J 2014

Conformally invariant quantization – towards the complete classification.

ŠILHAN, Josef

Basic information

Original name

Conformally invariant quantization – towards the complete classification.

Name in Czech

Konformně invariantní kvantování - směrem k úplné klasifikaci

Authors

ŠILHAN, Josef (203 Czech Republic, guarantor, belonging to the institution)

Edition

Differential Geometry and its Applications, Amsterdam, Elsevier Science, 2014, 0926-2245

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10101 Pure mathematics

Country of publisher

Netherlands

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 0.691

RIV identification code

RIV/00216224:14310/14:00073573

Organization unit

Faculty of Science

UT WoS

000332140800009

Keywords in English

Conformal differential geometry; Invariant quantization; Invariant differential operators

Tags

Tags

International impact, Reviewed
Změněno: 7/4/2014 14:38, Ing. Andrea Mikešková

Abstract

V originále

Let $M$ be a smooth manifold equipped with a conformal structure, $E[w]$ the space of densities with the the conformal weight $w$ and $D_{w,w+d}$ the space of differential operators from $E[w]$ to $E[w+d]$. Conformal quantization $Q$ is a right inverse of the principle symbol map on $D_{w,w+d}$ such that $Q$ is conformally invariant and exists for all $w$. This is known to exists for generic values of $d$. We give explicit formulae for $Q$ for all $d$ out of the set of critical weights. We provide a simple description of this set and conjecture its minimality.

Links

GBP201/12/G028, research and development project
Name: Ústav Eduarda Čecha pro algebru, geometrii a matematickou fyziku
Investor: Czech Science Foundation