

• A map f : M → K is called a diffeomorphism, if f is a smooth
bijection with smooth inverse. We call M and N diffeomorphic,
if there exists a diffeomorphism between them.
• A local diffeomorphism between M and K is a smooth map
f : M → K such that for any x ∈ M and f(x) ∈ K there exist
open neighbourhoods U ⊂ M and V ⊂ K of x respectively f(x)
such that f |U : U → V is a diffeomorphism.

Note that diffeomorphic manifolds have necessarily the same dimension, i.e.
m = k.

Example 1.7. Note that matrix multiplication

µ : Mn×n(R)×Mn×n(R)→Mn×n(R) µ(A,B) = AB

is smooth, since it is just polynomial in the entries of the matrices. Hence,
if G = GL(n,R), SL(n,R) or O(n), then also µ : G × G → G is smooth as
a restriction of a smooth map. Therefore, (G,µ) is a Lie group, that is, a
(sub-)manifold with a smooth group structure.

To understand smooth maps better we introduce the concept of charts,
which will be also key for the notion of abstract manifolds.

Definition 1.12. Suppose M ⊂ Rn is an m-dimensional submanifold.
A (local) chart (or coordinate chart) for M is a diffeomorphism

u : U → V,

where U is an open subset ofM and V an open subset of Rm. Note that such
a chart u : U → u(U) = V ⊂ Rm associates to each point x ∈ U coordinates
in Rm:

u(x) = (u1(x), ..., um(x)) ∈ V ⊂ Rm.
The functions ui : U → R are smooth and called the local coordinates
associated with the chart (U, u).

Lemma 1.13. Suppose M ⊂ Rn is an m-dimensional submanifold and
ψ : V → Ũ a local parametrisation for M , where Ũ ⊂ Rn and V ⊂ Rm are
open subsets. Then,

u := ψ−1 : U → V, U := Ũ ∩M,

defines a chart for M . Conversely, given a chart u : U → V , then U =

Ũ ∩M for an open subset Ũ ⊂ Rn and u−1 : V → U ↪→ Ũ defines a local
parametrisation.

Proof. The map ψ : V → U is bijective and smooth, since it is smooth
as a function V → Ũ . It remains to show that the inverse ψ−1 is smooth. By
(d) =⇒ (a) in the proof of Theorem 1.5: For any x ∈ U = Ũ∩M there exists
an open neighbourhood U ′ ⊂ Rn of x and an (n−m)-dimensional subspace
W⊥ ⊂ Rn and an open neighbourhood V ′ of (ψ−1(x), 0) in V ×W⊥ such
that Φ : V ′ → U ′ given by Φ(y, w) = ψ(y) + w is a diffeomorphism. Hence,
ψ−1 : U ′ ∩M → Rm is given by pr1 ◦ Φ|−1

U ′∩M , where pr1 : V ×W⊥ → V ,
which is the restriction of a smooth map pr1 ◦ Φ−1 from U ′ ⊂ Rn to V . �
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Suppose M ⊂ Rn and K ⊂ R` are submanifolds of dimension m and k
respectively and let f : M → K be a continuous map. Fix x ∈ M and let
(U, u) be a chart for M with x ∈ U and (V, v) a chart for K with f(x) ∈ V .
Then u(f−1(V ) ∩ U) ⊂ Rm is open and

v ◦ f ◦ u−1 : u(f−1(V ) ∩ U)→ v(V )

is a continuous map between open subsets of Rm and Rk. With respect to
(U, u) and (V, v) we can therefore write it as

f = (f1, ..., fk),

where vj(f(y)) = fj(u
1(y), ..., um(y)) or short vj = fj(u

1, ..., um).

Definition 1.14. We call (f1, ..., fk) the local coordinate expression
of f with respect to (U, u) and (V, v).

Theorem 1.15. Suppose M ⊂ Rn and K ⊂ R` are submanifolds of
dimension m and k respectively and f : M → K a map. Then the following
are equivalent:

(a) f is smooth.
(b) f is continuous and for every x ∈M there exist charts (U, u) for M

with x ∈ U and (V, v) for K with f(x) ∈ V such that v ◦ f ◦ u−1 :
u(f−1(V ) ∩ U)→ v(V ) is smooth.

(c) f is continuous and for every x ∈M and every chart (U, u) for M
with x ∈ U and every chart (V, v) of K with f(x) ∈ V the map
v ◦ f ◦ u−1 : u(f−1(V ) ∩ U)→ v(V ) is smooth.

(d) f is continuous and has smooth local coordinate expressions with
respect to some charts.

(e) f is continuous and has smooth local coordinate expressions with
respect to arbitrary charts.

Proof. Evidently, (b) ⇐⇒ (d) and (c) ⇐⇒ (d) and (c) =⇒ (b).
Moreover, since compositions of smooth functions are smooth, we also have
(a) =⇒ (c). It remains to show that (b) =⇒ (a): assume v ◦ f ◦ u−1

is smooth. Since u : U → u(U) ⊂ Rm is smooth, for every x ∈ U there
exist an open neighbourhood Ũ in Rn and a smooth map ũ : Ũ → Rm
such that ũ|

U∩Ũ = u|
U∩Ũ . Note that ũ−1(u(U)) ⊂ Rn is open and hence

ũ : ũ−1(u(U))→ u(U) smooth. Set

f̃ := v−1 ◦ (v ◦ f ◦ u−1) ◦ ũ : ũ−1(u(U))→ V.

Then f̃ is smooth as a composition of smooth functions and for any y ∈
ũ−1(u(U)) ∩ U , one has f̃(y) = f(y). �

1.2. Abstract Manifolds

As we shall see it is useful to introduce the concept of abstract manifolds,
which is based on the notion of charts.

Definition 1.16. Suppose M is a topological space.
(a) A chart with values in Rm for M is a homeomorphism u : U →

u(U) from an open subset U ⊂M onto an open subset u(U) ⊂ Rm.
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(b) A C∞-atlas of charts with values in Rm for M is a family of
charts with values in Rm,

A = {(Uα, uα) : α ∈ I},

such that
– M =

⋃
α∈I Uα, and

– for any two charts (Uα, uα) and (Uβ, uβ) in A the transition
map (or corresponding coordinate change)

uβα := uβ ◦ u−1
α : uα(Uα ∩ Uβ)→ uβ(Uα ∩ Uβ) (1.5)

is smooth.
Note that uβα is a map between open subsets of Rm, hence it makes
sense to require it to be smooth. Moreover, uβα is inverse to uαβ ,
hence the transition maps are diffeomorphisms.

There is a natural notion of equivalence for atlases.

Definition 1.17. Two atlases for a topological spaceM are called equiv-
alent (or compatible), if their union is again an atlas for M .

Note that any atlas A is contained in a unique maximal atlas Amax given
by the union of all atlases compatible with A.

Definition 1.18. A (smooth) manifold of dimension m is a second
countable Hausdorff topological space M equipped with a maximal C∞-
atlas of charts with values in Rm, or equivalently, with an equivalence class
of C∞-atlases of charts with values in Rm.

Remark 1.19.
• Similarly, one may define Ck-atlases for 0 ≤ k ≤ ∞ or k = ω and
Ck-manifolds respectively real analytic manifolds.
• Atlases wit values in Cn and requiring the transition maps to be
holomorphic leads to holomorphic atlases and the notion of complex
manifolds.

Remark 1.20. Suppose M is a topological space such that every point
admits an open neighbourhood homeomorphic to an open subset of Rm, i.e.
M is a topological manifold. Then the following are equivalent:

• M is Hausdorff and second countable.
• M is metrisable and separable (i.e. there exists a countable dense
subset).
• M is Hausdorff, paracompact and has only countably many con-
nected components.

Example 1.8. By Lemma 1.13, any submanifold M of Rn of dimension
m is in a natural way an m-dimensional manifold.

Example 1.9. Let us construct a smooth atlas for the m-sphere Sm ⊂
Rm+1. Fix p1 ∈ Sm as ,north pole’ and denote by p2 := −p1 the correspond-
ing ,south pole’. Then Ui := Sm \ {pi} for i = 1, 2 are open subsets of Sm
such that

Sm = U1 ∪ U2.
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Now stereographic projection gives rise to a chart ui : Ui → Rm = p⊥i by
mapping x ∈ Ui to the point of the intersection ui(x) of the line (1−λ)pi+λx
through x and pi with the hyperplane p⊥i ⊂ Rm+1. Since

0 = 〈p1, (1− λ)pi + λx〉 = ||pi||2 − λ〈pi, (pi − x)〉 = 1− λ〈pi, (pi − x)〉,

we get that λ = 1
〈pi,(pi−x)〉 = 1

1−〈pi,x〉 . Hence, for i = 1, 2 stereographic
projection is given by

ui : Ui → Rm = p⊥i

ui(x) =
1

1− 〈pi, x〉
(x− 〈pi, x〉pi),

which is obviously continuous. Moreover, it has an inverse given by mapping
a point y ∈ p⊥i to the point of intersection u−1

i (y) = x of the line through y
and pi with Sm. If we write x = pi + µ(y − pi), then

1 = 〈x, x〉 = 〈pi, pi〉︸ ︷︷ ︸
=1

+2µ〈pi, (y − pi)〉+ µ2〈(y − pi), (y − pi)〉,

which implies that µ = 0, i.e. x = pi, or µ = 2〈pi,(pi−y)〉
〈(y−pi),(y−pi)〉 = 2

||y||2+1
. Hence,

one has

u−1
i : Rm → Ui

u−1
i (y) =

1

1 + ||y||2
(2y − (||y||2 − 1)pi),

which is also continuous. Therefore, the maps ui are homeomorphisms. To
see that they define a smooth atlas for Sm we have to compute their transi-
tion map. Note that u1(U1 ∩ U2) = u2(U1 ∩ U2) = Rm \ {0} and one easily
verifies that

u2 ◦ u−1
1 : Rm \ {0} → Rm \ {0}

y 7→ y

||y||2
,

which is smooth.

Motivated by Theorem 1.15 we define:

Definition 1.21. Suppose M and N are smooth manifolds with maxi-
mal atlases AM and AN respectively. Let f : M → N be a map.

(a) f is smooth (or C∞) at x ∈ M , if there exist charts (U, u) ∈ AM
with x ∈ U and (V, v) ∈ AN with f(x) ∈ V such that

v ◦ f ◦ u−1 : u(U ∩ f−1(V ))→ v(V )

is smooth. Moreover, f is called smooth, if it is smooth at all
points.

(b) f is a diffeomorphism, if f is a smooth bijection with smooth
inverse.

(c) We say that M is diffeomorphic to N , if there exists a diffeomor-
phism between them.
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Note that (a) is independent of the choice of charts, since the transition
maps are smooth, cf. Theorem 1.15: if (Ui, ui) ∈ AM and (Vi, vi) ∈ AN for
i = 1, 2, then

v2 ◦ f ◦ u−1
2 = (v2 ◦ v−1

1 ) ◦ (v1 ◦ f ◦ u−1
1 ) ◦ u1 ◦ u−1

2 .

Definition 1.22. Suppose M and N are smooth manifolds with maxi-
mal atlases AM and AN respectively. Let f : M → N be a smooth map.

(a) f is an immersion (respectively a submersion) at x ∈ M , if
there exist charts (U, u) ∈ AM with x ∈ U and (V, v) ∈ AN with
f(x) ∈ V such that

v ◦ f ◦ u−1 : u(U ∩ f−1(V ))→ v(V )

is an immersion (respectively submersion) at u(x).
(b) f is called of constant rank r on an open subset W ⊂ M , if

for every x ∈ W there exist charts (U, u) ∈ AM with x ∈ U and
(V, v) ∈ AN with f(x) ∈ V such that the derivative of

v ◦ f ◦ u−1 : u(U ∩ f−1(V ))→ v(V )

at u(x) is of rank r.

As we already noticed any submanifold of Rn is natural a smooth man-
ifold. In fact, also the converse is true by a Theorem of Whitney: Any
m-dimensional manifold is diffeomorphic to a (smooth) submanifold of R2m.
The notion of abstract manifolds is however nevertheless useful, since is often
easier to construct an atlas to show that a topological space can be given the
structure of a smooth manifold then to realise that space as a submanifold
in some Rn. An example that demonstrates that well is the following:

Example 1.10 (Projective space). Consider the set of lines through 0 in
Rm+1 given by the quotient

RPm := Rm+1 \ {0}/ ∼,

where x, y ∈ Rm+1 are equivalent, denoted by x ∼ y, ⇐⇒ there exists
λ ∈ R \ {0} such that x = λy. Denote by

π : Rm+1 \ {0} → RPm

π(x) =: [x] =: [x1 : ... : xm+1]︸ ︷︷ ︸
homog. coordinates

the natural projection, where x = (x1, ..., xm+1) denotes the standard coor-
dinates in Rm+1. Then we may equip RPm with the quotient topology with
respect to π:

U ⊂ RPm is open ⇐⇒ π−1(U) ⊂ Rm+1 \ {0} is open .

Recall that for this topology a map f : RPm → X for some topological space
X is continuous ⇐⇒ f ◦ π : Rm+1 \ {0} → X is continuous.

Note that for i = 1, ...,m+ 1 the subset

Ui := {[x1 : ... : xm+1] ∈ RPm : xi 6= 0} ⊂ RPm
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is open, since π−1(Ui) is, and RPm =
⋃m+1
i=1 Ui. For i = 1, ...,m + 1 define

now

ui : Ui → Rm

ui([x
1 : ... : xm+1]) = (

x1

xi
, ...,

xi−1

xi
,
xi+1

xi
, ...,

xm+1

xi
).

Evidently, ui is evidently continuous, since ui ◦ π on π−1(Ui) is. Moreover,

(x1, ..., xm) 7→ [x1 : ... : xi−1 : 1 : xi : ... : xm]

defines a continuous inverse. Hence, ui : Ui → Rm is a homeomorphism. To
show that the ui’s define a smooth atlas for RPm it remains to verify that
the transition maps are smooth. Note that for i < j one has

ui(Ui ∩ Uj) = {x ∈ Rm : xj−1 6= 0}.
For i+ 1 < j the transition map is give by

uj ◦ u−1
i : ui(Ui ∩ Uj)→ uj(Ui ∩ Uj) (1.6)

(x1, ..., xm) 7→ (
x1

xj−1
, ...,

xi−1

xj−1
,

1

xj−1
,
xi

xj−1
, ...,

xj−2

xj−1
,
xj

xj−1
, ...,

xm

xj−1
),

(1.7)

and for i+ 1 = j it is given by

(x1, ..., xm) 7→ (
x1

xi
, ...,

xi−1

xi
,

1

xi
,
xi+1

xi
, ...,

xm

xi
).

In either case it is smooth. Similarly, one verifies that uj ◦u−1
i is smooth for

j < i. Hence,
A = {(Ui, ui) : i = 1, ...,m+ 1}

defines a smooth atlas for RPm. Therefore, RPm is an m-dimensional man-
ifold, called m-dimensional projective space.

The category of smooth manifolds respects the operations of taking finite
products and restrictions to open open subsets.

Example 1.11. SupposeM is a smooth manifold with atlasA = {(Ui, ui) :
i ∈ I} and U ⊂M an open subset. Then A|U := {(U ∩ Ui, ui|U∩Ui) : i ∈ I}
defines an atlas for U .

Example 1.12. Suppose (Mi,Ai) are smooth manifolds for i = 1, ..., n.
Equip M := M1 × ...×Mn with the product topology. Then

A := {(U1 × ...× Un, u1 × ...× un) : (Ui, ui) ∈ Ai}
defines an atlas on M for which the natural projections pri : M → Mi are
smooth. The product M has the following universal property: If N is a
manifold and fi : N →Mi are smooth functions, then there exists a unique
smooth map f : M → N such that pri ◦ f = fi. This characterises the
manifold structure on M uniquely.

We also have a natural notion of submanifolds of manifolds.

Definition 1.23. Suppose (N,Amax) is a manifold of dimension n and
m ≤ n. A subset M ⊂ N is a submanifold of N of dimension m, if for any
x ∈M and any chart (U, u) ∈ Amax with x ∈ U the subset u(U ∩M) ⊂ Rn
is a submanifold of Rn of dimension m.
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Note that in Definition 1.23 it is enough to ask for one such chart around
point x ∈ M and that for N = Rn the definition coincides with Definition
1.8. Given a submanifold M of a manifold (N,Amax), then for any x ∈ M
we can find (U, u) ∈ Amax such that u|U∩M has values in Rm = Rm × {0} ⊂
Rm×Rn−m. Then the tuples (U ∩M,u|U∩M ) for such charts (U, u) ∈ Amax

form an atlas for M making M into an m-dimensional manifold. This is
called the standard manifold structure of the submanifold M ⊂ N . It
has the following universal property:

Proposition 1.24. Suppose (N,Amax) is a manifold and M ⊂ N a
submanifold. Then the inclusion i : M ↪→ N is a smooth injective immersion
and the standard manifold structure on M is the unique one satisfying the
following universal property: for any manifold P a map f : P →M is smooth
⇐⇒ i ◦ f : P → N is smooth.

Proof. Note first that the standard manifold structureM ⊂ N satisfies
the universal property: with respect to charts i ◦ f has locally the form

Rp f−→ Rm i
↪−→ Rn,

which is smooth ⇐⇒ Rp f−→ Rm is smooth. Applied to f = IdM this shows
that i : M → N is smooth. It remains to shows that this property charac-
terises the manifold-structure on M uniquely. Suppose M is equipped with
two different manifold structures satisfying the universal property, the stan-
dard one Bmax and another one Cmax. Then Id : (M,Bmax)→ (M, Cmax) and
its inverse are smooth ⇐⇒ i : (M,Bmax) ↪→ (N,Amax) and i : (M, Cmax) ↪→
(N,Amax) are. The latter are smooth, since (M,Bmax) and (M, Cmax) sat-
isfy the universal property and hence, as we observed, this implies that the
inclusion into (N,Amax) is smooth. �

Definition 1.25. Suppose M and N are manifolds. Then a smooth
map f : M → N is called a (smooth) embedding, if the following holds:

(a) f : M → f(M) is a homeomorphism
(b) f : M → N is an immersion.

Images of embeddings are submanifolds:

Proposition 1.26. Suppose M and N are manifolds of dimension m
and n respectively. Then f : M → N is an embedding ⇐⇒

(a) f(M) ⊂ N is a submanifold of N .
(b) f |M : M → f(M) is a diffeomorphism.

Proof.
′ ⇐=′ By Proposition 1.24 and (b), the map f : M → N is a smooth immer-
sion.
′ =⇒′ Since f : M → f(M) is a homoemorphism, it remains to show that
f(M) ⊂ N is a submanifold and that f : M → f(M) is a local diffeomor-
phism. Both properties are of a local nature, so we only need to verify it
locally around any point x ∈ M and f(x) ∈ N . Fix x ∈ M , a chart (U, u)
for M with x ∈ U and a chart (V, v) for N with f(x) ∈ V . Since f is a
homoemorphism onto f(M), we may assume f(U) ⊂ V ∩ f(M). Replacing
f by v ◦ f ◦ u−1 reduces the statement to the case where M and N are open



20 1. SMOOTH MANIFOLDS

subsets of Rm and Rn respectively and the result follows from Theorem 1.5
(i.e. existence of local parametrisations). �

Proposition 1.27. Suppose M and N are manifolds of dimension m
and n respectively and f : M → N a smooth map of constant rank r. Then
for any y ∈ f(M), f−1(y) ⊂M is a submanifold of dimension m− r in M .

Proof. Being a submanifold is a local property, hence taking charts we
can reduce the problem to open subsets of Rm and Rn. The results then
follows from an exercise in the tutorial. �

Remark 1.28. View M = R as a topological manifold. Then A1 = {id :
R → R} and A2 = {u(x) = x3 : R → R} are not compatible C∞-atlases,
since u−1 ◦ id is not smooth, but (M,A1) and (M,A2) are diffeomorphic via
f = 3
√
x : (M,A1)→ (M,A2).

Remark 1.29.
• If k ≤ k′ are elements of Z>0 ∪ {∞, ω}, then any Ck-manifold is
Ck-diffeomorphic to a Ck′-manifold. If two Ck′-manifolds are Ck-
diffeomorphic, then they are Ck′-diffeomorphic.
• Any topological manifold of dimension ≤ 3 admits a unique Cω-
structure. If two Cω-manifolds of dimension ≤ 3 are homeomorphic,
they are Cω-diffeomorphic.
• There are topological manifolds without any C1-structure and there
exist some with many different differentiable structures. For Sm
the diffeomorphism classes of C∞-structures are known in some
dimensions:

m ≤ 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
Diffeo. classes 1 ? 1 1 28 2 8 6 992 1 3 2 16256 ...

In dimension 4, the classification of topological and smooth
manifold differs. For m 6= 4, Rm has unique smooth structure,
but R4 has uncountably many!
• The classification of topological manifolds of dimension 1 and 2 is
known:
– Any connected 1-dimensional manifold is homeomorphic to R

or S1.
– Any 2-dimensional connected compact manifold is homeomor-

phic to the connected sum of g ≥ 0 copies of T 2 or g ≥ 1 copies
of RP 2, and any of them are not homeomorphic. They admit
a unique smooth structure, but many different holomorphic
structures  Theory of Riemann surfaces.

1.3. Partitions of Unity

To extend local constructions and locally defined objects to global ones
we need a natural way to ’glue’ them. For that we need functions which only
locally do not vanish, are ≥ 0 and sum up to one. Such functions are called
partitions of unity. In particular, the existence of partitions of unity implies
the existence of globally defined smooth functions on manifold.
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Definition 1.30. Suppose M is a manifold.
(a) For a map f : M → Rk the support of f is defined by

supp(f) := {x ∈M : f(x) 6= 0}.
(b) A (smooth) partition of unity on M is a family

F := {fi : M → R : i ∈ I}
of smooth real-valued functions satisfying:
(i) F is locally finite: for any x ∈ M there exists an open neigh-

bourhood Ux ⊂ M of x such that the set {i ∈ I : supp(fi) ∩
Ux 6= ∅} is finite;

(ii) Any f ∈ F has values in [0, 1];
(iii) For any x ∈M ,

∑
i∈I fi(x) = 1.

Note hat the sum in (iii) is finite by (i).

Definition 1.31. Suppose M is a manifold.
(a) An open cover of M is a family U := {Uj : j ∈ J} of open subsets

Uj ⊂M such that M =
⋃
j∈J Uj .

(b) A partition of unity F := {fi : M → R : i ∈ I} on M is subordi-
nate to an open cover U := {Uj : j ∈ J} of M , if for every i ∈ I
there exists j ∈ J such that supp(fi) ⊂ Uj .

Theorem 1.32. Suppose M is a (smooth) manifold and U := {Uj : j ∈
J} an open cover of it. Then there exists a (smooth) partition of unity of
countably many functions F := {fk : M → R : k ∈ N} subordinate to U .

For a proof of this theorem see e.g. [7, Theorem 2.18], but let us just
mention that, apart from the topological assumptions we made in our defi-
nition of a manifold, key to Theorem 1.32 is the following:

Lemma 1.33. For any x0 ∈ Rm and any open neighbourhood U ⊂ Rm of
x0, there exists a smooth function f : Rm → R with supp(f) ⊂ U , f ≥ 0 and
f(x0) > 0.

Proof. Let ρ : R→ R be the function

ρ(t) =

{
e−

1
t2 , if t > 0,

0, if t ≤ 0.
(1.8)

It is smooth (but not real-analytic around 0). There exists ε > 0 such that
B2ε(x0) = {x ∈ Rm : ||x−x0|| < 2ε} ⊂ U . Then define the following smooth
function

f : Rm → R (1.9)

f(x) = ρ(ε2 − ||x− x0||2). (1.10)

Note that f(x) ≥ 0 for all x ∈ Rm, since ρ ≥ 0, and that f(x) > 0 if and
only if x ∈ Bε(x0). In particular, f(x0) > 0. Moreover,

supp(f) = {x ∈ Rm : ||x− x0|| ≤ ε} ⊂ U.
�

Remark 1.34. On complex manifold there exist no holomorphic parti-
tions of unity.
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Typical applications of partitions of unity are:

Corollary 1.35. Suppose M is a manifold, U ⊂ M an open subset,
A ⊂M a closed subset with A ⊂ U . Then the following holds:

(a) There exists a smooth function φ : M → [0, 1] such that supp(φ) ⊂
U and φ(x) = 1 for all x ∈ A (’Bump function’).

(b) If f : U → Rk is a smooth function, then there exists a smooth
function f̃ : M → Rk such that f̃ |A = f |A.

(c) Suppose M ⊂ Rn is a submanifold and f : M → Rk a smooth
function. Then there exist an open subset Ũ ⊂ Rn with M ⊂ Ũ and
a smooth function f̃ : Ũ → Rk such that f̃ |M = f .

Proof.
(a) Set V := M \ A, then {U, V } is an open cover of M . By Theorem

1.32, there exists a partition of unity F := {fk : M → R : k ∈ N}
subordinate to {U, V }. Hence, for fk ∈ F either supp(fk) ⊂ U or
supp(fk)∩A = ∅. Let φ : M → [0, 1] be the sum of all fk such that
supp(fk) ⊂ U . Then φ has the required properties.

(b) Choose φ as in (a) and define

f̃(x) =

{
f(x)φ(x), if x ∈ U,
0, if x ∈M \ U.

(1.11)

Since supp(φ) ⊂ U , the open subsets U and M \ supp(φ) form
an open cover of M and f̃ is smooth on both, hence on M . By
construction, f̃ |A = f , since φ equals 1 on A.

(c) By definition of smoothness, for every x ∈ M there exist an open
neighbourhood Ũx ⊂ Rn and a smooth function f̃x : Ũx → Rk
such that f̃x|Ũx∩M = f |

Ũx∩M . Consider the open subset Ũ :=⋃
x∈M Ũx ⊂ Rn. Then U = {Ũx : x ∈ M} is an open cover of Ũ .

By Theorem 1.32, there exists a partition of unity of {φ` : ` ∈ N}
of Ũ subordinate to U . For each ` ∈ N choose Ũ` ∈ U such that
supp(φ`) ⊂ Ũ` and write f̃` for the corresponding function. As in
(b) we can extend f̃`φ` by 0 from a smooth function on Ũ` to a
smooth function Ũ → Rk. Then

f̃ :=
∑
`∈N

f̃`φ`

defines a smooth function Ũ → Rk. Moreover, for x ∈M ,

f̃(x) =
∑
`∈N

f̃`(x)φ`(x) =
∑
`∈N

f(x)φ`(x) = f(x)
∑
`∈N

φ`(x)︸ ︷︷ ︸
=1

= f(x).

�



CHAPTER 2

The Tangent Bundle

For a smooth map f : Rm → Rn, the derivative Dxf : Rm → Rn of f at a
point x ∈M is the best linear approximation of f near x. To generalise this
to maps f : M → N between manifolds we need first a linear approximation
of M at x, which is called the tangent space TxM of M at x. The derivative
of f at x will be a linear map TxM → Tf(x)N .

2.1. The tangent space of a submanifold of Rn

For an open subset U ⊂ Rm and x ∈ U we set

TxU := {(x, v) : v ∈ Rm}.
Note that TxU is a vector space: (x, v) + λ(x,w) = (x, v + λw) for λ ∈ R,
which is called the tangent space of U at x. It is a copy of Rm with origin
at x.

For a smooth map f : U → Rn the tangent map of f at x ∈ U is given
by the linear map

Txf : TxU → Tf(x)Rm

Txf(x, v) = (f(x), Dxfv).

Under the identification TxU ∼= Rm and Tf(x)Rn ∼= Rn, Txf equals Dxf .
Sometimes we also simply write Txfv = Dxfv.

Proposition 2.1. Suppose M ⊂ Rn is a submanifold of dimension m ≤
n and fix x ∈M . Then the following subset of TxRn coincide:

(a) {(c(0), c′(0)) : c : (−ε, ε) → M smooth curve , ε > 0, c(0) = x},
where the derivative of c is taken as a curve in Rn.

(b) Im(Tyψ), where ψ : V → U ⊂ Rn is a local parametrisation for M
with ψ(y) = x.

(c) ker(Txf), where f : U → Rn−m is a local presentation of M as the
zero set of a regular smooth function f (i.e. f−1(0) = M ∩ U).

In particular, the subset of TxRn given by any of these equivalent descriptions
is an m-dimensional subspace of TxRn.

Proof.
(b) ⊂ (a) By definition of ψ, Tyψ : TyV → TxU is an injective linear map.

Hence, Im(Tyψ) ⊂ TxU is an m-dimensional subspace of the n-
dimensional vector space TxU = TxRn. For any (y, v) ∈ TyV there
exists ε > 0 such that y+ tv ∈ V for |t| < ε, since V is open. Hence,

c :(−ε, ε)→M

c(t) = ψ(y + tv)

23
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is a well-defined smooth curve with c(0) = x. Moreover, c′(0) =
Dyψv. Hence, Tyψ(y, v) = (c(0), c′(0)).

(a) ⊂ (c) For any smooth curve c : (−ε, ε) → M with c(0) = x there exists
ε′ > 0 such that c((−ε′, ε′)) ⊂ M ∩ U , since U is open. Then the
smooth map f ◦ c : (−ε′, ε′)→ Rn−m is identically zero. Therefore,
0 = D0(f ◦ c) = Dxfc

′(0) and so (c(0), c′(0)) ∈ ker(Txf).
In summary, (b) ⊂ (a) ⊂ (c). Moreover, since Dxf : Rn → Rn−m is surjec-
tive, ker(Txf) ⊂ TxRn is an m-dimensional subspace. Hence, by dimensional
reasons, we must have (a) = (b) = (c). �

Definition 2.2. Suppose M ⊂ Rn is an m-dimensional submanifold
of Rn. For x ∈ M the tangent space of M at x, denoted by TxM , is
the m-dimensional subspace of TxRn defined by any of the three equivalent
descriptions in Proposition 2.1.

Example 2.1. If U ⊂ Rn is an open subset, then IdU : U → U is a global
parametrisation of U and so TxU = TxRn, which justifies our definition of
TxU for open subset sets at the beginning of Section 2.1.

Example 2.2. Consider them-sphere Sm ⊂ Rm+1. Recall that f−1(0) =
Sm, where f : Rm+1 \ {0} → R is the smooth function f(x) = 〈x, x〉 − 1.
Then for x ∈ Sm, the tangent map Txf : TxRm+1 → T0R = R of f at x is
given by

Txf(x, v) = (0, Dxfv), v ∈ Rm+1.

Since Dxfv = 2〈x, v〉, one has

TxS
m = ker(Txf) = {(x, v) ∈ TxRm+1 : 〈x, v〉 = 0}

Example 2.3. Since GL(n,R) ⊂ Mn×n(R) is an open subset, for any
A ∈ GL(n,R) the tangent space of the general linear group at A is given by

TAGL(n,R) = {(A,X) : X ∈Mn×n(R)} ∼= Mn×n(R) ∼= Rn
2
.

Example 2.4. Consider the orthogonal group

O(n) = {A ∈ GL(n,R) : A−1 = At}.

Recall that O(n) = f−1(0) for the smooth function

f : GL(n,R)→M sym
n×n(R) ∼= R

(n+1)n
2

f(A) = AAt − Id

and that for A ∈ O(n) one has

TAf : TAGL(n,R)→ T0M
sym
n×n(R) = M sym

n×n(R)

TAf(A,X) = (0, AXt +XAt).

Hence, for A ∈ O(n), one obtains

TAO(n) = {(A,X) ∈ TAGL(n,R) : Xt = −A−1XA}.

In particular,

TIdO(n) = {(Id, X) ∈ TIdGL(n,R) : Xt = −X} ∼= M skew
n×n (R) ∼= R

(n−1)n
2 .
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Remark 2.3. Let us remark that in the previous two examples the group
structure on GL(n,R) and O(n) induces on the tangent spaces at the identity
of GL(n,R) respectively O(n) the structure of a so-called Lie algebra, where
the Lie bracket is given by the commutator of matrices. The tangent spaces
at the identity of GL(n,R) and O(n) are usually denoted by gl(n,R) respec-
tively o(n) and are called the Lie algebra of GL(n,R) respectively O(n). We
will discuss this more in the tutorial.

Example 2.5. Suppose M ⊂ Rn and K ⊂ R` are submanifolds. Then
M ×K ⊂ Rn × R` is a submanifold of Rn+` and

T(x,y)(M ×K) ∼= TxM × TyK ⊂ TxRn × TyR`.
Note that if ψ1 : V1 → U1 and ψ2 : V2 → U2 are local parametrisations of M
respectively K, then ψ1 × ψ2 : V1 × V2 → U1 ×U2 is a local parametrisation
for M ×K.

For example, for Tm ∼= S1 × ...× S1 one therefore has

TzT
m = Tz1S

1 × ...× TzmS1,

where z = (z1, ..., zm) ∈ S1 × ...× S1 ∼= Tm.

Suppose M ⊂ Rn and K ⊂ R` are submanifolds and f : M → K a
smooth map. The tangent map of f at a point x ∈ M should be a linear
map

Txf : TxM → Tf(x)K.

If the chain rule should hold, the description of the tangent space in
Proposition 2.1[(a)] suggests the following definition:

Txf(c(0), c′(0)) = (f(c(0)), (f ◦ c)′(0)), (c(0), c′(0)) ∈ TxM, (2.1)

where c : (−ε, ε)→M is a smooth curve with c(0) = x.

Lemma 2.4. The map (2.1) is well-defined and linear.

Proof. Smoothness of f implies that there exists an open neighbour-
hood Ũx ⊂ Rn of x and a smooth map f̃ : Ũx → R` such that f |

M∩Ũx =

f̃ |
M∩Ũx . Without loss of generality we may assume that c : (−ε, ε) → M

with c(0) = x satisfies c((−ε, ε)) ⊂M ∩ Ũx. Then f̃ ◦ c = f ◦ c : (−ε, ε)→ R`
is a smooth curve with values in K and

(f ◦ c)′(0) = (f̃ ◦ c)′(0) = Dc(0)f̃ c
′(0).

Hence, (2.1) just depends on c′(0) and not on the extension f̃ of f , which
proves that it is well-defined. It is also linear as it is the restriction of the
linear map Txf̃ : TxRn → Tf(x)R` to the linear subspace TxM ⊂ TxRn. �

Definition 2.5. Suppose M ⊂ Rn and K ⊂ R` are submanifolds and
f : M → K a smooth map. Then the tangent map of f at x ∈ M is
denoted by

Txf : TxM → Tf(x)K

and is given by (2.1).

From the chain rule for functions between the ambient vector spaces it
follows:
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Corollary 2.6. Suppose f : M → K and g : K → P are smooth maps
between submanifolds of M ⊂ Rn, K ⊂ R` and P ⊂ Rr.

(a) Tx(g ◦ f) = Tf(x)g ◦ Txf : TxM → Tg(f(x))P for any x ∈M .
(b) If f : M → K is a diffeomorphism, then for any x ∈M its tangent

map at x,
Txf : TxM → Tf(x)K,

is linear isomorphism with inverse (Txf)−1 = Tf(x)f
−1.

Proof.
(a) Locally around x and f(x) we can find smooth extensions f̃ and g̃

of f respectively g to smooth functions defined on open subsets of
Rn respectively R`. It follows

Tx(g ◦ f) = (g(f(x)), Dx(g̃ ◦ f̃)|TxM )

= (g(f(x)), Df(x)g̃|Tf(x)K ◦Dxf̃ |TxM ) = Tf(x)g ◦ Txf.

(b) We have f−1 ◦f = IdM , f ◦f−1 = IdK and TxIdM = IdTxM for any
x ∈M . By (a) it thus follows

IdTxM = TxIdM = Tx(f−1 ◦ f) = Tf(x)f
−1 ◦ Txf.

Similarly, IdTf(x)K = Tf(x)(f ◦ f−1) = Txf ◦ Tf(x)f
−1.

�

Corollary 2.7. Let f : M → K be a smooth map between submanifolds
M ⊂ Rn and K ⊂ R`.

(a) If the tangent map Txf : TxM → Tf(x)K at x ∈ M is an isomor-
phism, then there exist open neighbourhoods W1 ⊂M and W2 ⊂ K
of x respectively f(x) such that

f |W1 : W1 →W2

is a diffeomorphism.
(b) f : M → K is a local diffeomorphism if and only if Txf : TxM →

Tf(x)K is an isomorphism for all x ∈M .

Proof.
(a) Let (U, u) be a chart of M with x ∈ M and (V, v) be a chart of

K with f(x) ∈ K. Then v ◦ f ◦ u−1 : u(U ∩ f−1(V )) → v(V ) is a
smooth map between open subsets of Rn and R` respectively. We
have

Du(x)(v ◦ f ◦ u−1) = Df(x)v ◦Dxf ◦Du(x)u
−1,

which is the composition of three linear isomorphisms. By the in-
verse function theorem there exist an open neighbourhood W̃1 of
u(x) in Rm such that (v ◦ f ◦ u−1)(W̃1) =: W̃2 is open and a
smooth map g : W̃2 → W̃1 inverse to (v ◦ f ◦ u−1)|

W̃1
. Then

W1 := u−1(W̃1) is open in M , W2 = f(W1) = v−1(W̃2) is open
in K and u−1 ◦ g ◦ v : W2 →W1 is inverse to f |W1 .

(b) Follows from (a) and Corollary 2.6.
�
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2.2. The tangent bundle of a submanifold in Rn

Ordinary differential equations (of first order) on (sub)manifolds M are
described by vector fields. To be able to speak about the smoothness of
them, it is convenient to form the disjoint union of the tangent spaces TxM
as x varies over points in M and equip it with a smooth structure. More
precisely, recall that a first oder differential equation is given by

x′(t) = f(x(t)), (2.2)

where f : U → Rn is a smooth map and U ⊂ Rn open. For any initial
condition x(0) = x0 there exists a unique maximal (solution) smooth curve
x : (a, b)→ U with x(0) = x0 satisfying (2.2).

If we replace U by a submanifold M ⊂ Rn, then a solution of (2.2) is a
smooth curve x : (a, b) → M , which implies that x′(t) ∈ Tx(t)M . So f has
to be a map of the form

f : M →
⊔
x∈M

TxM

such that f(x) ∈ TxM for all x ∈ M . To speak about the smoothness of f
we need to equip

⊔
x∈M TxM with the structure of a manifold.

Definition 2.8. Suppose M ⊂ Rn is a submanifold.
(a) Set

TM :=
⊔
x∈M

TxM :=
⋃
x∈M
{x}×TxM = {(x, v) : x ∈M, v ∈ TxM} ⊂ Rn×Rn

and denote by p : TM → M the natural projection p(x, v) = x.
Then TM is called the tangent space of M and p : TM →M the
tangent bundle of M .

(b) If K ⊂ R` is another submanifold and f : M → K a smooth map,
the the tangent map of f is given by

Tf : TM → TK

Tf(x, v) = Txf(x, v).

We also simply write Tfv = Txv for any v ∈ TxM .

Theorem 2.9. SupposeM ⊂ Rn, K ⊂ R` and P ⊂ Rr are submanifolds.
(a) TM ⊂ R2n is a submanifold of R2n of dimension 2 dim(M) and

p : TM →M is smooth.
(b) For a smooth map f : M → K, the tangent map Tf : TM → TK

is smooth.
(c) If g : K → P is another smooth map, then T (g ◦ f) = Tg ◦ Tf . In

particular, if f is a diffeomorphism, then Tf is a diffeomorphism
with (Tf)−1 = Tf−1.

Proof.
(a) Assume dimM = m and fix x ∈ M . Let ψ : Ũ → Rn−m be a

regular smooth function such that ψ−1(0) = Ũ ∩M , where Ũ ⊂ Rn
is an open neighbourhood of x. Then

Ṽ := {(y, v) ∈ Rn × Rn : y ∈ Ũ} ⊂ Rn × Rn
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is open and

Ψ : Ṽ → Rn−m × Rn−m

Ψ(y, v) = (ψ(y), Dyψ v)

is smooth. Moreover, Ψ(y, v) = 0 ⇐⇒ (y, v) ∈ TM by Proposition
2.1. Hence, Ψ−1((0, 0)) = TM ∩ Ṽ . To see that Ψ is regular, note
that for v ∈ TxM one has

D(x,v)Ψ =

(
Dxψ 0
∗ Dxψ,

)
which is a surjective linear map Rn × Rn → Rn−m × Rn−m by
regularity of ψ. Hence, TM ⊂ R2n is a 2m-dimensional submanifold
of R2n. Moreover, the projection p : TM → M is smooth as it is
the restriction to TM of the smooth projection p1 : Rn ×Rn → Rn
to the first Rn-component.

(b) Smoothness of f implies that for x ∈M there exists an open neigh-
bourhood Ũx ⊂ Rn and a smooth map f̃ : Ũx → R` such that
f̃ |
Ũx∩M = f |

Ũx∩M . Set Ṽ := Ũx × Rn ⊂ Rn × Rn and define

F : Ṽ → R` × R`

F (y, v) = (f̃(y), Dyf̃ v).

Then for (y, v) ∈ TM ∩ Ṽ we have f(y) = f̃(y) and F (y, v) =
Tf(y, v) = Tyf(y, v). Hence, F is a smooth local extension around
(x, 0) of Tf and so Tf is smooth.

(c) By Corollary 2.6 one has

T (g ◦ f)(x, v) = Tx(g ◦ f)(x, v) = Tf(x) ◦ Txf(x, v) = Tg ◦ Tf(x, v),

which implies the statement about diffeomorphism similarly as in
Corollary 2.6[(b)].

�

Distinguished charts for TM from charts from M

Suppose (U, u) is a chart for an m-dimensional submanifold M ⊂ Rn. Then
• T (u(U)) = u(U)× Rm ⊂ Rm × Rm = R2m is an open subset;
• TU = p−1(U) ⊂ TM is open, since p is continuous (by openness of
U , TxU = TxM x ∈ U);
• Tu : TU → T (u(U)) is a diffeomorphism by Theorem 2.9[(c)].

Hence, (TU, Tu) is a chart for TM .

Suppose now (Uα, uα) and (Uβ, uβ) are two charts for M with Uα ∩ Uβ 6= ∅.
Then their transition map

uβα := uβ ◦ u−1
α : uα(Uα ∩ Uβ)→ uβ(Uα ∩ Uβ)
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is a diffeomorphism between open subsets of Rm. Hence, its tangent map is
a diffeomorphism between open subset of R2m, given by

Tuβα = Tuβ ◦ Tu−1
α : (uα(Uα ∩ Uβ)× Rm → uβ(Uα ∩ Uβ)× Rm (2.3)

(y, v) 7→ (uβα(y), Dy(uβα)v).

Therefore, an atlas of M induces in a natural way an atlas for TM .

Suppose f : M → K is a smooth map between submanifolds M ⊂ Rn
and K ⊂ R` of dimension m and k respectively. Let (U, u) be a chart for M
and (V, v) be a chart for K. With respect to the induced charts (TU, Tu)
and (TV, Tv) of TM and TK the local coordinate expresssion of Tf has the
form

Tv ◦ Tf ◦ Tu−1 = T (v ◦ f ◦ u−1) :T (u(U ∩ f−1(V )))→ Tv(V )

(y, v) 7→ (f1(y), ..., fk(y), Dy(f
1, .., fk)v)

= ((f1(y), ..., fk(y),


∂f1

∂x1
(y) ... ∂f1

∂xm (y)
...

...
...

∂fk

∂x1
(y) ... ∂fk

∂xm (y)

 v),

where (f1, ..., fk) denotes the local coordinate expression of f with respect
to (U, u) and (V, v). Recall that f i : u(U ∩ f−1(V ))→ R is characterised by
vi(f(x)) = f i(u(x)) for all x ∈ U ∩ f−1(V ).

2.3. Vector fields

Definition 2.10. Suppose M is a manifold. A (smooth) vector bun-
dle of rank r over M is a manifold E together with a (smooth) surjective
submersion p : E →M such that

(a) for any x ∈ M the fiber p−1(x); = Ex over x is endowed with the
structure of a real vector space of dimension r;

(b) for any x ∈ M there exists an open neighbourhood U ⊂ M and a
diffeomorphism φ : p−1(U) → U × Rr such that pr1 ◦ φ = p|p−1(U)

and such that φ|Ey : Ey → {y} × Rr is a linear isomorphism for all
y ∈ U . Such a map φ is called a local trivialisation of E around
x.

Here, E is called the total space and M the base of p : E →M .

Remark 2.11. If p : E → M is a vector bundle and U ⊂ M an open
set, then E|U := p−1(U)

p−→U is a vector bundle over U .

Definition 2.12. Two vector bundles p1 : E1 → M and p2 : E2 → M
are called isomorphic, if there exists a diffeomorphism F : E1 → E2 such
that p2 ◦F = p1 and F |E1

x
: E1

x → E2
x is a linear isomorphism for all x ∈M .

Example 2.6. For any manifold M the natural projection p = pr1 :
M × Rr → Rr is a vector bundle of rank r over M . It is called the trivial
vector bundle over M of rank r. Note that (b) in Definition 2.10 says that
locally any vector bundle is isomorphic to the trivial one.
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Example 2.7. SupposeM ⊂ Rn is anm-dimensional submanifold. Then
its tangent bundle p : TM →M is a vector bundle of rank m over M , hence
the name. Indeed, take a chart (U, u) for M centered at x ∈ M , then
Tu : TU → u(U)× Rm ⊂ Rm × Rm is a chart for TM . Define

φ := u−1 × Id ◦ Tu : p−1(U)
Tu−−→u(U)× Rm u−1×Id−−−−−→U × Rm.

Evidently,
• φ is a diffeomorphism as the composition of two diffeomorphisms
and pr1(φ(y, v)) = y = p(y, v).

• φ|TyU : TyU → {y} × Rm ∼= Rm equals TyU
Tyu−−→Tu(y)u(U) ∼= Rm,

which is a linear isomorphism.

An important notion in the context of vector bundles is:

Definition 2.13. Suppose p : E →M is a vector bundle over a manifold
M .

• A (smooth) section of p is a smooth map s : M → E such that
p ◦ s = IdM (i.e. s(x) ∈ Ex for all x ∈M).
• If U ⊂ M an open subset, then a section of E|U := p−1(U)

p−→U is
called a local section of p defined on U .

Lemma 2.14. Suppose p : E →M is a vector bundle over a manifold M .
Then the set of sections, usually denoted by Γ(E), is a (infinite-dimensional)
real vector space, where for s, t ∈ Γ(E) and λ ∈ R one has:

(s+ λt)(x) := s(x) + λt(x) for all x ∈M.

Moreover, it is a modul over the ring C∞(M,R) of smooth real-valued func-
tions: (fs)(x) = f(x)s(x) for f ∈ C∞(M,R).

Definition 2.15. Suppose M ⊂ Rn is a submanifold.
• A (smooth) vector field on M is a (smooth) section ξ : M →M
of the tangent bundle p : TM →M .
• A local section of p : TM → M defined on an open subset U ⊂ M
is called a local vector field defined on U .

The vector space of sections of p : TM →M is either denoted by Γ(TM) or
classically also by X(M).

Definition 2.16. SupposeM ⊂ Rn is a submanifold of dimensionm and
(U, u) a chart forM with corresponding local trivialisation φ = u−1×Id◦Tu
for TM . Then for y ∈ U we set

∂

∂ui
(y) := φ−1(y, ei) ∈ TyM, (2.4)

where ei denotes the i-th vector in the standard basis of Rm. Note that
∂
∂u1

(y),..., ∂
∂um (y) form a basis of TyM for any y ∈ U .

Evidently, one has:

Lemma 2.17. In Definition 2.16, ∂
∂ui

: U → TU defines a local vector
field on U , called the i-th coordinate vector field associated with (U, u).
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Proof. The local coordinate expression of ∂
∂ui

: U → TU with respect
to (U, u) and (TU, Tu) equals

Tu ◦ ∂

∂ui
◦ u−1 : u(U)→ u(U)× Rm

z 7→ (z, ei),

which is smooth. �

Suppose M ⊂ Rn is a submanifold of dimension m, (U, u) a chart for M ,
and ξi ∈ C∞(U,R) for i = 1, ...,m. Then, by Lemma 2.14,

ξ :=
m∑
i=1

ξi
∂

∂ui

is a local vector field on U . Hence, there are many local vector fields. Con-
versely, if ξ ∈ X(U), then for any y ∈ U we may write

ξ(y) =
m∑
i=1

ξi(y)
∂

∂ui
(y) ∈ TyM (2.5)

for uniquely defined real numbers ξi(y) depending on y. In fact, smoothness
of ξ implies that the functions ξi : U → R are smooth. Indeed, ξ is by
definition smooth if and only if its local coordinate expressions are smooth.
The latter are given by the map

Tu ◦ ξ ◦ u−1 : u(U)→ u(U)× Rm

(u1(y), ..., um(y)) 7→ (u1(y), ..., um(y), ξ1(y), ..., ξm(y)),

which implies the claim.
Moreover, using partitions of unity, we can see that there are also many

global vector fields on a submanifold M ⊂ Rn: if ξ ∈ X(U) and x ∈ U ,
then there exists an open neighbourhood V of x in M such that V̄ ⊂ U .
By Corollary 1.35, there exists a smooth function φ : M → R such that
supp(φ) ⊂ U and φ|V̄ equal to 1. Setting

ξ̃(y) :=

{
φ(x)ξ(y), if y ∈ U,
0, if y ∈M \ U,

then ξ̃ ∈ X(M) and ξ̃|V = ξ|V .

Definition 2.18. Suppose M ⊂ Rn is a submanifold of dimension m,
(U, u) a chart for M and ξ ∈ X(M) a vector field. Then ξ|U ∈ X(U) and

ξ :=

m∑
i=1

ξi
∂

∂ui
for ξi ∈ C∞(U,R). (2.6)

(2.6) or also (ξ1, ..., ξm) are called the local coordinate expression of ξ
with respect to (U, u).

Let us now compute how the local coordinate expression of a vector field
changes when we change the chart. Suppose (Uα, uα) and (Uβ, uβ) are local
charts for a submanifold M ⊂ Rn of dimension m with Uαβ := Uα ∩Uβ 6= ∅.
Consider

uβα := uβ ◦ u−1
α : uα(Uαβ)→ uβ(Uαβ).
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Then we know that

Tuβα = Tuβ ◦ Tu−1
α : uα(Uαβ)× Rn → uβ(Uαβ)× Rn

(y, v) 7→ (uβα(y), Dyuβα v).

For x ∈ Uαβ set Aji (x) :=
∂ujβα
∂yi

(uα(x)), which defines a smooth map Uαβ →
GL(m,R). Now we have:

• ∂
∂uiα

(x) = Tu−1
α (uα(x), ei)

• Txuβ( ∂
∂uiα

(x)) = (uβ(x), Duα(x)uβα(ei)︸ ︷︷ ︸
i-th column of A

).

Hence, one has
∂

∂uiα
=

m∑
j=1

Aji
∂

∂ujβ
.

Suppose ξ ∈ X(M) and consider the local coordinate expressions (ξ1
α, ..., ξ

m
α )

and (ξ1
β, ..., ξ

m
β ) of ξ with respect to (Uα, uα) and (Uβ, uβ). Then one com-

putes:

ξ|Uαβ =
∑
i

ξiα
∂

∂uiα
=
∑
i,j

ξiαA
j
i

∂

∂ujβ
=
∑
j

ξjβ
∂

∂ujβ
,

which implies ξjβ =
∑m

i=1 ξ
i
αA

j
i .

Example 2.8. Suppose M = R2. Let uα : R2 \ {0} → (0,∞) × [0, 2π)
be the polar coordinates so that

u−1
α (r, φ) = (r cosφ, r sinφ)

and uβ = IdR2 the standard coordinates, i.e. u1
β = x1 and u2

β = x2. The
Jacobian of Id ◦ u−1

α = u−1
α equals(

cosφ −r sinφ
sinφ r cosφ

)
.

Therefore, one has
• ∂

∂r = cosφ ∂
∂x1

+ sinφ ∂
∂x2

= 1
r (x1 ∂

∂x1
+ x2 ∂

∂x2
)

• ∂
∂φ = −r sinφ ∂

∂x1
+ r cosφ ∂

∂x2
= −x2 ∂

∂x1
+ x1 ∂

∂x2
.

An important operation with vector fields is the pull-back via local dif-
feomorphism:

Definition 2.19. Suppose M ⊂ Rn and K ⊂ R` are submanifolds, and
f : M → K a local diffeomorphism. For any ξ ∈ X(K),

f∗ξ : M → TM

x 7→ (Txf)−1ξ(f(x)),

defines a vector field, called the pull-back of ξ via/with respect to f .

One verifies directly that:

Proposition 2.20. Suppose f : M → K is a local diffeomorphism be-
tween submanifolds M ⊂ Rn and K ⊂ R`.
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(a) f∗ : X(K)→ X(M) is R-linear and for h ∈ C∞(K,R) one has

f∗(hξ) = (h ◦ f)f∗ξ ∀ξ ∈ X(K).

(b) If g : K → P is another local diffeomorphism between submanifolds,
then

(g ◦ f)∗ξ = f∗(g∗ξ) ∀ξ ∈ X(P ).

(c) For any ξ ∈ X(K) one has Id∗Kξ = ξ and if M = U ⊂ K is an open
subset of K and i : U ↪→ K the inclusion, then i∗ξ = ξ|U

Example 2.9. Suppose M ⊂ Rn is a submanifold of dimension m and
(U, u) a chart for M . Then u(U) ⊂ Rm is an open subset and

∂

∂xi
: u(U)→ T (u(U)) = u(U)× Rm

x 7→ (x, ei)

is a vector field on u(U) (which extends to Rm),—the i-th coordinate vector
field with respect to the standard coordinates on Rm. Here, ei denotes the
i-the standard basis vector of Rm. Then for any y ∈ U one has

u∗
∂

∂xi
(y) = (Tyu)−1(

∂

∂xi
(u(y)))

= (Tyu)−1(u(y), ei) =
∂

∂ui
(y).

In particular, if ξ ∈ X(M) and ξ|U =
∑m

i=1 ξ
i ∂
∂ui

its local coordinate expres-
sion, then

(u−1)∗ξ|U =
m∑
i=1

ξi ◦ u−1 ∂

∂xi
.

Definition 2.21. Suppose M ⊂ Rn is a submanifold, ξ ∈ X(M), and
I ⊂ R an interval. A smooth curve c : I → M is called an integral curve
of ξ, if

c′(t) = ξ(c(t)). (2.7)

Note that for M = U ⊂ Rn an open subset, equation (2.7) defines a
system of ordinary differential equations of first order, where its solutions
are the integral curves of ξ.

Via charts the theorem about existence and uniqueness of solutions of a
system of first order differential equations implies:

Theorem 2.22. Suppose M ⊂ Rn is a submanifold and ξ ∈ X(M).
(a) For any x ∈M there exists a unique maximal integral curve

cx : Ix →M

of ξ, where Ix ⊂ R is an interval with 0 ∈ Ix and c(0) = x.
(b) D(ξ) = {(t, x) ∈ R × M : t ∈ Ix} ⊂ R × M is an open subset

containing {0} ×M and the map

Flξ : D(ξ)→M

(t, x) 7→ cx(t)

is smooth, which is called the local flow of ξ.
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(c) If y := Flξ(s, x) exists, then Flξ(t+s, x) exists ⇐⇒ Flξ(t, y) exists.
In this case,

Flξ(t+ s, x) = Flξ(t,Flξ(s, x)). (2.8)

In particular, if D(ξ) = M × R, then (2.8) says that

(R,+)→ (Diff(M), ◦)

t 7→ Flξ(t,− )

is a group homomorphism.

Notation: We also write Flξt (x) := Flξ(t, x).

Note that (b) and (c) of Theorem 2.22 imply:

Corollary 2.23. For any x ∈ M there exists an open neighbourhood
U ⊂M of x and ε > 0 such that

Flξ : (−ε, ε)× U →M

is defined and Flξt : U → M is a local diffeomorphism for any t ∈ (−ε, ε).
Note moreover, that, wherever defined, (Flξt )∗ξ = ξ, which is equivalent to
TxFl

ξ
t ξ(x) = ξ(Flξt (x)).

Definition 2.24. Suppose M ⊂ Rn is a submanifold. A vector field
ξ ∈ X(M) is called complete, if D(ξ) = M × R.

Proposition 2.25. Suppose M ⊂ Rn is a submanifold and ξ ∈ X(M) a
vector field.

(a) Suppose there exists ε > 0 such that for any x ∈ M there exists an
open neighbourhood Ux ⊂ M of x such that the local flow Flξ of ξ
is defined on (−2ε, 2ε)× Ux. Then ξ is complete.

(b) If M is compact, ξ is complete.

Proof. (a) Set

Ψt(x) := ((Flξε)
◦k ◦ Flξt−kε)(x) = (Flξε ◦ ... ◦ Flξε︸ ︷︷ ︸

k−times

◦Flξt−kε)(x),

where k is the integer part of t/ε. Note that this is defined for all
t ∈ R and x ∈M . By (c) of Theorem 2.22 we must have Ψt = Flξt .

(b) By Corollary 2.23, for any x ∈ M there exist εx > 0 and an open
neighbourhood Ux ⊂M of x such that Flξ : (−2εx, 2εx)×Ux →M
is defined. Compactness of M implies that there exists finitely
many points x1, ...., xr such that M = Ux1 ∪ ... ∪ Uxr . Then ε :=
mini=1,...,r εxi satisfies the assumption of (a).

�

Example 2.10. Let M = R2 with coordinates (x, y) and corresponding
coordinate vector fields ∂

∂x and ∂
∂y . Consider the vector fields

ξ = y
∂

∂x
and η =

x2

2

∂

∂y
.
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Then their flows are given by

Flξ(t, (x, y)) = (x+ ty, y)

Flη(t, (x, y)) = (x, y + t
x2

2
),

and so both vector fields are complete. Note however that their sum

ξ + η = y
∂

∂x
+
x2

2

∂

∂y

is not: if we write c(t) =

(
x(t)
y(t)

)
∈ R2 for a curve in R2, then

c′(t) =

(
x′(t)
y′(t)

)
= (ξ + η)(c(t)) =

(
y(t)
x(t)2

2

)
implies that x′′(t) = x(t)2

2 , which in turn yields (x′(t))2 = x(t)3

3 +const. If one

solves this for initial value y20−x30
3 = 0 with x0 > 0, then the integral curve is

not defined for all t.

2.4. Tangent vectors as derivations

Suppose M ⊂ Rn is a submanifold.

Definition 2.26. A map ∂ : C∞(M,R)→ R is called a derivation at
x ∈M , if ∂ is R-linear and

∂(fg) = (∂f)g(x) + f(x)∂g ∀f, g ∈ C∞(M,R).

We set Derx(C∞(M,R),R) := {∂ : C∞(M,R) → R : ∂ is a derivation},
which is a real vector space in the obvious way.

Lemma 2.27. Suppose ∂ : C∞(M,R)→ R is a derivation at x ∈M .
(a) ∂(1) = 0 (which implies ∂(f) = 0 for all constant functions by

linearity of ∂).
(b) If f1, f2 ∈ C∞(M,R) coincide on an open neighbourhood U ⊂M of

x, then ∂(f1) = ∂(f2).

Proof.
(a) ∂(1) = ∂(1 · 1) = 1∂(1) + ∂(1)1 = 2∂(1) and hence ∂(1) = 0.
(b) Suppose U ⊂ M is an open neighbourhood of x on which f1, f2 ∈

C∞(M,R) coincide. Then f := f1−f2 vanishes on U . By Corollary
1.35, there exists g ∈ C∞(M,R) such that supp(g) ⊂ U and g(x) =
1. Since supp(g) ⊂ U and f |U = 0, one has

0 = ∂(0) = ∂(fg) = ∂f g(x)︸︷︷︸
=1

+ f(x)︸︷︷︸
=0

∂g = ∂f = ∂f1 − ∂f2.

�

Lemma 2.28. Any tangent vector ξ ∈ TxM in induces a derivation at x
given by

∂ξ : f 7→ ξ · f := Txfξ ∈ Tf(x)R ∼= R.
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Proof. Let c : I →M be a C∞-curve with c(0) = x and c′(0) = ξ, and
f, g ∈ C∞(M,R) and λ ∈ R. Then (f + λg) ◦ c = f ◦ c + λ(g ◦ c), which
implies

∂ξ(f + λg) = ((f + λg) ◦ c)′(0) = (f ◦ c)′(0) + λ(g ◦ c)′(0) = ∂ξ(f) + λ∂ξ(g).

Similarly, fg ◦ c = (f ◦ c)(g ◦ c) and the product rule give

(fg ◦ c)′(0) = (f ◦ c)′(0)g(x) + f(x)(g ◦ c)′(0) = ∂ξ(f)g(x) + f(x)∂ξ(g).

�

Let (U, u) be a chart for M with x ∈ U . Then ∂
∂ui

(x) for i = 1, ...,m
form a basis of TxM . Moreover,

∂

∂ui
(x) · f = Txf ◦ Tu(x)u

−1(u(x), ei)

= Tu(x)(f ◦ u−1)(u(x), ei) = (f(x), Du(x)(f ◦ u−1)ei).

equals the i-th partial derivative at u(x) of the local coordinate expression
f ◦ u−1 : u(U)→ R of f . We therefore write

∂

∂ui
(x) · f =:

∂f

∂ui
(x).

Since any ξ ∈ TxM can be written as

ξ =

m∑
i=1

ξi
∂

∂ui
(x), ξi ∈ R,

we have

∂ξ(f) = Txfξ =

m∑
i=1

ξiTxf
∂

∂ui
(x) =

m∑
i=1

ξi
∂f

∂ui
(x).

Theorem 2.29. Suppose M ⊂ Rn is a submanifold and x ∈M a point.
Then the map

Ψx : TxM → Derx(C∞(M,R),R)

ξ 7→ ∂ξ

is a linear isomorphism. Moreover, for any smooth map F : M → K and
K ⊂ R` another submanifold, the following diagram commutes

TxM Derx(C∞(M,R),R)

TF (x)K DerF (x)(C
∞(K,R),R),

Ψx

TxF F∗

ΨF (x)

where F∗(∂)(g) := ∂(g ◦ F ) for all g ∈ C∞(K,R).

Proof.
• Linearity of Ψx: this is clear, since Txf is linear for any f ∈
C∞(M,R).
• Commutativity of the diagram:

F∗(Ψx(ξ))(g) = F∗(∂ξ)(g) = ∂ξ(g ◦ F )

= Tx(g ◦ F )ξ = (TF (x)g ◦ TxF )ξ = ∂TxFξ(g).
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• Injectivity of Ψx: If 0 6= ξ ∈ TxM , then we need to show that there
exists a function f ∈ C∞(M,R) such that ∂ξ(f) 6= 0.

Let V be an open neighbourhood of x such that V̄ ⊂ U , where
(U, u) is a chart. By Corollary 1.35, there exists g ∈ C∞(M,R)
such that supp(g) ⊂ U and g|V̄ ≡ 1. Then gui can be extended
by zero to a smooth function ũi : M → R, which locally around
x coincides with ui. By construction, ũi ◦ u−1 locally around u(x)
equals the i-th projection. If ξ =

∑m
j=1 ξ

j ∂
∂uj

(x), then

∂ξ(ũ
i) =

m∑
j=1

ξj
∂ũi

∂uj
(x) = ξi.

Since for ξ 6= 0 there is at least one nonzero coefficient ξi, we con-
clude that Ψx is injective.
• Surjectivity of Ψx: Let (U, u) be a chart with x ∈ U . Without loss
of generality u(x) = 0 and u(U) ⊃ B1(0) := {z ∈ Rn : ||z|| < 1}. If
y ∈ U such that u(y) ∈ B1(0), then for f ∈ C∞(M,R) we have

f(y) = f(x) +

∫ 1

0

d

dt
(f ◦ u−1)(tu(y))dt

= f(x) +

∫ 1

0

∑
i

∂(f ◦ u−1)

∂xi
(tu(y))ui(y)dt

= f(x) +
∑
i

ui(y)

∫ 1

0

∂(f ◦ u−1)

∂xi
(tu(y))dt︸ ︷︷ ︸

:=hi(y)

,

where hi : u−1(B1(0)) → R is a smooth function. So we can write
f locally around x as

f(y) = f(x) +
∑
i

ui(y)hi(y).

By Corollary 1.35, we can extend hi and ui to smooth functions on
M without changing them locally around x. So locally around x
we have

f = f(x) +
∑
i

uihi.

If ∂ ∈ Derx(C∞(M,R),R), then by Lemma 2.27 one has

∂(f) =
∑
i

∂(ui) hi(x)︸ ︷︷ ︸
∂f

∂ui
(x)

+ui(x)︸ ︷︷ ︸
=0

∂(hi)

=
∑
i

∂(ui)
∂f

∂ui
(x).

This shows that ∂ = ∂ξ with ξ =
∑

i ∂(ui) ∂
∂ui

(x).

�
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2.5. The tangent bundle of an abstract manifold

Suppose (M,A) = (M,Amax) is an abstract manifold of dimension m.
Then we define the tangent space of M at x ∈M as the vector space

TxM := Derx(C∞(M,R),R). (2.9)

We use the notation ξx(f) := ξx · f for ξx ∈ TxM and f ∈ C∞(M,R).

Remark 2.30. Alternatively, we could have defined TxM as the set of
equivalence classes of smooth curves c : (−ε, ε) → M , where c1 ∼ c2 if
c1(x) = c2(x) and for a (equivalently, any) chart (U, u) around x one has
(u ◦ c1)′(0) = (u ◦ c2)′(0). In contrast to (2.9), it is however not obvious that
this is a vector space.

Definition 2.31.
• The tangent bundle of M is defined as

TM :=
⊔
x∈M

TxM =
⋃
x∈M
{x} × TxM,

and we write p : TM →M for the natural projection.
• For a smooth map between abstract manifolds F : M → K we
define its tangent map by

Tf : TM → TK (2.10)
Tf(x, ξx) = (f(x), Txfξx),

where Txf : TxM → Tf(x)K is given by

Txf(ξx)(f) := (Txfξx) · g := ξx(g ◦ f) = ξx · (g ◦ f)

for all g ∈ C∞(K,R).

It follows directly, cf. the analogues statements for submanifolds:

Proposition 2.32. Suppose M,K and P are smooth manifolds, and
f : M → K and g : K → P smooth maps. Then one has:

(a) T (g ◦ f) = Tg ◦ Tf and T IdM = IdTM .
(b) f is a local diffeomorphism if and only if Txf : TxM → Tf(x)K is a

linear isomorphism for all x ∈M .

There is natural topology on TM : We may equip TM with the coarsest
topology such that TU ⊂ TM is open and Tu : TU → Tu(U) = u(U)×Rm
is a homeomorphism for all (U, u) ∈ A. It is again second countable and
Hausdorff. Moreover,

ATM := {(TU, Tu) : (U, u) ∈ A},
defines a C∞-atlas of charts with values in R2m (cf. the corresponding state-
ment for submanifolds). Hence, (TM,ATM ) has naturally the structure of
an abstract manifold of dimension 2m.

As for submanifolds, with respect to this smooth structure on TM , p :
TM → M is a smooth vector bundle of rank m over M and for a smooth
map f : M → K also Tf : TM → TK is smooth. Moreover, vector fields are
again defined as (smooth) sections of the tangent bundle. Also, of course, the
local coordinate expressions of Tf and vector fields remain valid. Similarly,
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all the definitions and statements about the pull-back of vector fields via
local diffeomorphisms and about the local flow of vector fields remain valid
without change.

2.6. Vector fields as derivations and the Lie bracket

Suppose (M,A) is a manifold. For any ξ ∈ X(M) and f ∈ C∞(M,R),

ξ · f : M → R
(ξ · f)(x) := ξx · f := Txfξx ξ(x) = (x, ξx),

defines a smooth functions, since ξ · f is the second component of T ◦ ξ :
M → TM → TR = R× R.

Definition 2.33. A derivation of the algebra C∞(M,R) is a linear
map D : C∞(M,R)→ C∞(M,R) such that

D(fg) = D(f)g + fD(g) ∀f, g ∈ C∞(M,R). (2.11)

We write Der(C∞(M,R)) for the vector space of derivations of C∞(M,R) .

Theorem 2.34. The map Ψ : ξ 7→ (f 7→ ξ · f) defines a linear isomor-
phism

X(M) ∼= Der(C∞(M,R)).

Proof. First, ξ·− : C∞(M,R)→ C∞(M,R) is evidently also linear and
for f, g ∈ C∞(M,R) one has

ξ · (fg)(x) = ξx · (fg) = (ξx · f)g(x) + f(x)(ξx · g)

= ((ξ · f)g + f(ξ · g))(x),

which shows that Ψ maps indeed vector fields to derivations of C∞(M,R).
Moreover, Ψ is linear, since Txf is linear for all x ∈M and f ∈ C∞(M,R).

• Injectivity of Ψ: If ξ 6= 0, then there exists x ∈M such that ξx 6= 0.
By Theorem 2.29, we know that there exists f ∈ C∞(M,R) such
that (ξ · f)(x) = ξx · f 6= 0.
• Surjectivity of Ψ: Let D ∈ Der(C∞(M,R)) and x ∈ M . Then
f 7→ D(f)(x) is a derivation at x by (2.11). Hence, by Theorem
2.29, there exists a unique ξx ∈ TxM such that D(f)(x) = ξx · f .
It remains to show that ξ 7→ ξx is a smooth vector field. To show
smoothness fix x ∈ M and a chart (U, u) with x ∈ U . As in
the proof of Theorem 2.29 we may extend ui for i = 1, ...,m to
smooth functions ũi : M → R that coincide with ui on some open
neighbourhood V ⊂ U of x. Then D(ũi) : M → R is smooth and

ξy =
∑
i

(ξy · ũi)(y)︸ ︷︷ ︸
=ξi(y)

∂

∂ui
(y) ∀y ∈ V (cf. Theorem 2.29).

Hence, ξ|V =
∑

iD(ũi)|V ∂
∂ui

is a smooth vector field on V .
�

Recall that for a chart (U, u) the function
∂

∂ui
· f =

∂f

∂ui
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equals the i-th partial derivative of the local coordinate expression f ◦ u−1

of f . This implies that for ξ ∈ X(M) with ξ|U =
∑

i ξ
i ∂
∂ui

one has

ξ · f =
∑
i

ξi
∂f

∂ui
.

Lemma 2.35. Suppose ξ, η ∈ X(M) are vector fields on a manifold M .
Then

f 7→ ξ · (η · f)− η · (ξ · f)

defines a derivation of C∞(M,R).

Proof.

ξ · (η · (fg)) = ξ · ((η · f)g + f(η · g))

= (ξ · (η · f))g + (η · f)(ξ · g) + (ξ · f)(η · g)︸ ︷︷ ︸
symmetric in ξ and η

+f(ξ · (η · g)).

�

Definition 2.36. SupposeM is manifold. Then the Lie bracket of two
vector fields ξ, η ∈ X(M) is the unique vector field [ξ, η] ∈ X(M) such that

[ξ, η] · f = ξ · (η · f)− η · (ξ · f) ∀f ∈ C∞(M,R).

Proposition 2.37. Suppose M is manifold and ξ, η, ζ ∈ X(M) vector
fields.

(a) [ξ, η] = −[η, ξ] and

[ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0 (Jacobi Identity).

(b) For all f ∈ C∞(M,R) one has

[ξ, fη] = f [ξ, η] + (ξ · f)η

[fξ, η] = f [ξ, η]− (η · f)ξ.

Proof.

(a) Skew-symmetry is clear and the Jacobi identity follows from a mind-
less computation.

(b) Let f, g ∈ C∞(M,R). Then for all x ∈M one has

((fη) · g)(x) = f(x)(ηx · g) = f(η · g)(x),

which implies that

ξ · ((fη) · g) = (ξ · f)(η · g) = f(ξ · (η · g)).

Moreover, (fη) · (ξ · g) = f(η · (ξ · g)), which together gives

[ξ, fη] = f [ξ, η] + (ξ · f)η.

The second identity follows from the first by skew-symmetry of the
Lie bracket .

�
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Remark 2.38. The properties in [(a)] of Proposition 2.37 say that (X(M), [−,− ])
is an infinite-dimensional Lie algebra, i.e. an infinite-dimensional vector space
X(M) equipped with a skew-symmetric bilinear bracket

[−,− ] : X(M)× X(M)→ X(M)

satisfying the Jacobi identity.

Proposition 2.39. Suppose M and N are manifolds and f : M → N
is a local diffeomorphism.

(a) f∗[ξ, η] = [f∗ξ, f∗η] for all ξ, η ∈ X(N), (i.e. f∗ : X(N) → X(M)
is a Lie algebra homomorphism).

(b) If U ⊂M is open and i : U →M the natural inclusion, then

[ξ, η]|U = i∗[ξ, η] = [i∗ξ, i∗η] = [ξ|U , η|U ] ∀ξ, η ∈ X(M).

In particular, if ξ|U = 0, then [ξ, η]|U = for all other vector fields
η ∈ X(M).

(c) Suppose (U, u) is a chart and ξ, η ∈ X(M) vector fields with local
coordinate expressions ξ|U =

∑
i ξ
i ∂
∂ui

and η|U =
∑

i η
i ∂
∂ui

. Then

[ξ, η]|U =

m∑
i=1

[ξ, η]i
∂

∂ui
,

where [ξ, η]i =
∑m

j=1(ξj ∂η
i

∂uj
− ηj ∂ξ

i

∂uj
).

Proof.

(a) By definition f∗ξ = (Tf)−1 ◦ ξ ◦ f for ξ ∈ X(N). Now for g ∈
C∞(N,R) one has

(f∗ξ) · (g ◦ f)(x) = (f∗ξ)x · (g ◦ f) = (Txff
∗ξ) · g = ξf(x) · g,

that is, (f∗ξ) ◦ (g ◦ f) = (ξ · g) ◦ f . Therefore, we have

[f∗ξ, f∗η] · (g ◦ f) = f∗ξ · (f∗η · (g ◦ f)︸ ︷︷ ︸
(η·g)◦f

)− f∗η · (f∗ξ · (g ◦ f))

= ξ · (η · g) ◦ f − η · (ξ · g) ◦ f
= ([ξ, η] · g) ◦ f = f∗[ξ, η] · (g ◦ f).

(b) Follows directly from (a).
(c) By (b), we have

[ξ, η]|U = [ξ|U , η|U ] =
∑
i,j

[ξi
∂

∂ui
, ηj

∂

∂uj
]

=
∑
i,j

ηj [ξi
∂

∂ui
,
∂

∂uj
] + ξi

∂ηj

∂ui
∂

∂uj
=
∑
i,j

ξi
∂ηj

∂ui
∂

∂uj
− ηj ∂ξ

i

∂uj
∂

∂ui
,
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since [ ∂
∂ui
, ∂
∂uj

] = 0. Indeed, by the symmetry of 2nd partial deriva-
tives,

[
∂

∂ui
,
∂

∂uj
] · f =

∂

∂ui
· ( ∂

∂uj
· f)− ∂

∂uj
· ( ∂

∂ui
· f)

=
∂2f

∂ui∂uj︸ ︷︷ ︸
2nd-partial derivative of f◦u−1

− ∂2f

∂uj∂ui
= 0.

�

The following proposition gives a geometric interpretation of the Lie
bracket showing that it measures the behaviour of one vector field along the
flow lines of the other.

Proposition 2.40. Suppose ξ, η ∈ X(M) are vector fields.

(a) d
dt |t=0(Flξt )∗η)(x) = [ξ, η](x) for all x ∈M .

(b) [ξ, η] = 0 ⇐⇒ (Flξt )∗η = η, whenever defined ⇐⇒ Flξt ◦ Flηs =

Flηs ◦ Fl
ξ
t , whenever defined.

Proof. See Tutorial. �

Definition 2.41. Suppose f : M → N is a smooth map between mani-
folds. Then ξ ∈ X(M) and η ∈ X(N) are called f-related, if

Tfx ξ(x) = η(f(x)) ∀x ∈M.

Proposition 2.42. Suppose f : M → N is a smooth map between man-
ifolds. If two vector fields ξ and η on M are f -related to vector fields ξ̃
respectively η̃ on N , then [ξ, η] is f -related to [ξ̃, η̃].

Proof. See Tutorial. �

2.7. Distributions and the Frobenius Theorem

Let us revisit the concept of a flow of a vector field ξ ∈ X(M) on a
manifold M . For any x ∈M there exists an integral curve c : I →M , 0 ∈ I,
through c(0) = x. (i.e. c(t) = Flξx(x)).

• If ξ(x) = 0, then c(t) = x is the the constant curve.
• If ξ(x) 6= 0, then ξ(y) 6= 0 for all y in some open neighbourhood
U ⊂ M of x. In this case, the integral curve through x defines
a submanifold of U of dimension 1. Hence, ξ decomposes U into
a union of 1-dimensional submanifolds, given by the images of the
integral curves of ξ through the points y ∈ U .The tangent space of
such a submanifold through y equals

Rξ(y) ⊂ TyM.

Moreover, if we replace ξ by fξ for a nowhere vanishing function
f ∈ C∞(M,R), then the integral curves of fξ and ξ are just reper-
ametrisations of each other. Hence, they define the same family of
1-dimensional submanifolds.
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Suppose E : x 7→ Ex ⊂ TxM is a map that assigns to each point x ∈ M
a 1-dimensional subspace Ex ⊂ TxM such that there exists an open cover
{Ui} of M and local vector fields ξi ∈ X(Ui) such that Rξi(y) = Ey for all
y ∈ Ui and for all i. Then the existence of integral curves implies that for
any x ∈ M there exists a unique local smooth submanifold Kx ⊂ M such
that

TyKx = Ey ⊂ TyM ∀y ∈ Kx.

Definition 2.43. Suppose M is a (smooth) manifold of dimension m.
(a) A distribution E of rank k is an assignment of a k-dimensional

subspace Ex ⊂ TxM to every point x ∈M .
(b) A (smooth) section of a distribution E ⊂ TM is a (smooth)

vector field ξ ∈ X(M) such that ξ(x) ∈ Ex for all x ∈M .
(c) A distribution E ⊂ TM of rank k is called smooth, if for every

x ∈M there exists an open neighbourhood U of x and local sections
ξ1, ..., ξk ∈ X(U) of E such that {ξ1(y), ..., ξk(y)} form a basis of
Ey for all y ∈ U . A smooth distribution is also called a vector
subbundle E ⊂ TM of the vector bundle TM and such collection
of local sections of E is called a local frame.

(d) A distribution E ⊂ TM is called involutive, if for any local sec-
tions ξ and η of E their Lie bracket [ξ, η] is also a local section of
E.

(e) A distribution E ⊂ TM is integrable, if for each x ∈ M there
exists a submanifold K ⊂M with x ∈ K such that for any y ∈ K

TyK = Ey ⊂ TyM.

Such submanifolds are called integral submanifolds.

The existence of flows implies:

Proposition 2.44. Any smooth distribution of rank 1 on manifold is
integrable.

Distributions of higher rank are not anymore always integrable. A nec-
essary condition for integrability is involutivity:

Let E ⊂ TM be an integrable distribution and K ⊂ M an integral
submanifold, i.e. TxK = Ex for all x ∈ K. Assume ξ and η are local sections
of E defined on some open neighbourhood U of x ∈ K in M . Replacing, K
by K∩U , we may assume K ⊂ U . Then there exist vector fields ξ̃, η̃ ∈ X(K)
that are i-related to ξ|U respectively η|U , where i : K ↪→ U ⊂ M is the
natural inclusion. Hence, by Proposition 2.42, [ξ̃, η̃] ∈ X(K) is i-related to
[ξ|U , η|U ]. This shows that

[ξ, η](y) ∈ Im(Tyi) = Ey ∀y ∈ K.
The Frobenius Theorem states that also the converse is true, i.e. any

involutive smooth distribution is integrable.
Note that involutivity is easy to check:

Lemma 2.45. Suppose E ⊂ TM is a smooth distribution on a manifold
M . Then E is involutive ⇐⇒ locally around each point x ∈M there exists
a local frame {ξ1, ..., ξk} such that [ξi, ξj ] is a local section of E for all i, j.
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Proof. Follows from (b) of Proposition 2.37. �

Recall that the coordinate vector fields ∂
∂u1

,..., ∂
∂um corresponding to a

chart (U, u) of M define a local frame of TM and [ ∂
∂ui
, ∂
∂uj

] = 0 for all
i.j. Note that for k ≤ m, the coordinate vector fields ∂

∂u1
,..., ∂

∂uk
span an

integrable distribution on U . Its integral submanifolds are given by

u−1(y, a) for fixed a ∈ u(U) ∩ Rn−k,

where u(U) ⊂ Rm = Rk × Rm−k.

Lemma 2.46. Suppose M is a manifold of dimension m and V ⊂ M
an open subset. If ξ1, ..., ξk ∈ X(V ) are local vector fields on V such that
ξ1(y), ..., ξk(y) ∈ TyV = TyM are linearly independent for all y ∈ V , then
the following are equivalent:

(a) [ξi, ξj ] = 0.
(b) For any y ∈ V there exists a chart (U, u) with y ∈ U ⊂ V such that

∂

∂u1
= ξ1|U , ...,

∂

∂uk
= ξk|U .

Proof.
(b) =⇒ (a): This is clear.
(a) =⇒ (b): Fix y ∈ V and let (Ũ , ũ) be a chart with y ∈ Ũ ⊂ V , ũ(y) = 0 and

ξi(y) = ∂
∂ũi

(y) for i = 1, ..., k. There exists open neighbourhoods
W ⊂ Rk and W̃ ⊂ Rm−k of zero such that

φ(t1, ..., tk, tk+1, ..., tm) = (Flξ1
t1
◦ ... ◦ Flξk

tk
)(ũ−1(0, ..., 0, tk+1, ..., tm))

is defined for all (t1, ..., tk) ∈ W and all (tk+1, ..., tm) ∈ W̃ . It is a
smooth map φ : W × W̃ →M such that φ(0, 0) = y.

For i ≤ k we have,
∂φ

∂ti
(t) =

d

ds
|s=0φ(t1, .., ti + s, ..., tm) (2.12)

= Flξis (φ(t)) = ξi(φ(t)),

since Flξi
ti+s

= Flξis ◦ Fl
ξi
ti

and Flξis commutes with all Flξj
tj
. In par-

ticular,
∂φ

∂ti
(0) = ξi(y) =

∂

∂ũi
(y) for i ≤ k.

For i > k we have
∂φ

∂ti
(0) =

d

dt
|t=0φ(tei) =

d

dt
|t=0φ(0, ..., t, ..., 0)

=
d

dt
|t=0ũ

−1(0, ..., 0, ..., t, ..., 0)

= T(0,0)ũ
−1ei =

∂

∂ũi
(y).

This implies that T(0,0)φ is invertible as it maps the basis { ∂
∂ti

(0)}
to the basis { ∂

∂ũi
(y)}. Hence, by possibly shrinking W and W̃ we

can assume that φ : W × W̃ → U is a diffeomorphism, where U



2.7. DISTRIBUTIONS AND THE FROBENIUS THEOREM 45

is an open neighbourhood of y in M . Then (2.12) implies that
u := φ−1 : U →W × W̃ ⊂ Rk × Rm−k = Rm is the required chart.

�

Corollary 2.47. If ξ ∈ X(M) is a vector field, then for any x ∈ M
with ξ(x) 6= 0, there exists a chart (U, u) with x ∈ U such that ξ1|U = ∂

∂u1
.

Theorem 2.48 (Frobenius Theorem, local version). LetM be a manifold
of dimensionm and E ⊂ TM a smooth involutive distribution of rank k ≤ m.
Then for each x ∈M there exists a chart (U, u) with x ∈ U such that

• u(U) = W×W̃ ⊂ Rk×Rm−k = Rm, whereW ⊂ Rk and W̃ ⊂ Rm−k
are some open subsets; and
• for each a ∈ W̃ the subset u−1(W×{a}) ⊂M is an integral manifold
for E.

In particular, any involutive smooth distribution is integrable.

Proof. We will show that around every point in M there exists a local
frame for E that consists of pairwise commuting vector fields. Then the
result follows from Lemma 2.46.

Fix x ∈ M and a local frame {ξ1, ..., ξk} for E defined on some open
neighbourhood Ũ ⊂ M of x. Without loss of generality we may assume Ũ
is the domain of a chart (Ũ , ũ) of M with ũ(x) = 0. Then for j = 1, ..., k we
have

ξj =

m∑
i=1

f ij
∂

∂ũi
f ij ∈ C∞(Ũ ,R).

Since {ξj(y)}kj=1 is basis of Ey for all y ∈ Ũ , the m×k matrix (f ij(y))i=1,...,m
j=1,...,k

has rank k for all y ∈ Ũ . Renumbering the coordinates, we may assume that
at x the first k rows of (f ij(x)) are linearly independent. By continuity, this
holds locally around x, and so by possibly shrinking Ũ , we may assume that
it holds on Ũ .

For y ∈ Ũ let (gij(y)) be the inverse of (f ij(y))i=1,...,k
j=1,...,k. Since inversion in

GL(k,R) is smooth, the functions gij : Ũ → R are smooth for all i, j. Now
for i = 1, ..., k,

ηi :=

k∑
j=1

gji ξj

are local smooth sections of E defined on Ũ . Since (gij(y)) is invertible for
all y ∈ Ũ and {ξ1, ..., ξk} is a local frame, also {η1, ..., ηk} is a local frame for
E defined on Ũ .

Claim: [ηi, ηj ] = 0 for all i, j.
Indeed, note that

ηi =

k∑
j=1

gji ξj =
∑

1≤`≤m,1≤j≤k
gji f

`
j

∂

∂ũ`
=

∂

∂ũi
+
∑
`>k

h`i
∂

∂ũ`
, (2.13)
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for some smooth functions h`i . By involutivity,

[ηi, ηj ] =
k∑
r=1

crijηr for cri,j ∈ C∞(Ũ ,R). (2.14)

By (2.13), the right-hand side, RHS, of (2.14) equals

RHS =

k∑
r=1

cri,j(
∂

∂ũr
+
∑
`>k

h`r
∂

∂ũ`
) =

k∑
r=1

cri,j
∂

∂ũr
+
∑
`>k

h̃`i,j
∂

∂ũ`

for some h̃`i,j ∈ C∞(Ũ ,R). Now, by (2.13), the left-hand side, LHS, of (2.14)
equals

LHS = [
∂

∂ũi
+
∑
`>k

h`i
∂

∂ũ`
,
∂

∂ũj
+
∑
`>k

h`j
∂

∂ũ`
] =

∑
`>k

h`i,j
∂

∂ũ`

for some h`i,j ∈ C∞(Ũ ,R). Hence, h`i,j = h̃`i,j and
∑k

r=1 c
r
i,j

∂
∂ũr = 0 on Ũ .

The latter in turn implies that cri,j = 0 on Ũ . By the proof of Lemma 2.46
there exists a chart

u : U → u(U) = W × W̃ ⊂ Rk × Rm−k = Rm

such that
• x ∈ U , u(x) = (0, 0) and U ⊂ Ũ , and
• ηi|U = ∂

∂ui
.

Hence, for any a ∈ W̃ , u−1(W × {a}) is an integral submanifold for E
(described by the equations uk+1 = ak+1, ..., um = am). �

Note that Theorem 2.48 says, that given an involutive smooth distribu-
tion E ⊂ TM on a manifold M of dimension m, locally around point in M
there exists a chart (U, u) such that U is filled up by integral submanifolds
and in the corresponding coordinates they are given by affine horizontal sub-
spaces Rk × {a} of Rm. → make a picture.

The charts in Theorem 2.48 are called distinguished charts for (M,E)
and the integral submanifolds u−1(W × {a}) are called plaques. Note
that, if (Uα, uα) and (Uβ, uβ) are two distinguished charts for (M,E) with
Uα ∩ Uβ 6= ∅, then the transition maps are of the form

uβ ◦ u−1
α : uα(Uα ∩ Uβ)→ uβ(Uα ∩ Uβ) (2.15)

(x, y) 7→ (f(x, y), g(y))

for smooth maps f, g. Hence, the transition maps map subsets Wα × {a} to
subsets Wβ × {b}.

Definition 2.49.
(a) A foliated atlas of dimension k on a manifold (M,A) of dimen-

sion m is a subatlas A′ ⊂ A consisting of charts (U, u) ∈ A such
that
– u(U) = W × W̃ ⊂ Rk ×Rm−k = Rm for open subsets W ⊂ Rk

and W̃ ⊂ Rm−k;
– the transition maps are of the form (2.15).
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(b) A k-dimensional foliation F on a manifold M is a maximal foli-
ated atlas of dimension k on M .

The Frobenius Theorem shows that any involutive smooth distribution
E ⊂ TM of rank k defines a k-dimensional foliation FE on M . Conversely,
any such foliation F determines a smooth involutive distribution E ⊂ TM
given by

Ex = Tu(x)u
−1(TwRk × {0})

for a chart (U, u) of the foliation with x ∈ U and u(x) = w + w̃ ∈ W × W̃
(by (2.15) Ex is well defined, i.e. independent of choice of chart around x).

Given a smooth involutive distribution E ⊂ TM , we know by the Frobenius
Theorem that through any point x ∈M we have an integral submanifold.

Question: What about maximal integral submanifolds a given point?

These are in general not real submanifolds but so-called initial submani-
folds as the following example shows: consider the 2-dimensional torus T 2

(= R2/Z2) and denote by π : R2 → T 2 the natural projection given by
π(x, y) = (eix, eiy). Now consider the vector field ξ = ∂

∂x +α ∂
∂y on R2, whose

integral curves are lines

const + t

(
1
α

)
.

The vector field ξ is π-related to a vector field on T 2, whose integral curves
are the images under π of the integral curves of ξ. If α is rational, then

π(t(1, α)) = (eit, eitα) ⊂ T 2

is a submanifold. But, Ii α is irrational, then it is not, since it winds densely
around the torus. In an appropriate chart around any point, (eit, eitα) con-
sists of countable many line segments. One can separate these segments
however, since it is not possible to move from one to another by a smooth
curve. This suggest the following definition:

Definition 2.50. Suppose M is a manifold of dimension m.
(a) For a subset A ⊂M and x0 ∈ A set

Cx0(A) = {x ∈ A : ∃C∞−curve c : [0, 1]→M s.t. c([0, 1]) ⊂ A, c(0) = x0 and c(1) = x}.

(b) K ⊂ M is called an initial submanifold of M of dimension k, if
for any x ∈ K there exists a chart (U, u) ofM with x ∈ U , u(x) = 0
and

u(Cx(U ∩K)) = u(U) ∩ (Rk × {0}) ⊂ Rk × Rm−k = Rm.

If K ⊂ M is an initial submanifold, the there exists a unique C∞-
manifold structure on K such that properties (P) hold, that are:

• the inclusion i : K ↪→M is an injective immersion,
• for any manifold N and a map f : N → K, f is smooth ⇐⇒
i ◦ f : N →M is smooth.
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Note that the connected components are 2nd countable, but there might be
uncountably many of them (so K might be not 2nd countable)!

The smooth structure onK is given by the atlas B = {(Cx(U∩K), ux)x∈K}
consisting of charts as in (b) of Definition 2.50.

• Equip K with final topology with respect to the inclusions Cx(U ∩
K) ↪→ K. This topology on K is usually finer than the subspace
topology on K induced from M (hence, in particular still Haus-
dorff). (The set Cx(U ∩ K) is in general not open in subspace
topology. If i is a homeomorphism onto its image, then it however
is and Cx(U ∩K) = V ∩K for an open subset V ⊂M . In this case,
K ⊂M is an actual submanifold.)
• The transition maps of elements in B are smooth as they are re-
strictions of smooth maps.
• Uniquenes follows from (P) (cf. submanifolds).

Conversely, one may show that images of injective immersions satisfying
properties (P ) are initial submanifolds.

Let us come to integrable distributions. Suppose E ⊂ TM is an integrable
distribution of rank k with corresponding foliation FE . For any x ∈ M let
FEx denote the set of points y ∈ M such that there exists a smooth curve
c : [0, 1] → M connecting c(0) = x and c(1) = y satisfying c′(t) ∈ Ec(t) for
all t ∈ [0, 1]. Then FEx is called the leaf of the foliation FE through x.

Note that if a plaque intersects FEx , then it must be contained in it.
Hence, the plaques contained in FEx and the corresponding charts of the
foliation can be used to give FEx the structure of a k-dimensional manifold
(plaques in FEx form basis of the toplogy). Then one may show:

• i : FEx ↪→M is an initial submanifold (Hausdorff and second count-
able).
• FEx is an integral submanifold and any connected integral (initial)
submanifold that intersects FEx is contained in FEx . Hence, the
leaves of FE may be thought of as the maximal integral (initial)
submanifolds of E.

Hence, a foliation FE of dimension k divides M into k-dimensional initial
submanifolds.
Given a manifold M equipped with a smooth involutive distribution E and
corresponding foliation FE . Then one can equipM with a different manifold
structure (and topology) ME , where the atlas (inducing also the toplogy) is
given by maps of the form

pr1 ◦ uα : u−1
α (Wα × {a})→Wα ⊂ Rk

for charts (Uα, uα) in FE . The topology on ME is then finer than that of
M and the connected components of ME are the leaves of FE . Note that
ME is Hausdorff, but not second countable, since it has uncountably many
connected components.

In summary, one has:
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Theorem 2.51 (Frobenius Theorem, Global Version). Suppose M is a
manifold, E ⊂ TM a smooth involutive distribution of rank k and FE the
corresponding foliation. Then the following holds:

(a) If E 6= TM , the topology on ME is finer than that on M .
(b) ME has uncountably many connected components given by the leaves

of FE.
(c) Id : ME →M is a bijective smooth immersion.
(d) Each leaf of FE is an initial submanifold of M and a maximal

connected (initial) integral submanifold of E.

2.8. Applications of the Frobenius Theorem and
bracket-generating distributions

Let us discuss some applications of Theorem 2.48 to the study of PDEs:

Example 2.11. Let us write (x, y, z) ∈ R3 for the standard coordinates
in R3 and consider the following system of PDEs for a function f : R3 × R:

2z2∂f

∂x
+ 2x

∂f

∂z
= 0 (2.16)

3z3∂f

∂y
+ 2y

∂f

∂z
= 0.

It is a linear system of PDEs of first oder and it is overdetermined.

Question: Does (2.16) has any non-constant solution?

Consider the vector fields

X = 2z2 ∂

∂x
+ 2x

∂

∂z

Y = 3z3 ∂

∂y
+ 2y

∂

∂z
.

Note that they span a distribution E of rank 2 on the open subset V =
{(x, y, z ∈ R3) : z 6= 0} ⊂ R3. Moreover,

[X,Y ] = −12xz
∂

∂y
+ 8yz

∂

∂x
=

4x

z
Y − 4y

z
X,

which shows that E is an involutive, hence integrable distribution, on V .
By Theorem 2.48 there exists locally around any (x0, y0, z0) ∈ V a chart
(U, u) such that E is spanned by ∂

∂u1
and ∂

∂u2
. Then (2.16) in coordinates

(u1(x, y, z), u2(x, y, z)), u3(x, y, z)) is equivalent to

∂f

∂u1
=

∂f

∂u2
= 0.

Hence, f = u3 is a solution and solutions in a sufficiently small neighbour-
hood of (x0, y0, z0) are of the form f(x, y, z) = g(u3(x, y, z)) for a smooth
function g in one variable.
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Example 2.12. Consider the following system of PDEs for a function
f : R2 → R:

∂f

∂x
(x, y) = α(x, y, f(x, y)) (2.17)

∂f

∂y
(x, y) = β(x, y, f(x, y)),

where α, β are smooth functions defined on some open subset V ⊂ R3. This
is again an overdetermined system of PDEs of possibly non-linear first oder
equations.

Question: When does (2.17) have a solution?

Since ∂2f
∂x∂y = ∂2f

∂y∂x , a necessary condition is

∂

∂y
α(x, y, f(x, y)) =

∂

∂x
β(x, y, f(x, y)),

which by the chain rule means that

∂α

∂y
+ β

∂α

∂z
=
∂β

∂x
+ α

∂β

∂z
. (2.18)

must hold at any point (x, y, z) ∈ V where there is a solution of (2.17) with
f(x, y) = z.

Thus, (2.18) is a necessary condition for (2.17) to have a solution in a neigh-
bourhood of any point (x0, y0) with arbitrary initial value f(x0, y0) = z0.
By the Frobenius Theorem, (2.18) is also sufficient: it implies that for any
(x0, y0, z0) ∈ V there exists an open neighbourhood U of (x0, y0) ∈ R2 and
a unique solution f : U → R of (2.17) such that f(x0, y0) = z0.

Why? Note that (2.17) describes the tangent plane to the graph of f in
terms of coordinates of the graph. The collection of tangent planes defines a
rank 2 distribution on V and (2.18) is equivalent to the involutivity of that
distribution. Indeed, suppose f : U → R were a solution (on some open
subset U ⊂ R2) of (2.17). Then,

ψ : U → R3

ψ(x, y) = (x, y, f(x, y))

is a diffeomorphism onto gr(f) (ψ is a parametrisation of the submanifold
gr(f) ⊂ R3). Then, Tψ(x,y)gr(f) is spanned by

T(x,y)ψ(
∂

∂x
(x, y)) =

∂

∂x
(x, y, f(x, y)) +

∂f

∂x
(x, y)︸ ︷︷ ︸

=α(x,y,f(x,y))

∂

∂z
(x, y, f(x, y))

T(x,y)ψ(
∂

∂y
(x, y)) =

∂

∂y
(x, y, f(x, y)) +

∂f

∂y
(x, y)︸ ︷︷ ︸

=β(x,y,f(x,y))

∂

∂z
(x, y, f(x, y)).
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Note that the vector fields

X =
∂

∂x
+ α(x, y, f(x, y))

∂

∂z

Y =
∂

∂y
+ β(x, y, f(x, y))

∂

∂z

span a rank 2 distribution E on V . It is straightforward to check that E is
involutive (hence integrable) ⇐⇒ (2.18) holds. Moreover, in this case, f is
a solution of (2.17) ⇐⇒ gr(f) is an integral submanifold of E.

In summary, if (2.18) holds, then through any point (x0, y0, z0) ∈ V there
exists an integral submanifold K ⊂ V ⊂ R3 of E through (x0, y0, z0), which
locally (as a submanifold) must have the form gr(f) for a smooth func-
tion f : U → R, where U is an open neighbourhood of (x0, y0) ∈ R2 with
f(x0, y0) = z0.

On the opposite ending of integrable distributions within the world of
distributions one has so-called bracket generating distributions, which are
maximally non-integrable:

Definition 2.52. A (smooth) distribution E ⊂ TM on a manifold M
is called bracket-generating, if any local frame {ξ1, ..., ξk} of E together
with its iterated Lie brackets, [ξi, ξj ], [ξ`, [ξi, ξj ]] ... and so on, forms a local
frame of TM .

Note that, if this is true for some local frame of E around a point in M ,
then this is true for any other local frame of E around that point.

Example 2.13. (Contact manifolds)
Consider R3 with coordinates (x, y, z) ∈ R3 and let E ⊂ TR3 be the rank 2
distribution spanned by the vector fields

X :=
∂

∂x
+ y

∂

∂z
and Y :=

∂

∂y
.

Then [X,Y ] = ∂
∂z is not a section of E and so E is not integrable. Moreover,

X,Y and [X,Y ] span TR3. Hence, E is bracket-generating and called the
standard contact distribution on R3.

More generally, a contact distribution on a manifold M of dimension
2m+ 1 is a rank 2m distribution E ⊂ TM such that

Lx : Ex × Ex → TxM/Ex ∼= R
ξx × ηx 7→ qx([ξ, η](x))

is non-degenerate for all x ∈ M , where ξ and η are extensions of ξx re-
spectively ηx to local vector fields around x. It is easy to check that Lx is
well-defined, i.e. independent of the choice of local extensions ξ and η.

Example 2.14. (Driving a car)
The configuration/phase space (or phase space) of a car consists of all points

(x, y, α, β) ∈ R2 × S1 × (−π/4, π/4) =: M,
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where (x, y) is the position of the midpoint of the rear axle, α the angle of
the chassis to the x-axis, and β the steering angle of the front wheels.
→ make a picture.
Driving a car traverses a curve

c(t) = (x(t)), y(t), α(t), β(t))

in M . There are non-holonomic constraints, that are constraints on position
and velocity that can not be integrated to constraints on position only. We
have:

d

dt

(
x(t)
y(t)

)
is parallel to

(
cosα(t)
sinα(t)

)
and

d

dt

(
x(t) + ` cos(α(t))
y(t) + ` sin(α(t))

)
is parallel to

(
cos(α(t)− β(t))
sin(α(t)− β(t))

)
,

where ` is the length from the midpoint (x, y) of the rear axis to the midpoint
of the front axis (connecting the two front wheels). This means we have the
following to linear equations for (x′(t), y′(t), α′(t), β′(t)):

x′(t) sin(α(t))− y′(t) cos(α(t)) = 0

(x′(t)−` sin(α(t))α′(t)) sin(α(t)−β(t))−(y′(t)+` cos(α(t))α′(t)) cos(α(t)−β(t)) = 0.

Any solution is of the form
x′(t)
y′(t)
α′(t)
β′(t)

 = λ(t)


0
0
0
1

+ µ(t)


` cos(α(t)) cos(β(t))
` sin(α(t)) cos(β(t))
− sin(β(t))

0

 .

Let us set

X :=
∂

∂β
(steer vector field)

Y := ` cosβ cosα
∂

∂x
+ ` cosβ sinα

∂

∂y
− sinβ

∂

∂α
(drive vector field).

Note that the two control vector fieldsX and Y span a bracket-generating
distribution on M , which describes the space of possible velocities. Indeed,
check that X,Y, [X,Y ] and [Y, [X,Y ]] span TM . What does this mean?



CHAPTER 3

The Cotangent Bundle

Constructions in the category of vector spaces can be generalised to the
category of vector bundles. In particular, for any vector bundle we can form
its dual and wedge products of it. In this case of the tangent bundle this
leads to the cotangent bundle and wedge products of it, whose sections are
called 1-forms respectively k-forms.

3.1. 1-forms

SupposeM is a manifold of dimensionm and p : E →M a vector bundle
of rank k. Given two local trivialisations of E, φα : p−1(Uα)→ Uα×Rk and
φβ : p−1(Uβ)→ Uβ × Rk , the transition map is of the form:

φβ ◦ φ−1
α : Uα ∩ Uβ × Rk → Uα ∩ Uβ × Rk

(y, v) 7→ (y, φβα(y)v),

for a unique smooth map φβα : Uα ∩ Uβ → GL(k,R).

Remark 3.1.
• The local trivialisations (Uα, φα) (also called vector bundle charts)
of E form a so-called vector bundle atlas of E.
• Any vector bundle over M may be also defined as smooth map
E →M that is equipped with a maximal vector bundle atlas.
• The family of maps φβα (associated to a vector bundle atlas) satisfy

φαα(y) = y

φαβ(y)φαγ(y) = φαγ(y) (cocycle condition).

The Čech cohomology class of the cocycle of transition functions
determines a vector bundle up to isomorphism.

For any x ∈ M consider the dual vector space E∗x = {λ : Ex → R :
λ is linear} of Ex. Set

E∗ :=
⊔
x∈M

E∗x,

and denote by q : E∗ →M the natural projection.

Lemma 3.2. For any vector bundle p : E → M of rank k, q : E∗ → M
is also naturally a vector bundle of rank k, which is called the dual vector
bundle of E →M .

Proof. By construction, q : E∗ →M is a surjection such that q−1(x) =
E∗x is a k-dimensional vector space for any x ∈ M . Fix x ∈ M and let

53
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(Uα, uα) be a chart for M with x ∈ Uα. By possibly shrinking Uα, we can
assume that E →M trivialises over Uα, i.e. there exists a local trivialisation

φα : p−1(Uα)→ Uα × Rk

defined over Uα. (Note that uα×id◦φα : p−1(Uα)→ uα(Uα)×Rk ⊂ Rm×Rk
is a chart for the manifold E). Now define a bijection

φ∗α : q−1(Uα)→ Uα × (Rk)∗, (3.1)

where φ∗α|Ey := ((φα|Ey)−1)∗ : E∗y → {y}× (Rk)∗. Then pr1 ◦φ∗α = q|q−1(Uα).
Moreover,

(uα × µ) ◦ φ∗α : q−1(Uα)→ uα(Uα)× Rk ⊂ Rm × Rk,

defines a bijection for any choice of isomorphism µ : (Rk)∗ ∼= Rk. Let
(uβ × µ) ◦ φ∗β : q−1(Uβ) → uβ(Uβ) × Rk another such bijection for a chart
(Uβ, uβ) and local trivialisation (Uβ, uβ) with Uα ∩ Uβ 6= ∅. Then

((uβ × µ) ◦ φ∗β) ◦ ((uα × µ) ◦ φ∗α)−1 :uα(Uα ∩ Uβ)× Rk → uβ(Uα ∩ Uβ)× Rk

(y, v) 7→ (uβα(y), (µ ◦ (φβα(u−1
α (y))∗)−1 ◦ µ−1)(v))

is smooth, since uβα, φβα, and inversion and dualising in GL(k,R) are
smooth. Hence, we can use the bijections of the form (3.1) to equip E∗

with the structure of a smooth manifold of dimension m+ k whose maximal
atlas is induced by these bijections (cf. the construction of the smooth struc-
ture on TM for a abstract manifold M in Section 2.31). By construction, it
follows that q : E∗ →M is a smooth vector bundle for this smooth structure
on E∗. �

Definition 3.3.
(a) For any manifold M the dual vector bundle q : T ∗M → M of the

tangent bundle p : TM → M is called the cotangent bundle of
M . ]We write T ∗xM := q−1(x) for its fiber over x ∈M .

(b) A (smooth) section of q : T ∗M → M is called a (smooth) 1-form
on M . We write Γ(T ∗M) or Ω1(M) for the set of 1-forms, which is
a real vector space and a modul over C∞(M,R) by Lemma 2.14.

Suppose (U, u) is a chart for M . Then the map

φ∗ := u−1 × Id ◦ T ∗u : T ∗U = q−1(U)
T ∗u−−→u(U)× (Rm)∗

u−1×Id−−−−−→U × (Rm)∗,

where
T ∗y u := T ∗u|T ∗yU := ((Tyu)−1)∗ = ((Tyu)∗)−1,

is a local trivialisation of T ∗M →M .

Definition 3.4. Let {λ1, ..., λm} be the basis of (Rm)∗ dual to the stan-
dard basis of {e1, ..., em} of Rm, i.e. λi(ej) = δij . Then we write dui for the
section of T ∗U → U defined by

dui(y) = (φ∗)−1(y, λi) = (T ∗u)−1(u(y), λi) ∀y ∈ U.

Evidently, du1(y),..., dum(y) form a basis of T ∗yU = T ∗yM for any y ∈ U ,
which is dual to the basis ∂

∂u1
(y),..., ∂

∂um (y) of TyU = TyM .
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For smooth functions ωi : U → R, i = 1, ...,m, the sum
m∑
i=1

ωidu
i,

is a local 1-form defined on U . In particular, locally there are many 1-forms
on a manifold and from the existence of partitions of unity it follows that
this is also true globally. Conversely, any ω ∈ Ω1(M) may be restricted to
U , where it can be written as

ω|U =
m∑
i=1

ωidu
i, (3.2)

for unique smooth functions ωi ∈ C∞(U,R). Note that smoothness of ω is
equivalent to ωi being smooth for all i.

Definition 3.5. Suppose ω ∈ Ω1(M) = Γ(T ∗M) is a 1-form on a man-
ifold M and let (U, u) be a chart for M . Then (3.2) or (ω1, ..., ωm) is called
the local coordinate expression of ω with respect to (U, u).

Note that we have a bilinear map:

Γ(T ∗M)× Γ(TM)→ C∞(M,R)

(ω, ξ) 7→ (ω(ξ) : x 7→ ωx(ξx)).

By construction, dui( ∂
∂uj

)(x) = δij for all x ∈ U and ω|U ( ∂
∂ui

) = ωi and
dui(ξ|U ) = ξi.

Remark 3.6. Note that for a not necessarily smooth section ω of T ∗M ,
i.e. a map ω : M → T ∗M such that q◦ω = IdM , the following are equivalent:

• ω is smooth;
• ω has smooth local coordinate expressions for any chart of M ;
• ω(ξ) is smooth for any local smooth vector vector field ξ.

Let us now compute how the local coordinate expression of a 1-form ω ∈
Ω1(M) changes when we change the chart: suppose (Uα, uα) and (Uβ, uβ)
are two charts of M . Recall that

∂

∂uiα
=

m∑
i=1

Aji
∂

∂ujβ
,

where Aji (x) =
∂ujβα
∂xi

(x). Hence,

ω|Uα∩Uβ =
∑
i

ωαi du
i
α =

∑
i

ωβi du
i
β,

where
ωαi = ω(

∂

∂uiα
) =

∑
j

Ajiω(
∂

∂ujβ
) =

∑
j

Ajiω
β
j ,

resp.
ωβi =

∑
j

Bj
i ω

α
j ,

where Bi
j is the inverse to Aij .
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Definition 3.7. For f ∈ C∞(M,R) we may define a 1-form df ∈ Ω1(M)
by

df(x)(ξx) = Txfξx for x ∈M, ξx ∈ TxM.

Indeed, df : M → T ∗M is smooth, since df(ξ) = ξ · f for any ξ ∈ X(M), and
df(x) ∈ T ∗xM for all x ∈M .

The operator d : C∞(M,R) → Ω1(M) is the easiest special case of the
so-called exterior derivative on differential forms as we shall see. In local
coordinates (U, u) we have:

df |U =
∑
i

df(
∂

∂ui
)dui =

∑
i

∂f

∂ui
dui.

Note that for f = ui, we have dui =
∑

j du
i( ∂
∂uj

)duj = dui, which explains
our notation for the local 1-forms dui.

3.2. Review: Multi-linear algebra

Suppose V1,..., Vr are (real) finite-dimensional vector spaces. For a vector
space W we write

L(V1, ..., Vr;W )

for the vector space of r-linear maps V1 × ...× Vr →W .

Definition 3.8.
(a) The tensor product of V1,..., Vr is the vector space

V1 ⊗ ...⊗ Vr := L(V ∗1 , ..., V
∗
r ;R).

(b) For (v1, ..., vr) ∈ V1 × ... × Vr we write v1 ⊗ ... ⊗ vr ∈ V1 ⊗ ... ⊗ Vr
for the map

v1 ⊗ ...⊗ vr : (λ1, ..., λr) 7→ Πr
i=1λi(vi).

Note that the map

⊗ : V1 × ...× Vr → V1 ⊗ ...⊗ Vr
(v1, ..., vr) 7→ v1 ⊗ ...⊗ vr,

is r-linear, i.e. ⊗ ∈ L(V1, ..., Vr;V1 ⊗ ...⊗ Vr).

Properties of the tensor product:

• Universal property: For any r-linear map f : V1 × ...× Vr →W
to a vector space W there exists a unique linear map

f̃ : V1 ⊗ ...⊗ Vr →W

such that f = f̃ ◦ ⊗. In particular, f 7→ f̃ defines an isomorphism
L(V1, ..., Vr;W ) ∼= L(V1 ⊗ ...⊗ Vr,W ).
• There are natural isomorphisms:

(V1 ⊗ V2)⊗ V3
∼= V1 ⊗ V2 ⊗ V3

(V1 ⊕ V2)⊗ V3
∼= V1 ⊗ V2 ⊕ V2 ⊗ V3
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• Basis: If {ei,j}1≤j≤ni is a basis of Vi for i = 1, ..., r, then

{e1,ji ⊗ ...⊗ er,jr}1≤ji≤ni,1≤i≤r

is a basis for V1 ⊗ ... ⊗ Vr. In particular, dim(V1 ⊗ ... ⊗ Vr) =
Πr
i=1 dim(Vi) = n1 · ... · nr.

• There exists canonical isomorphisms:

V ∗1 ⊗ V ∗2 ∼= (V1 ⊗ V2)∗

λ1 ⊗ λ2 7→ (v1 ⊗ v2 7→ λ1(v1)λ2(v2))

V ∗1 ⊗ V2
∼= L(V1, V2)

λ1 ⊗ v2 7→ (v1 7→ λ1(v1)v2).

• If fi : Vi →Wi are linear maps for i = 1, ..., r, then by the universal
property there exists a unique linear map

f1 ⊗ ...⊗ fr : V1 ⊗ ...⊗ Vr →W1 ⊗ ...⊗Wr,

such that f1⊗...⊗fr◦⊗ = ⊗◦f1×...×fr : V1×...×Vr →W1⊗...⊗Wr.

Definition 3.9. Suppose V is a real finite-dimensional vector space and
write Lr(V,R) := L(V, ..., V︸ ︷︷ ︸

r

;R) = V ∗ ⊗ ...⊗ V ∗.

(a) A r-linear map ω ∈ Lr(V,R) is called alternating, if

ω(vσ(1), ..., vσ(r)) = sign(σ)ω(v1, ..., vr)

for all v1, ..., vr ∈ V and for all σ ∈ Sr := {bijections of {1, ..., r}}.
Note that ω is alternating ⇐⇒ ω vanishes if one inserts an element
twice. We write

∧rV ∗ := Lralt(V,R) ⊂ Lr(V,R)

for the subspace of r-linear alternating maps.
(b) There is natural projection Alt : Lr(V,R) → Lralt(V,R), called al-

ternator, given by

Alt(ω)(v1, ..., vr) =
1

r!

∑
σ∈Sr

sign(σ)ω(vσ(1), ..., vσ(r)).

Note that, if ω ∈ Lralt(V,R), then Alt(ω) = ω.

It follows that, if r > dim(V ), then ∧rV ∗ = 0, since any r-linear map is
uniquely determined by its values on elements of a basis of V and vanishes
if an element is inserted twice. Moreover, if r = dim(V ), then ∧rV ∗ is 1-
dimensional: fix a basis B = {e1, ..., er} of V , then det = detB : V × ...×V →
R (the determinant of r vectors with respect to the basis B) is an element
of ∧rV ∗. If ω ∈ ∧rV ∗, then

ω(v1, ..., vr) = det(v1, ..., vr)ω(e1, ..., er),

by multilinearity and being alternating.
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Definition 3.10. For a (finite-dimensional) vector space V we set

∧∗V ∗ :=
⊕
r≥0

∧rV ∗

with the convention that ∧0V ∗ := R and ∧1V ∗ := V ∗. Then ∧∗V ∗ is a
finite-dimensional vector space.

Note that any linear map f : V →W between (finite-dimensional) vector
spaces V and W induces a linear map f∗ : ∧rW ∗ → ∧rV ∗ given by

f∗ω(v1, ..., vr) = ω(f(v1), ..., f(vr)),

which extends naturally to a linear map f∗ : ∧∗W ∗ → ∧∗V ∗. One has

(g ◦ f)∗ = f∗ ◦ g∗ (3.3)

for any other linear map g : W → Z.

Definition 3.11. For ω ∈ ∧rV ∗ and η ∈ ∧sV ∗ their wedge product
ω ∧ η ∈ ∧r+sV ∗ is given by

ω ∧ η(v1, ..., vr+s) :=
(r + s)!

r!s!
Alt(ω ⊗ η)(v1, ..., vr+s)

=
1

r!s!

∑
σ∈Sr+s

sign(σ)ω(vσ(1), ..., vσ(r))η(vσ(r+1), ..., vσ(r+s)).

By bilinearity, we can extend ∧ to ∧∗V ∗:∑
r

ωr ∧
∑
r

ηr :=
∑
r,s

ωr ∧ ηs ωr, ηr ∈ ∧rV ∗.

Proposition 3.12. The vector space ∧∗V ∗ :=
⊕

r≥0 ∧
rV ∗ is an asso-

ciative (unitial) graded-anticummutative algebra, i.e.
(a) (ω ∧ η) ∧ ζ = ω ∧ (η ∧ ζ) for all ω, η, ζ ∈ ∧∗V ∗ (associativity);
(b) 1 ∈ R = ∧0V ∗ satisfies 1∧ω = ω∧1 = ω for all ω ∈ ∧∗V ∗ (unitial);
(c) ∧rV ∗ ∧∧sV ∗ ⊂ ∧r+sV ∗ (graded algebra);
(d) ω ∧ η = (−1)rsη ∧ ω for ω ∈ ∧rV ∗ and η ∈ ∧sV ∗.

Moreover, for any linear map between vector spaces f : V → W , the linear
map f∗ : ∧∗W → ∧∗V ∗ is a graded algebra morphism (of degree 0), i.e.

f∗(ω ∧ η) = f∗ω ∧ f∗η, f∗1 = 1 and f∗∧rW ∗ ⊂ ∧rV ∗.

Proof. See algebra class or tutorial. �

Proposition 3.13. Suppose V is an n-dimensional vector space.
(a) If ω1, ..., ωr ∈ V ∗ and v1, ..., vr ∈ V , then

ω1 ∧ ... ∧ ωr(v1, ..., vr) = det(ωi(vj)1≤i,j≤r).

In particular, ω1, ..., ωr are linearly independent if and only if
ω1 ∧ ... ∧ ωr 6= 0.

(b) If {λ1, ..., λn} is a basis of V ∗, then

{λi1 ∧ ... ∧ λir : 1 ≤ i1 < ... < ir ≤ n}
is a basis of ∧rV ∗.

Proof. See algebra class or tutorial. �
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3.3. Tensors

Suppose M is a manifold. For a fixed point x ∈M consider

TxM ⊗ ...⊗ TxM︸ ︷︷ ︸
p−times

⊗T ∗xM ⊗ ...⊗ T ∗xM︸ ︷︷ ︸
q−times

= L(T ∗xM, ..., T ∗xM,TxM, ..., TxM ;R).

and denote by TM⊗p ⊗ T ∗M⊗q the disjoint union over all x ∈ M of these
vector spaces. It is easy to see that the natural projection

π : TM⊗p ⊗ T ∗M⊗q →M

admits the structure of a (smooth) vector bundle, which is induced from the
vector bundle structures on TM and T ∗M (see tutorial).

Definition 3.14.

• A (smooth)
(
p
q

)
-tensor is a (smooth) section of π.

• We write T pq (M) for the vector space of (smooth)
(
p
q

)
-tensors on

M , which is also a modul over the ring C∞(M,R).
• If φ ∈ T pq (M) and ψ ∈ T rs (M), then φ⊗ ψ, defined by

(φ⊗ ψ)(x) = φx ⊗ ψx ∀x ∈M,

is a
(
p+ r
q + s

)
-tensor on M . (Note that x 7→ (φx, ψx) 7→ φx ⊗ ψx is

smooth as composition of smooth maps).

Suppose (U, u) is a chart for M , then the local tensors of the form
∂

∂ui1
⊗ ...⊗ ∂

∂uip
⊗ duj1 ⊗ ...⊗ dujq ∈ T pq (U)

form a basis of π−1(x) at any point x ∈ U . Hence, any tensor φ ∈ T pq (M)
can be written on U as:

φ|U =
∑

i1,...,ip;j1,...,jq

φ
i1,...,ip
j1,...,jq

∂

∂ui1
⊗ ...⊗ ∂

∂uip
⊗ duj1 ⊗ ...⊗ dujq (3.4)

for real-valued functions φi1,...,ipj1,...,jq
functions on U , which are called the local

coordinate expressions of φ with respect to (U, u). Smoothness of φ is
equivalent to the smoothness of the local coordinate expressions for any
chart.

Any φ ∈ T pq (M) gives rise to a map, which we will also denote by φ,
given by

φ :Γ(T ∗M)× ...× Γ(T ∗M)× Γ(TM)× ...× Γ(TM)→ C∞(M,R) (3.5)

(ω1, ..., ωp, ξ1, ..., ξq) 7→ (x 7→ φx(ω1(x), ..., ωp(x), ξ1(x), ..., ξq(x)))

By construction, (3.5) is C∞(M,R)-linear in each entry and, by (3.4),

φ(ω1, ..., ωp, ξ1, ..., ξq)

is indeed an element of C∞(M,R), since on the domain U of any chart (U, u)
it is given by ∑

i1,...,ip;j1,...,jq

φ
i1,...,ip
j1,...,jq

ω1
i1 ...ω

p
ip
ξj11 ...ξ

jq
q ,
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which is smooth as a sum of products of smooth functions.

Remark 3.15. Note that

φ
i1,...,ip
j1,...,jq

= φ|U (dui1 , .., duip ,
∂

∂uj1
, ...,

∂

∂ujq
).

Moreover, smoothness of a tensor φ is equivalent to φ(ω1, ..., ωp, ξ1, ..., ξq) be-
ing smooth for any smooth local 1-forms ω1, ..., ωp and vector fields ξ1, ..., ξq.
Let us consider two special cases:

• φ ∈ T 0
1 (M) = Γ(T ∗M) is a 1-form and we know already that φ(ξ) :

M → R is smooth for ξ ∈ Γ(TM).
• φ ∈ T 1

0 (M) = Γ(TM) is a vector field and φ(ω) = ω(φ) : M → R
is smooth for ω ∈ Γ(T ∗M).

Remark 3.16. Elements of T p0 (M) (respectively, T 0
q (M)) are called p-

times contra-variant (respectively, q-times covariant) tensor, which refers to
the way they change under coordinate transformations.

The following proposition characterises tensors:

Proposition 3.17. Associating to a tensor φ ∈ T pq (M) the map (3.5)
defines a linear isomorphism between T pq (M) and the vector space

Wp
q (M) := LC∞(M,R)(Γ(T ∗M), ...,Γ(T ∗M),Γ(TM), ...,Γ(TM);C∞(M,R))

of C∞(M,R)-multilinear maps.

Proof. We already know that φ ∈ T pq (M) gives rise via (3.5) to a map
inWp

q (M) and evidently that association is linear and injective. Conversely,
let

φ : Γ(T ∗M)× ...× Γ(T ∗M)× Γ(TM)× ...× Γ(TM)→ C∞(M,R)

be C∞(M,R)-multilinear, i.e. an element inWp
q (M). Then we have to show

that
φ(x)(ω1(x), ..., ξq(x)) := φ(ω1, ..., ξq)(x)

for 1-forms ωi and vector fields ξj just depends on the value of these 1-forms
and vector fields at x. If this is the case, x 7→ φx is an element of T pq (M). It
is sufficient to show that if a 1-form or vector field σ vanishes at x, so does
φ(ω1, ..., σ, ..., ξq)(x).

Suppose first σ vanishes identically on a open neighbourhood U ⊂M of
x ∈M and let f ∈ C∞(M,R) be such that f |M\U = 1 and f(x) = 0 (which
exists by Corollary 1.35). Then σ = fσ and by C∞(M,R)-linearity, we have

φ(ω1, ..., σ, ..., ξq)(x) = φ(ω1, ..., fσ, ..., ξq)(x) = f(x)φ(ω1, ..., σ, ..., ξq)(x) = 0.

This shows that for a chart (U, u) with x ∈ U , φ(ω1, ..., ξq)|U (and in partic-
ular its value at x) just depend on the restrictions of the the 1-forms ωi and
vector fields ξj to U . Hence, we have

φ(ω1, ..., ξq)|U =
∑

i1,...,ip;j1,...,jq

φ
i1,...,ip
j1,...,jq

ω1
i1 ...ω

p
ip
ξj11 ...ξ

jq
q . (3.6)

Therefore, if σ(x) = 0, then its local coordinate expressions vanish at x, and
φ(ω1, ..., σ, ..., ξq)(x) = 0 by (3.6). �
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Example 3.1. A tensor g ∈ T 0
2 (M) on a manifold M of dimension m

is a called a (pseudo-)Riemannian metric on M , if for any x ∈ M the
bilinear form

g(x) : TxM × TxM → R
is symmetric and non-degenerate. If M is connected, the signature (p, q) of
g(x) does not depend on x and is referred to as the signature of g (p+q = m).
In particular, if g is positive definite, i.e. the signature is (m, 0), then g is
called a Riemannian metric, and if g has signature (m−1, 1) or (1,m−1),
then it is called a Lorentzian metric.

If M = Rm, the standard inner product gives rise to the Euclidean (or
standard ) metric on Rm given by

g = dx1 ⊗ dx1 + ...+ dxm ⊗ dxm.

Similarly, the standard Lorentzian inner product on Rm gives rise to the
standard Lorentzian (or Minkowski) metric given by

g = −dx1 ⊗ dx1 + ...+ dxm ⊗ dxm.

3.4. Differential forms

Suppose M is a manifold of dimension m.

Definition 3.18.

(a) A (differential) k-form on M is a
(

0
k

)
-tensor ω ∈ T 0

k (M) such

that ω(x) ∈ ∧kT ∗xM for all x ∈M .
(b) We write Ωk(M) ⊂ T 0

k (M) for the subspace of k-forms on M ,
which is also a mudul over C∞(M,R). We use the convention that
Ω0(M) = T 0

0 (M) = C∞(M,R).
Note that for k > m one has Ωk(M) = {0}.

Remark 3.19.
• ∧kT ∗M := tx∈M∧kT ∗xM ⊂ T ∗M ⊗ ...⊗ T ∗M︸ ︷︷ ︸

k−times

is a subbundle.

• Ωk(M) = Γ(∧kT ∗M) = space of sections of ∧kT ∗M .

By Proposition 3.17, we can consider a k-form ω ∈ Ωk(M) also as a
k-linear, alternating map

ω : Γ(TM)× ...× Γ(TM)→ C∞(M,R),

that is linear over C∞(M,R) in each entry.

Definition 3.20. Suppose f : M → N is a smooth map between mani-
folds. If ω ∈ Ωk(N), then f∗ω, called the pull-back of ω via f , is a k-form
on M given by:

f∗ω(x)(ξ1, ..., ξk) = ω(f(x))(Txfξ1, ..., Txfξk) ξi ∈ TxM.

If ξ1, .., ξk ∈ Γ(TM), then

f∗ω(ξ1, ..., ξk) = (ω ◦ f)(Tf ◦ ξ1, ..., T f ◦ ξk),

which shows that f∗ω is indeed a smooth tensor field on M .



62 3. THE COTANGENT BUNDLE

Remark 3.21. More generally, one can pull-back
(

0
k

)
-tensor via smooth

maps.

We have a natural map

Alt : T 0
k (M)→ Ωk(M)

Alt(φ)(x) := Alt(φx),

where we have Alt(ω) = ω for ω ∈ Ωk(M).

Definition 3.22. For ω ∈ Ωk(M) and η ∈ Ω`(M) the wedge product
ω ∧ η ∈ Ωk+`(M) of ω and η is given by

(ω ∧ η)(x) = ωx ∧ ηx =
(`+ k)!

k!`!
Alt(ωx ⊗ ηx).

For f ∈ Ω0(M) = C∞(M,R) and ω ∈ Ωk(M): f ∧ ω = fω.

Extending ∧ by bilinearity to a map

∧ : Ω∗(M)× Ω∗(M)→ Ω∗(M),

where Ω∗(M) :=
⊕

k≥0 Ωk(M), Proposition 3.12 implies:

Proposition 3.23. The vector space Ω∗(M) is an associative (unitial)
graded-anticommutative algebra over C∞(M,R) (in particular, over R), i.e.
satisfies (a)-(d) of Proposition 3.12, since it does so pointwise.

Moreover, we have:

Proposition 3.24. Let f : M → N be a smooth map between manifolds.
Then f∗ : Ωk(N)→ Ωk(M) extends to a morphism

f∗ : Ω∗(N)→ Ω∗(M)

of (unitial) graded algebras, i.e. f∗ is R-linear, f∗1 = 1, f∗(ω ∧ η) = f∗ω ∧
f∗η and f∗Ωk(N) ⊂ Ωk(M). Moreover, if g : N → P is another smooth
map between manifolds, then

(g ◦ f)∗ = f∗ ◦ g∗.

Proof. Since (f∗ω)(x) = (Txf)∗ω(f(x)) for all x ∈ M , the first claim
follows from Proposition 3.12 and the second claim from (3.3) and T (g◦f) =
Tg ◦ Tf . �

If (U, u) is a chart for M , then {dui1 ∧ ... ∧ duik : 1 ≤ i1 < ... < ik ≤ m}
form a basis of ∧kTxM for any x ∈ U . For ω ∈ Ωk(M) we therefore have

ω|U =
∑

1≤i1<...<ik≤m
ωi1...ikdu

i1 ∧ ... ∧ duik ,

where ωi1...ik = ω( ∂
∂ui1

, ..., ∂
∂uik

) ∈ C∞(U,R).
Recall that we have an operator

d : Ω0(M) = C∞(M,R)→ Ω1(M)

f 7→ df

We can extend this operator to an operator d : Ωk(M)→ Ωk+1(M) for any
k ≥ 0 in a natural way.
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Definition 3.25. Suppose ω ∈ Ωk(M). Then we define

dω : Γ(TM)× ...× Γ(TM)︸ ︷︷ ︸
k+1

→ C∞(M,R)

by

dω(ξ0, ξ1, ..., ξk) =

k∑
i=0

(−1)iξi · ω(ξ0, ..., ξ̂i, ..., ξk)

+
∑
i<j

(−1)i+jω([ξi, ξj ], ξ0, ..., ξ̂i, ..., ξ̂j , ..., ξk),

where ξ̂i means that this element is omitted.

Lemma 3.26. For ω ∈ Ωk(M) one has dω ∈ Ωk+1(M). Moreover, by
linearity, we can extend d to a map

d : Ω∗(M)→ Ω∗+1(M),

called the exterior derivative on differential forms.

Proof.

• dω is alternating: Suppose ξj = ξj+1. Then the fact that ω is
alternating and [ξ, ξ] = 0 implies that

dω(ξ0, .., ξj , ξj+1, .., ξk) = (−1)jξj · ω(ξ0, ..., ξ̂j , ξj+1..., ξk)

+ (−1)j+1ξj+1 · ω(ξ0, ..., ξj , ξ̂j+1..., ξk)

+
∑
i<j

(−1)i+jω([ξi, ξj ], ξ0, ..., ξ̂i, ..., ξ̂j , ξj+1, ..., ξk)

+
∑
i<j

(−1)i+j+1ω([ξi, ξj ], ξ0, ..., ξ̂i, ...ξj , ξ̂j+1, ..., ξk)

+
∑
j+1<i

(−1)j+iω([ξj , ξi], ξ0, ..., ξ̂j , ξj+1, ..., ξ̂i, ..., ξk)

+
∑
j+1<i

(−1)j+1+iω([ξj+1, ξi], ξ0, ..., ξj , ξ̂j+1, ..., ξ̂i, ..., ξk)

Note that the the first and the second, the third and the fourth,
and the fifth and the sixth term cancel each other, since they are
the same but with a different sign.
• dω is C∞(M,R)-linear in each entry: by being alternating, it is
enough to show this for one entry. For f ∈ C∞(M,R) one has

dω(fξ0, ξ1, ..., ξk) = (fξ0) · ω(ξ1, ..., ξk) +
∑
i>0

(−1)iξi · ω(fξ0, ..., ξ̂i, ..., ξk)

+
∑
1≤i

(−1)iω([fξ0, ξi], ξ1, ..., ξ̂i, ..., ξk)

+
∑

1≤i<j
(−1)i+jfω([ξi, ξj ], ξ0, ..., ξ̂i, ..., ξ̂j , ..., ξk)

= fdω(ξ0, ξ1, ..., ξk),
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since [fξ0, ξi] = f [ξ0, ξi]− (ξi · f)ξ0 and

ξi · ω(fξ0, ..., ξ̂i, ..., ξk) = (ξi · f)ω(ξ0, ..., ξ̂i, ..., ξk) + f(ξi · ω(ξ0, ..., ξ̂i, ..., ξk)).

�

Theorem 3.27. The operator d : Ωk(M) → Ωk+1(M) satisfies the fol-
lowing properties.

(a) For f ∈ C∞(M,R), df(ξ) = ξ · f for all ξ ∈ Γ(T ∗M).
(b) For ω ∈ Ωk(M) and η ∈ Ω`(M) we have

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.
(c) d2 = d ◦ d = 0.
(d) d is a local operator: if ω ∈ Ωk(M) vanishes identically on an

open subset U ⊂ M , then dω also vanishes identically on U . In
particular, for ω ∈ Ωk(M), dω|U just depends on ω|U for an open
subset U ⊂M .

(e) If (U, u) is a chart for M and ω ∈ Ωk(M), then

dω|U =
∑

i1<...<ik

d(ωi1...ik)∧dui1∧...∧duik =
∑

i1<...<ik;i0

∂ωi1...ik
∂ui0

dui0∧dui1 ...∧duik ,

where ω|U =
∑

i1<...<ik
ωi1...ikdu

i1 ∧ ... ∧ duik .
(f) d is a natural operator: If f : M → N is a smooth map between

manifolds, then
d(f∗ω) = f∗dω.

Proof.
(a) Clear from the definition.
(d) Suppose ω|U = 0. Then for arbitrary vector fields ξ1, ..., ξk one has

ω(ξ1, ..., ξk)|U = 0 and also ξ0 · ω(ξ1, ..., ξk)|U = 0 for any vector
field ξ0. Hence, dω|U = 0. In particular, if ω|U = η|U , then

0 = d(ω − η)|U = dω|U − dη|U ,
which implies dω|U = dη|U .

(e) We first prove a special case of (b). Suppose ω ∈ Ωk(M) and
f ∈ Ω0(M) = C∞(M,R). Then

d(fω)(ξ0, ..., ξk) =

k∑
i=0

(−1)iξi · (fω(ξ0, ..., ξ̂i, ..., ξk))

+
∑
i<j

(−1)i+jfω([ξi, ξj ], ξ0, ..., ξ̂i, ..., ξ̂j , ..., ξk)

= (fdω)(ξ0, ..., ξk) +

k∑
i=0

(−1)i(ξi · f)ω(ξ0, ..., ξ̂i, ..., ξk),

which shows that

d(fω) = fdω + df ∧ ω. (3.7)

Now we claim that

d(dui1 ∧ ... ∧ duik) = 0.
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Indeed, d(dui1 ∧ ... ∧ duik) vanishes upon insertion of any k + 1
coordinate vector fields, since dui1 ∧ ... ∧ duik is a constant upon
insertion of k coordinate vector fields and [ ∂

∂ui
, ∂
∂uj

] = 0. Hence, (d)
and (3.7) imply

(dω)|U = d(
∑

i1<...<ik

ωi1...ikdu
i1 ∧ ... ∧ duik)

=
∑

i1<...<ik

dωi1...ik ∧ du
i1 ∧ ... ∧ duik

=
∑

i1<...<ik;i0

∂ωi1...ik
∂ui0

dui0 ∧ dui1 ... ∧ duik .

(b) By (d) we can prove this in local coordinates. Suppose

ω|U =
∑
I

ωIdu
I and η|U =

∑
J

ηJdu
J ,

where I = (i1 < i... < ik) and J = (j1 < i... < j`) are multi-indices
and duI = dui1 ∧ ... ∧ duik . Then one has

ω ∧ η|U =
∑
I,J

ωIηJdu
I ∧ duJ .

Hence, one gets

d(ω ∧ η)|U =
∑
I,J

d(ωIηJ)duI ∧ duJ

=
∑
I,J

d(ωI)ηJdu
I ∧ duJ +

∑
I,J

ωId(ηJ)duI ∧ duJ

=
∑
I

d(ωI)du
I ∧
∑
J

ηJdu
J + (−1)k

∑
I

ωIdu
I ∧
∑
J

d(ηJ)duJ

= (dω ∧ η + (−1)kω ∧ dη)|U .
(c) We can prove this again in local coordinates. We have already seen

that d(dui1 ∧ ... ∧ duik) = 0. Hence, (b) and (e) imply that

(d2ω)|U =
∑
I

d2(ωI) ∧ duI .

It remains to show that d2f = 0 for any f ∈ C∞(M,R). Indeed,
by definition of the Lie bracket one has

d(df)(ξ0, ξ1) = ξ0 · df(ξ1)− ξ1 · df(ξ0)− df([ξ0, ξ1])

= ξ0 · (ξ1 · f)− ξ1 · (ξ0 · f)− [ξ0, ξ1] · f = 0.

(f) Suppose g ∈ Ω0(N) = C∞(N,R). Then f∗g = g ◦ f . Hence, for
any vector field ξ ∈ X(M) one has

d(f∗g)(ξ) = ξ · (g ◦ f) = (Tfξ) · g = dg(Tfξ) = f∗dg(ξ). (3.8)

Suppose now (U, u) is a chart for N with f(N) ∩ U 6= ∅. For
ωU =

∑
I ωIdu

I we have by Proposition 3.24 that

f∗ω|f−1(U) =
∑
I

f∗ωIf
∗duI =

∑
i1<...<ik

f∗ωi1...ikf
∗dui1 ∧ ....f∗duik .
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By (3.8), d(f∗ωI) = f∗d(ωI) and d(f∗ui) = f∗dui, and therefore
(c) implies

d(f∗ω|f−1(U)) =
∑
I

d(f∗ωI)f
∗duI = f∗(

∑
I

dωI ∧ duI) = f∗(dω|U ).

�

3.5. Lie derivatives

Suppose f : M → N is a local diffeomorphism between manifolds. Then
at any point x ∈M

Txf : TxM → Tf(x)N

T ∗xf = (Txf)∗ : T ∗f(x)N → T ∗xM

are linear isomorphism. Recall that ((Txf)−1)∗ = (T ∗xf)−1.

Definition 3.28. Suppose f : M → N is a local diffeomorphism and

let φ ∈ T pq (N) be a
(
p
q

)
-tensor. Then the pull-back of φ via f is the(

p
q

)
-tensor f∗φ ∈ T pq (M) on M given by:

f∗φ(x)(ω1, ..., ωp, ξ1, ..., ξq) = φ(f(x))((T ∗xf)−1ω1, ..., T ∗xf)−1ωp, Txfξ1, ..., Txfξq),

for ωi ∈ T ∗xM and ξj ∈ TxM .

Applied to local flows of vector fields we get:

Definition 3.29. SupposeM is a manifold, ξ ∈ X(M), and φ ∈ T pq (M).

Then the Lie derivative Lξφ ∈ T qp (M) of φ along ξ is the
(
p
q

)
-tensor given

by

(Lξφ)(x) :=
d

dt
|t=0((Flξt )

∗φ(x)) for all x ∈M.

Note that t 7→ (Flξt )∗φ(x) is a smooth curve (defined for small t, de-
pending on x) in the vector space TxM⊗p⊗T ∗xM⊗q and hence its derivative
at t = 0 is again an element in this space. One checks that Lξφ : M →
TM⊗p ⊗ T ∗M⊗q is a smooth section (see below).

Proposition 3.30. Suppose ξ ∈ (M) is a vector field on a manifold M .

(1) Lξf = df(ξ) for f ∈ Ω0(M) = T 0
0 (M) = C∞(M,R).

(2) Lξη = [ξ, η] for η ∈ X(M).
(3) For φ ∈ T pq (M) and ψ ∈ T rs (M) one has

Lξ(φ⊗ ψ) = Lξφ⊗ ψ + φ⊗ Lξψ.

In particular, Lξ(ω ∧ µ) = Lξω ∧ µ + ω ∧ Lξµ for ω ∈ Ωk(M) and
µ ∈ Ω`(M).
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(4) For φ ∈ T pq (M),

(Lξφ)(ω1, ..., ωp, η1, ..., ηq) = Lη(φ(ω1, ..., ηq))

−
p∑
i=1

φ(ω1, ...,Lξωi, ..., ωp, η1, ..., ηq)

−
q∑
j=1

φ(ω1, ..., ωp, ..., η1, ...,Lξηj , ..., ηq),

for all 1-forms ω1, ..., ωp and all vector fields η1, ..., ηq on M . In
particular, for µ ∈ Ωq(M),

(Lξµ)(η1, ..., ηq) = Lξ(µ(η1, ..., ηq))−
k∑
i=1

µ(η1, ...,Lξηi, ..., ηq)

= ξ · (µ(η1, ..., ηq))−
k∑
i=1

µ(η1, ..., [ξ, ηi], ..., ηq),

for all vector fields η1, ..., ηq on M .

Proof.
(1) Lξf(x) = d

dt |t=0(Flξt )∗f)(x) = d
dt |t=0f(Flξt (x)) = Txfξ(x) = df(ξ)(x).

(2) See tutorial.
(3) This follows from the fact that f∗(φ ⊗ ψ) = f∗φ ⊗ f∗ψ for any

local diffeomorphism f : M → M (which in turn follows from the
definition of the tensor product) and the bilinearity of ⊗ : (φ, ψ) 7→
φ⊗ ψ.

(4) Note that the full contraction map

C : φ⊗ ω1 ⊗ ...ωp ⊗ η1 ⊗ ...⊗ ηq 7→ φ(ω1, ..., ωp, η1, ..., ηq)

is linear and commutes with the pull-back of local diffeomorphisms
f : M →M , that is,

C(f∗(φ⊗ ω1 ⊗ ...⊗ ηq)) = C(f∗φ⊗ f∗ω1 ⊗ ...⊗ f∗ηq))
= φ(ω1, ..., ηq) ◦ f = f∗C(φ⊗ ω1 ⊗ ...⊗ ηq).

Using this the result follows immediately from (3).
�

Note that the formulae for Lξφ and Lξω in (4) imply in particular that
Lξφ is again a smooth tensor field as the right-hand side is smooth upon
insertion of smooth vector fields and 1-forms.

On differential forms we have the following operators:
• d : Ωk(M)→ Ωk+1(M)
• Lξ : Ωk(M)→ Ωk(M) for ξ ∈ X(M)
•

ιξ : Ωk(M)→ Ωk−1(M)

ω 7→ ιξω = ω(ξ,− , ...,− )

for ξ ∈ X(M).
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Definition 3.31. A graded derivation of the algebra (ω∗(M),∧)
of degree r is a linear map D : Ω∗(M)→ Ω∗(M) such that

• D maps Ωk(M) to Ωk+r(M), and
• for any ω ∈ Ωk(M) and any η ∈ Ω`(M),

D(ω ∧ η) = D(ω) ∧ η + (−1)rkω ∧D(η).

Proposition 3.32. Suppose M is a manifold and ξ ∈ X(M).
(1) d is a graded derivation of degree 1.
(2) Lξ is a graded derivation of degree 0.
(3) ιξ is a graded derivation of degree −1.

Moreover, if D1 and D2 are two graded derivations of degree r1 respectively
r2, then

[D1, D2] = D1 ◦D2 − (−1)r1r2D2 ◦D1 (3.9)
is a graded derivation of degree r1 + r2.

Proof. (1) and (2) we have already seen. For (3) and the last statement
see tutorial. �

Remark 3.33. Denoting by Derr(Ω(M)) the vector space of derivations
of degree r, then the vector space

⊕
r∈ZDerr(Ω(M)) is a graded Lie algebra

with respect to the graded commutator (3.9).

Proposition 3.34. Suppose D is a graded derivation of degree r of
(ω∗(M),∧).

(1) D is a local operator: if ω ∈ Ωk(M) vanishes identically on an open
subset U ⊂ M , then so does Dω. In particular, if two differential
forms agree on some open set U , so do their images under D.

(2) If D̃ is anotehr graded derivation of degree r such that for any f ∈
C∞(M,R)

D̃(f) = D(f) and D̃(df) = D(df),

then D̃ = D.

Proof. See tutorial. �

Remark 3.35. The previous proposition implies in particular that d is
the unique graded derivation of degree 1 such that Df = df and D(df) = 0.

Proposition 3.36. Suppose M is manifold and ξ, η ∈ X(M) vector
fields.

(1) [d,Lξ] = d ◦ Lξ − Lξ ◦ d = 0
(2) [d, ιξ] = d ◦ ιξ + ιξ ◦ d = Lξ
(3) [d, d] = 2 d ◦ d = 0
(4) [Lξ,Lη] = Lξ ◦ Lη − Lη ◦ Lξ = L[ξ η]

(5) [Lξ, ιη] = Lξ ◦ ιη − ιη ◦ Lξ = ι[ξ η]

(6) [ιξ, ιη] = ιξ ◦ ιη + ιη ◦ ιξ = 0

Proof. See tutorial. �



CHAPTER 4

Integration on Manifolds

Recall that the transformation formula (or coordinate change formula)
for multiple integrals: Suppose U ⊂ Rm is an open subset and φ : U → φ(U)
a diffeomorphism between open subsets of Rm. Let f : φ(U) → R be a
smooth function with compact support. Then∫

φ(U)
f =

∫
U

(f ◦ φ)| det(Dφ)|. (4.1)

This looks like the transformation of m-forms on manifolds of dimension
m under coordinate changes. Indeed, suppose M is a smooth manifold of
dimension m, ω ∈ Ωm(M) an m-form and (Uα, uα) a chart of M . Then we
know that

ω|Uα = ωα1...mdu
1
α ∧ ... ∧ dumα ,

where ωα1...m = ω( ∂
∂u1α

, ..., ∂
∂umα

) : Uα → R. Suppose now (Uβ, uβ) is another
chart with U = Uα = Uβ and set φ := uβ ◦ u−1

α : uα(U) → uβ(U). Let us
now compare the the local coordinate expression ωα1...m ◦u−1

α and ωβ1...m ◦u
−1
β

of the functions ωα1...m and ωβ1...m:

ωα1...m(u−1
α (y)) = ω(u−1

α (y))(Tyu
−1
α e1, ..., Tyu

−1
α em)

= ω(u−1
α (y))(Tφ(y)u

−1
β ◦ Tyφ e

1, ..., Tφ(y)u
−1
β ◦ Tyφ e

m)

= det(Dyφ)ω(u−1
α (y))(Tφ(y)u

−1
β e1, ..., Tφ(y)u

−1
β em) (4.2)

= det(Dyφ)︸ ︷︷ ︸
6=0

ωβ1...m(u−1
β (φ(y))).

If we assume U is connected and hence so is uα(U), then the sign of det(Dyφ)
is either always positive or negative on uα(U). Then (4.1) says that the
integral over the local coordinate expression of the function ωα1...m is up to a
sign independent of the choice of charts. To fix the issue with the sign, we
need now to talk about orientation.

4.1. Orientation

4.1.1. Orientation of vector spaces. Suppose V is a real vector space
of dimension m. Then two ordered bases (v1, ..., vm) and (w1, ..., wm) of V
have the same orientation (respectively, opposite orientations), if the linear
map T : V → V, mapping one to the other, i.e. T (vi) = wi for all i, has
positive (respectively, negative) determinant. It is easy to see that “having
the same orientation” defines an equivalence relation on the set of ordered
bases of V and there are exactly two equivalence classes.

69
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Definition 4.1. Suppose V is a real vector space of dimension m ≥ 1.
(1) An orientation for V is a choice of one of the two equivalence

classes of ordered bases of V.
(2) Having fixed an orientation for V, any basis in the chosen equiva-

lence class is called positively oriented and any one in the oppo-
site equivalence class is called negatively oriented.

(3) For a zero-dimensional vector space, we define an orientation to be
a choice of one of the numbers 1 or −1.

(4) A vector space with a choice of orientation is called an oriented
vector space.

Example 4.1. The standard orientation on Rm is the one induced by
the standard basis (e1, ..., em). Note that with respect to the standard orien-
tation a basis (v1, ..., vm) of Rm is positively oriented, if det((v1, ..., vm)) > 0.

Proposition 4.2. Suppose V is a vector space of dimension m. Then
any nonzero element ω ∈ ∧mV∗ induces an orientation on V as follows:

(1) Ifm ≥ 1, then the orientation is given by all ordered bases (v1, ..., vm)
of V such that ω(v1, ..., vm) > 0.

(2) If m = 0, the induced orientation is defined to be 1 for ω > 0 and
−1 for ω < 0.

Moreover, two nonzero elements in ∧mV∗ define the same orientation if and
only if one is a positive multiple of the other.

Proof. See tutorial. �

The previous proposition shows that the choice of an orientation for an
m-dimensional vector space V is equivalent to the choice of one of the two
connected components of ∧mV∗ \ {0}.

Example 4.2. Suppose that λ1, ..., λm is the basis of (Rm)∗ dual to the
standard basis in Rm. Then λ1 ∧ ... ∧ λm ∈ ∧m(Rm)∗ induces the standard
orientation on Rm.

Definition 4.3. Suppose V and W are oriented vector spaces of dimen-
sionm. A linear isomorphism F : V→W is called orientation preserving,
if F maps any positively oriented basis of V to a positively oriented basis of
W.

Proposition 4.4. Suppose V and W are vector space of dimension m
equipped with orientations induced by ω ∈ ∧mV∗ \ {0} respectively ν ∈
∧mW∗ \ {0}. A linear isomorphism F : V → W is orientation preserv-
ing if and only if the induced map F ∗ : ∧mW∗ → ∧mV∗ maps ν to cω for
some positive real number c.

Proof. Exercise, see tutorial. �

4.1.2. Orientations on manifolds.

Definition 4.5. Suppose M is a manifold.
(1) M is called orientable, if for any x ∈M one can choose an orien-

tation of TxM such that the following holds: for any point x ∈ M
there exists an open neighbourhood U ⊂ M and a local frame
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ξ1, ..., ξm of TM defined on U such that (ξ1(x), ..., ξm(x)) forms a
positively oriented basis of TxM for all x ∈ U .

(2) IfM is orientable, a choice of orientation on each tangent space TxM
for x ∈ M satisfying the property in (1) is called an orientation
on M .

(3) An orientable manifold with a choice of orientation is called an
oriented manifold.

Remark 4.6. If M is a zero-dimensional manifold, then the condition
in (1) is vacuous and an orientation is simply the choice of ±1 attached to
any of its points, i.e. a map ε : M → {±1}.

Remark 4.7. Note that being orientable is equivalent to the possibility
of choosing an orientation on each tangent space such that for any local
frame local frame ξ1, ..., ξm of TM over a connected subset U , the basis
(ξ1(x), ..., ξm(x)) of TxM is either positively or negatively oriented for all
x ∈ U .

Note an on a connected orientable manifold, there are exactly two ori-
entations, which coincide if they coincide at a single tangent space. Also,
evidently, an orientation on a manifold induces an orientation on any of its
open subsets, making them oriented manifolds in a natural way.

Definition 4.8. A local diffeomorphism F : M → N between oriented
manifolds is called orientation preserving, if at each point x ∈ M the
tangent map TxF : TxM → TF (x)N is orientation preserving.

Proposition 4.9. Suppose M is an m-dimensional manifold.
(1) If there exists nowhere vanishingm-form ω ∈ Γ(∧mTM) (i.e. ω(x) 6=

0 for all x ∈ M), then the orientation on TxM defined by ω(x) as
in Proposition 4.2 defines an orientation on M . In particular, M
is orientable.

(2) Conversely, if M is orientable and oriented, there exists a nowhere
vanishing m-form ω ∈ Γ(∧mTM) inducing (as in (1)) the given
orientation. Moreover, ω is unique up to multiplication by a positive
smooth function on M .

Proof.
(1) Suppose ω ∈ Γ(∧mTM) is nowhere vanishing. It remains to check

that the orientations on TxM induced by ω(x) ∈ ∧mTxM satisfy the
property in (1) of Definition 4.5. If m = 0 this condition is vacuous,
so assume m ≥ 1. Let x ∈ M be any point and (ξ1, ..., ξm) a local
frame of TM defined on a connected open neighbourhood U of x.
Then ω(ξ1, ..., ξm) : U → R is smooth, in particular continuous,
and nowhere vanishing on U . Hence, either ω(ξ1, ..., ξm) is either
always positive or always negative on U . Hence, ξ1(x), ..., ξm(x) is
a positive oriented basis of TxM for all x ∈ U in the first case and
in the second case simply replace ξ1 by −ξ1 to obtain a local frame
with that property.

(2) Fix an orientation on M . Let A = {(Uα, uα) : α ∈ I} be an atlas
for M such that for all α ∈ I, Uα is connected and ∂

∂u1α
, ..., ∂

∂umα
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defines a positively oriented basis for all x ∈ Uα. Such an atlas
exists, since by Remark 4.7 for any chart (U, u) for M defined on a
connected open subset U the corresponding coordinate vector fields
∂
∂u1

, ..., ∂
∂um define either a positively oriented basis or a negatively

oriented basis for all x ∈ U and in the latter case replacing u1

by −u1 leads to a chart whose coordinate vector fields define a
positively oriented basis at all x ∈ U . Now let F := {fk : M →
R : k ∈ N} be a partition of unity subordinate to the cover U =
{Uα}α∈I . For each k ∈ N choose αk ∈ I such that supp(fk) ⊂ Uαk .
Then ωk := fkdu

1
αk
∧...∧dumαk can be extended by zero to anm-form

defined on all of M and local finiteness implies that

ω :=
∑
k∈N

ωk

defines a (smooth) m-form on M . Fix x ∈M . Since
∑

k fk(x) = 1,
there exists k ∈ N such that

ωk(x)(
∂

∂u1
αk

(x), ...,
∂

∂umαk
(x)) = fk(x) > 0.

Since any chart (Uα, uα) in A is by construction orientation pre-
serving, so are all the transition maps for elements in A. Since the
transition maps of A are orientation preserving and any element in
F has non-negative values on M , for any ` ∈ N

ω`(x)(
∂

∂u1
αk

(x), ...,
∂

∂umαk
(x)) ≥ 0.

Hence, ω(x) 6= 0. Therefore, there exists a nowhere vanishing m-
form on M as claimed. The last statement is obvious.

�

The proof of the previous Proposition suggest the following definition:

Definition 4.10. Suppose M is an m-dimensional manifold, m ≥ 1.
(1) An oriented atlas for M is an atlas A = {(Uα, uα) : α ∈ I} for

M (i.e. a subatlas of the maximal atlas of M) such that for any
α, β ∈ I with Uαβ := Uα ∩ Uβ 6= ∅ the transition map

uβ ◦ u−1
α : uα(Uαβ)→ uβ(Uαβ)

is an orientation preserving diffeomorphism between open subsets
of Rm, where Rm is equipped with its standard orientation.

(2) Two oriented atlases are equivalent, if their union is again an ori-
ented atlas. Any oriented atlas is contained in a maximal oriented
atlas.

Proposition 4.11. SupposeM is a manifold of dimension m ≥ 1. Then
the following are equivalent:

(1) M is orientable.
(2) M admits an oriented atlas.
(3) There exists an m-form ω ∈ Γ(∧mTM) such that ω(x) 6= 0 for all

x ∈M .
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Moreover, if M is orientable, fixing an orientation is equivalent to fixing a
maximal oriented atlas or a nowhere vanishing m-form up to multiplication
by a positive smooth function.

Proof. By Proposition 4.9, we already know that (1) if and only if (3).
Also, the proof of (2) of Proposition 4.9 shows that (1) implies (2) and that
(2) implies (3). The remaining statements are obvious. �

Having fixed an orientation on an orientable manifoldM , we call a chart
(U, u) of M oriented, if it is contained in the corresponding maximal ori-
ented atlas.

Example 4.3. M = Rm is orientable with standard orientation induced
by the nowhere vanishing m-form dx1 ∧ ... ∧ dxm.

Example 4.4. The m-sphere Sm ⊂ Rm+1 is an oriented manifold, which
can be seen as follows. Consider the m-form on Rm+1 given by

ω =
m+1∑
i=1

(−1)i−1xidx1 ∧ ... ∧ d̂xi ∧ ... ∧ dxm+1.

If x ∈ Sm, then TxSm = {v ∈ TxRm+1 ∼= Rm+1 : 〈x, v〉 = 0} = x⊥. Now, if
(v1, ..., vm) is basis of x⊥ = TxS

m, then

ωx(v1, ..., vm) = det(x, v1, ..., vm) 6= 0.

Hence, ω restricts to a nowhere vanishing m-form on Sm, inducing the stan-
dard orientation on Sm. Otherwise put, the vector field

ν =
m+1∑
i=1

xi
∂

∂xi
∈ X(Rm+1)

is at every point x ∈ Sm orthogonal to TxSm and for Ω = dx1 ∧ ... ∧ dxm+1

one has
iνΩ = ω.

Example 4.5. The Möbius band M ⊂ R3, which can be parametrized
by

φ(r, α) =

cosα(1 + r
2 cos α2 )

sinα(1 + r
2 cos α2 )

r
2 sin α

2


for 0 ≤ α < 2π and r ∈ [−1, 1], is not orientable.

Example 4.6. Real projective space RPm is orientable if and only if m
is odd; see tutorial.

Example 4.7. For any manifold M its tangent space TM is an oriented
manifold. Recall that any atlas for M induces an atlas for TM in a natu-
ral way, which turns out to be oriented, since its transition maps (2.3) are
orientation preserving; check that (tutorial).
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4.2. Integration

For a k-form ω ∈ Ωk(M) on a manifold M let us write

supp(ω) = {x ∈M : ω(x) 6= 0}
for its support and denote by Ωk

c (M) the k-forms with compact support.

Proposition 4.12. Suppose M is a (smooth) oriented manifold of di-
mension m. Then there exists a unique linear map∫

M
: Ωm

c (M)→ R,

such that for any oriented chart (U, u) of M and any ω ∈ Ωm
c (U) one has∫

M
ω =

∫
u(U)

(u−1)∗ω :=

∫
u(U)

(u−1)∗ω(e1, ..., em).

Proof. Suppose A = {(Ui, ui)}i∈I is an oriented atlas for M and let
F = {fi}i∈I be a partition of unity subordinate to the cover U = {Ui}i∈I
such that supp(fi) ⊂ Ui. Note that for any ω ∈ Ωm

c (M) one has

ω =
∑
i∈I

fiω,

where fiω ∈ Ωm
c (Ui). Hence, by linearity, one must have∫

M
ω =

∑
i∈I

∫
ui(Ui)

(u−1
i )∗(fiω)(e1, ..., em). (4.3)

This shows uniqueness. The formula also allows to define a linear functional∫
M and that it satisfies the requested property follows from the transforma-
tion rules (4.1) and (4.2). Indeed, if ω ∈ Ωm

c (U), then by (4.1) and (4.2),
one gets∫

M
ω =

∑
i∈I

∫
ui(Ui∩U)

(u−1
i )∗(fiω)(e1, ..., em)

=
∑
i∈I

∫
u(Ui∩U)

(u−1)∗(fiω)(e1, ..., em)

=

∫
u(U)

(u−1)∗(
∑
i∈I

fiω)(e1, ..., em) =

∫
u(U)

(u−1)∗ω(e1, ..., em).

�

Note that the functional
∫
M in Proposition 4.12 depends on the chosen

orientation on M . If M is connected and −M , the manifold M equipped
with the opposite orientation, then∫

−M
= −

∫
M
.

Also, if U ⊂M is an open subset of an oriented manifold M , equipped with
the induced orientation, then for any ω ∈ Ωm

c (M) with supp(ω) ⊂ U , one
has ∫

M
ω =

∫
U
ω|U .
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An immediate corollary from Proposition 4.12, following from the uniqueness
of the functional, is:

Corollary 4.13. Suppose Φ : M → N is an orientation preserving
diffeomorphism between oriented m-dimensional manifolds M and N . Then
for any ω ∈ Ωm

c (N) one has ∫
M

Φ∗ω =

∫
N
ω.

Remark 4.14. For a zero-dimensional manifold M with an orientation
ε : M → {±1} and ω ∈ Ω0

c(M) one defines∫
M
ω =

∑
x∈M

ε(x)ω(x).

Remark 4.15.
(1) If M = R is equipped with its standard notation, then for any real

numbers a < b and any ω = fdt ∈ Ω1(R) we have∫
[a,b]

ω =

∫ b

a
f(t)dt.

(2) Line integrals: Suppose V ⊂ Rm is an open subset, ω =
∑m

i=1 ωidx
i ∈

Ω1(V ) and γ : I → V a smooth curve defined on an open interval
I ⊂ R. Then, γ∗ω ∈ Ω1(I) and for a, b ∈ I one has∫

[a,b]
γ∗ω =

m∑
i=1

∫
[a,b]

(ωi ◦ γ)(γ′i(t))dt.

This is the line integral of ω along γ|[a,b] = α, also denoted by
∫
α ω.

4.3. Manifolds with boundary

It is useful and natural to extend the notion of manifolds to the notion
of manifolds with boundary, in particular in the context of integration.

Consider the m-dimensional half-space Hm ⊂ Rm given by

Hm := {(x1, ..., xm) ∈ Rm : x1 ≤ 0}.
and denote by

int(Hm) := {(x1, ..., xm) ∈ Rm : x1 < 0}

∂(Hm) := Hm \ int(Hm) = {(x1, ..., xm) ∈ Rm : x1 = 0}
the set of interior respectively boundary points of the closed subset Hm ⊂
Rm. Recall that for an open subset U ⊂ Hm a map F : U → Rd is smooth
at x ∈ U , if there exists an open neighbourhood Ũ ⊂ Rm of x in Rm and
a smooth map F̃ : Ũ → Rd such that F̃ |Ũ∩U = F |Ũ∩U . For a smooth map
F : U → Rd its restriction to U ∩ int(Hm) is smooth in the usual sense.

Definition 4.16. Suppose M is a topological space.
(1) A chart with values in Hm for M is a homeomorphism u : U →

u(U) between open subsets U ⊂M and u(U) ⊂ Hm.
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(2) A smooth atlas with values in Hm for M is a collection A =
{(Uα, uα) : α ∈ I} of charts with values in Hm such that
• M =

⋃
α∈I Uα, and

• for any α, β ∈ I with Uα ∩ Uβ 6= ∅ the transition map

uβα := uβ ◦ u−1
α : uα(Uα ∩ Uβ)→ uβ(Uα ∩ Uβ)

is smooth.

Analogously as for atlases with values in Rm one has a natural notion of
compatibility for atlases with values in Hm and for any atlas with values in
Hm there is a unique maximal atlas with values in Hm containing it.

Definition 4.17. Anm-dimensional (smooth) manifold with bound-
ary is a Hausdorff second countable topological space M equipped with a
maximal smooth atlas of charts with values in Hm.

Proposition 4.18. Suppose (M,A) is (smooth)m-dimensional manifold
with boundary and let x ∈ M be point. If there exists (U, u) ∈ A such that
x ∈ U and u(x) ∈ ∂Hm, then for every chart (V, v) ∈ A with x ∈ V one has
v(x) ∈ ∂Hm.

Proof. Suppose, by contrary, that there exist chart (U, u), (V, v) ∈ A
such that x ∈ U ∩ V and u(x) ∈ int(Hm) and v(x) ∈ ∂Hm. Since the
transition map φ := v ◦ u−1 : u(U ∩ V ) → v(U ∩ V ) and its inverse φ−1 =
u ◦ v−1 are smooth, there exists in particular an open neighbourhood W
of v(x) in Rm and a smooth map ψ : W → Rm that agrees with φ−1 on
W ∩ v(U ∩ V ). Since u(x) ∈ int(Hm), the set u(U ∩ V ) contains an open
neighbourhood W̃ of u(x) in Rm (note that u(U ∩ V ) as an open subset
of Hm must be of the form W ′ ∩ Hm for an open subset W ′ of Rm, hence
W̃ = W ′ ∩ int(Hm) is an open neighbourhood of u(x) as requested). By
possibly shrinking W̃ we may assume that φ(W̃ ) ⊂W . By construction,

ψ ◦ φ|
W̃

= φ−1 ◦ φ|
W̃

= Id
W̃
.

Therefore, for all y ∈ W̃ , Dφ(y)ψ ◦Dyφ = IdTyRm , which implies that Dyφ :

TyRm → Tφ(y)Rm is injective and hence an isomorphism for all y ∈ W̃ . By
the Inverse Function Theorem, it follows in particular that φ is an open map.
So, in particular, φ(W̃ ) is an open subset of Rm that contains v(x) and is
contained in v(V ) ⊂ Hm. This contradicts the fact that v(x) ∈ ∂Hm. �

Definition 4.19. Suppose (M,A) is (smooth) m-dimensional manifold
with boundary.

(1) A point x ∈M is called a boundary point, if for a (hence, every)
chart (U, u) ∈ A with x ∈ U one has u(x) ∈ ∂Hm. We denote the
set of boundary points by

∂M = {x ∈M : x is a boundary point}.
(2) A point x ∈ M is called an interior point, if x ∈ int(M) :=

M \ ∂M .

Since any open subset of Rm can be mapped diffeomorphically onto an
open subset of Hm that consist of interior points only, any m-dimensional
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manifold is an m-dimensional manifold with boundary whose boundary ∂M
is the empty set.

Example 4.8. Any open subset U ⊂ Hm is an m-dimensional manifold
with boundary ∂U = ∂Hm ∩ U .

Example 4.9. The unit ball in Rm+1, given by

Bm := {x ∈ Rm+1 : ||x|| ≤ 1},
is an m-dimensional manifold with boundary ∂Bm = Sm−1.

Analogously as for manifolds without boundary, using charts, one de-
fines smoothness for functions on manifolds with boundary and for maps
between manifolds with boundary. The latter restrict on manifolds with
boundary ∂M = ∅ to the notion of smoothness defined in Definition 1.21.
Hence, the category of manifolds is a subcategory of the category of mani-
folds with boundary. Also, the theorem about the existence of partitions of
unity extends to manifolds with boundary.

Proposition 4.20. Suppose (M,A) is (smooth) manifold with boundary
∂M 6= ∅ of dimension m ≥ 2. Then ∂M , equipped with the subspace topol-
ogy, inherits from A the structure of a smooth manifold without boundary of
dimension m − 1 with the property that the natural inclusion i : ∂M ↪→ M
is a smooth immersion. In particular, any smooth function on M restricts
to a smooth function on ∂M .

Proof. For any chart (Uα, uα) ∈ A with Uα ∩ ∂M 6= ∅, the restriction

uα|Uα∩∂M : Uα ∩ ∂M → uα(Uα) ∩ ({0} × Rm−1)

defines a homeomorphism between an open subset of ∂M and an open subset
of Rm−1 ∼= {0} × Rm−1 ⊂ Rm. Setting

A|∂M := {(Uα ∩ ∂M, uα|Uα∩∂M ) : (Uα, uα) ∈ A)},
therefore defines a smooth atlas for ∂M with values in Rm−1, since the
transitions maps as restrictions of smooth maps are smooth. By construction,
i is smooth with respect to A|∂M and A. �

As for manifolds without boundary, the tangent space of a manifold with
boundary M at some point x ∈ M is defined to be the space of derivations
at x, that is,

TxM = Derx(C∞(M,R),R)

and for a smooth map f : M → N between manifolds with boundary one
defines the tangent map Txf : TxM → Tf(x)N at a point x ∈ M by the
same formula as in Section 2.31. One may show then again that for any
point x ∈ M (for an interior point that is clear), the tangent space TxM is
an m-dimensional vector space spanned by ∂

∂u1
(x), ..., ∂

∂um (x) for any chart
u : U → u(U) with x ∈ U . Moreover, at any boundary point x ∈ ∂M the
tangent space Tx∂M at x to the boundary can be identified, via the natural
inclusion Txi : Tx∂M ↪→ TxM , with the m−1-dimensional subspace of TxM
spanned by ∂

∂u2
(x), ..., ∂

∂um (x). Therefore, at a boundary point x ∈ ∂M el-
ements in TxM fall into three classes: either a vector ξx ∈ TxM is tangent
to ∂M , i.e. contained in Tx∂M , or if it is an element of TxM \ Tx∂M , then
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it is either inward pointing or outward pointing. According to our choice of
half-space, ξx ∈ TxM \ Tx∂M is inward pointing, if the coefficient of ∂

∂u1
(x)

when writing ξx as linear combination of ∂
∂u1

(x), ..., ∂
∂um (x) is < 0 and out-

ward pointing, if it is > 0. Note that this is independent of the choice of
the chart. Similarly, as for manifolds without boundary, one can form the
disjoint union TM of all tangent spaces and equip it with the structure of
a smooth manifold with boundary p−1(∂M) of dimension 2 dim(M) such
that the natural projection p : TM → M is smooth. Then one can define
vector fields, differential forms and general types of tensors in the same way
as for manifolds without boundary. Also, the exterior derivative of differ-
ential forms extend to manifolds with boundary. Finally, also the notions
of orientability and orientation extend without problem to manifolds with
boundary.

Proposition 4.21. SupposeM is (smooth) manifold with boundary ∂M 6=
∅ of dimension m ≥ 2 and assume it is orientable.

(1) Any oriented atlas for M induces, via restriction, an oriented atlas
on ∂M .

(2) An orientation on M induces an orientation on ∂M that has the
property that for any x ∈ ∂M a basis of Tx∂M is positively oriented
if and only if adding an outward pointing vector as the first element
to it defines a positively oriented basis of TxM . In particular, ∂M
is orientable.

Proof.

(1) Suppose A is an oriented atlas for M . Then in the proof of Propo-
sition 4.20 we have seen that A|∂M is an atlas for ∂M (defining
the natural smooth structure on ∂M induced by the one on M).
For two chart (Uα, uα), (Uβ, uβ) ∈ A such that Uα ∩ Uβ ∩ ∂M 6= ∅
consider the transition map:

uαβ = uα ◦ u−1
β : uβ(Uα ∩ Uβ)→ uα(Uα ∩ Uβ)

Since the transition maps sends boundary points to boundary points,
for x ∈ Uα ∩ Uβ ∩ ∂M its derivative Duαβ(uβ(x)) at uβ(x) has the
block matrix form (

λ 0
v A

)
,

where λ ∈ R \ {0}, v ∈ Rm−1 and A ∈ GL(m − 1,R). Also,
the transition map has to sends interior points to interior point,
which implies that λ > 0. Since A is oriented, det(Duαβ(uβ(x))) =
λ det(A) > 0, which hence implies det(A) > 0. Since A is the deriv-
ative at uβ(x) of the transition map of the charts on ∂M induced
by uα and uβ , the result follows.

(2) The first statement follows immediately from (1) and Proposition
4.11 and the second from the construction of the induced orienta-
tion.

�
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4.4. Theorem of Stokes

Suppose M is an m-dimensional manifold with boundary ∂M and let
ω ∈ Ωm−1

c (M) be an m − 1-form with compact support. By definition ω
vanishes on the open set M \ supp(ω) and so does dω by (d) of Theorem
3.27, which implies that supp(dω) ⊂ supp(ω). Hence, in particular, dω is
again of compact support.

Theorem 4.22. Suppose M is an oriented m-dimensional manifold with
boundary ∂M and let ω ∈ Ωm−1

c (M). Then∫
M
dω =

∫
∂M

i∗ω =

∫
∂M

ω, (4.4)

where i : ∂M ↪→ M is the natural inclusion. In particular, if ∂M = ∅, then∫
M dω = 0.

Proof. Since supp(ω) is compact, there exist finitely many charts (Uj , uj),
j = 1, ..., `, of an oriented atlas of M such that supp(ω) ⊂ U1 ∪ ... ∪ U` and
smooth functions fj : M → [0, 1] for j = 1, ..., ` such that supp(fj) ⊂ Uj and∑`

j=1 fj |supp(ω) ≡ 1. Then

ω =
∑̀
j=1

fjω and dω =
∑̀
j=1

d(fjω),

and supp(d(fjω)) ⊂ supp(fjω) ⊂ Uj . Therefore,∫
M
dω =

∑̀
j=1

∫
Uj

d(fjω). (4.5)

In contrast, the right-hand side of (4.4) may be computed using the charts
(Uj ∩ ∂M, uj |Uj∩∂M ) and the functions fj |∂M for j = 1, ..., ` as∫

∂M
ω =

∑̀
j=1

∫
Uj∩∂M

fjω. (4.6)

In order to prove that (4.5) equals (4.6) it therefore suffices to prove that∫
Uj

d(fjω) =

∫
Uj∩∂M

fjω ∀j.

Without loss of generality we hence may assume that supp(ω) is contained
in the domain of a single chart (U, u). Then one has

ω =

m∑
i=1

ωi du
1 ∧ ... ∧ d̂ui ∧ ... ∧ dum,

for smooth functions ωi : M → R with compact support contained in U .
Since the tangent space Tx∂M for a point x ∈ ∂M is spanned by ∂

∂ui
(x) for

i ≥ 2, du1|∂M = 0 and therefore

ω|∂M = ω1 du
2 ∧ ... ∧ dum.

This implies that∫
∂M

ω =

∫
∂u(U)

ω1 ◦ u−1 =

∫
{0}×Rm−1

ω1 ◦ u−1, (4.7)
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where the last equality follows from the fact that ω1 is of compact support
contained in U . On the other hand,

dω =
∑̀
i=1

∂ωi
∂ui

dui ∧ du1 ∧ ... ∧ d̂ui ∧ ... ∧ dum

= (
m∑
i=1

(−1)i−1∂ωi
∂ui

) du1 ∧ ... ∧ dum

implies that ∫
M
dω =

m∑
i=1

(−1)i−1

∫
u(U)

∂(ωi ◦ u−1)

∂xi

=
m∑
i=1

(−1)i−1

∫
(−∞,0]×Rm−1

∂(ωi ◦ u−1)

∂xi
,

where the second equality follows from the facts that the functions ωi have
compact support contained in U . Fubini’s Theorem allows to decompose
any component in that sum into integrals over the individual coordinates,
where it does not matter in which order one integrates over the individual
components. So for each i we may integrate ∂(ωi◦u−1)

∂xi
first along the i-th

coordinate, which by the Fundamental Theorem of calculus and the fact
that the functions ωi have compact support gives∫

M
dω =

∫
Rm−1

(

∫ 0

−∞

∂(ω1 ◦ u−1)

∂x1
dx1)︸ ︷︷ ︸

=(ω1◦u−1)(0,x2,...,xm)

dx2....dxm

+

m∑
i=2

(−1)i−1

∫
(−∞,0]×Rn−2

(

∫ ∞
−∞

∂(ωi ◦ u−1)

∂xi
dxi)︸ ︷︷ ︸

=0

dx1....d̂xi...dxm

=

∫
Rm−1

(ω1 ◦ u−1)(0, x2, ..., xm) dx2....dxm,

which equals (4.7).
�

4.5. Excursion: de Rham Cohomology

We know that (Ω∗(M),∧) is an (unitial) associative graded-anticommutative
algebra over R (even over C∞(M,R)):

• Ω∗(M) =
⊕

k≥0 Ωk(M), where Ωk(M) = {0} for k > m = dim(M),
is a graded vector space
• Ωk(M) ∧ Ω`(M) ⊂ Ωk+`(M) and for ω ∈ Ωk(M) and η ∈ Ω`(M)
one has

ω ∧ η = (−1)k`η ∧ ω.
Moreover, we have a linear map d : Ω∗(M) → Ω∗(M), which is a graded
derivation of degree 1, that is,

• d(Ωk(M)) ⊂ Ωk(M)
• d(ω∧η) = dω∧η+(−1)kω∧dη for any ω ∈ Ωk(M) and η ∈ Ω∗(M)
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Definition 4.23. Suppose ω ∈ Ω∗(M) is a differential form.
• ω is called closed, if dω = 0.
• ω is called exact, if there exists η ∈ Ω∗(M) such that dη = ω.

By linearity of d, the set of closed and the set of exact forms define vector
subspaces of Ω∗(M), which we denote as follows:

Z∗(M) := ker(d) = {ω ∈ Ω∗(M) : dω = 0}
B∗(M) := im(d) = {ω ∈ Ω∗(M) : ∃η s.t. dη = ω}.

We also set Zk(M) := Z∗(M) ∩ Ωk(M) and Bk(M) := B∗(M) ∩ Ωk(M).

By Theorem, d2 = d ◦ d = 0, so B∗(M) ⊂ Z∗(M) ⊂ Ω∗(M). Moreover,
d(ω ∧ η) = dω ∧ η + (−1)deg(ω)ω ∧ dη implies that B∗(M) and Z∗(M) are
subalgebras of Ω∗(M) and B∗(M) even a two-sided ideal in Z∗(M). There-
fore,

H∗(M) := Z∗(M)/B∗(M) =
⊕
k≥0

Zk(M)/Bk(M)

is an (unitial) graded-anticommutative algebra over R. It is called the de
Rham cohomology algebra of M and

Hk(M) := Zk(M)/Bk(M)

the k-th de Rham cohomology space or group of M . For ω ∈ Zk(M)
we write [ω] ∈ Hk(M) for its cohomology class.

Remark 4.24. By construction, [ω]+[η] := [ω+η] and [ω]∧[η] := [ω∧η].

One can show that, if M is compact, H∗(M) is finite-dimensional. Also,
true for many non-compact spaces, but not always. The cohomology spaces
of degree 0 and dim(M) are easy to compute:

Lemma 4.25. Suppose M is a (smooth) manifold of dimension m.
(1) H0(M) ∼= R`, where ` is the number of connected components of

M .
(2) If M is compact, connected and oriented, then Hm(M) ∼= R.

Proof.
(1) df = 0 if and only if f : M → is constant on each connected

component of M .
(2)

∫
M : Ωm(M)→ R induces by Stokes’ Theorem, a linear map

Hm(M)→ R,
which can be shown to be an isomorphism.

�

Recall that any C∞−map f : M → N between manifolds induces an
algebra morphism f∗ : Ω∗(N)→ Ω∗(M). Since f∗ ◦ d = d ◦ f∗ by Theorem
3.27, we have f∗(Z∗(N)) ⊂ Z∗(M) and f∗(B∗(N)) ⊂ B∗(M), which implies
that f∗ induces an algebra morphism

f# : H∗(N)→ H∗(M)

[ω] 7→ [f∗ω],
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preserving the degree f#(Hk(N)) ⊂ Hk(M). Also, if g : N → P is another
smooth map between manifold, then

(g ◦ f)# = f# ◦ g#,

since (g ◦ f)∗ = f∗ ◦ g∗.

Proposition 4.26. If f : M → N is a diffemorphism between manifolds,
then

f# : H∗(N)→ H∗(M)

is an isomorphism with inverse (f#)−1 = (f−1)#.

Proof. The identities f ◦ f−1 = IdN and f−1 ◦ f = IdM imply that

(f−1)# ◦ f# = (f ◦ f−1)# = Id#
N = IdH∗(N)

f# ◦ (f−1)# = (f−1 ◦ f)# = Id#
M = IdH∗(M).

�

By the previous proposition, diffeomorphic manifolds have isomorphic
de Rham cohomology groups. In fact, even more is true: The de Rham
cohomology of smooth manifold is a topological invariant. It can be identified
with the singular cohomology of M with real coefficients. This shows in
particular that homotopic equivalent (hence, in particular homeomorphic),
smooth manifolds have isomorphic de Rham cohomology. So tools from
topology can be used to compute the de Rham cohomology.
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Riemannian Manifolds

5.1. Basic definitions

5.2. Hypersurfaces in Rn

5.3. Riemannian manifolds

5.3.1. Affine connections.

5.3.2. The Levi-Civita connection of a Riemannian manifold.
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