Detailed Information on Publication Record
2013
The role of ABC transporters associated with multidrug resistance in stem cells
LÁNOVÁ, Martina, Josef VEČEŘA, Jan KUČERA, Jiřina MEDALOVÁ, Jiří PACHERNÍK et. al.Basic information
Original name
The role of ABC transporters associated with multidrug resistance in stem cells
Authors
LÁNOVÁ, Martina (203 Czech Republic, belonging to the institution), Josef VEČEŘA (203 Czech Republic, belonging to the institution), Jan KUČERA (203 Czech Republic, belonging to the institution), Jiřina MEDALOVÁ (203 Czech Republic, belonging to the institution) and Jiří PACHERNÍK (203 Czech Republic, guarantor, belonging to the institution)
Edition
Stem Cells and Cell therapy: From research to modern clinical application, 2013
Other information
Language
English
Type of outcome
Prezentace na konferencích
Field of Study
30105 Physiology
Country of publisher
Czech Republic
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
RIV identification code
RIV/00216224:14310/13:00070749
Organization unit
Faculty of Science
Keywords in English
ABC-transporters neural stem cells
Změněno: 11/3/2015 10:51, RNDr. Josef Večeřa, Ph.D.
Abstract
V originále
ATP-binding transporters (ABC-t) play various roles in regulation of organism function and homeostasis from prokaryote to mammals. ABC-t mediate transport mainly of lipophilic substances through cellular membranes. These transporters protect stem cells against toxic substances of either endogenous, or importantly, exogenous origin. These transporters are called ABC-t associated with multi-drug resistance (MDR), according to their role in multidrug resistance to pharmacotherapy. High level of ABC-t expression is a typical feature of stem cells and many types of cancer stem cells. Particularly, ABCB1/P-glycoprotein/MDR1, ABCC1/multidrug resistance-associated protein 1 (MRP1), and ABCG2/BCRP (Breast cancer resistance protein);. However, substrates of ABC-t/MDR are not only toxins, but also important signaling molecules as well as leukotrienes and/or glutathione conjugates; and porphyrins, which mediate balance in intracellular oxidation-reduction processing. Thus we hypothesize the role of ABC-t/MDR in regulation of stem cells fate. To test this hypothesis we analyzed effect of modulation of ABC-t/MDR activity in embryonic and neural stem cells. We observed that ABCC1 and ABCG2 are the most expressed ABC-t/MDR in our tested stem cells. Importantly, inhibition of these ABC-t/MDR leads to decreasing of stemness and induction of differentiation in both embryonic and neural stem cells. Analysis of mechanism of observed effect and identification of studying ABC-t/MDR substrates, which may be responsible for this effect, are in progress.
Links
EE2.3.30.0009, research and development project |
|