IB101 Introduction to Logic

Faculty of Informatics
Spring 2020
Extent and Intensity
2/2/0. 3 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
doc. RNDr. Lubomír Popelínský, Ph.D. (lecturer)
Simona Bennárová (seminar tutor)
Dr. rer. nat. Achim Blumensath (seminar tutor)
Daniela Krúželová (seminar tutor)
Mgr. Jakub Lédl (seminar tutor)
Bc. Henrieta Micheľová (seminar tutor)
Bc. Markéta Naušová (seminar tutor)
Roman Solař (seminar tutor)
Bc. Lukáš Zaoral (seminar tutor)
RNDr. Aleš Zlámal (seminar tutor)
Bc. Viktória Spišaková (assistant)
Bc. Alena Zahradníčková (assistant)
Guaranteed by
doc. RNDr. Lubomír Popelínský, Ph.D.
Department of Computer Science - Faculty of Informatics
Contact Person: doc. RNDr. Lubomír Popelínský, Ph.D.
Supplier department: Department of Computer Science - Faculty of Informatics
Prerequisites (in Czech)
( IB000 Math. Foundations of CS || IB112 Math Foundations ) && ! IA008 Computational Logic
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
Fields of study the course is directly associated with
there are 55 fields of study the course is directly associated with, display
Course objectives
This subject gives basics of thinking in logic. The goal of this subject is to give introduction to use of logic in computer science. At the end of the course students will be familiar with propositional and first-order logic.
Learning outcomes
At the end of the course students
- will be familiar with propositional and first-order logic, and capable to use them;
- know basics of deductive proofs;
- wiil be able to use different variants of resolution.
Syllabus
  • This course is an introduction to propositional and predicate logic.
  • Motivation, examples of the use of logic in computer science. Logic in mathematics.
  • Propositional logic, logical conectives, logical consequence, truth tables.
  • Natural language and formalization in propositional logic.
  • Dokazatelnost, normální formy. Věty o dedukci, formulace a praktické využití.
  • Základy teorie důkazů ve výrokové logice, axiomatické systémy, metoda Davise-Putnama, úvod do rezoluce.
  • Predikátový počet 1. řádu, predikátové formule, sémantika, axiomy.
  • Dokazatelnost. Normální formy predikátové logiky. Přirozený jazyk a formalizace v predikátové logice.
  • Resolution in predicate calculus
  • Úvod do výpočtové logiky. Použití logik v informatice. Formulace složitějších problémů pomocí logiky.
Literature
    recommended literature
  • DUŽÍ, Marie. Logika pro informatiky (a příbuzné obory) : učební text. 1. vyd. Ostrava: VŠB-TU Ostrava, 2012. 179 s. ISBN 9788024826622. info
  • NERODE, Anil and Richard A. SHORE. Logic for applications. New York: Springer-Verlag, 1993. xvii, 365. ISBN 0387941290. info
  • PRIEST, Graham. Logic : a very short introduction. 1st pub. Oxford: Oxford University Press, 2000. xii, 140. ISBN 9780192893208. info
  • ŠTĚPÁN, Jan. Klasická logika. 1. vyd. Olomouc: Univerzita Palackého v Olomouci, 2001. 198 s. ISBN 8024402548. info
Teaching methods
Lectures, exercises.
Assessment methods
Homework questionairres and a written midterm exam and a written final exam.
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course is taught annually.
The course is taught: every week.
Teacher's information
http://www.fi.muni.cz/~popel/lectures/bak_logika/
The course is also listed under the following terms Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Spring 2011, Spring 2012, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, Spring 2018, Spring 2019.
  • Enrolment Statistics (Spring 2020, recent)
  • Permalink: https://is.muni.cz/course/fi/spring2020/IB101