2014
Enhancing Network Intrusion Detection by Correlation of Modularly Hashed Sketches
DRAŠAR, Martin; Tomáš JIRSÍK a Martin VIZVÁRYZákladní údaje
Originální název
Enhancing Network Intrusion Detection by Correlation of Modularly Hashed Sketches
Autoři
DRAŠAR, Martin ORCID; Tomáš JIRSÍK a Martin VIZVÁRY
Vydání
Berlin, Monitoring and Securing Virtualized Networks and Services, Lecture Notes in Computer Science, Vol. 8508, od s. 160-172, 13 s. 2014
Nakladatel
Springer Berlin Heidelberg
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Odkazy
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14610/14:00073230
Organizační jednotka
Ústav výpočetní techniky
ISBN
978-3-662-43861-9
ISSN
UT WoS
000347615900019
EID Scopus
2-s2.0-84904187711
Klíčová slova anglicky
intrusion detection; NetFlow; sketch; modular hashes; correlation
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 1. 4. 2015 09:02, Mgr. Marta Novotná Buršíková
Anotace
V originále
The rapid development of network technologies entails an increase in traffic volume and attack count. The associated increase in computational complexity for methods of deep packet inspection has driven the development of behavioral detection methods. These methods distinguish attackers from valid users by measuring how closely their behavior resembles known anomalous behavior. In real-life deployment, an attacker is flagged only on very close resemblance to avoid false positives. However, many attacks can then go undetected. We believe that this problem can be solved by using more detection methods and then correlating their results. These methods can be set to higher sensitivity, and false positives are then reduced by accepting only attacks reported from more sources. To this end we propose a novel sketch-based method that can detect attackers using a correlation of particular anomaly detections. This is in contrast with the current use of sketch-based methods that focuses on the detection of heavy hitters and heavy changes. We illustrate the potential of our method by detecting attacks on RDP and SSH authentication by correlating four methods detecting the following anomalies: source network scan, destination network scan, abnormal connection count, and low traffic variance. We evaluate our method in terms of detection capabilities compared to other deployed detection methods, hardware requirements, and the attacker’s ability to evade detection.
Návaznosti
| VF20132015031, projekt VaV |
|