CS

PřF:G8861 Accessory Minerals - Course Information

G8861 Accessory Minerals

Faculty of Science
spring 2018

The course is not taught in spring 2018

Extent and Intensity
1/1. 3 credit(s). Type of Completion: zk (examination).
Teacher(s)
doc. Mgr. Jan Cempírek, Ph.D. (lecturer)
Mgr. Renata Čopjaková, Ph.D. (lecturer)
doc. Mgr. Radek Škoda, Ph.D. (lecturer)
Mgr. Jiří Toman (assistant)
Supervisor
doc. RNDr. Rostislav Melichar, Dr.
Department of Geological Sciences - Earth Sciences Section - Faculty of Science
Contact Person: doc. Mgr. Martin Ivanov, Dr.
Supplier department: Department of Geological Sciences - Earth Sciences Section - Faculty of Science
Prerequisites
! G8860 Accessory minerals
Passing of Mineralogy I (G1061) and Mineralogy II (G8561)
Course Enrolment Limitations
The course is also offered to the students of the fields other than those the course is directly associated with.
The capacity limit for the course is 32 student(s).
Current registration and enrolment status: enrolled: 0/32, only registered: 0/32, only registered with preference (fields directly associated with the programme): 0/32
Fields of study the course is directly associated with
there are 42 fields of study the course is directly associated with, display
Course objectives
The course will provide detailed overview of crystal structure, morphology, chemistry, and physical properties of the principal groups of accessory minerals and their use in the study of rock genesis. The course also covers heavy minerals and their applicability in determination of sediment maturity and provenance.
Syllabus
  • 1. Introduction to accessory minerals (AM) and heavy minerals (HM), their definitions. AM in magmatic and metamorphic rocks, HM in sediments. Refractory properties of HM, changes in mineral associations controlled by physical and chemical processes in sediments. Utilisation of HM for determination of sediment maturity and provenance.

    2. Minerals of Nb, Ta, W, Sn (columbite-tantalite, Nb,Ta-rutile, pyrochlor-microlite, tapiolite, wolframite, cassiterite, scheelite) - crystal chemistry, physical properties, using in geochemical and sedimentological research.

    3. Garnet group - crystal chemistry, physical properties, using in geochemical and sedimentological research.

    4. Tourmaline group and borosilicates (dumortierite) - crystal chemistry, current classification, physical properties, using in geochemical, petrological and sedimentological research.

    5. Ti-minerals (TiO2 polymorphs, ilmenite group, titanite) - crystal chemistry, physical properties, using in geochemical, petrological and sedimentological research.

    6. Al-rich silicates (staurolite, chloritoid, sapphirine) - crystal chemistry, physical properties, using in geochemical, petrological and sedimentological research.

    7. Spinel group (spinel, magnetite, chromite, hercynite, gahnite, etc.) - crystal chemistry, physical properties, using in geochemical, petrological and sedimentological research. Spinelidy (spinel, magnetit, chromit, hercynit, gahnit, aj.).

    8. Minerály bohaté Mn (rodonit, braunit, spessartin), využití v geochemickém a petrologickém studiu. Sulphides, native metals and platinoids, crystal chemistry, physical properties, use in geochemical, petrological and sedimentological research.

    9. Zircon, xenotime, accessory U, Th minerals - crystal chemistry, physical properties, using in geochemical, petrological and sedimentological research.

    10. Beryl and Be-bearing minerals - current classification, crystal chemistry, physical properties, PTX stability, using in geochemical and petrological research. 11. REE minerals (monazite group, REE carbonates, allanite) - crystal chemistry, physical properties, using in geochemical, petrological and sedimentological research.

    12. Apatite group - crystal chemistry, physical properties, using in geochemical, petrological and sedimentological research.

Literature
  • Deer, W. A. - Howie, R. A. - Zussman, J. (1997): Rock-forming minerals. Volume 1A - Orthosilicates.
  • Deer, W.A. ;Howie R.A.; Zussman, J.: Rock-forming minerals. Vol. 2A - Single-chain silicates.
  • Chang, L.L.Y. ; Howie R. A. ; Zussman, J. (1996): Rock-forming minerals. Non-silicates: sulphates, carbonates, phosphates, halides Vol. 5B
  • DEER, W. A., R. A. HOWIE and Jack ZUSSMAN. An introduction to the rock-forming minerals. 2nd ed. Essex: Longman, 1996. xvi, 696. ISBN 0582300940. info
Teaching methods
lectures and class discussion on selected problems
Assessment methods
Oral examination.
Language of instruction
English
Further comments (probably available only in Czech)
The course can also be completed outside the examination period.
The course is taught once in two years.
Information on the per-term frequency of the course: Bude otevřeno v jarním semestru 2018/2019.
The course is taught: every week.
The course is also listed under the following terms Spring 2008 - for the purpose of the accreditation, Spring 2003, Spring 2004, Spring 2006, Spring 2008, Spring 2010, Spring 2012, spring 2012 - acreditation, Spring 2014, Spring 2017.
  • Enrolment Statistics (spring 2018, recent)
  • Permalink: https://is.muni.cz/course/sci/spring2018/G8861