C4020 Physical Chemistry II

Faculty of Science
Autumn 2024
Extent and Intensity
2/0/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Taught in person.
Teacher(s)
doc. Mgr. Markéta Munzarová, Dr. rer. nat. (lecturer)
doc. Mgr. Dominik Heger, Ph.D. (lecturer)
Mgr. Hugo Semrád, Ph.D. (seminar tutor)
Guaranteed by
doc. Mgr. Dominik Heger, Ph.D.
Department of Chemistry – Chemistry Section – Faculty of Science
Supplier department: Department of Chemistry – Chemistry Section – Faculty of Science
Prerequisites
C4660 Physical Chemistry I
Prior study of basic physical chemistry assumed (e.g. C4660).
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
there are 16 fields of study the course is directly associated with, display
Course objectives
The goal of the course C4020 is to instruct students in basic understanding of equilibrium electrochemistry, quantum chemistry, and chemical kinetics.
Learning outcomes
After completing this course, students will be able to:
- do energy level calculations for simple quantum systems
- write down and solve kinetic equations for basic types of reactions
- understand phase diagrams of mixtures
- employ symmetry for the classification of orbital interactions
Syllabus
  • C4020 Syllabus
    1. QUANTUM THEORY (Atkins 7+8), MM
    Blackbody radiation and Planck´s relationship for energy. Electromagnetic radiation as a wave and particle. Particle in a well: Schrödinger´s equation, wave function and energy levels, Born´s probability interpretation, normalisation. The harmonic oscillator energy levels. Particle on a sphere, degeneration.
    2. STRUCTURE AND SPECTRA OF ATOMS (Atkins 9), MM
    Hydrogen spectral lines, energy in a bonded state, principal quantum number n. Atomic orbital, orbital 1s, radial part of the wave function and radial distribution function. Orbital angular momentum quantum number (l), magnetic quantum number (ml), orbitals 2s-3d. Atoms with more electrons, shadowing, effective nuclear charge, Slater´s rules. Energy-quantum numbers dependency.
    3. STRUCTURE OF MOLECULES (Atkins 10), MM
    Born-Oppenheimer approximation and potential energy curve. Theory of molecular orbitals, molecular ion H2+. Interaction of two AO: bonding and antibonding orbitals. Isosurface and symmetry of MO. Interaction diagram and rate of interaction versus overlapping. Bond order, filling of energy levels order. Sigma and pi orbitals. Overview of MO of homonuclear diatomic molecules, occupancy of energy levels, bond length, energy and vibration frequency.
    4. MOLECULAR SYMMETRY (Atkins 11), MM
    Symmetry particles and operations, their notation: axis and rotation, mirror planes, inversion and its centre, improper rotation and axis, identity and space. Symmetry group, classification of molecules based on their symmetry: groups C1, Cs, C2, Cnv, Dnh, D2d, Td, Oh. Representation and characters, tables. Symmetry and orbital interaction.
    5. STATISTICAL THERMODYNAMICS (Atkins 15), MM
    Configuration, the weight of configuration, weight of distribution calculation. Stirlings´approximation and ln W. Boltzmann´s distribution: dominant configuration, constant energy and a constant number of particles condition, population-energy dependency. Molecular partition function, a definition for a rigid rotor and interpretation.
    6. MOTION OF MOLECULES IN A GAS (Atkins 20.1.1), DH
    Microscopical view on the pressure of the ideal gases. Kinetic model criteria. Root-mean-square speed. Maxwell-Boltzmann distribution. Maxwell´s distribution for various molecules and temperatures. Most probable speed and average speed.
    7. TRANSPORT PROPERTIES OF IDEAL GASES, DIFUSSION (Atkins 20.1.4+20.3), DH
    Diffusion, flow and concentration gradient. Fick´s laws of diffusion. The diffusion coefficient and mean free path.
    8. CHEMICAL KINETICS (Atkins 21+22.3.2), DH
    Potential energy surface (Atkins 22.3.2). The principle of microscopic reversibility. Typical reaction mechanisms and solving of rate equations for parallel, opposed, consecutive reactions. Speed equations solving using an approximation of pseudo-first-order and pre-equlibria. Steady-state, kinetic and thermodynamic reaction control.
    9. CHEMICAL KINETICS (Atkins 21.1+23.1) (DH)
    Solving of specific kinetic problems, Lindemann mechanism of the unimolecular reaction. Homogeneous catalysis: pre-equilibria and steady-state approximation. Michaelis-Menten kinetics.
    10. SIMPLE MIXTURES (Atkins 5.3), MM
    Phase diagrams for vapour pressure, interpretation, the lever rule. Diagrams temperature- composition, a distillation of a mixture, azeotropes, immiscible liquids. Phase diagrams liquid-liquid, critical points, a distillation of partially miscible liquids. Phase diagrams liquid-solid.
    11. IONIC ACTIVITY AND CHEMICAL EQUILIBRIUM (Atkins 5.4.4, 6.2), DH Ionic activity in a solution, mean activity coefficient, Debye–Hückel limiting law. Shifting equilibria: Le Chatelier´s principle. Van´t Hoff equation: equilibria response to temperature change.
Literature
    required literature
  • Atkins Peter, de Paula Julio: Fyzikální chemie, VŠCHT Praha (1. vydání, 2013) , ISBN: 978-80-7080-830-6.
    recommended literature
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 9th ed. Oxford: Oxford University Press. xxxii, 972. ISBN 9780199543373. 2010. info
    not specified
  • KLOUDA, Pavel. Fyzikální chemie : studijní text pro SPŠCH. 2., upr. a dopl. vyd. Ostrava: Pavel Klouda. 139 s. ISBN 8086369064. 2002. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 8th ed. Oxford: Oxford University Press. xxx, 1064. ISBN 0198700725. 2006. info
  • ATKINS, P. W. and Julio DE PAULA. Atkins' physical chemistry. 7th ed. Oxford: Oxford University Press. xxi, 1150. ISBN 0198792859. 2002. info
  • ATKINS, P. W. Physical chemistry. 6th ed. Oxford: Oxford University Press. 1014 s. ISBN 0198501013. 1998. info
  • MOORE, Walter J. Fyzikální chemie. 2. vyd. Praha: Nakladatelství technické literatury. 974 s. 1981. info
Bookmarks
https://is.muni.cz/ln/tag/PříF:C4020!
Teaching methods
Thirteen lectures. Enrollment in the corresponding seminar course C4020 is strongly recommended.
Assessment methods
Written exam or on-line oral exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course is taught annually.
The course is taught: every week.
General note: předmět předpokládá znalosti fyzikální chemie v rozsahu C4660.
Listed among pre-requisites of other courses
Teacher's information
It is recommended to enroll simultaneously in seminar C4020.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2011 - only for the accreditation, Spring 2000, Autumn 2010 - only for the accreditation, Spring 2001, Spring 2002, Spring 2003, Spring 2004, Spring 2005, Spring 2006, Spring 2007, Spring 2008, Spring 2009, Spring 2010, Autumn 2010, Spring 2011, Autumn 2011, Autumn 2011 - acreditation, Autumn 2012, Autumn 2013, Autumn 2014, Autumn 2015, Autumn 2016, autumn 2017, Autumn 2018, Autumn 2019, Autumn 2020, autumn 2021, Autumn 2022, Autumn 2023.
  • Enrolment Statistics (Autumn 2024, recent)
  • Permalink: https://is.muni.cz/course/sci/autumn2024/C4020