Detailed Information on Publication Record
2014
Conformally invariant quantization – towards the complete classification.
ŠILHAN, JosefBasic information
Original name
Conformally invariant quantization – towards the complete classification.
Name in Czech
Konformně invariantní kvantování - směrem k úplné klasifikaci
Authors
ŠILHAN, Josef (203 Czech Republic, guarantor, belonging to the institution)
Edition
Differential Geometry and its Applications, Amsterdam, Elsevier Science, 2014, 0926-2245
Other information
Language
English
Type of outcome
Článek v odborném periodiku
Field of Study
10101 Pure mathematics
Country of publisher
Netherlands
Confidentiality degree
není předmětem státního či obchodního tajemství
References:
Impact factor
Impact factor: 0.691
RIV identification code
RIV/00216224:14310/14:00073573
Organization unit
Faculty of Science
UT WoS
000332140800009
Keywords in English
Conformal differential geometry; Invariant quantization; Invariant differential operators
Tags
International impact, Reviewed
Změněno: 7/4/2014 14:38, Ing. Andrea Mikešková
Abstract
V originále
Let $M$ be a smooth manifold equipped with a conformal structure, $E[w]$ the space of densities with the the conformal weight $w$ and $D_{w,w+d}$ the space of differential operators from $E[w]$ to $E[w+d]$. Conformal quantization $Q$ is a right inverse of the principle symbol map on $D_{w,w+d}$ such that $Q$ is conformally invariant and exists for all $w$. This is known to exists for generic values of $d$. We give explicit formulae for $Q$ for all $d$ out of the set of critical weights. We provide a simple description of this set and conjecture its minimality.
Links
GBP201/12/G028, research and development project |
|