#
FI:MB101 Mathematics I - Course Information

## MB101 Mathematics I

**Faculty of Informatics**

Spring 2013

**Extent and Intensity**- 2/2. 4 credit(s) (plus extra credits for completion). Type of Completion: zk (examination).
**Teacher(s)**- doc. Mgr. Ondřej Klíma, Ph.D. (lecturer)

Mgr. David Klaška (seminar tutor)

Mgr. David Kruml, Ph.D. (seminar tutor)

RNDr. Jan Vondra, Ph.D. (seminar tutor)

doc. Mgr. Josef Šilhan, Ph.D. (assistant) **Guaranteed by**- prof. RNDr. Jan Slovák, DrSc.

Faculty of Informatics

Supplier department: Faculty of Science **Timetable**- Thu 10:00–11:50 D1
- Timetable of Seminar Groups:

*O. Klíma*

MB101/02: Mon 8:00–9:50 G125,*D. Kruml*

MB101/03: Mon 10:00–11:50 G125,*D. Kruml*

MB101/04: Fri 12:00–13:50 G124,*D. Klaška*

MB101/05: Fri 14:00–15:50 G124,*D. Klaška* **Prerequisites**- !
**MB005**Foundations of mathematics &&! NOW (**MB005**Foundations of mathematics )

High school mathematics. **Course Enrolment Limitations**- The course is also offered to the students of the fields other than those the course is directly associated with.

The capacity limit for the course is 320 student(s).

Current registration and enrolment status: enrolled:**0**/320, only registered:**0**/320, only registered with preference (fields directly associated with the programme):**0**/320 **Fields of study the course is directly associated with**- there are 16 fields of study the course is directly associated with, display
**Course objectives**- The course is the first part of the four semester block of Mathematics. In the entire course, the fundamentals of general algebra and number theory, linear algebra, mathematical analysis, numerical methods, combinatorics, as well as probability and statistics are presented. Passing this four semester course will allow the student to deal with basic mathematical concepts and problems and he/she will master the discrete and continuous intuition necessary for the mathematical formulation of real problems. The first part of the course, in particular, aims at the principles of mathematics, linear algebra, elementary geometry and some explicit applications.
**Syllabus**- 1. Warm up (4 weeks) -- scalars, scalar functions, combinatorial examples and identities, finite probability, geometric probability, geometry of the plane, relations and mappings, eqivalences nad orderings.
- 2. Vectors and matrices (3 weeks) -- vectors, vector space, linear independence, basis, linear mappings, matrices, matrix calculus and determinants, orthogonality, eigenvalues and eigenvectors.
- 3. Linear models (3 weeks) -- systems of linear (in)equalities, linear programming problem, linear difference equations, iterated processes (population models) and Markov chains.
- $. Analytical geometry (2 weeks) -- geometrical applications: line, plane, parametric versus non-paramteric descriptions, positioning of planes and lines, projective space extension, angle, length, volume, elementary classification of quadrics.

**Literature**- MOTL, Luboš and Miloš ZAHRADNÍK.
*Pěstujeme lineární algebru*. 3. vyd. Praha: Univerzita Karlova v Praze, nakladatelství Karolinum, 2002. 348 s. ISBN 8024604213. info - FUCHS, Eduard.
*Logika a teorie množin (Úvod do oboru)*. 1. vyd. Brno: Rektorát UJEP, 1978. 175 s. info - RILEY, K.F., M.P. HOBSON and S.J. BENCE.
*Mathematical Methods for Physics and Engineering*. second edition. Cambridge: Cambridge University Press, 2004. 1232 pp. ISBN 0 521 89067 5. info - HORÁK, Pavel.
*Algebra a teoretická aritmetika.*2. vyd. Brno: Masarykova univerzita, 1993. 145 s. ISBN 8021008164. info

- MOTL, Luboš and Miloš ZAHRADNÍK.
**Bookmarks**- https://is.muni.cz/ln/tag/FI:MB101!
**Teaching methods**- Lecture covering the theory with illustrative solved problems. Seminar groups devoted to solving numerical problems.
**Assessment methods**- Two hours of lectures, two hours of tutorial. Final written test as examination. Results of tutorials/homeworks are partially reflected in the assessment.
**Language of instruction**- Czech
**Follow-Up Courses****Further comments (probably available only in Czech)**- Study Materials

The course is taught annually.

Information on course enrolment limitations: Přednostně určen pro neúspěšné z podzimu 2006 **Listed among pre-requisites of other courses**- PřF:
**M7190**Game Theory

M1110 || M1111 || FI:MB101 || FI:MB201 || FI:MB003 **MA007**Mathematical Logic

MB005 || MB101|| MB201|| PřF:M1120 || PřF:M1125**MA015**Graph Algorithms

MB005||(MB101&&MB102)||(MB201&&MB102)||(MB101&&MB202)||(MB201&&MB202)||(PřF:M1120)||PROGRAM(N-IN)||PROGRAM(N-AP)**MB141**Linear algebra and discrete mathematics

!NOW(MB151) && ( !MB151 || !MB154 ) && ( !MB101 || !MB104 )**MB151**Linear models

IB000 && ( !MB101 && !MB201 )**MV008**Algebra I

(MB005||MB101||MB201) && !MB008**PV275**Introduction to Quantum Computer Programming

( MB141 || MB151 || MB101 || MB201 ) && IB111

- PřF:

- Enrolment Statistics (Spring 2013, recent)
- Permalink: https://is.muni.cz/course/fi/spring2013/MB101