J 2014

Distance to boundary and minimum-error discrimination

HAAPASALO, Erkka, Michal SEDLÁK a Mário ZIMAN

Základní údaje

Originální název

Distance to boundary and minimum-error discrimination

Autoři

HAAPASALO, Erkka (246 Finsko), Michal SEDLÁK (203 Česká republika) a Mário ZIMAN (703 Slovensko, garant, domácí)

Vydání

Physical Review A, 2014, 1050-2947

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10301 Atomic, molecular and chemical physics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

URL

Impakt faktor

Impact factor: 2.808

Kód RIV

RIV/00216224:14330/14:00073909

Organizační jednotka

Fakulta informatiky

DOI

http://dx.doi.org/10.1103/PhysRevA.89.062303

UT WoS

000336906100006

Klíčová slova anglicky

quantum information theory - quantum discrimination - convex analysis
Změněno: 27. 4. 2015 04:22, RNDr. Pavel Šmerk, Ph.D.

Anotace

V originále

We introduce the concept of boundariness capturing the most efficient way of expressing a given element of a convex set as a probability mixture of its boundary elements. In other words, this number measures (without the need of any explicit topology) how far the given element is from the boundary. It is shown that one of the elements from the boundary can be always chosen to be an extremal element. We focus on evaluation of this quantity for quantum sets of states, channels, and observables. We show that boundariness is intimately related to (semi)norms that provide an operational interpretation of this quantity. In particular, the minimum error probability for discrimination of a pair of quantum devices is lower bounded by the boundariness of each of them. We proved that for states and observables this bound is saturated and conjectured this feature for channels. The boundariness is zero for infinite-dimensional quantum objects as in this case all the elements are boundary elements.

Návaznosti

GAP202/12/1142, projekt VaV
Název: Slabé zdroje entanglementu a náhodnosti
Investor: Grantová agentura ČR, Weak sources of entanglement and randomness
Zobrazeno: 3. 11. 2024 04:06