## MB102 Differential and Integral Calculus

**Faculty of Informatics**

Spring 2018

**Extent and Intensity**- 2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
**Teacher(s)**- doc. Mgr. Petr Hasil, Ph.D. (lecturer)

Mgr. Milan Bačík (seminar tutor)

Mgr. Martin Doležal (seminar tutor)

Mgr. Pavel Francírek, Ph.D. (seminar tutor)

Mgr. Jakub Juránek (seminar tutor)

Mgr. Lukáš Másilko (seminar tutor)

Mgr. Jan Reiss (seminar tutor)

Mgr. Radek Suchánek (seminar tutor)

Mgr. Jiřina Šišoláková (seminar tutor)

doc. RNDr. Michal Veselý, Ph.D. (alternate examiner) **Guaranteed by**- prof. RNDr. Jan Slovák, DrSc.

Faculty of Informatics

Supplier department: Faculty of Science **Timetable**- Wed 16:00–17:50 D2, Wed 16:00–17:50 D1, except Wed 16. 5.
- Timetable of Seminar Groups:

*J. Reiss*

MB102/02: Tue 10:00–11:50 A320,*J. Reiss*

MB102/03: Tue 16:00–17:50 B204,*M. Bačík*

MB102/04: Tue 18:00–19:50 B204,*M. Bačík*

MB102/05: Wed 8:00–9:50 B204,*J. Juránek*

MB102/06: Wed 10:00–11:50 B204,*J. Juránek*

MB102/07: Mon 8:00–9:50 B204,*J. Šišoláková*

MB102/08: Mon 12:00–13:50 A320,*J. Šišoláková*

MB102/09: Tue 14:00–15:50 B204,*J. Reiss*

MB102/10: Thu 16:00–17:50 B204,*P. Francírek*

MB102/11: Thu 18:00–19:50 B204,*P. Francírek*

MB102/12: Mon 16:00–17:50 B204,*R. Suchánek*

MB102/13: Mon 18:00–19:50 B204,*R. Suchánek*

MB102/14: Wed 18:00–19:50 B204,*R. Suchánek*

MB102/15: Thu 8:00–9:50 B204,*M. Doležal*

MB102/16: Thu 10:00–11:50 B204,*M. Doležal* **Prerequisites**- ! NOW (
**MB202**Calculus B ) && !**MB202**Calculus B

High school mathematics **Course Enrolment Limitations**- The course is also offered to the students of the fields other than those the course is directly associated with.
**fields of study / plans the course is directly associated with**- there are 16 fields of study the course is directly associated with, display
**Course objectives**- The course is the second part of the four semester block of Mathematics. The course Differential and Integral Calculus, in particular, is concerned with the basic concepts of Calculus including numerical and applied aspects.
**Learning outcomes**- At the end of the course students will be able to:

work both practically and theoretically with the derivative and (indefinite and definite) integral;

analyse the behavior of functions of one real variable.

understand the theory and use of infinite number series and power series;

understand the selected applications of the Calculus;

apply the methods of calculus to concrete problems. **Syllabus**- Polynomial interpolation
- Continuous functions and limits
- Derivative and its applications
- Elementary functions
- Indefinite integral
- Riemann integral and its applications
- Infinite series and power series, Fourier series, integral transformations

**Literature**- RILEY, K.F., M.P. HOBSON and S.J. BENCE.
*Mathematical Methods for Physics and Engineering*. second edition. Cambridge: Cambridge University Press, 2004. 1232 pp. ISBN 0 521 89067 5. info - SLOVÁK, Jan, Martin PANÁK and Michal BULANT.
*Matematika drsně a svižně (Brisk Guide to Mathematics)*. 1. vyd. Brno: Masarykova univerzita, 2013. 773 pp. ISBN 978-80-210-6307-5. doi:10.5817/CZ.MUNI.O210-6308-2013.*Základní učebnice matematiky pro vysokoškolské studium*info

*recommended literature*- RILEY, K.F., M.P. HOBSON and S.J. BENCE.
**Bookmarks**- https://is.muni.cz/ln/tag/FI:MB102!
**Teaching methods**- There are theoretical lectures and standard tutorial
**Assessment methods**- Two hours of lectures per week and two hours of compulsory exercises/seminar group. During the semester, two obligatory mid-term exams are avaluated (each for max 10 points). In the seminar groups, there are 4-6 half an hour exams during the semester. The seminars are evaluated in total by max 5 points. Students, who collect during the semester (i.e., in exercises and mid-term exams) less than 10 points, are graded as X and they do not proceed to the final examination. The final exam is two hours long and written for max 20 points. For successfull examination (the grade at least E), the student needs in total 20 points or more.
**Language of instruction**- Czech
**Follow-Up Courses****Further comments (probably available only in Czech)**- The course is taught each semester.
**Listed among pre-requisites of other courses**- PřF:
**M3121**Probability and Statistics I

M2100 || FI:MB001||FI:MB102||M2B02||FI:MB202|| NOW(MIN301) || MIN301 **MA015**Graph Algorithms

MB005||(MB101&&MB102)||(MB201&&MB102)||(MB101&&MB202)||(MB201&&MB202)||(PřF:M1120)||PROGRAM(N-IN)||PROGRAM(N-AP)**MB142**Applied math analysis

!MB152 && !NOW(MB152) && !MB102 && !MB202**MB143**Design and analysis of statistical experiments

MB141 || MB142 || MB101 || MB201 || MB102 || MB202**MB152**Differential and Integral Calculus

( !MB202 && !MB102 )**MB153**Statistics I

( MB151 || MB101 || MB201 || MB152 || MB102 || MB202 ) && ( !MB103 && !MB203 && !MV011 )**MB154**Discrete mathematics

!MB104 && !MB204 && ( MB101 || MB201 || MB151 || MB102 || MB202 || MB152 )

- PřF:

- Enrolment Statistics (Spring 2018, recent)
- Permalink: https://is.muni.cz/course/fi/spring2018/MB102