Detailed Information on Publication Record
2013
Deconvolution of huge 3-D images: Parallelization strategies on a multi-GPU system
KARAS, Pavel, Michal KUDERJAVÝ and David SVOBODABasic information
Original name
Deconvolution of huge 3-D images: Parallelization strategies on a multi-GPU system
Name in Czech
Dekonvoluce velkých 3-D obrazů: Strategie pro paralelizaci na multi-GPU systému
Authors
KARAS, Pavel (203 Czech Republic, guarantor, belonging to the institution), Michal KUDERJAVÝ (203 Czech Republic, belonging to the institution) and David SVOBODA (703 Slovakia, belonging to the institution)
Edition
Neuveden, Algorithms and Architectures for Parallel Processing, p. 279-290, 12 pp. 2013
Publisher
Springer International Publishing
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
Italy
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
printed version "print"
References:
Impact factor
Impact factor: 0.402 in 2005
RIV identification code
RIV/00216224:14330/13:00066399
Organization unit
Faculty of Informatics
ISBN
978-3-319-03858-2
ISSN
Keywords (in Czech)
dekonvoluce; gpu; multi-gpu; paralelizace; implementace; algoritmus; em-mle; richardson-lucy; ictm; wiener
Keywords in English
deconvolution; gpu; multi-gpu; parallelization; implementation; algorithm; em-mle; richardson-lucy; ictm; wiener
Tags
International impact, Reviewed
Změněno: 29/12/2013 12:04, RNDr. Pavel Karas, Ph.D.
Abstract
V originále
In this paper, we discuss strategies to parallelize selected deconvolution methods on a multi-GPU system. We provide a comparison of several approaches to split the deconvolution into subtasks while keeping the amount of costly data transfers as low as possible, and propose own implementation of three deconvolution methods which achieves up to 65x speedup over the CPU one. In the experimental part, we analyse how the individual stages of the computation contribute to the overall computation time as well as how the multi-GPU implementation scales in various setups. Finally, we identify bottlenecks of the system.
Links
GBP302/12/G157, research and development project |
| ||
MUNI/A/0760/2012, interní kód MU |
|