Detailed Information on Publication Record
2014
Faster Existential FO Model Checking on Posets
GAJARSKÝ, Jakub, Petr HLINĚNÝ, Jan OBDRŽÁLEK and Sebastian ORDYNIAKBasic information
Original name
Faster Existential FO Model Checking on Posets
Authors
GAJARSKÝ, Jakub (703 Slovakia, belonging to the institution), Petr HLINĚNÝ (203 Czech Republic, guarantor, belonging to the institution), Jan OBDRŽÁLEK (203 Czech Republic, belonging to the institution) and Sebastian ORDYNIAK (276 Germany, belonging to the institution)
Edition
Berlin, ISAAC 2014, LNCS 8889, p. 441-451, 11 pp. 2014
Publisher
Springer International Publishing
Other information
Language
English
Type of outcome
Stať ve sborníku
Field of Study
10201 Computer sciences, information science, bioinformatics
Country of publisher
Germany
Confidentiality degree
není předmětem státního či obchodního tajemství
Publication form
printed version "print"
Impact factor
Impact factor: 0.402 in 2005
RIV identification code
RIV/00216224:14330/14:00074016
Organization unit
Faculty of Informatics
ISBN
978-3-319-13074-3
ISSN
UT WoS
000354865900035
Keywords in English
existential first-order logic; parameterized complexity; kernelization; poset embedding
Tags
Tags
International impact, Reviewed
Změněno: 30/3/2016 10:02, prof. RNDr. Petr Hliněný, Ph.D.
Abstract
V originále
We prove that the model checking problem for the existen- tial fragment of first order (FO) logic on partially ordered sets is fixed- parameter tractable (FPT) with respect to the formula and the width of a poset (the maximum size of an antichain). While there is a long line of research into FO model checking on graphs, the study of this problem on posets has been initiated just recently by Bova, Ganian and Szeider (LICS 2014), who proved that the existential fragment of FO has an FPT algorithm for a poset of fixed width. We improve upon their result in two ways: (1) the runtime of our algorithm is O(f (|phi|, w) · n 2 ) on n-element posets of width w, compared to O(g(|phi|) · n h(w) ) of Bova et al., and (2) our proofs are simpler and easier to follow. We comple- ment this result by showing that, under a certain complexity-theoretical assumption, the existential FO model checking problem does not have a polynomial kernel.
Links
GA14-03501S, research and development project |
| ||
MUNI/A/0765/2013, interní kód MU |
| ||
MUNI/A/0855/2013, interní kód MU |
|