J 2016

Selection of bandwidth for kernel regression

KOLÁČEK, Jan and Ivanka HOROVÁ

Basic information

Original name

Selection of bandwidth for kernel regression

Name in Czech

Hledání optimální šířky okna při jádrové regresi

Authors

KOLÁČEK, Jan (203 Czech Republic, guarantor, belonging to the institution) and Ivanka HOROVÁ (203 Czech Republic, belonging to the institution)

Edition

Communications in Statistics - Theory and Methods, Marcel Dekker, 2016, 0361-0926

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 0.311

RIV identification code

RIV/00216224:14310/16:00087701

Organization unit

Faculty of Science

UT WoS

000371090100020

Keywords in English

kernel regression; bandwidth selection; iterative method

Tags

Tags

International impact, Reviewed
Změněno: 13/3/2018 17:19, doc. Mgr. Jan Koláček, Ph.D.

Abstract

V originále

The most important factor in kernel regression is a choice of a bandwidth. Considerable attention has been paid to extension the idea of an iterative method known for a kernel density estimate to kernel regression. Data-driven selectors of the bandwidth for kernel regression are considered. The proposed method is based on an optimally balanced relation between the integrated variance and the integrated square bias. This approach leads to an iterative quadratically convergent process. The analysis of statistical properties shows the rationale of the proposed method. In order to see statistical properties of this method the consistency is determined. The utility of the method is illustrated through a simulation study and real data applications.

Links

GA15-06991S, research and development project
Name: Analýza funkcionálních dat a související témata
Investor: Czech Science Foundation