DSAN01 Analýza dat pro Neurovědy

Lékařská fakulta
jaro 2012
Rozsah
2/0. 5 kr. Ukončení: k.
Vyučující
prof. RNDr. Ladislav Dušek, Ph.D. (přednášející)
RNDr. Eva Koriťáková, Ph.D. (přednášející)
Garance
prof. RNDr. Ladislav Dušek, Ph.D.
Institut biostatistiky a analýz - Jiná pracoviště pro vzdělávací a vědecko-výzkumnou činnost - Lékařská fakulta
Kontaktní osoba: prof. RNDr. Ladislav Dušek, Ph.D.
Dodavatelské pracoviště: Institut biostatistiky a analýz - Jiná pracoviště pro vzdělávací a vědecko-výzkumnou činnost - Lékařská fakulta
Předpoklady
PROGRAM ( D - NE4 ) || PROGRAM ( D - NR4 ) || PROGRAM ( D - PC4 ) || PROGRAM ( D - RA4 )|| PROGRAM ( D - FA4 )
Bazální znalosti principů biostatistiky a analýzy dat. Výhodou je předchozí absolvování více teoreticky zaměřeného kurzu Analýza klinických dat.
Omezení zápisu do předmětu
Předmět je určen pouze studentům mateřských oborů.
Mateřské obory/plány
Cíle předmětu
V průběhu kurzu budou účastníci seznámeni s principy základních metod analýzy medicínských dat s ohledem na specifika datových souborů a výpočtů z oblasti neurovědního výzkumu. Důraz bude kladen především na správnou aplikaci těchto metod v praxi a na interpretaci dosažených výsledků. Probíraná teorie bude vždy následována praktickými příklady v systému STATISTICA, případně v jiných nástrojích, které jsou na Masarykově univerzitě volně dostupné.
Osnova
  • 1. Jak medicínská data správně popsat, vizualizovat a testovat: Typy medicínských dat a jejich vizualizace. Popisná sumarizace dat – průměr, medián, kvantily, rozptyl, směrodatná odchylka, intervaly spolehlivosti. Normální rozdělení a rozdělení od něj odvozená – Chí-kvadrát rozdělení, Studentovo t rozdělení, aj. Transformace dat – normalizace, standardizace, kategorizace. Formulování hypotéz nad medicínskými daty – nulová a alternativní hypotéza. Hladina významnosti a síla testu, power analýza. p-hodnota. 2. Jak a kdy použít parametrické a neparametrické testy I.: Vhodná volba typu testu v různých situacích. Jednovýběrové testy – z-test, jednovýběrový t-test, párový t-test. Dvouvýběrový t-test. Neparametrické testy – Wilcoxonův test, Mannův-Whitneyův test aj.. F-test. 3. Jak a kdy použít parametrické a neparametrické testy II.: Analýza rozptylu (ANOVA) a její předpoklady. Problém násobného testování hypotéz a použití korekčních procedur – Bonferonniho korekce, FDR. Správná aplikace těchto korekcí. Kruskalův-Wallisův test. 4. Jak analyzovat kategoriální a binární data: Analýza kontingenčních tabulek – Pearsonův chí-kvadrát test, Fisherův test, McNemarův test. Relativní riziko (relative risk) a poměr šancí (odds ratio). Hodnocení diagnostických testů – senzitivita, specificita, pozitivní a negativní prediktivní hodnota, věrohodnostní poměr. Příklady správného a nesprávného hodnocení diagnostické síly testu. Hledání diagnostického cut-off pomocí ROC křivek. 5. Jak hodnotit vztah spojitých proměnných a základy regresního modelování: Základy korelační analýzy – Pearsonův a Spearmanův korelační koeficient. Základy regresní analýzy – lineární regrese, odstranění vlivu kovariát. Analýza přežití a Coxova regrese.
Literatura
  • Zar, J.H. (1998) Biostatistical analysis. London: Prentice Hall, 4th ed.
  • HAVRÁNEK, Tomáš. Statistika pro biologické a lékařské vědy. 1. vyd. Praha: Academia, 1993. 476 s. ISBN 8020000801. info
  • Benedík, J., Dušek, L. (1993) Sbírka příkladů z biostatistiky. Brno: Konvoj.
Výukové metody
Výuka je interaktivní, přímo založená na řešení konkrétních problémů a příkladů. Řešené příklady i teoretické podklady budou účastníkům k dispozici předem. Účastníci kurzu budou během prvního dne instruováni, aby si připravili k řešení své vlastní problémy s analýzou dat (PhD práce, SVOČ, výzkumné práce). Tyto vstupy budou postupně každý výukový blok rozebírány a případně i přímo řešeny.
Metody hodnocení
Předmět je ukončen kolokviem sestávajícím se z analýzy praktických příkladů na počítači.
Informace učitele
Kurz Analýza dat pro neurovědy proběhne v termínech 19.4., 26.4., 3.5., 10.5. a 17.5.2012 od 14:00 do 18:00 v počítačové učebně IBA LF MU na Kamenici 126/3. Studijní materiály budou před každým blokem vystaveny v IS.MUNI a v průběhu výuky budou k dispozici i v tištěné podobě.
Další komentáře
Studijní materiály
Předmět je vyučován každoročně.
Výuka probíhá blokově.
Poznámka k četnosti výuky: 5 dnů po 4 hod.
Předmět je zařazen také v obdobích jaro 2013, jaro 2014, jaro 2015, jaro 2016, jaro 2017, jaro 2018, jaro 2019, jaro 2020.