J 2013

Application of Thomas-Reiche-Kuhn sum rule to construction of advanced dispersion models

FRANTA, Daniel, David NEČAS and Lenka ZAJÍČKOVÁ

Basic information

Original name

Application of Thomas-Reiche-Kuhn sum rule to construction of advanced dispersion models

Authors

FRANTA, Daniel (203 Czech Republic, guarantor, belonging to the institution), David NEČAS (203 Czech Republic, belonging to the institution) and Lenka ZAJÍČKOVÁ (203 Czech Republic, belonging to the institution)

Edition

Thin Solid Films, Oxford, Elsevier Science, 2013, 0040-6090

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10302 Condensed matter physics

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

URL

Impact factor

Impact factor: 1.867

RIV identification code

RIV/00216224:14740/13:00066826

Organization unit

Central European Institute of Technology

DOI

http://dx.doi.org/10.1016/j.tsf.2013.01.081

UT WoS

000317736700071

Keywords in English

Sum rule; Optical constants; Dispersion model

Tags

podil, rivok

Tags

International impact, Reviewed
Změněno: 9/4/2015 11:44, Martina Prášilová

Abstract

V originále

The classical f-sum rule is generalized using quantum mechanical Thomas–Reiche–Kuhn sum rule to include nucleonic contribution, i.e. lattice vibrations. The sum rule is formulated for the transition strength function defined as a continuous condensed-matter equivalent of the oscillator strength known for discrete transitions in atomic spectra. The application of such formulated sum rule allows construction of dispersion models containing a fitting parameter directly related to the atomic density of material. The dielectric response expressed using the transition strength function is split into individual contributions such as direct and indirect electronic interband transitions including excitonic effect, excitations of electrons to the high-energy states existing above the conduction band, core-electron excitations and phonon absorption. The presented models reflect understanding of structure of disordered and crystalline materials on the basis of quantum theory of solids. The usual term ‘joint density of states’, that should be used only for electronic transitions in the one-electron approximation, is replaced by the more general term ‘transition density’.

Links

ED1.1.00/02.0068, research and development project
Name: CEITEC - central european institute of technology
ED2.1.00/03.0086, research and development project
Name: Regionální VaV centrum pro nízkonákladové plazmové a nanotechnologické povrchové úpravy
GAP205/10/1374, research and development project
Name: Syntéza uhlíkových nanotrubek plazmochemickou metodou a studium jejich funkčních vlastností
Investor: Czech Science Foundation
286154, interní kód MU
Name: SYLICA - Synergies of Life and Material Sciences to Create a New Future (Acronym: SYLICA)
Investor: European Union, Capacities
Displayed: 15/11/2024 23:22