Další formáty:
BibTeX
LaTeX
RIS
@article{1086488, author = {Paseka, Jan and Niederle, Josef}, article_number = {3-4}, doi = {http://dx.doi.org/10.1007/s00012-012-0205-0}, keywords = {homogeneous effect algebra; orthocomplete effect algebra; meager-orthocomplete effect algebra; lattice effect algebra; center; atom; sharp element; meager element; hypermeager element}, language = {eng}, issn = {0002-5240}, journal = {Algebra Universalis}, title = {Triple Representation Theorem for orthocomplete homogeneous effect algebras}, url = {http://link.springer.com/article/10.1007%2Fs00012-012-0205-0}, volume = {68}, year = {2012} }
TY - JOUR ID - 1086488 AU - Paseka, Jan - Niederle, Josef PY - 2012 TI - Triple Representation Theorem for orthocomplete homogeneous effect algebras JF - Algebra Universalis VL - 68 IS - 3-4 SP - 197-220 EP - 197-220 SN - 00025240 KW - homogeneous effect algebra KW - orthocomplete effect algebra KW - meager-orthocomplete effect algebra KW - lattice effect algebra KW - center KW - atom KW - sharp element KW - meager element KW - hypermeager element UR - http://link.springer.com/article/10.1007%2Fs00012-012-0205-0 L2 - http://link.springer.com/article/10.1007%2Fs00012-012-0205-0 N2 - The aim of our paper is twofold. First, we thoroughly study the set of meager elements M(E), the set of sharp elements S(E), and the center C(E) in the setting of meager-orthocomplete homogeneous effect algebras E. Second, we prove the Triple Representation Theorem for sharply dominating meager-orthocomplete homogeneous effect algebras, in particular orthocomplete homogeneous effect algebras. ER -
PASEKA, Jan a Josef NIEDERLE. Triple Representation Theorem for orthocomplete homogeneous effect algebras. \textit{Algebra Universalis}. 2012, roč.~68, 3-4, s.~197-220. ISSN~0002-5240. doi:10.1007/s00012-012-0205-0.
|