J 2013

Parameterized Complexity Results for Exact Bayesian Network Structure Learning

ORDYNIAK, Sebastian and Stefan SZEIDER

Basic information

Original name

Parameterized Complexity Results for Exact Bayesian Network Structure Learning

Authors

ORDYNIAK, Sebastian (276 Germany, guarantor, belonging to the institution) and Stefan SZEIDER (40 Austria)

Edition

JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, MARINA DEL REY, AI ACCESS FOUNDATION, 2013, 1076-9757

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10000 1. Natural Sciences

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

Impact factor

Impact factor: 0.904

RIV identification code

RIV/00216224:14330/13:00072814

Organization unit

Faculty of Informatics

UT WoS

000315862100001

Keywords in English

probabilistic network structure learning; parameterized complexity;algorithms

Tags

International impact, Reviewed
Změněno: 26/2/2018 09:08, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

The propositional planning problem is a notoriously difficult computational problem, which remains hard even under strong syntactical and structural restrictions. Given its difficulty it becomes natural to study planning in the context of parameterized complexity. In this paper we continue the work initiated by Downey, Fellows and Stege on the parameterized complexity of planning with respect to the parameter ``length of the solution plan.'' We provide a complete classification of the parameterized complexity of the planning problem under two of the most prominent syntactical restrictions, i.e., the so called PUBS restrictions introduced by B{\"a}ckstr\"{o}m and Nebel and restrictions on the number of preconditions and effects as introduced by Bylander. We also determine which of the considered fixed-parameter tractable problems admit a polynomial kernel and which don't.

Links

EE2.3.30.0009, research and development project
Name: Zaměstnáním čerstvých absolventů doktorského studia k vědecké excelenci