Detailed Information on Publication Record
2012
Parameter Identification and Model Ranking of Thomas Networks
KLARNER, Hannes, Adam STRECK, David ŠAFRÁNEK, Juraj KOLČÁK, Heike SIEBERT et. al.Basic information
Original name
Parameter Identification and Model Ranking of Thomas Networks
Name in Czech
Identifikace parametrů a clasifikace modelů Thomasových sítí
Authors
KLARNER, Hannes (276 Germany), Adam STRECK (203 Czech Republic, belonging to the institution), David ŠAFRÁNEK (203 Czech Republic, guarantor, belonging to the institution), Juraj KOLČÁK (703 Slovakia, belonging to the institution) and Heike SIEBERT (276 Germany)
Edition
Berlin, Computational Methods in Systems Biology: 10th International Conference, CMSB 2012, London, UK, October 3-5, 2012. Proceedings, p. 207-226, 20 pp. 2012
Publisher
Springer
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
Czech Republic
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
printed version "print"
References:
Impact factor
Impact factor: 0.402 in 2005
RIV identification code
RIV/00216224:14330/12:00057781
Organization unit
Faculty of Informatics
ISBN
978-3-642-33635-5
ISSN
Keywords in English
Thomas network; parameter identification; model checking
Tags
International impact, Reviewed
Změněno: 23/4/2013 07:21, RNDr. Pavel Šmerk, Ph.D.
Abstract
V originále
We propose a new methodology for identification and analysis of discrete gene networks as defined by René Thomas, supported by a tool chain: (i) given a Thomas network with partially known kinetic parameters, we reduce the number of acceptable parametrizations to those that fit time-series measurements and reflect other known constraints by an improved technique of coloured LTL model checking performing efficiently on Thomas networks in distributed environment; (ii) we introduce classification of acceptable parametrizations to identify most optimal ones; (iii) we propose two ways of visualising parametrizations dynamics wrt time-series data. Finally, computational efficiency is evaluated and the methodology is validated on bacteriophage \lambda case study.
Links
GAP202/11/0312, research and development project |
|