PASEKA, Jan, Sylvia PULMANNOVÁ and Zdenka RIEČANOVÁ. Properties of Quasi-Hermitian Operators Inherited from Self-Adjoint Operators. International Journal of Theoretical Physics. Springer, 2013, vol. 52, No 6, p. 1994-2000. ISSN 0020-7748. doi:10.1007/s10773-012-1403-4.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Properties of Quasi-Hermitian Operators Inherited from Self-Adjoint Operators
Authors PASEKA, Jan (203 Czech Republic, guarantor, belonging to the institution), Sylvia PULMANNOVÁ (703 Slovakia) and Zdenka RIEČANOVÁ (703 Slovakia).
Edition International Journal of Theoretical Physics, Springer, 2013, 0020-7748.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10101 Pure mathematics
Country of publisher United States of America
Confidentiality degree is not subject to a state or trade secret
WWW URL
Impact factor Impact factor: 1.186
RIV identification code RIV/00216224:14310/13:00070760
Organization unit Faculty of Science
Doi http://dx.doi.org/10.1007/s10773-012-1403-4
UT WoS 000318373700027
Keywords in English Generalized effect algebra; Unbounded linear operators; Quasi-Hermitian operators; PT-symmetric quantum mechanics
Tags AKR, rivok
Tags International impact, Reviewed
Changed by Changed by: prof. RNDr. Jan Paseka, CSc., učo 1197. Changed: 7. 1. 2014 15:15.
Abstract
We study a generalized effect algebra of unbounded linear operators in an infinite-dimensional complex Hilbert space. This algebra equipped with a certain kind of topology allows us to show that unbounded quasi-Hermitian operators can be expressed as a difference of two infinite sums of bounded quasi-Hermitian operators.
Links
EE2.3.20.0051, research and development projectName: Algebraické metody v kvantové logice
PrintDisplayed: 27. 5. 2022 05:06