F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2024
Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Andrea Bobalíková (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Prerequisites
F1251 - Elements of astronomy 1
F2252 - Elements of astronomy 2
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Learning outcomes
A student will be able after the ending of the course
- to orient himself in the astrophysical problematics
- to pass the follow up astrophysical courses
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
Attendance of the excercises is mandatory. A written test is mandatory before the oral exam. Students will be graded according to the oral exam.
Language of instruction
Czech
Follow-Up Courses
Further Comments
The course can also be completed outside the examination period.
The course is taught annually.
The course is taught: every week.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2023
Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Andrea Bobalíková (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Tue 17:00–17:50 F3,03015, Fri 14:00–16:50 F1 6/1014
Prerequisites
F1251 - Elements of astronomy 1
F2252 - Elements of astronomy 2
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Learning outcomes
A student will be able after the ending of the course
- to orient himself in the astrophysical problematics
- to pass the follow up astrophysical courses
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
Attendance of the excercises is mandatory. A written test is mandatory before the oral exam. Students will be graded according to the oral exam.
Language of instruction
Czech
Follow-Up Courses
Further Comments
Study Materials
The course can also be completed outside the examination period.
The course is taught annually.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
autumn 2021
Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Andrea Bobalíková (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Thu 15:00–17:50 F1 6/1014
  • Timetable of Seminar Groups:
F3080/01: Wed 16:00–16:50 F1 6/1014
Prerequisites
F1251 - Elements of astronomy 1
F2252 - Elements of astronomy 2
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Learning outcomes
A student will be able after the ending of the course
- to orient himself in the astrophysical problematics
- to pass the follow up astrophysical courses
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
Attendance of the excercises is mandatory. A written test is mandatory before the oral exam. Students will be graded according to the oral exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course can also be completed outside the examination period.
The course is taught once in two years.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2019
Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Andrea Bobalíková (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Tue 13:00–15:50 F1 6/1014
  • Timetable of Seminar Groups:
F3080/01: Mon 14:00–14:50 F1 6/1014
Prerequisites
F1251 - Elements of astronomy 1
F2252 - Elements of astronomy 2
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Learning outcomes
A student will be able after the ending of the course
- to orient himself in the astrophysical problematics
- to pass the follow up astrophysical courses
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
Attendance of the excercises is mandatory. A written test is mandatory before the oral exam. Students will be graded according to the oral exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course can also be completed outside the examination period.
The course is taught once in two years.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
autumn 2017
Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Andrea Bobalíková (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Mon 18. 9. to Fri 15. 12. Tue 16:00–18:50 F3,03015
  • Timetable of Seminar Groups:
F3080/01: Mon 18. 9. to Fri 15. 12. Thu 18:00–18:50 F1 6/1014
Prerequisites
F1251 - Elements of astronomy 1
F2252 - Elements of astronomy 2
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Learning outcomes
A student will be able after the ending of the course
- to orient himself in the astrophysical problematics
- to pass the follow up astrophysical courses
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
Attendance of the excercises is mandatory. A written test is mandatory before the oral exam. Students will be graded according to the oral exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course can also be completed outside the examination period.
The course is taught once in two years.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2015
Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Šárka Dvořáková (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Mon 11:00–11:50 Fs1 6/1017, Wed 13:00–15:50 F4,03017
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
Attendance of the excercises is mandatory. A written test is mandatory before the oral exam. Students will be graded according to the oral exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course can also be completed outside the examination period.
The course is taught once in two years.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2013
Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Šárka Dvořáková (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Timetable
Tue 8:00–10:50 F3,03015, Tue 18:00–18:50 Fs1 6/1017
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
Attendance of the excercises is mandatory. A written test is mandatory before the oral exam. Students will be graded according to the oral exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course can also be completed outside the examination period.
The course is taught once in two years.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2011
Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Marek Skarka, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Timetable
Mon 12:00–14:50 F3,03015
  • Timetable of Seminar Groups:
F3080/01: Wed 10:00–10:50 Fs1 6/1017, M. Skarka
F3080/02: Mon 18:00–18:50 F4,03017, M. Skarka
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
oral exam
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course can also be completed outside the examination period.
The course is taught once in two years.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2010
Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Gabriel Szász (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
oral exam
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2009
Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Gabriel Szász (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Timetable
Mon 10:00–12:50 F4,03017, Mon 19:00–19:50 F4,03017
  • Timetable of Seminar Groups:
F3080/01: No timetable has been entered into IS. G. Szász
F3080/02: No timetable has been entered into IS. G. Szász
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
oral exam
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
Study Materials
The course can also be completed outside the examination period.
The course is taught once in two years.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2007
Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
doc. RNDr. Miloslav Zejda, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Timetable
Mon 9:00–11:50 F3,03015, Thu 12:00–12:50 F3,03015
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Syllabus (in Czech)
  • Astrofyzika a její východiska. Přehled základních stavebních prvků vesmíru. Charakteristiky Slunce a jeho místo mezi ostatními hvězdami. Charakteristiky hvězd. Typická hvězda slunečního okolí a oblohy. Výběrový efekt. Definice hvězdy, modely. Mechanická rovnováha ve hvězdě. Odhad tlaku v centru hvězdy. Stav látky ve hvězdném nitru, vlastnosti vysokoteplotního plazmatu. Termodynamická rovnováha. Proč hvězdy září? Smršťování a uvolňování potenciální energie. Vlastnosti ideálního plynu. Odhad teploty v centru hvězdy. Elektromagnetické záření. Charakteristiky a mechanismy jeho vzniku a zániku. Záření absolutně černého tělesa. Vlastnosti fotonového plynu. Odkud se ve Slunci berou fotony? Termonukleární reakce a jejich role v energetice hvězd. Nukleosyntéza. Energetická rovnováha. Přenos energie zářivou difuzí. Opacita a její zdroje.Vztah hmotnost-zářivý výkon. Eddingtonův mezní zářivý výkon. Konvekce ve hvězdách. Závislost charakteristik a životních dob na hmotnosti. Vývoj názorů na stavbu hvězd. Rovnice hvězdné stavby. Příčiny hvězdného vývoje. První představy o povaze hvězd. Počátky hvězdné spektroskopie a astrofyziky. Co jsou hvězdné atmosféry? Jaké jsou důkazy jejich existence? Stavba atomu. Stavba atomu vodíku. Energiové hladiny. Excitace a deexcitace atomů a mechanismy těchto dějů. Spektrum vodíku a jednoelektronových atomů. Vysvětlení spektrálních sérií. Stavba a spektrum složitějších atomů. Vázaně-volné a volně-volné přechody a jejich role při utváření spektra. Interakce atomů se zářením. Záření řídkého a hustého plynu. Proč září plynné hvězdy podobně jako absolutně černé těleso? Vznik spektra ve hvězdné atmosféře. Kontinuum a spektrální čáry. Profily spektrálních čar a mechanismy jejich rozšíření. Modely hvězdných atmosfér. Ionizace a excitace prvků ve hvězdných atmosférách. Boltzmannova a Sahova rovnice. Závislost vzhledu spektra na teplotě a tlaku. Spektrální klasifikace, spektrální a luminozitní třídy. Atmosféra Slunce. Fotosféra, chromosféra, koróna, sluneční vítr. Obecné charakteristiky hvězdného vývoje na příkladu našeho Slunce. Vznik hvězd. Vývoj hvězd až do stadia hvězd typu T Tauri. Jaderný vývoj hvězd od jejich vzniku až po opuštění hlavní posloupnosti. Jaderný vývoj hvězdy od opuštění hlavní posloupnosti až do konce jejího aktívního vývoje. Elektronová degenerace hvězdné látky a její role ve vývoji hvězd. Únik látky z hvězdy a jeho role ve vývoji hvězd. Vznik a vývoj Slunce až do současnosti. Stavba současného Slunce. Předpokládaný budoucí vývoj Slunce. Vývoj názorů na vznik a vývoj Slunce a hvězd. Definice závěrečných stadií vývoje. Přehled možných hvězdných osudů. Degenerovaný plyn a jeho vlastnosti. Stavová rovnice chladné katalyzované látky. Neutronové hvězdy. Černé díry.
Assessment methods (in Czech)
3 hodiny klasických přednášek + 1 hodina cvičení týdně. Předpokladem pro zkoušku je zápočet za aktivní účast na cvičení, což obnáší účast na minimálně 80% cvičení a spočtení předepsaného penza úloh. Studenti kombinovaného studia se mohou domluvit s vedoucím cvičení na jiném režimu, který nevyžaduje fyzickou účast na cvičení. Při vlastní zkoušce si zkoušený vylosuje dvě otázky a má 60 minut na přípravu, během níž může používat libovolné pomůcky včetně vlastních poznámek a skript. Zkouška, jež trvá 30 minut, bývá buď bloková nebo individuální. Je poměrně náročná, jejím cílem je zjistit do jaké míry zkoušený učivu porozuměl.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2005
Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer), prof. Mgr. Jiří Krtička, Ph.D. (deputy)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer), prof. RNDr. Zdeněk Mikulášek, CSc. (deputy)
doc. RNDr. Miloslav Zejda, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Timetable
Mon 10:00–12:50 F3,03015
  • Timetable of Seminar Groups:
F3080/01: Tue 8:00–8:50 F1 6/1014, M. Zejda
F3080/02: Wed 11:00–11:50 F3,03015, M. Zejda
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Syllabus (in Czech)
  • Astrofyzika a její východiska. Přehled základních stavebních prvků vesmíru. Charakteristiky Slunce a jeho místo mezi ostatními hvězdami. Charakteristiky hvězd. Typická hvězda slunečního okolí a oblohy. Výběrový efekt. Definice hvězdy, modely. Mechanická rovnováha ve hvězdě. Odhad tlaku v centru hvězdy. Stav látky ve hvězdném nitru, vlastnosti vysokoteplotního plazmatu. Termodynamická rovnováha. Proč hvězdy září? Smršťování a uvolňování potenciální energie. Vlastnosti ideálního plynu. Odhad teploty v centru hvězdy. Elektromagnetické záření. Charakteristiky a mechanismy jeho vzniku a zániku. Záření absolutně černého tělesa. Vlastnosti fotonového plynu. Odkud se ve Slunci berou fotony? Termonukleární reakce a jejich role v energetice hvězd. Nukleosyntéza. Energetická rovnováha. Přenos energie zářivou difuzí. Opacita a její zdroje.Vztah hmotnost-zářivý výkon. Eddingtonův mezní zářivý výkon. Konvekce ve hvězdách. Závislost charakteristik a životních dob na hmotnosti. Vývoj názorů na stavbu hvězd. Rovnice hvězdné stavby. Příčiny hvězdného vývoje. První představy o povaze hvězd. Počátky hvězdné spektroskopie a astrofyziky. Co jsou hvězdné atmosféry? Jaké jsou důkazy jejich existence? Stavba atomu. Stavba atomu vodíku. Energiové hladiny. Excitace a deexcitace atomů a mechanismy těchto dějů. Spektrum vodíku a jednoelektronových atomů. Vysvětlení spektrálních sérií. Stavba a spektrum složitějších atomů. Vázaně-volné a volně-volné přechody a jejich role při utváření spektra. Interakce atomů se zářením. Záření řídkého a hustého plynu. Proč září plynné hvězdy podobně jako absolutně černé těleso? Vznik spektra ve hvězdné atmosféře. Kontinuum a spektrální čáry. Profily spektrálních čar a mechanismy jejich rozšíření. Modely hvězdných atmosfér. Ionizace a excitace prvků ve hvězdných atmosférách. Boltzmannova a Sahova rovnice. Závislost vzhledu spektra na teplotě a tlaku. Spektrální klasifikace, spektrální a luminozitní třídy. Atmosféra Slunce. Fotosféra, chromosféra, koróna, sluneční vítr. Obecné charakteristiky hvězdného vývoje na příkladu našeho Slunce. Vznik hvězd. Vývoj hvězd až do stadia hvězd typu T Tauri. Jaderný vývoj hvězd od jejich vzniku až po opuštění hlavní posloupnosti. Jaderný vývoj hvězdy od opuštění hlavní posloupnosti až do konce jejího aktívního vývoje. Elektronová degenerace hvězdné látky a její role ve vývoji hvězd. Únik látky z hvězdy a jeho role ve vývoji hvězd. Vznik a vývoj Slunce až do současnosti. Stavba současného Slunce. Předpokládaný budoucí vývoj Slunce. Vývoj názorů na vznik a vývoj Slunce a hvězd. Definice závěrečných stadií vývoje. Přehled možných hvězdných osudů. Degenerovaný plyn a jeho vlastnosti. Stavová rovnice chladné katalyzované látky. Neutronové hvězdy. Černé díry.
Assessment methods (in Czech)
3 hodiny klasických přednášek + 1 hodina cvičení týdně. Předpokladem pro zkoušku je zápočet za aktivní účast na cvičení, což obnáší účast na minimálně 80% cvičení a spočtení předepsaného penza úloh. Studenti kombinovaného studia se mohou domluvit s vedoucím cvičení na jiném režimu, který nevyžaduje fyzickou účast na cvičení. Při vlastní zkoušce si zkoušený vylosuje dvě otázky a má 60 minut na přípravu, během níž může používat libovolné pomůcky včetně vlastních poznámek a skript. Zkouška, jež trvá 30 minut, bývá buď bloková nebo individuální. Je poměrně náročná, jejím cílem je zjistit do jaké míry zkoušený učivu porozuměl.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2003
Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
RNDr. Jan Janík, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Syllabus (in Czech)
  • Astrofyzika a její východiska. Přehled základních stavebních prvků vesmíru. Charakteristiky Slunce a jeho místo mezi ostatními hvězdami. Charakteristiky hvězd. Typická hvězda slunečního okolí a oblohy. Výběrový efekt. Definice hvězdy, modely. Mechanická rovnováha ve hvězdě. Odhad tlaku v centru hvězdy. Stav látky ve hvězdném nitru, vlastnosti vysokoteplotního plazmatu. Termodynamická rovnováha. Proč hvězdy září? Smršťování a uvolňování potenciální energie. Vlastnosti ideálního plynu. Odhad teploty v centru hvězdy. Elektromagnetické záření. Charakteristiky a mechanismy jeho vzniku a zániku. Záření absolutně černého tělesa. Vlastnosti fotonového plynu. Odkud se ve Slunci berou fotony? Termonukleární reakce a jejich role v energetice hvězd. Nukleosyntéza. Energetická rovnováha. Přenos energie zářivou difuzí. Opacita a její zdroje.Vztah hmotnost-zářivý výkon. Eddingtonův mezní zářivý výkon. Konvekce ve hvězdách. Závislost charakteristik a životních dob na hmotnosti. Vývoj názorů na stavbu hvězd. Rovnice hvězdné stavby. Příčiny hvězdného vývoje. První představy o povaze hvězd. Počátky hvězdné spektroskopie a astrofyziky. Co jsou hvězdné atmosféry? Jaké jsou důkazy jejich existence? Stavba atomu. Stavba atomu vodíku. Energiové hladiny. Excitace a deexcitace atomů a mechanismy těchto dějů. Spektrum vodíku a jednoelektronových atomů. Vysvětlení spektrálních sérií. Stavba a spektrum složitějších atomů. Vázaně-volné a volně-volné přechody a jejich role při utváření spektra. Interakce atomů se zářením. Záření řídkého a hustého plynu. Proč září plynné hvězdy podobně jako absolutně černé těleso? Vznik spektra ve hvězdné atmosféře. Kontinuum a spektrální čáry. Profily spektrálních čar a mechanismy jejich rozšíření. Modely hvězdných atmosfér. Ionizace a excitace prvků ve hvězdných atmosférách. Boltzmannova a Sahova rovnice. Závislost vzhledu spektra na teplotě a tlaku. Spektrální klasifikace, spektrální a luminozitní třídy. Atmosféra Slunce. Fotosféra, chromosféra, koróna, sluneční vítr. Obecné charakteristiky hvězdného vývoje na příkladu našeho Slunce. Vznik hvězd. Vývoj hvězd až do stadia hvězd typu T Tauri. Jaderný vývoj hvězd od jejich vzniku až po opuštění hlavní posloupnosti. Jaderný vývoj hvězdy od opuštění hlavní posloupnosti až do konce jejího aktívního vývoje. Elektronová degenerace hvězdné látky a její role ve vývoji hvězd. Únik látky z hvězdy a jeho role ve vývoji hvězd. Vznik a vývoj Slunce až do současnosti. Stavba současného Slunce. Předpokládaný budoucí vývoj Slunce. Vývoj názorů na vznik a vývoj Slunce a hvězd. Definice závěrečných stadií vývoje. Přehled možných hvězdných osudů. Degenerovaný plyn a jeho vlastnosti. Stavová rovnice chladné katalyzované látky. Neutronové hvězdy. Černé díry.
Assessment methods (in Czech)
3 hodiny klasických přednášek + 1 hodina cvičení týdně. Předpokladem pro zkoušku je zápočet za aktivní účast na cvičení, což obnáší účast na minimálně 80% cvičení a spočtení předepsaného penza úloh. Studenti kombinovaného studia se mohou domluvit s vedoucím cvičení na jiném režimu, který nevyžaduje fyzickou účast na cvičení. Při vlastní zkoušce si zkoušený vylosuje dvě otázky a má 60 minut na přípravu, během níž může používat libovolné pomůcky včetně vlastních poznámek a skript. Zkouška, jež trvá 30 minut, bývá buď bloková nebo individuální. Je poměrně náročná, jejím cílem je zjistit do jaké míry zkoušený učivu porozuměl.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2001
Extent and Intensity
3/1/0. 4 credit(s). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
RNDr. Jan Janík, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Prerequisites
doporučeno absolvování předmětů "Základy astronomie" F1251, F2252
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
Předmět: "Úvod do fyziky hvězd" (3/1, zk.)přináší ucelenou informaci o základních vlastnostech, stavbě a vývoji hvězd. Cílem výuky je především pochopení fyzikální stránky procesů, které chování hvězd určují. V rámci výkladu astrofyzikální matérie bude zopakována řada astrofyzikálně důležitých partií fyziky. K absolvování předmětů není zapotřebí žádných speciálních astrofyzikálních nebo fyzikálních znalosti, nezbytný je pouze fyzikální způsob uvažování. Předmět je profilujícím pro ty studenty fyziky, kteří se míní zaměřit ve svém studijním programu na astrofyziku. Užitečný a inspirující je i pro ostatní studenty, kteří se chtějí zevrubněji seznámit se současnou hvězdnou astrofyzikou.
Syllabus
  • 1.ÚVOD. FYZIKA A HVĚZDY. První představy o povaze Slunce a hvězd. Zrod astrofyziky. Fyzikální konstanty a jednotky. Z čeho je vesmír vystavěn? Elektromagnetické záření. Základy astronomické fotometrie. Charakteristiky Slunce. Základní charakteristiky hvězd a jejich vztahy. ~ 2. STAVBA HVĚZD. Co jsou hvězdy? Mechanická rovnováha ve hvězdě. Stav látky ve hvězdném nitru. Zdroje hvězdné energie a nukleosyntéza. Energetická rovnováha. Přenos energie ve hvězdách. Rovnice stavby hvězdy. Příčiny hvězdného vývoje. Stručné dějiny poznávání hvězdné stavby. ~ 3. HVĚZDNÉ ATMOSFÉRY. První pokusy o interpretaci hvězdného spektra. Co je hvězdná atmosféra, Základy atomové fyziky. Výklad hvězdného spektra. Atmosféra Slunce. ~ 4. VZNIK A VÝVOJ HVĚZD. Vznik, stavba a vývoj Slunce. Vznik hvězd. Jaderný vývoj hvězd. Elektronová degenerace a její role ve vývoji hvězd. Role úniku látky z hvězdy. Historie poznávání vývoje hvězd. Interpretace H-R diagramu. ~ 5. ZÁVĚREČNÁ STADIA VÝVOJE HVĚZD. Úvod. Vlastnosti degenerovaného plynu. Bílí trpaslíci. Neutronové hvězdy. Černé díry.
Literature
  • Zdeněk Mikulášek: Úvod do fyziky hvězd a hvězdných soustav
Assessment methods (in Czech)
3 hodiny klasických přednášek na hvězdárně + 1 hodina cvičení týdně. Výuka se opírá o text skript přednášejícího: "Úvod do fyziky hvězd a hvězdných soustav" (zatím jen v elektronické podobě). Předpokladem pro zkoušku je zápočet za aktivní účast na cvičení. V případě zájmu budou i konzultace. Při zkoušce si zkoušený vylosuje dvě otázky a má 60 minut na přípravu, během níž může používat libovolné pomůcky včetně vlastních poznámek a skript. Vlastní zkouška. jež trvá 30 minut, je individuální a poměrně náročná, jejím cílem je zjistit do jaké míry zkoušený učivu porozuměl.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 1999
Extent and Intensity
3/1/0. 4 credit(s). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. RNDr. Zdeněk Mikulášek, CSc. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Language of instruction
Czech
Further comments (probably available only in Czech)
The course is taught once in two years.
The course is taught: every week.
General note: L.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2022

The course is not taught in Autumn 2022

Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Andrea Bobalíková (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Prerequisites
F1251 - Elements of astronomy 1
F2252 - Elements of astronomy 2
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Learning outcomes
A student will be able after the ending of the course
- to orient himself in the astrophysical problematics
- to pass the follow up astrophysical courses
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
Attendance of the excercises is mandatory. A written test is mandatory before the oral exam. Students will be graded according to the oral exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2020

The course is not taught in Autumn 2020

Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Andrea Bobalíková (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Prerequisites
F1251 - Elements of astronomy 1
F2252 - Elements of astronomy 2
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Learning outcomes
A student will be able after the ending of the course
- to orient himself in the astrophysical problematics
- to pass the follow up astrophysical courses
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
Attendance of the excercises is mandatory. A written test is mandatory before the oral exam. Students will be graded according to the oral exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2018

The course is not taught in Autumn 2018

Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Andrea Bobalíková (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Prerequisites
F1251 - Elements of astronomy 1
F2252 - Elements of astronomy 2
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Learning outcomes
A student will be able after the ending of the course
- to orient himself in the astrophysical problematics
- to pass the follow up astrophysical courses
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
Attendance of the excercises is mandatory. A written test is mandatory before the oral exam. Students will be graded according to the oral exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2016

The course is not taught in Autumn 2016

Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Šárka Dvořáková (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
Attendance of the excercises is mandatory. A written test is mandatory before the oral exam. Students will be graded according to the oral exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2014

The course is not taught in Autumn 2014

Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Šárka Dvořáková (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Course Enrolment Limitations
The course is offered to students of any study field.
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
Attendance of the excercises is mandatory. A written test is mandatory before the oral exam. Students will be graded according to the oral exam.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2012

The course is not taught in Autumn 2012

Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Marek Skarka, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
oral exam
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2008

The course is not taught in Autumn 2008

Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
doc. RNDr. Miloslav Zejda, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Assessment methods
exercises and oral exam
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2006

The course is not taught in Autumn 2006

Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
doc. RNDr. Miloslav Zejda, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Syllabus (in Czech)
  • Astrofyzika a její východiska. Přehled základních stavebních prvků vesmíru. Charakteristiky Slunce a jeho místo mezi ostatními hvězdami. Charakteristiky hvězd. Typická hvězda slunečního okolí a oblohy. Výběrový efekt. Definice hvězdy, modely. Mechanická rovnováha ve hvězdě. Odhad tlaku v centru hvězdy. Stav látky ve hvězdném nitru, vlastnosti vysokoteplotního plazmatu. Termodynamická rovnováha. Proč hvězdy září? Smršťování a uvolňování potenciální energie. Vlastnosti ideálního plynu. Odhad teploty v centru hvězdy. Elektromagnetické záření. Charakteristiky a mechanismy jeho vzniku a zániku. Záření absolutně černého tělesa. Vlastnosti fotonového plynu. Odkud se ve Slunci berou fotony? Termonukleární reakce a jejich role v energetice hvězd. Nukleosyntéza. Energetická rovnováha. Přenos energie zářivou difuzí. Opacita a její zdroje.Vztah hmotnost-zářivý výkon. Eddingtonův mezní zářivý výkon. Konvekce ve hvězdách. Závislost charakteristik a životních dob na hmotnosti. Vývoj názorů na stavbu hvězd. Rovnice hvězdné stavby. Příčiny hvězdného vývoje. První představy o povaze hvězd. Počátky hvězdné spektroskopie a astrofyziky. Co jsou hvězdné atmosféry? Jaké jsou důkazy jejich existence? Stavba atomu. Stavba atomu vodíku. Energiové hladiny. Excitace a deexcitace atomů a mechanismy těchto dějů. Spektrum vodíku a jednoelektronových atomů. Vysvětlení spektrálních sérií. Stavba a spektrum složitějších atomů. Vázaně-volné a volně-volné přechody a jejich role při utváření spektra. Interakce atomů se zářením. Záření řídkého a hustého plynu. Proč září plynné hvězdy podobně jako absolutně černé těleso? Vznik spektra ve hvězdné atmosféře. Kontinuum a spektrální čáry. Profily spektrálních čar a mechanismy jejich rozšíření. Modely hvězdných atmosfér. Ionizace a excitace prvků ve hvězdných atmosférách. Boltzmannova a Sahova rovnice. Závislost vzhledu spektra na teplotě a tlaku. Spektrální klasifikace, spektrální a luminozitní třídy. Atmosféra Slunce. Fotosféra, chromosféra, koróna, sluneční vítr. Obecné charakteristiky hvězdného vývoje na příkladu našeho Slunce. Vznik hvězd. Vývoj hvězd až do stadia hvězd typu T Tauri. Jaderný vývoj hvězd od jejich vzniku až po opuštění hlavní posloupnosti. Jaderný vývoj hvězdy od opuštění hlavní posloupnosti až do konce jejího aktívního vývoje. Elektronová degenerace hvězdné látky a její role ve vývoji hvězd. Únik látky z hvězdy a jeho role ve vývoji hvězd. Vznik a vývoj Slunce až do současnosti. Stavba současného Slunce. Předpokládaný budoucí vývoj Slunce. Vývoj názorů na vznik a vývoj Slunce a hvězd. Definice závěrečných stadií vývoje. Přehled možných hvězdných osudů. Degenerovaný plyn a jeho vlastnosti. Stavová rovnice chladné katalyzované látky. Neutronové hvězdy. Černé díry.
Assessment methods (in Czech)
3 hodiny klasických přednášek + 1 hodina cvičení týdně. Předpokladem pro zkoušku je zápočet za aktivní účast na cvičení, což obnáší účast na minimálně 80% cvičení a spočtení předepsaného penza úloh. Studenti kombinovaného studia se mohou domluvit s vedoucím cvičení na jiném režimu, který nevyžaduje fyzickou účast na cvičení. Při vlastní zkoušce si zkoušený vylosuje dvě otázky a má 60 minut na přípravu, během níž může používat libovolné pomůcky včetně vlastních poznámek a skript. Zkouška, jež trvá 30 minut, bývá buď bloková nebo individuální. Je poměrně náročná, jejím cílem je zjistit do jaké míry zkoušený učivu porozuměl.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2004

The course is not taught in Autumn 2004

Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
RNDr. Jan Janík, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Syllabus (in Czech)
  • Astrofyzika a její východiska. Přehled základních stavebních prvků vesmíru. Charakteristiky Slunce a jeho místo mezi ostatními hvězdami. Charakteristiky hvězd. Typická hvězda slunečního okolí a oblohy. Výběrový efekt. Definice hvězdy, modely. Mechanická rovnováha ve hvězdě. Odhad tlaku v centru hvězdy. Stav látky ve hvězdném nitru, vlastnosti vysokoteplotního plazmatu. Termodynamická rovnováha. Proč hvězdy září? Smršťování a uvolňování potenciální energie. Vlastnosti ideálního plynu. Odhad teploty v centru hvězdy. Elektromagnetické záření. Charakteristiky a mechanismy jeho vzniku a zániku. Záření absolutně černého tělesa. Vlastnosti fotonového plynu. Odkud se ve Slunci berou fotony? Termonukleární reakce a jejich role v energetice hvězd. Nukleosyntéza. Energetická rovnováha. Přenos energie zářivou difuzí. Opacita a její zdroje.Vztah hmotnost-zářivý výkon. Eddingtonův mezní zářivý výkon. Konvekce ve hvězdách. Závislost charakteristik a životních dob na hmotnosti. Vývoj názorů na stavbu hvězd. Rovnice hvězdné stavby. Příčiny hvězdného vývoje. První představy o povaze hvězd. Počátky hvězdné spektroskopie a astrofyziky. Co jsou hvězdné atmosféry? Jaké jsou důkazy jejich existence? Stavba atomu. Stavba atomu vodíku. Energiové hladiny. Excitace a deexcitace atomů a mechanismy těchto dějů. Spektrum vodíku a jednoelektronových atomů. Vysvětlení spektrálních sérií. Stavba a spektrum složitějších atomů. Vázaně-volné a volně-volné přechody a jejich role při utváření spektra. Interakce atomů se zářením. Záření řídkého a hustého plynu. Proč září plynné hvězdy podobně jako absolutně černé těleso? Vznik spektra ve hvězdné atmosféře. Kontinuum a spektrální čáry. Profily spektrálních čar a mechanismy jejich rozšíření. Modely hvězdných atmosfér. Ionizace a excitace prvků ve hvězdných atmosférách. Boltzmannova a Sahova rovnice. Závislost vzhledu spektra na teplotě a tlaku. Spektrální klasifikace, spektrální a luminozitní třídy. Atmosféra Slunce. Fotosféra, chromosféra, koróna, sluneční vítr. Obecné charakteristiky hvězdného vývoje na příkladu našeho Slunce. Vznik hvězd. Vývoj hvězd až do stadia hvězd typu T Tauri. Jaderný vývoj hvězd od jejich vzniku až po opuštění hlavní posloupnosti. Jaderný vývoj hvězdy od opuštění hlavní posloupnosti až do konce jejího aktívního vývoje. Elektronová degenerace hvězdné látky a její role ve vývoji hvězd. Únik látky z hvězdy a jeho role ve vývoji hvězd. Vznik a vývoj Slunce až do současnosti. Stavba současného Slunce. Předpokládaný budoucí vývoj Slunce. Vývoj názorů na vznik a vývoj Slunce a hvězd. Definice závěrečných stadií vývoje. Přehled možných hvězdných osudů. Degenerovaný plyn a jeho vlastnosti. Stavová rovnice chladné katalyzované látky. Neutronové hvězdy. Černé díry.
Assessment methods (in Czech)
3 hodiny klasických přednášek + 1 hodina cvičení týdně. Předpokladem pro zkoušku je zápočet za aktivní účast na cvičení, což obnáší účast na minimálně 80% cvičení a spočtení předepsaného penza úloh. Studenti kombinovaného studia se mohou domluvit s vedoucím cvičení na jiném režimu, který nevyžaduje fyzickou účast na cvičení. Při vlastní zkoušce si zkoušený vylosuje dvě otázky a má 60 minut na přípravu, během níž může používat libovolné pomůcky včetně vlastních poznámek a skript. Zkouška, jež trvá 30 minut, bývá buď bloková nebo individuální. Je poměrně náročná, jejím cílem je zjistit do jaké míry zkoušený učivu porozuměl.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2002

The course is not taught in Autumn 2002

Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
RNDr. Jan Janík, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2000

The course is not taught in Autumn 2000

Extent and Intensity
3/1/0. 4 credit(s). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
RNDr. Jan Janík, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Michal Lenc, Ph.D.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Language of instruction
Czech
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
spring 2012 - acreditation

The information about the term spring 2012 - acreditation is not made public

Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Marek Skarka, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Supplier department: Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
oral exam
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2011 - acreditation

The information about the term Autumn 2011 - acreditation is not made public

Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Gabriel Szász (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
oral exam
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2007 - for the purpose of the accreditation
Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
doc. RNDr. Miloslav Zejda, Ph.D. (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Syllabus (in Czech)
  • Astrofyzika a její východiska. Přehled základních stavebních prvků vesmíru. Charakteristiky Slunce a jeho místo mezi ostatními hvězdami. Charakteristiky hvězd. Typická hvězda slunečního okolí a oblohy. Výběrový efekt. Definice hvězdy, modely. Mechanická rovnováha ve hvězdě. Odhad tlaku v centru hvězdy. Stav látky ve hvězdném nitru, vlastnosti vysokoteplotního plazmatu. Termodynamická rovnováha. Proč hvězdy září? Smršťování a uvolňování potenciální energie. Vlastnosti ideálního plynu. Odhad teploty v centru hvězdy. Elektromagnetické záření. Charakteristiky a mechanismy jeho vzniku a zániku. Záření absolutně černého tělesa. Vlastnosti fotonového plynu. Odkud se ve Slunci berou fotony? Termonukleární reakce a jejich role v energetice hvězd. Nukleosyntéza. Energetická rovnováha. Přenos energie zářivou difuzí. Opacita a její zdroje.Vztah hmotnost-zářivý výkon. Eddingtonův mezní zářivý výkon. Konvekce ve hvězdách. Závislost charakteristik a životních dob na hmotnosti. Vývoj názorů na stavbu hvězd. Rovnice hvězdné stavby. Příčiny hvězdného vývoje. První představy o povaze hvězd. Počátky hvězdné spektroskopie a astrofyziky. Co jsou hvězdné atmosféry? Jaké jsou důkazy jejich existence? Stavba atomu. Stavba atomu vodíku. Energiové hladiny. Excitace a deexcitace atomů a mechanismy těchto dějů. Spektrum vodíku a jednoelektronových atomů. Vysvětlení spektrálních sérií. Stavba a spektrum složitějších atomů. Vázaně-volné a volně-volné přechody a jejich role při utváření spektra. Interakce atomů se zářením. Záření řídkého a hustého plynu. Proč září plynné hvězdy podobně jako absolutně černé těleso? Vznik spektra ve hvězdné atmosféře. Kontinuum a spektrální čáry. Profily spektrálních čar a mechanismy jejich rozšíření. Modely hvězdných atmosfér. Ionizace a excitace prvků ve hvězdných atmosférách. Boltzmannova a Sahova rovnice. Závislost vzhledu spektra na teplotě a tlaku. Spektrální klasifikace, spektrální a luminozitní třídy. Atmosféra Slunce. Fotosféra, chromosféra, koróna, sluneční vítr. Obecné charakteristiky hvězdného vývoje na příkladu našeho Slunce. Vznik hvězd. Vývoj hvězd až do stadia hvězd typu T Tauri. Jaderný vývoj hvězd od jejich vzniku až po opuštění hlavní posloupnosti. Jaderný vývoj hvězdy od opuštění hlavní posloupnosti až do konce jejího aktívního vývoje. Elektronová degenerace hvězdné látky a její role ve vývoji hvězd. Únik látky z hvězdy a jeho role ve vývoji hvězd. Vznik a vývoj Slunce až do současnosti. Stavba současného Slunce. Předpokládaný budoucí vývoj Slunce. Vývoj názorů na vznik a vývoj Slunce a hvězd. Definice závěrečných stadií vývoje. Přehled možných hvězdných osudů. Degenerovaný plyn a jeho vlastnosti. Stavová rovnice chladné katalyzované látky. Neutronové hvězdy. Černé díry.
Assessment methods (in Czech)
3 hodiny klasických přednášek + 1 hodina cvičení týdně. Předpokladem pro zkoušku je zápočet za aktivní účast na cvičení, což obnáší účast na minimálně 80% cvičení a spočtení předepsaného penza úloh. Studenti kombinovaného studia se mohou domluvit s vedoucím cvičení na jiném režimu, který nevyžaduje fyzickou účast na cvičení. Při vlastní zkoušce si zkoušený vylosuje dvě otázky a má 60 minut na přípravu, během níž může používat libovolné pomůcky včetně vlastních poznámek a skript. Zkouška, jež trvá 30 minut, bývá buď bloková nebo individuální. Je poměrně náročná, jejím cílem je zjistit do jaké míry zkoušený učivu porozuměl.
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.

F3080 Introduction into Physics of Stars

Faculty of Science
Autumn 2010 - only for the accreditation

The course is not taught in Autumn 2010 - only for the accreditation

Extent and Intensity
3/1/0. 2 credit(s) (fasci plus compl plus > 4). Type of Completion: zk (examination).
Teacher(s)
prof. RNDr. Zdeněk Mikulášek, CSc. (lecturer)
prof. Mgr. Jiří Krtička, Ph.D. (lecturer)
Mgr. Gabriel Szász (seminar tutor)
Guaranteed by
prof. RNDr. Zdeněk Mikulášek, CSc.
Department of Theoretical Physics and Astrophysics – Physics Section – Faculty of Science
Contact Person: prof. RNDr. Zdeněk Mikulášek, CSc.
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
fields of study / plans the course is directly associated with
Course objectives
The main objectives of the course is the understanding of the structure of inner parts of the stars, stellar atmospheres, and evolution.
Syllabus
  • The definition of astrophysics. The main building blocks of our Universe. The parameters of our Sun and their relationship with other star. Stellar parameters. A typical star in the solar neighbourhood. The selection effect.
  • Definition of stars, models. Mechanical equilibrium in star. Estimate of the central pressure. Physical state of the matter in the star, high-temperature plasma. Thermodynamic equilibrium. Why do stars radiate? Stellar contraction.
  • Ideal gas. Estimate of the central stellar temperature. Electromagnetic radiation, its characteristics, and its origin. Black body radiation. Photon gas. What is the origin of solar photons?
  • Thermonuclear reactions and its role in the stellar energetics. Nucleosynthesis. Energy equilibrium. Radiative diffusion. Opacity and its sources.
  • Mass-luminosity relationship. Eddington luminosity. Convection.
  • The dependence of the characteristics and life time on mass. Stellar structure equations. The origin of the stellar evolution.
  • First ideas of the stellar nature. The benginning of the stellar spectroscopy and astrophysics. The nature of the stellar atmospheres? What is the evidence about their existence?
  • Atomic structure. Hydrogen atom structure. Energy levels. Excitation and deexcitation. Spectrum of hydrogen and hydrogen-like atoms. The nature of spectral series. Structure and spectrum of more complex atoms. Bound-free and free-free transitions and its effect on the spectrum. Interaction of atoms with radiation. Radiation of dense and tenuous gas. Why do star radiate similar to black body?
  • The origin of spectrum in the stellar atmosphere. Continuum and line transitions. Line profiles and their broadening. Model stellar atmospheres.
  • Ionization and excitation in the stellar atmospheres. Boltzmann and Saha equation. The dependence of spectrum on temperature and pressure. Spectral classification.
  • Solar atmosphere. Photosphere, chromosphere, corona, and solar wind.
  • General characteristics of the stellar evolution (example of our Sun).
  • Formation of stars. Evolution up to T Tauri stage. The evolution of the stellar core till the end of the main sequence. The late phases of the evolution of the stellar core.
  • The electron degeneracy and its role in the stellar evolution. Mass loss and its role.
  • Evolution of our Sun till the present times. Structure of present Sun. Expected future evolution of our Sun. The evolution of ideas on the formation and evolution of Sun and stars.
  • The definition of the late stages of the stellar evolution. List of possible evolutionary paths. The degenerate gas. Equation of state of cold catalysed matter. Neutron stars. Black holes.
Literature
  • MIKULÁŠEK, Zdeněk and Jiří KRTIČKA. Základy fyziky hvězd. 2005. info
  • An introduction to modern astrophysics. Edited by Bradley W. Carroll - Dale A. Ostlie. 2nd ed. San Francisco: Pearson Addison-Wesley, 2007, 1 v. (vari. ISBN 978-0-321-44284-0. info
Teaching methods
3 hour standard lesson + one hour exercise in a week
Assessment methods
oral exam
Language of instruction
Czech
Follow-Up Courses
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
The course is taught: every week.
General note: L.
Teacher's information
http://physics.muni.cz/~mikulas/
The course is also listed under the following terms Autumn 2007 - for the purpose of the accreditation, Autumn 1999, Autumn 2001, Autumn 2003, Autumn 2005, Autumn 2007, Autumn 2009, Autumn 2010, Autumn 2011, Autumn 2011 - acreditation, spring 2012 - acreditation, Autumn 2013, Autumn 2015, autumn 2017, Autumn 2019, autumn 2021, Autumn 2023, Autumn 2024.