D 2013

Random rules from data streams

EZILDA, Almeida, Petr KOSINA and Joao GAMA

Basic information

Original name

Random rules from data streams

Authors

EZILDA, Almeida (620 Portugal), Petr KOSINA (203 Czech Republic, guarantor, belonging to the institution) and Joao GAMA (620 Portugal)

Edition

New York, NY, USA, Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC '13, p. 813-814, 2 pp. 2013

Publisher

ACM

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

electronic version available online

References:

RIV identification code

RIV/00216224:14330/13:00068420

Organization unit

Faculty of Informatics

ISBN

978-1-4503-1656-9

Keywords in English

Data Streams; Classification; Rule Learning; Random Rules

Tags

International impact, Reviewed
Změněno: 7/1/2019 13:48, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

Existing works suggest that random inputs and random features produce good results in classification. In this paper we study the problem of generating random rule sets from data streams. One of the most interpretable and flexible models for data stream mining prediction tasks is the Very Fast Decision Rules learner (VFDR). In this work we extend the VFDR algorithm using random rules from data streams. The proposed algorithm generates several sets of rules. Each rule set is associated with a set of Natt attributes. The proposed algorithm maintains all properties required when learning from stationary data streams: online and any-time classification, processing each example once.

Links

LG13010, research and development project
Name: Zastoupení ČR v European Research Consortium for Informatics and Mathematics (Acronym: ERCIM-CZ)
Investor: Ministry of Education, Youth and Sports of the CR
MUNI/A/0758/2011, interní kód MU
Name: Zapojení studentů Fakulty informatiky do mezinárodní vědecké komunity (Acronym: SKOMU)
Investor: Masaryk University, Category A