Detailed Information on Publication Record
2012
Segmentation from 97% to 100%: Is It Time for Some Linguistics?
SOJKA, PetrBasic information
Original name
Segmentation from 97% to 100%: Is It Time for Some Linguistics?
Name in Czech
Segmentace z 97% na 100%: není čas pro trochu lingvistiky?
Authors
SOJKA, Petr (203 Czech Republic, guarantor, belonging to the institution)
Edition
první. Brno, Sixth Workshop on Recent Advances in Slavonic Natural Languages Processing, RASLAN 2012, p. 121--131, 11 pp. 2012
Publisher
Tribun EU
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
Czech Republic
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
printed version "print"
References:
RIV identification code
RIV/00216224:14330/12:00062085
Organization unit
Faculty of Informatics
ISBN
978-80-263-0313-8
Keywords (in Czech)
soutěživé vzory;segmentace;dělení slov;NP úplné problémy;generování vzorů;patgen;kontextově závislé vzory;strojové učení;jazykové inženýrství;EuDML
Keywords in English
competing patterns;segmentation;hyphenation;NP problems;pattern generation;patgen;context-sensitive patterns;machine learning;natural language engineering;EuDML
Tags
International impact, Reviewed
Změněno: 23/4/2013 07:21, RNDr. Pavel Šmerk, Ph.D.
Abstract
V originále
Many tasks in natural language processing (NLP) require \emph{segmentation} algorithms: segmentation of paragraph into sentences, segmentation of sentences into words is needed in languages like Chinese or Thai, segmentation of words into syllables (\emph{hyphenation}) or into morphological parts (e.g.\ getting word stem for indexing), and many other tasks (e.g.\ tagging) could be formulated as segmentation problems. We evaluate methodology of using \emph{competing patterns} for these tasks and decide on the complexity of creation of space-optimal (minimal) patterns that completely (100\,\%) implement the segmentation task. We formally define this task and prove that it is in the class of \emph{non-polynomial} optimization problems. However, finding space-efficient competing patterns for real NLP tasks is feasible and gives efficient scalable solutions of segmentation task: segmentation is done in \emph{constant} time with respect to the size of segmented dictionary. Constant time of access to segmentations makes competing patterns attractive data structure for many NLP tasks.
Links
LA09016, research and development project |
| ||
250503, interní kód MU |
|