Seminar 3—Global Analysis

- 1. For a topological space M denote by $C^0(M)$ the vector space of continuous real-valued functions $f:M\to\mathbb{R}$. Any continuous map $F:M\to N$ between topological spaces M and N induces a map $F^*:C^0(N)\to C^0(M)$ given by $F^*(f):=f\circ F:M\to\mathbb{R}$.
 - (a) Show that F^* is linear.
 - (b) If M and N are (smooth) manifolds, show that $F:M\to N$ is smooth \iff $F^*(C^\infty(N))\subset C^\infty(M).$
 - (c) If F is a homeomorphism between (smooth) manifolds, show that F is a diffeomorphism $\iff F^*(C^\infty(N)) \subset C^\infty(M)$ and $F^*: C^\infty(N) \to C^\infty(M)$ is an isomorphism.
- 2. We have seen in the first tutorial that $\operatorname{Hom}_r(\mathbb{R}^n,\mathbb{R}^m)$ is a submanifold of $\operatorname{Hom}(\mathbb{R}^n,\mathbb{R}^m)$ of dimension r(n+m-r) in. For $X\in\operatorname{Hom}_r(\mathbb{R}^n,\mathbb{R}^m)$ compute the tangent space

$$T_X \operatorname{Hom}_r(\mathbb{R}^n, \mathbb{R}^m) \subset T_X \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m) \cong \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m).$$

3. We have seen in the first tutorial that the Grassmannian manifold $\operatorname{Gr}(r,n)$ can be realized as a submanifold of $\operatorname{Hom}(\mathbb{R}^n,\mathbb{R}^n)$ of dimension r(n-r). For $E\in\operatorname{Gr}(r,n)$ compute the tangent space

$$T_E Gr(r, n) \subset T_E Hom(\mathbb{R}^n, \mathbb{R}^n) \cong Hom(\mathbb{R}^n, \mathbb{R}^n).$$

- 4. Consider the general linear group $GL(n,\mathbb{R})$ and the special linear group $SL(n,\mathbb{R})$. We have seen that they are submanifolds of $M_n(\mathbb{R}) = \mathbb{R}^{n^2}$ (even so called Lie groups) and that $T_{Id}GL(n,\mathbb{R}) \cong M_n(\mathbb{R}) = \mathbb{R}^{n^2}$.
 - (a) Compute the tangent space $T_{\text{Id}}SL(n,\mathbb{R})$ of $SL(n,\mathbb{R})$ at the identity Id.
 - (b) Fix $A \in SL(n, \mathbb{R})$ and consider the conjugation $\operatorname{conj}_A : SL(n, \mathbb{R}) \to SL(n, \mathbb{R})$ by A given by $\operatorname{conj}_A(B) = ABA^{-1}$. Show that conj_A is smooth and compute the derivative $T_{\operatorname{Id}}\operatorname{conj}_A : T_{\operatorname{Id}}\operatorname{SL}(n, \mathbb{R}) \to T_{\operatorname{Id}}\operatorname{SL}(n, \mathbb{R})$.
 - (c) Consider the map $Ad: SL(n,\mathbb{R}) \to Hom(T_{Id}SL(n,\mathbb{R}),T_{Id}SL(n,\mathbb{R}))$ given by $Ad(A) := T_{Id}conj_A$. Show that Ad is smooth and compute $T_{Id}Ad$.

5. Consider \mathbb{R}^n equipped with the standard inner product of signature (p,q) (where p + q = n) given by

$$\langle x, y \rangle := \sum_{i=1}^{p} x_i y_i - \sum_{i=p+1}^{n} x_i y_i$$

and the group of linear orthogonal transformation of $(\mathbb{R}^n, \langle \cdot, \cdot \rangle)$ given by

$$O(p,q) := \{ A \in GL(n,\mathbb{R}) : \langle Ax, Ay \rangle = \langle x, y \rangle \quad \forall x, y \in \mathbb{R}^n \}.$$

(a) Show that

$$O(p,q) = \{ A \in GL(n,\mathbb{R}) : A^{-1} = I_{p,q}A^tI_{p,q} \},$$

where $I_{p,q}=egin{pmatrix}\operatorname{Id}_p&0\\0&-\operatorname{Id}_q\end{pmatrix}$, and that $\operatorname{O}(p,q)$ is a submanifold of $M_n(\mathbb{R})$. What is its dimension?

- (b) Show that $\mathrm{O}(p,q)$ is a subgroup of $\mathrm{GL}(n,\mathbb{R})$ with respect to matrix multiplication μ and that $\mu: O(p,q) \times O(p,q) \to O(p,q)$ is smooth (i.e. that O(p,q)is a Lie group.)
- (c) Compute the tangent space $T_{Id}O(p,q)$ of O(p,q) at the identity Id.