
FAULT COLLAPSING AND TEST GENERATION FOR A
CIRCUIT

ABSTRACT
A novel method to generate a complete list of faults and their corresponding test
vectors for a gate-level circuit is presented. This method creates the distinguishable
faults of a circuit based on the paths they propagate, along with the test vector(s) for
each fault. While the other available methods for fault list and test vector generation
are expensive, this method tries to reduce the cost by avoiding all the unnecessary
steps and merging the two tasks together.

Key words:
Fault list generation, test vector generation, fault paths

1 INTRODUCTION

Every manufactured chip or device should be tested for physical defects. The
main concern in testing a digital device is to test it as thoroughly and quickly as
possible. With complexity of today’s digital devices, it is a very challenging task to
test a circuit completely and in as little time as possible. To resolve this problem, there
are a number of “test methods” developed that try to reduce the complexity of
electronic testing. These methods help reduce the number of test vectors by selecting
them more wisely than just trying every possible input combination.

2 TEST METHODS
2. 1 FAULT MODEL

In order to analyze faulty behavior of a digital system, a simple fault model is
needed to represent faults on circuit lines. This fault model should have a close
correspondence with the actual defects, it should be easy to implement as a computer
program, and it should not have the complexities present in the actual circuit.

Defects in a circuit can be viewed at various levels of abstraction [1−4],
including physical, transistor, gate, register transfer, and system levels. A defect at the
physical level would cause different higher level fault effects, depending on various
conditions that the defective part is used in. One approach to fault modeling is to
model the effect of the faults on functionality of the system at various levels [5, 6].
While this approach is an accurate representation of a fault at one level, the complexity
involved in analysis of effects of various defects in physical level on higher levels is
very high. Moreover, this approach does not consider the faults associated with

interconnections. A better approach to fault modeling is to only consider
interconnection faults, called structural faults.

Structural fault modeling takes advantage of the fact that the components of a
system lump their faulty behavior into interconnections [5, 6]. Therefore, this fault
modeling approach assumes that the components are fault-free, and only considers the
faults associated with interconnections. Since interconnections can be viewed at
various levels of abstraction, for fault simulation purposes, the interconnection faults
at gate-level are easier to handle than the ones at the other levels. Throughout this
article, the focus is on gate-level structural faults.

2. 2 FAULT REDUCTION

Two issues that make analysis of a circuit for its faults too complicated are
various fault types and presence of multiple faults in a circuit. To reduce this
complexity, we should reduce the number of fault types that we need to deal with, and
only consider single faults. Among various fault types, stuck-at-1 and stuck-at-0 faults
[7] are general enough that almost any other fault type (e.g., stuck-open, and bridging
faults [8]) can be categorized as one of these two fault types. Also, analysis based on
presence of a single fault in a circuit can be generalized to multiple faults [9, 10, 11].
Single stuck-at fault model is the most used fault model for testing electronic devices
today. Our focus in this article is on single stuck-at faults.

While considering only single stuck-at faults on the lines of a circuit simplifies
fault model of the circuit significantly, more fault reduction can still be done. When
several faults produce the same output for every input combination, they are said to be
indistinguishable. Indistinguishable faults can be detected but cannot be located, and
they have the same set of tests. Further fault reduction can be done by eliminating the
indistinguishable faults in a circuit. This process is called “fault collapsing”. Some
methods for fault collapsing are gate-oriented fault collapsing, line-oriented fault
collapsing, and dominance fault collapsing. These fault collapsing methods have
deficiencies when there are reconvergent fanouts in the circuit. Fault collapsing is part
of our proposed method explained in section 3. Our method handles reconvergent
fanouts as well, as will be explained later in this article.

2. 3 TEST GENERATION

Test generation is the process of finding input vectors (called test vectors)
which create different outputs for faulty and fault-free circuits. There are several ways
to generate test vectors for a circuit. In “random test generation,” random test vectors
are generated and checked for the faults they can detect [12]. This is most efficient
when there are many undetected faults in the circuit. Random tests can cover a high
percentage of the faults in a short time. In “fault-oriented deterministic test
generation,” a fault is considered in the circuit, and a test is generated for that fault.
This type of test generation has a high cost and is most appropriate when there are few
faults in the circuit to be detected.

In a complete test generation scheme, the common practice is to generate tests
in two phases: at the beginning of the process, random test generation is employed to
cover a high percentage of the faults in the circuit. In the second phase, the remaining
uncovered faults are detected using deterministic test generation algorithms like the
popular D-algorithm [13]. Complete test generation is a part of our novel method
described in the following section.

3 OUR METHOD OF FAULT COLLAPSING AND TEST GENERATION

In this article, we propose a new approach to generating all the possible
distinguishable faults and their corresponding test vectors in a circuit. Applying this
method, the two expensive tasks of fault collapsing and complete test generation for a
circuit are accomplished in one step.

Classically, the lines (i.e., wires connecting components at gate-level
abstraction) of a circuit are labeled with the faults. However, a path in the circuit,
starting from an input and ending at the output of the circuit, can represent a fault. In
other words, a path through which a fault effect propagates to reach the circuit output
can be labeled as a fault. Finding all these paths will provide us with all the
distinguishable faults on a circuit. We can detect these fault paths by starting from the
output and propagating a fault effect from the output to the inputs of the circuit and
hence finding all the possible fault paths in the circuit. If we use D representing 1/0
(good/faulty) value and D̄ representing 0/1 value for faulty lines, the propagation from
the output to the inputs of the individual logic gates encountered in a circuit will be as
shown in Tab. 1.

Table 1 Propagation of faulty and good values from the output to the inputs of basic
logical functions

 AND OR NAND NOR NOT

Out In1 In2 In1 In2 In1 In2 In1 In2 In

D D 1 D 0 D̄ 1 D̄ 0 D̄

D 1 D 0 D 1 D̄ 0 D̄ −

D D D D D D̄ D̄ D̄ D̄ −

D̄ D̄ 1 D̄ 0 D 1 D 0 D

D̄ 1 D̄ 0 D̄ 1 D 0 D −

D̄ D̄ D̄ D̄ D̄ D D D D −

1 1 1 1 X 0 X 0 0 0

1 − − X 1 X 0 − − −

0 0 X 0 0 1 1 1 X 1

0 X 0 − − − − X 1 −

To keep track of the fault effect propagation through various paths in the circuit,
we create a tree structure as help. For a given circuit, first we give a D value to the
primary output of the circuit and put it as the root of the tree. As we move backward in
the circuit, when we face a gate, we create one branch for every possible input
combination for that gate output, using Tab. 1 (the only exceptions are D-D or D̄ -D̄
input combinations which are only considered for inputs of convergence points, as will
be explained later). This process is continued for every input value in every new node
created in the tree. The tree is complete when all the leaves of the tree are either the
primary inputs of the tree, or the “X” value (“Don’t Care”). As an example, Fig. 1
shows a two-input multiplexer circuit at gate level and Fig. 2 represents the tree
structure created to help us generate the fault list and the corresponding test vectors.

l6

l9

l8

l7l4

l3

l2

l1

l5

b

s

a

w

Figure 1 Structural gate-level multiplexer circuit

l7=D̄ , l8=1 l7=D̄ , l8=D̄

l5=1, l4=D

l1=D̄

l2=D̄

l5=D, l4=1

l2=0

l3=0, l6=X

l1=0

l3=X, l6=0

l1=0

l7=1, l8=D̄

l5=X, l4=0 l3=D, l6=1 l3=1, l6=D

l1=1l1=D

l1=1

l2=1

l5=0, l4=X

l9=D

Figure 2 The fault tree illustrating the fault propagation through the circuit of

Fig. 1

The fault tree will be used to detect the available fault paths in the circuit. To do
so, we detect every path in the tree which has a D or D̄ for a primary input on that
path. We start with the leaf of such a path and move up to the root of the tree. As we
move upward to the root, when we encounter a node (representing the inputs of a
gate), if the other input on that node is branched downward, we need to backtrack from
that node. If there exists at least one branch for backtracking which does not block the
propagation of the fault, our fault path is valid so far, and we continue this process
toward the root of the tree. For our example fault tree in Fig. 2, the valid fault paths
and their test vectors are (inside the brackets are the backtracks):
1) l1 = D → l3 = D, l6 = 1 → l8 = D̄ , l7 = 1 {l5 = 0, l4 = X} → l9 = D

test vector: asb = 011
2) l1 = 1 → l6 = D, l3 = 1 → l8 = D̄ , l7 = 1 {l5 = 0, l4 = X} → l9 = D

test vector: asb = 011
or:
l1 = 1 → l6 = D, l3 = 1 → l8 = D̄ , l7 = 1 {l5 = X, l4 = 0, l2 = 1, l1 =1} → l9 = D
test vector: asb = X11

3) l1 = D̄ → l2 = D̄ → l4 = D, l5 = 1 → l7 = D̄ , l8 = 1 {l3 = X, l6 = 0} → l9 = D
test vector: asb = 100

4) l1 = 0 → l2 = 0 → l5 = D, l4 = 1 → l7 = D̄ , l8 = 1 {l3 = X, l6 = 0} → l9 = D
test vector: asb = 100
or:
l1 = 0 → l2 = 0 → l5 = D, l4 = 1 → l7 = D̄ , l8 = 1 {l3 = 0, l6 = X, l1 = 0} → l9 = D
test vector: asb = 10X

As pointed out earlier, the special case of both inputs being D or D̄ in Tab. 1 is
applied only on the convergence point of a reconvergent fanout in the circuit, if there
is any. The purpose is to find the fault effects diverging from the fanout stem and
propagating through two separate paths and converging again at the convergence
point. In our example fault tree, there is one reconvergent fanout and hence one such
combination; l7 = D̄ and l8 = D̄ . The traces for these two cases are already done in the
tree as shown in bold in Fig. 2. In this specific example, when we trace the branches
shown in bold, no new valid fault path is detected due to the propagation blocking
during backtracking.

So far, we have formed value D on the primary output and propagated it to the
primary inputs and detected several faults and their corresponding test vectors. This
provides us with half of the distinguishable faults in the circuit. To find the rest of the
faults, the same task should be repeated but with D̄ on the primary output. A closer
look at Tab. 1 reveals that by swapping D and D̄ on the output of a gate, and also on
the inputs of it, the logical expression remains true. This duality rule can be extended
to a circuit. In the above example, by simply swapping D and D̄ , we can find the rest
of the fault paths. Therefore, the four “dual” test vectors will be:

5) asb = 001
6) asb = 010 or asb = X10
7) asb = 110
8) asb = 000 or asb = 00X
Overall, the circuit of Fig. 1 has 8 distinguishable fault paths and their corresponding
test vectors.

4 CONCLUSIONS

In this article, a new method for fault collapsing and test generation was
introduced. This method starts from the primary output of a gate-level circuit and
propagates a D value (representing 1/0, which is a good 1 value and a faulty 0 value)
towards the primary inputs of the circuit. A fault tree structure is used to help us find
the faulty paths of the circuit. This method handles the reconvergent fanouts in the
circuit very well, with minimum level of cost. After detecting these fault paths, the rest
of the fault list is generated by simply swapping D and D̄ . The test vectors
corresponding to the faults are easily generated from the fault tree.

ACKNOWLEDGEMENT

The work presented in this paper has been supported under research project
SPECTRUM, No. TA01011383 by Technology Agency of the Czech Republic.

REFERENCES

[1] Timoc C., Buehler M., Griswold T., Pina C., Stott F., Hess L. Logical models of physical

failures. Proceedings of IEEE international test conference. 1983, pp 546−553

[2] Hayes JP. Fault modeling. IEEE Des Test Comput. 1985, pp 88−95

[3] Shen J.P., Maly W., Ferguson F.J. Inductive fault analysis of MOS integrated circuits.
IEEE Des Test Comput. 1985, 2(6): 13−26

[4] Abraham J.A., Fuchs W.K. Fault and error models for VLSI. Proc IEEE. 1986, 74(5):
639−654

[5] Bushnell M.L., Agrawal V.D. Essentials of electronic testing for digital, memory, and
mixed-signal VLSI circuits. Kluwer, Dordecht, 2000

[6] Jha N.K., Gupta S. Testing of digital systems. Cambridge University Press, Cambridge,
2003

[7] Galey J.M., Norby R.E., Roth J.P. Techniques for the diagnosis of switching circuit
failures. Proceedings of the second annual symposium on switching circuit theory and
logical design. Detroit, 1961, pp 152−160

[8] Malaiya Y.K., Rajsuman R. Bridging faults and IDDQ testing. Los Alamitos, California.
IEEE Computer Society Press, Silver Spring, MD, 1992

[9] Agrawal V.K., Fung A.F.S. Multiple fault testing of large circuits by single fault test sets.
IEEE Trans Comput. 1981, C-30(11): 855−865

[10] Hughes J.L.A., McCluskey E.J. Multiple stuck-at fault coverage of single stuck-at fault
test sets. Proceedings of the international test conference. 1986, pp 368−374

[11] Jacob J., Biswas N.N. GTBD faults and lower bounds on multiple fault coverage of single
fault test sets. Proceedings of the international test conference. 1987, pp 849−855

[12] Agrawal P., Agrawal V.D. Probabilistic analysis of random test generation method for
irredundant combinational logic networks. IEEE Trans Comput. 1975, C-24(7): 691−695

[13] Roth J.P. Diagnosis of automata failures: a calculus and a method. IBM J Res Dev. 1966,
10(4): 278−291

AUTHORS

RNDr. Moslem Amiri:

Masaryk University, Faculty of Informatics, B202; amiri@mail.muni.cz
prof. Ing. Václav Přenosil, CSc.:

Masaryk University, Faculty of Informatics, B406; prenosil@fi.muni.cz

