MB104 Mathematics IV

Faculty of Informatics
Spring 2008
Extent and Intensity
2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
Teacher(s)
Mgr. Michal Bulant, Ph.D. (lecturer)
Mgr. Jan Herman (lecturer)
Mgr. Jitka Kühnová, Ph.D. (lecturer)
Ing. Mgr. Dávid Dereník (seminar tutor)
RNDr. Jiří Glozar (seminar tutor)
Mgr. Petr Liška, Ph.D. (seminar tutor)
Mgr. Miloš Přinosil, Ph.D. (seminar tutor)
Mgr. Petr Pupík (seminar tutor)
Guaranteed by
prof. RNDr. Jan Slovák, DrSc.
Faculty of Informatics
Timetable
Mon 8:00–9:50 D1, Wed 8:00–9:50 D1
  • Timetable of Seminar Groups:
MB104/01: Tue 14:00–15:50 B007, J. Glozar
MB104/02: Tue 16:00–17:50 B007, J. Glozar
MB104/03: Wed 18:00–19:50 B003, P. Liška
MB104/04: Tue 14:00–15:50 B003, M. Přinosil
MB104/05: Tue 18:00–19:50 B003, J. Herman
MB104/06: Thu 14:00–15:50 B003, P. Pupík
MB104/07: Thu 12:00–13:50 B003, P. Pupík
MB104/08: Thu 18:00–19:50 B003, P. Liška
MB104/09: Tue 18:00–19:50 B011, P. Pupík
MB104/10: Wed 14:00–15:50 B011, J. Kühnová
Prerequisites
Recommended: Calculus and linear algebra.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 15 fields of study the course is directly associated with, display
Course objectives
The last part of the block Mathematics I-IV, for the brief content of the whole block see Mathematics I MB101.
Syllabus
  • Abstract mathematical structures: groups, algebras, lattices, rings, fields, divisibility, prime numbers decompositions, Euler theorem. Introduction to probability theory and statistics: Probality functins and their properties, conditional probability, Bayes formula, random quantities, mean value, median, quantil, variance, sequences of random quantities, law of large numbers, examples of discrete and continuous distributions, selected applications.
Literature
  • BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Popisná statistika. Třetí doplněné vydání. Brno: Masarykova univerzita, 1998. 48 stran. ISBN 8021018313. info
  • BUDÍKOVÁ, Marie, Štěpán MIKOLÁŠ and Pavel OSECKÝ. Teorie pravděpodobnosti a matematická statistika : sbírka příkladů [Budíková, 1996]. 1. vyd. Brno: Masarykova univerzita, 1996. 131 s. ISBN 80-210-1329-X. info
  • ROSICKÝ, J. Algebra, grupy a okruhy. 3rd ed. Brno: Masarykova univerzita, 2000. 140 pp. ISBN 80-210-2303-1. info
Bookmarks
https://is.muni.cz/ln/tag/FI:MB104!
Assessment methods (in Czech)
Dvouhodinová přednáška a dvouhodinová přednášená ukázková řešení s řešením vzorových příkladů. Povinná je docházka do cvičení, součástí zkoušky budou 2-3 průběžně psané písemky. Zakončení písemnou zkouškou na konci semestru.
Language of instruction
Czech
Further comments (probably available only in Czech)
Study Materials
The course is taught annually.
Listed among pre-requisites of other courses
The course is also listed under the following terms Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2009, Spring 2010, Spring 2011, Spring 2012, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017, Spring 2018, Spring 2019, Spring 2020.
  • Enrolment Statistics (Spring 2008, recent)
  • Permalink: https://is.muni.cz/course/fi/spring2008/MB104