D 2014

RSurf - the Efficient Texture-Based Descriptor for Fluorescence Microscopy Images of HEp-2 Cells

MAJTNER, Tomáš, Roman STOKLASA and David SVOBODA

Basic information

Original name

RSurf - the Efficient Texture-Based Descriptor for Fluorescence Microscopy Images of HEp-2 Cells

Authors

MAJTNER, Tomáš (703 Slovakia, guarantor, belonging to the institution), Roman STOKLASA (703 Slovakia, belonging to the institution) and David SVOBODA (203 Czech Republic, belonging to the institution)

Edition

Los Alamitos, California, 22nd International Conference on Pattern Recognition, p. 1194-1199, 6 pp. 2014

Publisher

IEEE Computer Society

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

20200 2.2 Electrical engineering, Electronic engineering, Information engineering

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

storage medium (CD, DVD, flash disk)

RIV identification code

RIV/00216224:14330/14:00073550

Organization unit

Faculty of Informatics

ISBN

978-1-4799-5208-3

ISSN

UT WoS

000359818001053

Keywords in English

texture descriptor;rsurf;hep-2

Tags

International impact, Reviewed
Změněno: 9/1/2015 15:37, RNDr. Ing. Bc. Tomáš Majtner, Ph.D.

Abstract

V originále

In biomedical image analysis, object description and classification tasks are very common. Our work relates to the problem of classification of Human Epithelial (HEp-2) cells. Since the crucial part of each classification process is the feature extraction and selection, much attention should be concentrated to the development of proper image descriptors. In this article, we introduce a new efficient texture-based image descriptor for HEp-2 images. We compare proposed descriptor with LBP, Haralick features (GLCM statistics) and Tamura features using the public MIVIA HEp-2 Images Dataset. Our descriptor outperforms all previously mentioned approaches and the classifier based solely on the proposed descriptor is able to achieve the accuracy as high as 87.8%.

Links

GBP302/12/G157, research and development project
Name: Dynamika a organizace chromosomů během buněčného cyklu a při diferenciaci v normě a patologii
Investor: Czech Science Foundation
MUNI/A/0765/2013, interní kód MU
Name: Zapojení studentů Fakulty informatiky do mezinárodní vědecké komunity (Acronym: SKOMU)
Investor: Masaryk University, Category A
MUNI/A/0855/2013, interní kód MU
Name: Rozsáhlé výpočetní systémy: modely, aplikace a verifikace III. (Acronym: FI MAV III.)
Investor: Masaryk University, Category A