A Counter/Discriminator of Neutrons and Gamma Rays

Moslem Amiri, Václav Přenosil

Embedded Systems Laboratory Faculty of Informatics, Masaryk University Brno, Czech Republic

amiri@mail.muni.cz

August, 2014

- Physical background
- Our introduced technique
- Comparison with another technique

Neutron Radiation

- Neutron radiation is produced during
 - Nuclear fusion
 - Nuclear fission
 - Or any kind of nuclear reaction
- Applications of neutron radiation
 - Identifying properties and structures of materials
 - Curing cancerous tumors
 - Neutron imaging
 - ...
- Usage in various branches of science
 - Nuclear physics
 - Biology
 - Geology
 - Medicine
 - ...
- Problem
 - Neutron fields coexist with $\gamma\text{-rays}$

Radiation Detector

- The digitizers used
 - Acqiris DP210
 - 8-bit resolution
 - $\bullet~$ Set at 1 and 2 GS/s
 - Acqiris DC440
 - 12-bit resolution
 - $\bullet~$ Set at 250 and 420 MS/s

Neutron and Photon (γ -ray) Signals

Optimum Filter Implementation

A mathematical principle

Let n(i) and g(i) be discrete-time functions, normalized to unity:

$$\sum_{i} n(i) = \sum_{i} g(i) = 1 \tag{1}$$

If a weight sequence p(i) is computed as:

$$p(i) = \frac{g(i) - n(i)}{g(i) + n(i)}$$
(2)

then an unknown function u(i), close to either n(i) or g(i), can be identified as one of them by the sign of S defined as:

$$S = \sum_{i} p(i)u(i) \tag{3}$$

- In Eqs. 1, 2, and 3, if n(i) and g(i) are replaced with neutron and γ -ray pulses, respectively, then:
 - If S < 0, the particle is identified as γ -ray
 - If S > 0, the particle is identified as neutron
 - This can be used to count the number of neutrons and γ -rays
 - To find the efficiency of discrimination, an ideal factor is the amplitude of S for a pulse

Normalized Pulses – Weight Function

Experimental Distribution (12-bit res., 420 MS/s)

• For comparison, Figure of Merit (FoM) is used:

$$FoM = \frac{S}{FWHM_n + FWHM_\gamma}$$

- S: separation between the peaks of the two events
- $FWHM_{\gamma}$: full-width half-maximum (FWHM) of the spread of events classified as γ -rays
- $FWHM_n$: FWHM of the spread in the neutron peak

Data format	FoM	Neutron	Photon
		counts	counts
12-bit, 250 MS/s	1.25	9032	90968
12-bit, 420 MS/s	1.21	9293	90707
8-bit, 1 GS/s	1.06	9558	90442
8-bit, 2 GS/s	1.05	9462	90538

PGA Method

13 / 17

(4)

PGA Method - Distribution Plot (12-bit, 420 MHz)

Digitizer	8-bit, 1 GS	8-bit, 2 GS	12-bit, 250 MS	12-bit, 420 MS
FoM	0.88	0.91	0.94	1.00

This work was supported by Technology Agency of the Czech Republic under contract No. TA01011383/2011

Thank you for your attention!