Identifying Operating System Using Flow-based
Traffic Fingerprinting

Tomés Jirsik and Pavel Celeda

Institute of Computer Science, Masaryk University,
Botanicka 68a, Brno, Czech Republic
{jirsik|celeda}@ics.muni.cz

Abstract. Many vulnerabilities are operating system specific. Informa-
tion about the OS of all hosts in a network represents a valuable asset for
network administrators. While OS detection in small networks is an easy
task, expanding the same process on a large scale becomes a challenge.
The weak performance, high speed traffic and large amount of hosts for
OS detection are issues to overcome. In this paper we propose a flow
based framework for large scale OS detection. Furthermore, we describe
the framework implementation into a flow probe, provide performance
comparison and share remarks on deployment in a real world network.

Keywords: OS fingerprinting, passive, high-throughput, p0f, flow

1 Introduction

Being aware of all operating system (OS) communicating in a network means an
advantage for administrators protecting network security. Hosts with vulnerable
OSs pose a serious threat to security as they could be misused as an entry-point
to the network. This awareness also improves network management as any host
with an outdated system can be easily identified (e.g., the recent termination
of Windows XP support). Since 1994, when the main concept was introduced
in [3], two main approaches to OS detection have emerged: active and passive.

The existing active OS detection tools such as nmap [5] launch a set of
TCP, UDP and ICMP probes to a scanned host and detect OS system based
on responses they receive. This approach provides high accuracy, but is also
time demanding especially in large networks as we need to scan each host. Fur-
thermore, it inserts other traffic into network, which increases bandwidth. This
approach has the form of a network scan which, without permission, is legally
questionable.

On the other hand, passive OS detection does not insert any packets into
the network traffic. The OS type is determined based on the traffic captured
from the network. One widely used passive OS detection tool is pOf [6], which
employs data extracted from packet L3-L4 headers and even utilizes the content
of application-level payload to detect OS. p0f is a cornerstone for other tools such
as Ettercap, Disco, Yaf or Satori [6]. The advantages of passive fingerprinting are
that it does not leave any traces and does not modify the traffic. This approach

is suitable for deployment in large networks as there is no necessity to actively
probe each host.

We identify following the criteria for a OS detection tool working on large
scale: easy deployment and use, passive detection, and high performance. High
performance is desired in order to be able to scan large networks entirely and
handle traffic incoming at high speeds. Passive detection is preferred to active
because it does not affect the traffic in any way and is capable of monitoring
large amount of hosts at the same time. Ease of deployment and use are required
to save network administrators’ time.

In this paper, we present a flow based OS detection framework for use on a
large scale. We implement the framework into a flow probe, compare its perfor-
mance with other OS detection tools and discuss some remarks on its deployment
in a real network.

2 Flow Based OS Detection

In this section we describe a flow based framework for OS detection in large net-
works. Such an approach to OS detection has been chosen for following reasons.
First, flow based monitoring [2] is widely used standard for monitoring large net-
work infrastructures. This fact eases the deployment of our detection framework
as there is no need to introduce a new monitoring infrastructure. Second, obser-
vation points for flow based monitoring are suitably situated. Usually, the points
are placed on the main network traffic hubs and network borders. Therefore all
hosts can be monitored at the same time. Moreover, we are able to detect the
OS of all hosts in a network without accessing them. Lastly, the concept of flow
based network traffic monitoring is designed to process network traffic even at
high speeds of up to 100 Gbits/s, which makes it suitable for deployment in high
speed networks.

—k> (Packet observation) Flow export ﬁ
Packet :J Flo
OS included W
export

I_:(Data extraction)
Information| Flow T
aggregation | Cache L

Metering Process Exporting Process

Fig. 1: Architecture of flow based OS detection framework

The proposed framework for large scale OS detection is described in Fig. 1.
The most utilized part of the framework is the Metering Process as millions of
packets per second are processed there. For this reason, we postpone all logic
related to OS detection to less utilized processes. During the Metering Process
packets are observed at the observation point (e.g., using TAPs). Each packet

is processed and relevant data are extracted. Apart from the basic set of values
needed for flow creation, we extract data necessary for OS detection, namely
TTL, SYN packet size, initial size of TCP window and User Agent field from
HTTP protocol. The number of values extracted from the packet can be easily
increased by adding new rules into the Data extraction process. The gathered
information is then aggregated in Flow Cache into flows. Anytime the inactive
or active timeout is triggered, the flows are passed further onto the Exporting
process. So far, there has been no logic to detect OS. This logic is part of the
Exporting Process. The delay of logic for OS detection decreases the computa-
tional demands as the number of flows to process is significantly lower than the
number of packets. The logic for OS detection can be represented by the com-
parison of gathered OS specific information with a database of OS fingerprints.
The improvement of logic for OS detection is left for future work. When an OS
is detected, OS information is added to flows and flows are exported to collector.

We have implemented the framework into FlowMon probe [4] as a set of
processes and filter plugins.! Furthermore, we have benchmarked the tool at a
set of 1068 packets (TCP SYN packets : HTTP GET packets : other TCP/UDP
packets = 1:1:1), which were loaded in loop from memory to probe?. The
FlowMon probe running without detection plugins processed 18.328 Mp/s. Using
only OS detection based on User Agent field, the throughput dropped by 50.42 %
to 9.087Mp/s. Running the detection based on all fields (i.e. TTL, SYN size,
TCP win. size) the performance decreased by another 6.49 % to 8.497 Mp/s.

The main contribution of our work is the framework design with high perfor-
mance OS detection in large networks. Other passive OS detection tools such as
pOf (or k-p0f) are able to process up to 0.05 Mp/s (or 0.6 Mp/s) [1]. Our approach
benefits from flow monitoring framework specially designed for deployment in
large networks. Therefore, we were able to increase the performance of OS de-
tection remarkably. We do not evaluate the precision of the OS detection, since
we collect the same entries from network traffic as (k-)pOf tool in [1]. Therefore
the precision of detection is dependent solely on the quality of the fingerprint
database.

3 Deployment and Further Remarks

We deployed the detection tool in an university campus network and collected
data for two hours. During this period we observed 10.221M flows from 12897
hosts in the campus network. 33.5 % (3.425M) of all monitored flows contained
all the information needed for OS detection which represented 70.33 % (9072)
of all hosts. We observed that in some cases more than one OS was detected
for one IP. The cause of this behavior could be dynamic addressing in networks.
Therefore we removed all dynamically addressed subnets from evaluation.

The results (see Table 1) show, that the portion of the IP addresses with more
than one detected OS has decreased after the removal of dynamically addressed

! Description and sources available at http://is.muni.cz/th/359565/fi_b
2 Configuration: Intel Xeon CPU E31230 @ 3.20GHz, 15GB RAM, and Linux (64 bit).

networks. However, still 4 % of IP shows characteristics of two or more OS. This
fact can be explained by the presence of more devices with different OS using
the same IP address. This implies the presence Network Address Translation
(NAT) devices. Therefore, the OS detection can be used also as NAT detection
assuming that only a static addressed network is monitored.

[# of unique OS] # of IP in A[% of all A[# of IP in B[% of all B|

1 7898 87.059 3996 95.989

2 1071 11.806 159 3.819

3 80 0.882 7 0.168
> 3 23 0.253 1 0.024
Total 9072 100 % 4163 100 %

Table 1: Number of unique OS detected at one IP:
A - whole network, B - dynamically addressed subnets removed

The OS detection framework presented in this paper represents a useful tool
for network administrators. It meets all previously defined requirements for de-
ployment in large scale networks: easy deployment and use, passive monitoring,
and high performance. The ease of deployment and use is ensured by taking ad-
vantage of existing flow based monitoring infrastructure commonly used in such
networks. The design of the framework also ensures the flexibility and, as it has
been shown, the increase in performance. In future work, we will focus on the OS
detection logic. We would like to enlarge the database of fingerprints by adding
OS specific elements and provide a new approach to fingerprints correlation,
which should increase the precision of OS detection.

Acknowledgments. This material is based upon work supported by Cyber-
netic Proving Ground project (VG20132015103) funded by the Ministry of the
Interior of the Czech Republic.

References

1. Barnes, J., Crowley, P.: k-pOf: A high-throughput kernel passive os fingerprinter.
In: Architectures for Networking and Communications Systems (ANCS), 2013
ACM/IEEE Symposium on. pp. 113-114 (Oct 2013)

2. Claise, B., Trammell, B., Aitken, P.: RFC 7011: Specification of the IPFIX Protocol
for the Exchange of Flow Information (Sep 2013)

3. Comer, D., Lin, J.C.: Probing tcp implementations. In: USENIX Summer. pp.
245-255 (1994), http://dblp.uni-trier.de/db/conf/usenix/usenix_su94.html#
ComerL94

4. INVEA-TECH: FlowMon Exporter — Community Program (Apr 2013), http://
www.invea-tech.com, [cited 2014-04-15]

5. Lyon, G.F.: Nmap Network Scanning: The Official Nmap Project Guide to Network
Discovery and Security Scanning. Insecure, USA (2009)

6. Zalewski, M.: pOf v3, http://lcamtuf.coredump.cx/p0£3/, [cited 2014-04-15]

