FI:M004 Linear Algebra and Geometry II - Course Information
M004 Linear Algebra and Geometry II
Faculty of InformaticsSpring 2002
- Extent and Intensity
- 2/0. 2 credit(s) (plus extra credits for completion). Recommended Type of Completion: zk (examination). Other types of completion: k (colloquium), z (credit).
- Teacher(s)
- Mgr. Michal Bulant, Ph.D. (lecturer)
prof. RNDr. Jan Paseka, CSc. (lecturer) - Guaranteed by
- doc. RNDr. Jiří Kaďourek, CSc.
Departments – Faculty of Science
Contact Person: prof. RNDr. Jan Paseka, CSc. - Timetable
- Tue 14:00–15:50 UKP, Thu 15:00–16:50 D1
- Prerequisites
- M003 Linear Algebra and Geometry I && (! M504 Linear Algebra and Geometry II )&&(!NOW( M504 Linear Algebra and Geometry II ))
Prerequisites M003 Linear Algebra and Geometry I - Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Informatics (programme FI, B-IN)
- Informatics (programme FI, M-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, M-IN)
- Upper Secondary School Teacher Training in Informatics (programme FI, M-SS)
- Information Technology (programme FI, B-IN)
- Syllabus
- Bilinear and quadratic forms: Definitions, description of bilinear forms in coordinates, symmetric bilinear forms and symmetric matrices, diagonalization of quadratic forms, quadrics. x
- Spaces with scalar product: Scalar product, ortogonal vectors, Gramm--Schmidt process, unitary and ortogonal matrices, ortogonal projection.
- Analytic geometry in Euklidean spaces: Distances and angles between afine Euklidean subspaces.
- Linear operators: Invariant subspaces, eigenvectors and eigenvalues, spectrum of linear operator, basic information on Jordan canonical forms.
- Spectral theory: Definition and properties of selfadjoint linear operators, their spectrum and eigenvalues, ortogonal classification of quadratic forms.
- Linear and affine groups: Linear groups $GL(n,R)$, $GL(n,C)$, $SL(n,R)$, $O(n)$, $SO(n)$ and their affine extensions. /SYLTEXT>
- Literature
- Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita,1998. 138. elektronicky dostupné na
http://www.math.muni.cz/~slovak . - Zlatoš, Pavol. Lineárna algebra a geometria. Předběžné učební texty MFF UK v Bratislavě.
- ŠMARDA, Bohumil. Lineární algebra. Praha: Státní pedagogické nakladatelství, 1985, 159 s. info
- Slovák, Jan. Lineární algebra. Učební texty. Brno:~Masarykova univerzita,1998. 138. elektronicky dostupné na
- Assessment methods (in Czech)
- Početní a teoretické zvládnutí přednesené látky (porozumnění základním pojmům a větám, jednoduché důkazy).
- Language of instruction
- Czech
- Further Comments
- The course is taught annually.
- Teacher's information
- http://www.math.muni.cz/~slovak http://www.math.muni.cz/~cadek
- Enrolment Statistics (recent)
- Permalink: https://is.muni.cz/course/fi/spring2002/M004