PřF:M81B0 Mathematical models in biology - Course Information
M81B0 Mathematical models in biology
Faculty of ScienceSpring 2022
- Extent and Intensity
- 2/0/0. 2 credit(s) (příf plus uk k 1 zk 2 plus 1 > 4). Type of Completion: k (colloquium).
- Teacher(s)
- Mgr. Ondřej Pokora, Ph.D. (lecturer)
- Guaranteed by
- doc. Mgr. Jan Koláček, Ph.D.
Department of Mathematics and Statistics – Departments – Faculty of Science
Supplier department: Department of Mathematics and Statistics – Departments – Faculty of Science - Timetable
- Tue 8:00–9:50 M4,01024
- Timetable of Seminar Groups:
- Prerequisites
- Mathematical analysis I. and II., Fundamentals of mathematics, Probability and Statistics
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Epidemiology and modeling (programme PřF, N-MBB)
- Mathematical Biology (programme PřF, N-BI)
- Mathematical Biology (programme PřF, N-EXB)
- Course objectives
- The course provides basic information on the applications of mathematical models in different fields related to biology, like neuroscience, medicine, biophysics and so on. It helps to understand the contemporary trends in research, which could not be performed without sophisticated numerical procedures and such branches of science as information theory, neural networks or biocybernetics. Each lecture is supplemented by a review of mathematical procedures in use.
- Learning outcomes
- After passing the course, the student will be able:
to define and interpret the basic notions used in the theory of formal (mathematical) models and to explain their mutual context;
to formulate relevant mathematical theorems and statements and to explain methods of their proofs;
to use effective techniques utilized in the theory of formal (mathematical) models;
to apply acquired pieces of knowledge for the solution of specific problems including problems of applicative character. - Syllabus
- The list is modified with respect to actual research 1) Biochemical reactions. 2) Integrate-and-fire neural models 3) Action potential 4) Applications of point process theory 5) Information coding 6) Sensory systems. 7) Logical neuron 8) Pharmacokinetics 9) Pharmacodynamics. 10) Stochastic resonance 11) Dissolution 12) Simulation of stochastic systems.
- Literature
- Teaching methods
- Lectures and discussions: 2 hours a week.
- Assessment methods
- Active discussion during lectures. To conclude the term, one has to do the homeworks and to prove understanding the topics, terms and models during the final infividual talk.
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course is taught annually. - Teacher's information
- https://is.muni.cz/auth/el/sci/jaro2022/M81B0/index.qwarp
The lessons are usually in Czech or in English as needed, and the relevant terminology is always given with English equivalents.The target skills of the study include the ability to use the English language passively and actively in their own expertise and also in potential areas of application of mathematics.
Assessment in all cases may be in Czech and English, at the student's choice.
- Enrolment Statistics (Spring 2022, recent)
- Permalink: https://is.muni.cz/course/sci/spring2022/M81B0