k 2013

Gold-diamond nanocomposite as a precursor for laser ablation synthesis of gold carbides

HAVEL, Josef, Eladia Maria PENA-MENDEZ, Filippo AMATO, Nagender Reddy PANYALA, Vilma BURŠÍKOVÁ et. al.

Basic information

Original name

Gold-diamond nanocomposite as a precursor for laser ablation synthesis of gold carbides

Authors

HAVEL, Josef (203 Czech Republic, guarantor, belonging to the institution), Eladia Maria PENA-MENDEZ (724 Spain), Filippo AMATO (380 Italy, belonging to the institution), Nagender Reddy PANYALA (356 India) and Vilma BURŠÍKOVÁ (203 Czech Republic)

Edition

International Symposium on Metal Complexes (ISMEC 2013), 2013

Other information

Language

English

Type of outcome

Prezentace na konferencích

Field of Study

10406 Analytical chemistry

Country of publisher

Czech Republic

Confidentiality degree

není předmětem státního či obchodního tajemství

RIV identification code

RIV/00216224:14310/13:00066253

Organization unit

Faculty of Science

Keywords in English

laser ablation synthesis; gold carbides; nanocomposite; nanodiamond

Tags

International impact, Reviewed
Změněno: 12/1/2015 16:41, Mgr. Filippo Amato, Ph.D.

Abstract

V originále

The chemistry of gold nanoparticles (GNPs) represents fascinating interdisciplinary field of research with applications in physics, chemistry, nanotechnology, and medicine, especially. GNPs are also used for the synthesis of novel nano-structured materials such as nanocomposites with graphene, carbon nano-tubes and/or fullerenes. Nanodiamonds (NDs) show unique mechanical, thermal and electrical properties which make them promising molecular building blocks in nanotechnology. Because of their biocompatibility and non-toxicity [1], NDs are used as drug carriers and building blocks e.g., for the fabrication of tissue scaffolds and surgical implants, etc. Metal carbides are extensively applied in industry. For a long time it was believed that gold is not forming carbides. Matthew in 1900 reported for the first time gold carbide (Au2C2) [2]. The formation of gold carbides via laser ablation synthesis was preliminarily indicated in our laboratory [3, 4]. Nowadays, it is known that i) gold forms not only carbides but also aurides and ii) gold-carbon interaction is important for development of electronic devices. The aim of this work is to study the formation of gold carbides via laser ablation synthesis (LAS) using as a precursor a kind of nanocomposite of GNPs with NDs. The GNPs-NDs nanocomposite (Fig. 1 a) was prepared and characterized by atomic force and transmission electron microscopy, energy dispersive X-ray spectroscopy and mass spectrometry. Laser ablation synthesis of gold carbides (Fig. 2) was carried out by laser desorption ionisation time-of-flight mass spectrometry (LDI-TOF-MS). Example of mass spectrum indicating the formation of singly charged AumCn+ clusters is given in Fig. 1 b. Gold carbides AuCn+ (n = 1-11), Au2Cn+ (n = 1-16) and Au3Cn+ (n = 1-10) and also some gold aurides were observed. The structure of observed AumCn clusters most probably corresponds to gold carbides, but also endohedral supramolecular complex formation, e.g., Au@C10 is not excluded (Fig. 3) [5]. Such possibility was supported by modelling via semi-empirical approach using the HYPERCHEMTM program (release 5.1, 1998) from Hyper-cube Inc. (Gainesville, FL, USA). The confirmation of diamond doped structure with gold atom would mean the first experimental evidence of gold-doped NDs. Concluding, laser ablation of GNPs-NDs nanocomposite leads to synthesis of Au-C clusters. Stoichiometry of altogether 37 gold carbides was established while also some gold aurides were formed probably from partially hydrogenated NDs. It is suggested that some “gold carbides” might be gold-modified diamonds or gold-diamond endohedral complexes. Results concerning the synthesis via laser ablation might initiate development of new Au-C materials with specific properties.

Links

CZ.1.05/2.1.00/03.0086, interní kód MU
Name: CEPLANT - Regionální VaV centrum pro nízkonákladové plazmové a nanotechnologické povrchové úpravy
Investor: Ministry of Education, Youth and Sports of the CR, 2.1 Regional R&D Centres
GA202/07/1669, research and development project
Name: Depozice termomechanicky stabilních nanostrukturovaných diamantu-podobných tenkých vrstev ve dvojfrekvenčních kapacitních výbojích
Investor: Czech Science Foundation, Deposition of thermomehanically stable nanostructured diamond-like thin films in dual frequency capacitive discharges
MSM0021622411, plan (intention)
Name: Studium a aplikace plazmochemických reakcí v neizotermickém nízkoteplotním plazmatu a jeho interakcí s povrchem pevných látek
Investor: Ministry of Education, Youth and Sports of the CR, Study and application of plasma chemical reactions in non-isothermic low temperature plasma and its interaction with solid surface