MB005 Základy matematiky

Fakulta informatiky
podzim 2003
Rozsah
2/2. 4 kr. (plus ukončení). Doporučované ukončení: zk. Jiná možná ukončení: k, z.
Vyučující
doc. Mgr. Ondřej Klíma, Ph.D. (přednášející)
Mgr. Jaroslav Hrdina, Ph.D. (cvičící)
Roman Rožník (cvičící)
Mgr. Lenka Zalabová, Ph.D. (cvičící)
Garance
prof. RNDr. Jiří Rosický, DrSc.
Fakulta informatiky
Kontaktní osoba: prof. RNDr. Jiří Rosický, DrSc.
Rozvrh
Pá 10:00–11:50 VC423
  • Rozvrh seminárních/paralelních skupin:
MB005/01: St 8:00–9:50 B003, J. Hrdina
MB005/02: St 10:00–11:50 B003, J. Hrdina
MB005/03: St 12:00–13:50 B003, L. Zalabová
MB005/04: St 14:00–15:50 B003, L. Zalabová
MB005/05: Čt 10:00–11:50 B011, R. Rožník
MB005/06: Čt 12:00–13:50 B011, R. Rožník
MB005/07: Pá 8:00–9:50 B003, O. Klíma
Předpoklady
(! M005 Základy matematiky )&&! MB101 Matematika I &&! NOW ( MB101 Matematika I )
Znalost středoškolské matematiky.
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory
Cíle předmětu
Přednáška navazuje na středoškolskou látku a seznamuje s některými základními matematickými pojmy a představami. Jsou to zejména základy matematické logiky, teorie množin, algebry a kombinatoriky. Připravuje studenta na jejich využití v dalším průběhu studia.
Osnova
  • 1. Základní logické pojmy (výroky, kvantifikátory, matematická tvrzení a jejich důkazy).
  • 2. Základní vlastnosti celých čísel (věta o dělení se zbytkem celých čísel, dělitelnost, číselné kongruence).
  • 3. Základní množinové pojmy (množinové operace včetně kartézského součinu).
  • 4. Zobrazení (základní typy zobrazení, skládání zobrazení).
  • 5. Základy kombinatoriky (variace, kombinace, princip inkluze a exkluze).
  • 6. Mohutnost množiny (konečné, spočetné a nespočetné množiny).
  • 7. Relace (relace mezi množinami, skládání relací, relace na množině).
  • 8. Uspořádané množiny (relace uspořádání a lineárního uspořádání, význačné prvky, Hasseovy diagramy, supremum a infimum).
  • 9. Ekvivalence a rozklady (relace ekvivalence, rozklad na množině a jejich vzájemný vztah).
  • 10. Základní algebraické struktury (grupoid, pologrupa, grupa, okruh, obor integrity, těleso).
  • 11. Homomorfizmy algebraických struktur (základní vlastnosti homomorfimů, jádro a obraz homomorfizmu).
Literatura
  • Balcar, Bohuslav - Štěpánek, Petr. Teorie množin [Balcar, Štěpánek, 1986]. 1. vyd. Praha : Academia, 1986. 412 s. r87U.
  • Childs, Lindsay. A Concrete Introduction to Higher Algebra, Springer-Verlag, 1979, 338s. ISBN 0-387-90333-x
  • Horák, Pavel. Algebra a teoretická aritmetika. 1 [Horák]. Brno : Rektorát Masarykovy univerzity Brno, 1991. 196 s. ISBN 80-210-0320-0.
  • Rosický, Jiří. Algebra. I [Rosický, 1994]. 2. vyd. Brno : Vydavatelství Masarykovy univerzity, 1994. 140 s. ISBN 80-210-0990-.
  • J. Rosický, Základy matematiky, učební text
Metody hodnocení
Zkouška je písemná a má dvě části-první písemka(25%) během semestru, druhá(75%) ve zkouškovém období. Budou právě 4 termíny ve zkouškovém - 2 řádné, první opravný a druhý opravný. K připuštění ke zkoušce je třeba získat zápočet ze cvičení. Ten je podmíněn účastí, jsou dovoleny tři neomluvené neúčasti (a tři omluvené).
Informace učitele
http://math.muni.cz/~klima/ZakladyM/zakladym-fi03.html
Vyžaduje se znalost látky uvedené v osnově v rozsahu přednášky. Lze ji získat i studiem této látky z různých položek literatury.
Další komentáře
Předmět je vyučován každoročně.
Nachází se v prerekvizitách jiných předmětů
Předmět je zařazen také v obdobích podzim 2002, jaro 2003, podzim 2004, podzim 2005, podzim 2006, podzim 2007, podzim 2008, podzim 2009, podzim 2010, podzim 2011.