IB016 Seminar on Functional Programming

Faculty of Informatics
Spring 2020
Extent and Intensity
0/2. 2 credit(s) (plus extra credits for completion). Type of Completion: z (credit).
Bc. Adam Matoušek (lecturer)
RNDr. Vladimír Štill (lecturer)
Bc. Henrieta Micheľová (seminar tutor)
Guaranteed by
RNDr. Vladimír Štill
Department of Computer Science - Faculty of Informatics
Supplier department: Department of Computer Science - Faculty of Informatics
IB015 Non-Imperative Programming
Pre-requisities for enrolling in the course are to be familiar with Haskell in the scope of the IB015 Non-Imperative Programming course and to have a positive attitude towards functional programming.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 30 student(s).
Current registration and enrolment status: enrolled: 0/30, only registered: 0/30, only registered with preference (fields directly associated with the programme): 0/30
Fields of study the course is directly associated with
there are 54 fields of study the course is directly associated with, display
Course objectives
Students will significantly extend their knowledge of functional programming. At the end of the course, they should be able to solve non-trivial programming problems using Haskell and to be familiar with practical use of this functional language.
Learning outcomes
Student will be aple to use advanced features of Haskell programming language.
  • GHC(i), interpreter commands, compilation of Haskell programs
  • Control-flow statements, recursion, anonymous functions, higher-order functions, operators for function composition and application.
  • Modules: Important modules in Haskell 2010, import of modules, writing your own modules.
  • Support tools, packages, cabal, Haskage.
  • Typeclasses: Show, Read, numerical typeclasses. Defining new typeclasses.
  • Data structures: associative lists, records, arrays, implementation of new data structures.
  • Input and output: file IO, system programming, IO in Haskell in general.
  • Functors, applicative, monads.
  • Error handling and exceptions: Maybe, Either, catching and setting of exceptions, proper exception handling.
  • Testing, optimization, documentation: QuickCheck, tail-recursion, strictness annotations. Documenting code and documentation generation.
  • Parsing: regular expressions, Parsec parser generator.
  • Interesting syntanctical extensions in GHC.
  • LIPOVAČA, Miran. Learn You a Haskell for Great Good!: A Beginner's Guide. First Edition. San Francisco, CA, USA: No Starch Press, 2011. 400 pp. ISBN 978-1-59327-283-8. URL info
  • O'SULLIVAN, Bryan, John GOERZEN and Don STEWART. Real World Haskell. First Edition. : O'Reilly Media, Inc., 2009. 670 pp. ISBN 978-0-596-51498-3. URL info
Teaching methods
The course is organized as a series of two-hour seminars wherein topics of application functional programming in practice are presented to students. Apart from that, it is requested to solve five homework assignments regarding the discussed subjects.
Assessment methods
In order to successful completion of the course, it is necessary to obtain at least 50 % points from homework assignments. The attendance of seminars is not compulsory, but highly recommended.
Language of instruction
Follow-Up Courses
Further Comments
The course is taught annually.
The course is taught: every week.
Teacher's information
The course is also listed under the following terms Spring 2010, Spring 2011, Spring 2012, Spring 2013, Spring 2015, Spring 2016, Spring 2017, Spring 2018, Spring 2019.
  • Enrolment Statistics (Spring 2020, recent)
  • Permalink: https://is.muni.cz/course/fi/spring2020/IB016