Introduction Models Conclusion Pulse separation characteristic based on their approximation Jevicky J., Mravec F., Matej Z., Prenosil V Brno, 2013 Jevicky J. et al. Pulse separation 2013, Brno 1 / 9 Introduction Models Conclusion Motivation Impulses from detector Matematical model Digital spectrometric detection Jevicky J. et al. Pulse separation 2013, Brno 2 / 9 Introduction Models Conclusion Mathematical model φ(t) = n k=0 cf Pk; t = 0, 1, ..N P0(t) = 1 P1(t) = 1 − 2 t N Pk(t) = 2(2k−1) k(N−k+1) (N 2 − t)Pk−1(t) − (k−1)(N+k) k(n−K+1) Pk−2(t) k = 2, 3, ...n Jevicky J. et al. Pulse separation 2013, Brno 3 / 9 Introduction Models Conclusion Coeficient c0 C = c0 Jevicky J. et al. Pulse separation 2013, Brno 4 / 9 Introduction Models Conclusion Coeficient c0 and c2 C = 10(c0 − c2) Jevicky J. et al. Pulse separation 2013, Brno 5 / 9 Introduction Models Conclusion Leading edge app. integral and maxima app. of the pulse C1 = 1 φmax tkon tφmax φ(t)dt Jevicky J. et al. Pulse separation 2013, Brno 6 / 9 Introduction Models Conclusion Itegral from app. of the leading edge C1 = tkon tφmax φ(t)dt Jevicky J. et al. Pulse separation 2013, Brno 7 / 9 Introduction Models Conclusion Conclusion Usefull for FPGA ON-LINE separation Jevicky J. et al. Pulse separation 2013, Brno 8 / 9 Introduction Models Conclusion Thank you for your attention Jevicky J. et al. Pulse separation 2013, Brno 9 / 9