Detailed Information on Publication Record
2013
Safe schedulability of bounded-rate multi-mode systems
ALUR, Rajeev, Vojtěch FOREJT, Salar MOARREF and Ashutosh TRIVEDIBasic information
Original name
Safe schedulability of bounded-rate multi-mode systems
Authors
ALUR, Rajeev (840 United States of America), Vojtěch FOREJT (203 Czech Republic, guarantor, belonging to the institution), Salar MOARREF (364 Islamic Republic of Iran) and Ashutosh TRIVEDI (356 India)
Edition
New York, NY, USA, Proceedings of the 16th international conference on Hybrid systems: computation and control, HSCC 2013, p. 243-252, 10 pp. 2013
Publisher
ACM
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
United States of America
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
printed version "print"
RIV identification code
RIV/00216224:14330/13:00072857
Organization unit
Faculty of Informatics
ISBN
978-1-4503-1567-8
Keywords in English
hybrid systems; scheduling
Tags
Tags
International impact, Reviewed
Změněno: 29/4/2014 20:10, RNDr. Pavel Šmerk, Ph.D.
Abstract
V originále
Bounded-rate multi-mode systems (BMS) are hybrid systems that can switch freely among a finite set of modes, and whose dynamics is specified by a finite number of real-valued variables with mode-dependent rates that can vary within given bounded sets. The schedulability problem for BMS is defined as an infinite-round game between two players— the scheduler and the environment—where in each round the scheduler proposes a time and a mode while the environment chooses an allowable rate for that mode, and the state of the system changes linearly in the direction of the rate vector. The goal of the scheduler is to keep the state of the system within a pre-specified safe set using a non-Zeno schedule, while the goal of the environment is the opposite. Green scheduling under uncertainty is a paradigmatic example of BMS where a winning strategy of the scheduler corresponds to a robust energy-optimal policy. We present an algorithm to decide whether the scheduler has a winning strategy from an arbitrary starting state, and give an algorithm to compute such a winning strategy, if it exists. We show that the schedulability problem for BMS is co-NP complete in general, but for two variables it is in PTIME. We also study the discrete schedulability problem where the environment has only finitely many choices of rate vectors in each mode and the scheduler can make decisions only at multiples of a given clock period, and show it to be EXPTIME-complete.
Links
LG13010, research and development project |
| ||
MUNI/33/IP1/2013, interní kód MU |
|