D 2012

Segmentation from 97% to 100%: Is It Time for Some Linguistics?

SOJKA, Petr

Basic information

Original name

Segmentation from 97% to 100%: Is It Time for Some Linguistics?

Name in Czech

Segmentace z 97% na 100%: není čas pro trochu lingvistiky?

Authors

SOJKA, Petr (203 Czech Republic, guarantor, belonging to the institution)

Edition

první. Brno, Sixth Workshop on Recent Advances in Slavonic Natural Languages Processing, RASLAN 2012, p. 121--131, 11 pp. 2012

Publisher

Tribun EU

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Czech Republic

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

printed version "print"

RIV identification code

RIV/00216224:14330/12:00062085

Organization unit

Faculty of Informatics

ISBN

978-80-263-0313-8

Keywords (in Czech)

soutěživé vzory;segmentace;dělení slov;NP úplné problémy;generování vzorů;patgen;kontextově závislé vzory;strojové učení;jazykové inženýrství;EuDML

Keywords in English

competing patterns;segmentation;hyphenation;NP problems;pattern generation;patgen;context-sensitive patterns;machine learning;natural language engineering;EuDML

Tags

International impact, Reviewed
Změněno: 23/4/2013 07:21, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

Many tasks in natural language processing (NLP) require \emph{segmentation} algorithms: segmentation of paragraph into sentences, segmentation of sentences into words is needed in languages like Chinese or Thai, segmentation of words into syllables (\emph{hyphenation}) or into morphological parts (e.g.\ getting word stem for indexing), and many other tasks (e.g.\ tagging) could be formulated as segmentation problems. We evaluate methodology of using \emph{competing patterns} for these tasks and decide on the complexity of creation of space-optimal (minimal) patterns that completely (100\,\%) implement the segmentation task. We formally define this task and prove that it is in the class of \emph{non-polynomial} optimization problems. However, finding space-efficient competing patterns for real NLP tasks is feasible and gives efficient scalable solutions of segmentation task: segmentation is done in \emph{constant} time with respect to the size of segmented dictionary. Constant time of access to segmentations makes competing patterns attractive data structure for many NLP tasks.

Links

LA09016, research and development project
Name: Účast ČR v European Research Consortium for Informatics and Mathematics (ERCIM) (Acronym: ERCIM)
Investor: Ministry of Education, Youth and Sports of the CR, Czech Republic membership in the European Research Consortium for Informatics and Mathematics
250503, interní kód MU
Name: The European Digital Mathematics Library (Acronym: EuDML)
Investor: European Union