J 2012

On the inverse variational problem in nonholonomic mechanics

ROSSI, Olga and Jana MUSILOVÁ

Basic information

Original name

On the inverse variational problem in nonholonomic mechanics

Name in Czech

Inversni variacni problem v neholon omni mechanice

Authors

ROSSI, Olga (203 Czech Republic) and Jana MUSILOVÁ (203 Czech Republic, guarantor, belonging to the institution)

Edition

Communications in Mathematics, Ostrava, CR, The University of Ostrava, 2012, 1804-1388

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10301 Atomic, molecular and chemical physics

Country of publisher

Czech Republic

Confidentiality degree

není předmětem státního či obchodního tajemství

RIV identification code

RIV/00216224:14310/12:00057849

Organization unit

Faculty of Science

Keywords (in Czech)

Inversní variační problém, Helmholtzovy podmínky, neholonomní variační princip

Keywords in English

The inverse problem of the calculus of variations; Helmholtz conditions; nonholonomic variational principle

Tags

Tags

International impact, Reviewed
Změněno: 11/4/2013 12:26, Ing. Andrea Mikešková

Abstract

V originále

The inverse problem of the calculus of variations in a nonholonomic setting is studied. The concept of constraint variationality is introduced on the basis of a recently discovered nonholonomic variational principle. Variational properties of rst order mechanical systems with general nonholonomic constraints are studied. It is shown that constraint variationality is equivalent with the existence of a closed representative in the class of 2-forms determining the nonholonomic system. Together with the recently found constraint Helmholtz conditions this result completes basic geometric properties of constraint variational systems. A few examples of constraint variational systems are discussed.

In Czech

Studuje se unversní variašní problém, je zaveden pojen vázané variačnosti na základě neholonomního variačního principu. Uvedeny příklady.

Links

GA201/09/0981, research and development project
Name: Globální analýza a geometrie fibrovaných prostorů
Investor: Czech Science Foundation, Global analysis and the geometry of fibred spaces